JP2007265481A - Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film - Google Patents

Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film Download PDF

Info

Publication number
JP2007265481A
JP2007265481A JP2006086816A JP2006086816A JP2007265481A JP 2007265481 A JP2007265481 A JP 2007265481A JP 2006086816 A JP2006086816 A JP 2006086816A JP 2006086816 A JP2006086816 A JP 2006086816A JP 2007265481 A JP2007265481 A JP 2007265481A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
ferroelectric
optical memory
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006086816A
Other languages
Japanese (ja)
Inventor
Masahiro Echizen
正洋 越前
Yoichiro Masuda
陽一郎 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOMORIKEN KOGYO GIJUTSU KYOIKU
AOMORIKEN KOGYO GIJUTSU KYOIKU SHINKOKAI
Original Assignee
AOMORIKEN KOGYO GIJUTSU KYOIKU
AOMORIKEN KOGYO GIJUTSU KYOIKU SHINKOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOMORIKEN KOGYO GIJUTSU KYOIKU, AOMORIKEN KOGYO GIJUTSU KYOIKU SHINKOKAI filed Critical AOMORIKEN KOGYO GIJUTSU KYOIKU
Priority to JP2006086816A priority Critical patent/JP2007265481A/en
Publication of JP2007265481A publication Critical patent/JP2007265481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To substantially reduce voltage of drive voltage by making ferroelectric ceramics being a memory device a thinner film in a ferroelectric optical memory. <P>SOLUTION: A ferroelectric thin film optical memory device is made a sandwich-structured device in which a PLZT 2 as a memory material, a CdS 3 as a photoconductive film, and an ITO4 as a transparent electrode are laminated on a Pt(111)/TiO<SB>x</SB>/SiO<SB>2</SB>/Si (100) substrate 1. The ferroelectric ceramics requires several kilovolts for the drive voltage, however, the ferroelectric thin film requires only 1.5 volts and more for the drive voltage. A technology for forming the ferroelectric thin layer is variously developed, and existing thin film forming technologies can be used. The ferroelectric thin film optical memory device has a simple structure and can be produced at low cost. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光導電膜と強誘電体薄膜をサンドイッチ構造に構成したデバイスの構造に関するものである。 The present invention relates to a device structure in which a photoconductive film and a ferroelectric thin film are formed in a sandwich structure.

強誘電体セラミックス上に光導電膜を合成し、その両端に透明電極を塗布した構造を有する強誘電体光メモリーは画像表示用アナログ記録素子として研究が行なわれたが、セラミックスを用いるため、駆動電圧が数キロボルト程度必要となり、実用化し商業的に用いるには困難が生じる。 Ferroelectric optical memory with a structure in which a photoconductive film is synthesized on ferroelectric ceramics and transparent electrodes are applied to both ends has been studied as an analog recording element for image display. A voltage of about several kilovolts is required, which causes difficulties for practical use and commercial use.

本特許は、強誘電体セラミックスを薄膜化することにより駆動電圧を低下させることが出来、光導電膜を用いることで光を当てた任意の場所に対してデータを書き込めるという特徴を持つ素子である。 This patent is an element that can reduce the driving voltage by thinning the ferroelectric ceramics, and can write data to any place exposed to light by using a photoconductive film. .

強誘電体薄膜光メモリーは下部電極から上部透明電極までを既存の薄膜形成技術で解決できるために、複雑な生産工程を必要とせず、生産コストを押さえることができる。 Ferroelectric thin film optical memory can solve from the lower electrode to the upper transparent electrode with the existing thin film forming technology, so it does not require complicated production process and can reduce the production cost.

強誘電体光メモリーは既に提案されており、主として画像表示素子を目的とするものであった。液晶やLEDと比較して、次の様な利点が挙げられる。
(1)ヒステリシス現象を利用した半永久的記憶作用がある。
(2)大画面表示ができる。
(3)局部的な書込みや消去ができる。
(4)応答速度が速い。
Ferroelectric optical memories have been proposed and mainly intended for image display elements. Compared with liquid crystal and LED, the following advantages can be mentioned.
(1) There is a semi-permanent memory action using the hysteresis phenomenon.
(2) Large screen display.
(3) Local writing and erasing are possible.
(4) The response speed is fast.

