JP2007263876A - Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid - Google Patents

Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid Download PDF

Info

Publication number
JP2007263876A
JP2007263876A JP2006091939A JP2006091939A JP2007263876A JP 2007263876 A JP2007263876 A JP 2007263876A JP 2006091939 A JP2006091939 A JP 2006091939A JP 2006091939 A JP2006091939 A JP 2006091939A JP 2007263876 A JP2007263876 A JP 2007263876A
Authority
JP
Japan
Prior art keywords
bubbles
liquid
measuring
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006091939A
Other languages
Japanese (ja)
Inventor
Masahito Kukizaki
雅人 久木崎
Haruo Shimaoka
治夫 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Miyazaki Prefecture
Original Assignee
Shimadzu Corp
Miyazaki Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Miyazaki Prefecture filed Critical Shimadzu Corp
Priority to JP2006091939A priority Critical patent/JP2007263876A/en
Publication of JP2007263876A publication Critical patent/JP2007263876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration method when measuring bubbles in liquid by using a laser diffraction/scattering type particle size distribution measuring method, and a method for measuring the volume concentration of the bubbles in the liquid by using a calibration result. <P>SOLUTION: A membranous porous molded body 21 having uniform pores is used as a gas liquid dispersion element, and operation for measuring intensity of diffracted/scattered light acquired by irradiating laser light toward monodisperse bubbles generated by supplying gas into the liquid through the membranous porous molded body 21 is performed by changing the gas supply flow rate to the membranous porous molded body 21 in a plurality of times, and a relation between the diffracted/scattered light intensity and the gas supply flow rate acquired by measurement of each time. When measuring unknown bubbles, the intensity of diffracted/scattered light acquired by irradiating the laser light toward the bubbles is measured, and the volume concentration of the bubbles in the liquid is calculated by using the foregoing relation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はレーザ回折・散乱式の粒度分布測定法における校正方法と、その校正方法による結果を用いて液体中の気泡の体積濃度を測定する方法に関する。   The present invention relates to a calibration method in a laser diffraction / scattering particle size distribution measurement method and a method of measuring the volume concentration of bubbles in a liquid using the result of the calibration method.

媒体中に分散する固体や液体の粒子などのコロイド粒子の粒度分布を測定する方法の一つに、レーザ回折・散乱式の粒度分布測定法が知られている。レーザ回折・散乱式の粒度分布測定法においては、一般に、媒体中に分散している被測定粒子群にレーザ光を照射することによって生じる回折・散乱光の空間強度分布を測定し、その光強度分布がミーの散乱理論ないしはフラウンホーファの回折理論に則ることを利用し、回折・散乱光の空間強度分布の測定結果からミーの散乱理論ないしはフラウンホーファの回折理論に基づく演算によって被測定粒子群の粒度分布を算出する。   As one method for measuring the particle size distribution of colloidal particles such as solid or liquid particles dispersed in a medium, a laser diffraction / scattering particle size distribution measuring method is known. In the laser diffraction / scattering particle size distribution measurement method, in general, the spatial intensity distribution of diffracted / scattered light generated by irradiating a group of particles to be measured dispersed in a medium with laser light is measured, and the light intensity is measured. Using the fact that the distribution conforms to Mie's scattering theory or Fraunhofer's diffraction theory, and based on the measurement results of the spatial intensity distribution of diffracted / scattered light, the particle size of the particles to be measured is calculated based on Mie's scattering theory or Fraunhofer's diffraction theory. Calculate the distribution.

このようなレーザ回折・散乱式粒度分布測定法を用いることにより、液体中に分散するナノバブルぶマイクロバブルをはじめとする微細な気泡の粒度分布を測定できることが知られている(例えば特許文献1参照)。
特開2005−169359号公報
It is known that the particle size distribution of fine bubbles including nanobubbles and microbubbles dispersed in a liquid can be measured by using such a laser diffraction / scattering particle size distribution measurement method (see, for example, Patent Document 1). ).
JP 2005-169359 A

ところで、例えば液体中のナノバブルやマイクロバブルは、水耕栽培や魚介類の養殖、気泡を含有した食品、マイクロカプセル、医薬製剤および化粧品製造、気泡を利用した泡沫分離や分離プロセス等の広範な分野で適用できることが知られている。   By the way, for example, nanobubbles and microbubbles in liquids are used in a wide range of fields such as hydroponics, aquaculture, food containing bubbles, microcapsules, pharmaceutical preparations and cosmetics, and foam separation and separation processes using bubbles. It is known that it can be applied.