強誘電体光メモリーは前述のような優れた特性を有するデバイスではあるが、メモリー素子として強誘電体セラミックスを用いていたため、駆動電圧が数キロボルト必要であり、商業的に実用化には至らなかった。 Although the ferroelectric optical memory is a device having the above-mentioned excellent characteristics, it requires a driving voltage of several kilovolts because it uses ferroelectric ceramics as a memory element, and it has not been commercialized commercially. It was.

強誘電体薄膜光メモリーはメモリー素子として強誘電体薄膜を用いるため、駆動電圧は1.5ボルト〜数10ボルト程度あれば十分である。 Since a ferroelectric thin film optical memory uses a ferroelectric thin film as a memory element, a drive voltage of about 1.5 volts to several tens of volts is sufficient.

したがって、本発明は強誘電体光メモリーの構造を利用するが、上記のセラミックス手法とは考え方を異にする薄膜手法を用いるものである。 Therefore, the present invention uses the structure of the ferroelectric optical memory, but uses a thin film technique that is different from the ceramic technique described above.

本発明が解決しようとする課題は、強誘電体光メモリーの強誘電体セラミックスを強誘電体薄膜化し、駆動電圧を低電圧化させることである。 The problem to be solved by the present invention is to reduce the driving voltage by making the ferroelectric ceramic of the ferroelectric optical memory into a ferroelectric thin film.

強誘電体薄膜光メモリーを構成する材料を以下に述べる。メモリー素子はPbLaZrTiO、ランタン添加チタンジルコン酸鉛であり、以下PLZTと略記する。光導電膜はCdS、硫化カドミウムである。透明電極はInO−SnO、酸化インジウム-酸化スズであり、以下ITOと略記する。 The materials constituting the ferroelectric thin film optical memory are described below. The memory element is PbLaZrTiO 3 , lanthanum-added lead titanium zirconate, and is hereinafter abbreviated as PLZT. The photoconductive film is CdS, cadmium sulfide. The transparent electrode is InO—SnO, indium oxide-tin oxide, and is hereinafter abbreviated as ITO.

図1に強誘電体薄膜光メモリーの模式図を示す。強誘電体薄膜光メモリーは、Pt(111)/TiO/SiO/Si(100)基板上1に、メモリー材料としてPLZT2、光導電膜としてCdS3、透明電極としてITO4を積層させたサンドイッチ構造の素子である。 FIG. 1 shows a schematic diagram of a ferroelectric thin film optical memory. The ferroelectric thin film optical memory has a sandwich structure in which PLZT2 as a memory material, CdS3 as a photoconductive film, and ITO4 as a transparent electrode are laminated on a Pt (111) / TiO x / SiO 2 / Si (100) substrate 1. It is an element.

強誘電体薄膜光メモリーはレーザー光源5より照射された任意の位置に電圧6を印加する事が可能である。詳細な駆動原理については図2で述べる。 The ferroelectric thin film optical memory can apply a voltage 6 to an arbitrary position irradiated from the laser light source 5. The detailed driving principle will be described with reference to FIG.

強誘電体薄膜は以下のプロセスによりゾルゲル法で合成する。
PT前駆体溶液を一分間あたり1000回転で10秒、一分間あたり3000回転で20秒の条件でコーティングした後、ホットプレートにより300℃で5分間の熱分解および結晶化を行ない、バッファー層を合成する。次に、PLZT前駆体溶液を第1ステップでは一分間あたり1000回転で10秒、第2ステップでは一分間あたり3000回転で20秒の条件でコーティングし、ホットプレートにより100℃で5分乾燥の後、300℃で3分間の熱分解を行なう。高速熱熱処理装置を用いて、酸素雰囲気中で焼成(700℃、2分間、1kgf/cm)を行ない結晶化させる。本工程を4回繰り返し、膜厚約300〜350ナノmのPLZT薄膜を合成する。
The ferroelectric thin film is synthesized by the sol-gel method by the following process.
After coating PT precursor solution at 1000 rpm for 10 seconds and 3000 rpm for 20 seconds for 20 seconds, thermal decomposition and crystallization at 300 ° C for 5 minutes on a hot plate to synthesize the buffer layer To do. Next, the PLZT precursor solution was coated at 1000 revolutions per minute for 10 seconds in the first step, and at 3000 revolutions per minute for 20 seconds in the second step, and dried at 100 ° C. for 5 minutes on a hot plate. And thermal decomposition at 300 ° C. for 3 minutes. Using a high-speed thermal heat treatment apparatus, calcination is performed in an oxygen atmosphere (700 ° C., 2 minutes, 1 kgf / cm 2 ) for crystallization. This process is repeated four times to synthesize a PLZT thin film having a thickness of about 300 to 350 nm.

光導電膜CdSは真空蒸着法で合成する
1.
基板の脱ガスのため、基板温度を400℃まで加熱する。同時に、CdS粉末の脱ガスのため、蒸発源温度を500℃まで徐々に加熱する。
2.
基板温度400℃、蒸発源温度500℃に達したら、そのまま10分間保ち、基板およびCdS粉末の脱ガスを行なう。
3.
基板温度を所定の温度まで下げ、蒸発源温度を250℃に保つ。
4.
基板温度が所定の温度に達したら、蒸発源温度を徐々に希望する温度に過熱する。
5.
基板温度が所定の温度になり、蒸発源温度が希望の温度に達したら、蒸着を開始する。
6.
30分蒸着した後、蒸着を終了する。
The photoconductive film CdS is synthesized by vacuum deposition.
1.
The substrate temperature is heated to 400 ° C. for degassing the substrate. At the same time, the evaporation source temperature is gradually heated to 500 ° C. to degas the CdS powder.
2.
When the substrate temperature reaches 400 ° C. and the evaporation source temperature reaches 500 ° C., the substrate and the CdS powder are degassed for 10 minutes.
3.
The substrate temperature is lowered to a predetermined temperature, and the evaporation source temperature is kept at 250 ° C.
Four.
When the substrate temperature reaches a predetermined temperature, the evaporation source temperature is gradually heated to a desired temperature.
Five.
When the substrate temperature reaches a predetermined temperature and the evaporation source temperature reaches a desired temperature, vapor deposition is started.
6.
After vapor deposition for 30 minutes, the vapor deposition is terminated.

透明電極ITOはスパッタリング法で合成する。
上部透明電極として、スパッタリング法によりITO薄膜を合成した。
スパッタリング条件は、印加電圧周波数13.6メガHz、陽極電流80ミリA、陽極電圧0.9キロボルト、導入ガスはアルゴンガス9割に対して酸素1割を混入させた複合ガス、基板加熱温度は350℃である。スパッタリング時間は約20分である。
以上が課題を解決する手段である。
The transparent electrode ITO is synthesized by a sputtering method.
An ITO thin film was synthesized by sputtering as the upper transparent electrode.
The sputtering conditions were applied voltage frequency of 13.6 MHz, anode current of 80 milliA, anode voltage of 0.9 kilovolt, introduced gas was a composite gas in which 90% of argon gas was mixed with 10% of oxygen, and the substrate heating temperature was 350 ° C. The sputtering time is about 20 minutes.
The above is the means for solving the problem.

強誘電体光メモリーの駆動方法について述べる。
図2に強誘電体薄膜光メモリーの駆動模式図を示した。強誘電体薄膜とフォトコンダクターに対して電界が印加されているので、分圧される。このとき、分圧の定量的な関係は式(1)である。
E=V+V・・・(1)
ここで、Eは印加電界、Vは強誘電体に印加される電界、Vはフォトコンダクターに印加される電界である。
A method for driving a ferroelectric optical memory will be described.
FIG. 2 shows a driving schematic diagram of a ferroelectric thin film optical memory. Since an electric field is applied to the ferroelectric thin film and the photoconductor, the voltage is divided. At this time, the quantitative relationship between the partial pressures is the equation (1).
E = V F + V P (1)
Here, E is the applied electric field, V F is the electric field applied to the ferroelectric, the V P is the electric field applied to the photo conductor.

電界はV<Eという条件を満たすように印加する。ここでEは強誘電体の抗電界である。次に、フォトコンダクターに光を照射すると、フォトコンダクターの抵抗RP1は光導電効果により、RP2へ変化する。このときフォトコンダクターの抵抗値はRP2<RP1となる。その結果、強誘電体に印加される電界はV>Eとなり、分極反転を引き起こしメモリーの書込みが完了する。 The electric field is applied so as to satisfy the condition of V F <E C. Here, E C is a coercive electric field of the ferroelectric. Next, when the photoconductor is irradiated with light, the resistance R P1 of the photoconductor changes to R P2 due to the photoconductive effect. At this time, the resistance value of the photoconductor is R P2 <R P1 . As a result, the electric field applied to the ferroelectric becomes V F > E C , causing polarization inversion and completing the memory writing.