このようなナノバブル等の気泡の各種産業への適用に際しては、上記のようにレーザ回折・散乱式の粒度分布測定装置によりその粒度分布を測定することができることは極めて有用であることは言うまでもないが、従来、液体中の気泡の濃度(体積濃度)については、その測定の方法が確立されていないという問題があった。   Needless to say, in the application of such bubbles such as nanobubbles to various industries, it is extremely useful to be able to measure the particle size distribution using a laser diffraction / scattering particle size distribution measuring apparatus as described above. Conventionally, there has been a problem that a method for measuring the concentration (volume concentration) of bubbles in a liquid has not been established.

本発明はこのような実情に鑑みてなされたもので、レーザ回折・散乱式の粒度分布測定法を用いて液体中の気泡を測定するに際しての校正方法と、その校正結果を用いて液体中の気泡の体積濃度を測定する方法の提供をその課題としている。   The present invention has been made in view of such circumstances, a calibration method for measuring bubbles in a liquid using a laser diffraction / scattering particle size distribution measuring method, and a calibration result in the liquid using the calibration result. The problem is to provide a method for measuring the volume concentration of bubbles.

上記の課題を解決するため、本発明のレーザ回折・散乱式粒度分布測定法における校正方法は、同法により液体中の気泡を測定するに当たっての校正方法であって、均一な細孔を有する膜状多孔質成形体を介して液体中に気体を圧入分散することにより生成した単分散気泡にレーザ光を照射して得られる回折・散乱光の強度測定する動作を、上記膜状多孔質成形体に対する気体の供給流量を複数にわたって変化させて行い、各回の測定で得られた回折・散乱光強度と気体の供給流量との関係を求めることによって特徴づけられる(請求項1)。   In order to solve the above problems, the calibration method in the laser diffraction / scattering particle size distribution measurement method of the present invention is a calibration method for measuring bubbles in a liquid by the same method, and is a film having uniform pores. The above-mentioned membranous porous molded body is used to measure the intensity of diffracted / scattered light obtained by irradiating a monodisperse bubble generated by press-fitting and dispersing a gas into a liquid through a cylindrical porous molded body. It is characterized by determining the relationship between the intensity of diffracted / scattered light obtained by each measurement and the gas supply flow rate by changing the gas supply flow rate over a plurality of times (claim 1).

ここで、請求項1における「均一な細孔を有する膜状多孔質成形体」とは、積算細孔容積分布の10%径が50%径の2/3以上、90%径が50%径の1.25倍以下の細孔分布を有する膜状多孔質成形体を言う。   Here, the “membrane-like porous molded body having uniform pores” in claim 1 means that 10% diameter of integrated pore volume distribution is 2/3 or more of 50% diameter, and 90% diameter is 50% diameter. Is a membranous porous compact having a pore distribution of 1.25 times or less.

以上のような均一な細孔を有する膜状多孔質成形体としては、多孔質ガラス成形体を好適に採用することができる(請求項2)。   As the membrane-like porous molded body having uniform pores as described above, a porous glass molded body can be suitably employed (Claim 2).

一方、本発明の液体中の気泡の体積濃度の測定方法は、レーザ回折・散乱式の粒度分布測定装置を用いて、気泡を含む液体に対してレーザ光を照射し、気泡による回折・散乱光の強度を測定し、その測定結果から、請求項1または2に記載の方法による校正結果を用いた演算により液体中の気泡の体積濃度を求めることによって特徴づけられる(請求項3)。   On the other hand, the method for measuring the volume concentration of bubbles in a liquid according to the present invention uses a laser diffraction / scattering particle size distribution measuring device to irradiate a liquid containing bubbles with laser light, and diffracted / scattered light from the bubbles. And measuring the volume concentration of bubbles in the liquid by calculation using the calibration result according to the method of claim 1 or 2. (Claim 3)

本発明は、多孔質ガラス成形体についての長年の研究により、均一な細孔を有する膜状多孔質成形体を用いることで、単分散の粒子径の気泡を再現性よく意図する粒子径のもとに発生させることに成功し、その気泡を、いわば液体中の標準気泡として用いることで、液体中の気泡の粒度分布測定に際しての校正を行うことができることを見いだし、本発明の完成に至ったものである。   In the present invention, by using a membrane-like porous molded body having uniform pores based on many years of research on a porous glass molded body, a monodispersed particle size of a bubble having a particle diameter intended with good reproducibility is obtained. In other words, by using the bubbles as standard bubbles in the liquid, it was found that calibration can be performed for measuring the particle size distribution of the bubbles in the liquid, and the present invention has been completed. Is.