以上のように本発明による課題の解決手段は、強誘電体光メモリーにおける強誘電体セラミックスを強誘電体薄膜にすることで、駆動電圧の大幅な低電圧化を狙うものである。 As described above, the means for solving the problems according to the present invention aims at drastically lowering the driving voltage by making the ferroelectric ceramic in the ferroelectric optical memory into a ferroelectric thin film.

本発明はSi基板上に、強誘電体薄膜を合成するプロセス、光導電膜を合成するプロセス、透明電極を合成するステップから成るものである。 The present invention comprises a process of synthesizing a ferroelectric thin film on a Si substrate, a process of synthesizing a photoconductive film, and a step of synthesizing a transparent electrode.

強誘電体セラミックスは焼成時間が長いため粒径が大きくなるまた、単一な粒径を合成するには単結晶にする必要があるが、製造プロセスが精密になり、生産コストが上昇する欠点を持つ。強誘電体薄膜は焼成時間が短いため、微小な粒径を形成し、かつ粒径の大きさをコントロールすることができる。 Ferroelectric ceramics require a single crystal to synthesize a single grain size due to the long firing time. In addition, the manufacturing process becomes precise and the production cost increases. Have. Since the ferroelectric thin film has a short firing time, it can form a fine particle size and control the size of the particle size.

強誘電体は非線型誘電率顕微鏡を用いることにより1平方インチあたり1.5テラビットの記録密度を持つ事が実証されている。この記録密度は現行の磁気記録密度1平方インチあたり6ギガビットを遥かに凌駕する高密度記録である。したがって、強誘電体は高記録密度を有する材料として優れたポテンシャルを持っている。 Ferroelectrics have been demonstrated to have a recording density of 1.5 terabits per square inch by using a nonlinear dielectric microscope. This recording density is a high-density recording far exceeding the current magnetic recording density of 6 gigabits per square inch. Therefore, the ferroelectric has an excellent potential as a material having a high recording density.

レーザー光などの単色光は半導体レーザーの開発により低コスト化・小型化されている。
DVDおよびCDに代表される光ディスクメモリー素子においては、中村による青色半導体レーザーの開発が成功し、Blue−ray DVD(以下、DVD−blue)が実用化されている。DVD−blueに代表される高密度記録光メモリーは、従来よりも波長の短い青色光を用いることで回折限界を向上させ、レーザー光を小さく絞り高密度記録を達成している。同様に、強誘電体光メモリーも青色のレーザーを用いることによって高密度記録を達成できると考えられる。
Monochromatic light such as laser light has been reduced in cost and size by the development of semiconductor lasers.
In optical disk memory devices typified by DVD and CD, Nakamura succeeded in developing a blue semiconductor laser, and a blue-ray DVD (hereinafter referred to as DVD-blue) has been put into practical use. A high-density recording optical memory typified by DVD-blue improves the diffraction limit by using blue light having a shorter wavelength than conventional ones, and achieves high-density recording by reducing the laser light to a smaller value. Similarly, it is considered that a ferroelectric optical memory can achieve high-density recording by using a blue laser.

したがって、前述に述べた通り、強誘電体薄膜光メモリーは産業活性化の一助となるものである。 Therefore, as described above, the ferroelectric thin film optical memory helps the industrial activation.

強誘電体薄膜光メモリーの模式図Schematic diagram of ferroelectric thin film optical memory 強誘電体薄膜光メモリーの駆動模式図Driving schematic diagram of ferroelectric thin film optical memory

符号の説明Explanation of symbols

1・・・Pt(111)/TiO/SiO/Si(100) 基板
2・・・メモリー素子
3・・・光導電膜
4・・・透明電極
5・・・レーザー光源
6・・・印加電圧


1 ··· Pt (111) / TiO x / SiO 2 / Si (100) substrate 2 ... memory element 3 ... photoconductive film 4 ... transparent electrode 5 ... laser light source 6 ... applied Voltage


Claims (5)

シリコンを基盤とし、該基板上に、白金を下部電極として、下から順に強誘電体薄膜、光導電膜を積層し、さらに上部電極として透明電極の各薄膜を積層させた、サンドイッチ構造であることを特徴とする強誘電体薄膜光メモリー素子。 Sandwich structure based on silicon, with platinum as the lower electrode, ferroelectric thin film and photoconductive film stacked in order from the bottom, and transparent electrodes as the upper electrode. A ferroelectric thin film optical memory device characterized by 請求項1記載の強誘電体薄膜の材料として、透過性と屈折率が共に高く、且つ優れた光学特性を示すペロブスカイト構造である強誘電体であることを特徴とする請求項1記載の強誘電体薄膜光メモリー素子。   The ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is a ferroelectric having a perovskite structure having both high transparency and refractive index and excellent optical characteristics. Thin film optical memory device. 請求項2記載の強誘電体として、ランタン添加チタンジルコン酸鉛、ニオブ酸リチウム、タンタル酸リチウム、を用いた強誘電体薄膜であることを特徴とする請求項1記載の強誘電体薄膜光メモリー素子。   3. The ferroelectric thin film optical memory according to claim 1, wherein the ferroelectric thin film is a ferroelectric thin film using lanthanum-doped lead zirconate titanium zirconate, lithium niobate, or lithium tantalate. element. 請求項1記載の光導電膜の材料として、光伝道効果を有する硫化カドミウム、セレン化カドミウム、テルル化カドミウム、を用いることを特徴とする請求項1記載の強誘電体薄膜光メモリー素子。   2. The ferroelectric thin film optical memory element according to claim 1, wherein cadmium sulfide, cadmium selenide, or cadmium telluride having a photoconductive effect is used as a material for the photoconductive film according to claim 1. 請求項1記載の強誘電体薄膜をゾルゲル法で形成し、光導電膜を真空蒸着法で形成し、さらに透明電極の薄膜をスパッタリング法で形成して、各薄膜を積層することを特徴とする請求項1記載の強誘電体薄膜光メモリー素子。
The ferroelectric thin film according to claim 1 is formed by a sol-gel method, a photoconductive film is formed by a vacuum deposition method, and a thin film of a transparent electrode is formed by a sputtering method, and each thin film is laminated. 2. The ferroelectric thin film optical memory device according to claim 1.
JP2006086816A 2006-03-28 2006-03-28 Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film Pending JP2007265481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086816A JP2007265481A (en) 2006-03-28 2006-03-28 Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086816A JP2007265481A (en) 2006-03-28 2006-03-28 Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film

Publications (1)

Publication Number Publication Date
JP2007265481A true JP2007265481A (en) 2007-10-11

Family

ID=38638324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086816A Pending JP2007265481A (en) 2006-03-28 2006-03-28 Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP2007265481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198625B2 (en) 2009-03-26 2012-06-12 Electronics And Telecommunications Research Institute Transparent nonvolatile memory thin film transistor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198625B2 (en) 2009-03-26 2012-06-12 Electronics And Telecommunications Research Institute Transparent nonvolatile memory thin film transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH09260612A (en) Ferroelectric thin film element semiconductor device using the same, and manufacture of the element
JPH05265016A (en) Liquid crystal device
JP3527074B2 (en) Display device manufacturing method
US7292382B2 (en) Light control unit
JP2005043770A (en) Spatial light modulator, method for optical recording, and device for optical recording
JP2007265481A (en) Ferroelectric thin film optical memory device using photoconductive film and ferroelectric thin film
JPH04119318A (en) Driving method of optical write type liquid crystal light valve
JPWO2006082972A1 (en) Voltage control circuit, voltage control method, and light control apparatus using the same
US7295360B2 (en) Structure having light modulating film and light control device using the same
JPH0869008A (en) Liquid crystal light valve
WO2005027138A1 (en) Light control apparatus and method for driving the same
JPS6241311B2 (en)
JP2011158721A (en) Hologram-recording elemental device
JP2695708B2 (en) Photoconductive liquid crystal light valve
JPH05165050A (en) Photo-conductive liquid crystal light bulb
JP2535271B2 (en) Method for manufacturing optical information recording medium
JP2540366B2 (en) Optical writing liquid crystal light valve
JPH0580339A (en) Liquid crystal display element
JPS61202459A (en) Image reader
JPS59141104A (en) Method of producing ferrodielectric thin film
JP2001318353A (en) Polarized light modulating element and its manufacturing method, and display device
Suzuki et al. PLZT Matrix Display
JP2001208914A (en) Liquid crystal optical device and optical head device
JP2001005023A (en) Liquid crystal device
JP2006216584A (en) Manufacturing method of ferroelectric thin film, piezoelectric element, and ferroelectric memory