すなわち、例えばガラスの分相を利用して作られる孔径の均一な多孔質ガラス成形体を介して、気体を液相に分散圧入することにより、粒径の揃った単分散微細気泡が生成される。この微細気泡は、多孔質ガラス成形体の孔径に対応するものとなり、あらかじめ多孔質ガラス成形体の孔径と生成される気泡との関係を求めておくことで、意図する粒径の単分散気泡を発生させることができる(前記特許文献1参照)。そして、このようにして発生した気泡の液相中での体積は、多孔質ガラス成形体に圧入すに気体の流量を計測しておき、気体の流速と気泡生成に要した時間から求めることができる。望ましくは、一定の気体流速で気体を多孔質ガラス成形体を介して液相に分散圧入し、気泡が生成する時間を計測することにより気体の体積を求める。   That is, for example, monodisperse fine bubbles having a uniform particle diameter are generated by dispersing and injecting gas into a liquid phase through a porous glass molded body having a uniform pore diameter made by using a phase separation of glass. . These fine bubbles correspond to the pore diameter of the porous glass molded body, and by obtaining the relationship between the pore diameter of the porous glass molded body and the generated bubbles in advance, monodisperse bubbles of the intended particle size can be obtained. Can be generated (see Patent Document 1). The volume of bubbles generated in this way in the liquid phase can be obtained from the flow rate of gas and the time required for bubble generation by measuring the flow rate of the gas to press fit into the porous glass molded body. it can. Desirably, the volume of gas is calculated | required by carrying out the dispersion | distribution press injection of gas to a liquid phase through a porous glass molded object with a fixed gas flow rate, and measuring the time which a bubble produces | generates.

一方、レーザ回折・散乱式の粒度分布測定法においては、単分散の固体等の標準粒子を既知の複数の濃度(個数)で媒体中に分散させたときのそれぞれの回折・散乱光の強度(絶対強度)を計測し、その濃度−回折・散乱光強度の関係を求める校正を行っておくことにより、未知試料の測定に際してその回折・散乱光強度の測定結果からその試料の濃度(体積濃度)を算出することができる。   On the other hand, in the laser diffraction / scattering particle size distribution measurement method, the intensity of each diffracted / scattered light when standard particles such as monodispersed solids are dispersed in a medium at a plurality of known concentrations (numbers) ( (Absolute intensity) is measured, and calibration is performed to determine the relationship between the concentration and diffraction / scattered light intensity. When measuring an unknown sample, the concentration (volume concentration) of the sample is determined from the measurement result of the diffraction / scattered light intensity. Can be calculated.

従って、上記のように均一な細孔を有する膜状多孔質成形体を気液分散素子として用いて、粒径の揃った単分散の粒径分布を持つ気泡を、任意の体積濃度のもとに生成してこれを標準粒子(気泡)として用い、回折・散乱光の絶対強度と体積濃度との関係を求める校正を行っておくことにより、液体中の未知の気泡が分散している試料のレーザ回折・散乱式粒度分布測定法による測定に際して、その未知試料による回折・散乱光の絶対強度を測定すれば、その体積濃度を算出することができる。   Therefore, using the membrane-like porous molded body having uniform pores as described above as a gas-liquid dispersion element, bubbles having a monodispersed particle size distribution with uniform particle size can be produced under an arbitrary volume concentration. This is used as standard particles (bubbles) and calibrated to obtain the relationship between the absolute intensity of diffracted / scattered light and the volume concentration, so that the unknown bubbles in the liquid are dispersed. When measuring by the laser diffraction / scattering particle size distribution measurement method, the volume concentration can be calculated by measuring the absolute intensity of the diffracted / scattered light from the unknown sample.

以上のような標準気泡として使用可能な単分散気泡を生成する際に用いるのに適した膜状多孔質成形体としては、特に限定されるものではないが、以下のものを挙げることができる。   Although it does not specifically limit as a membranous porous molded object suitable for using when producing | generating the monodispersed bubble which can be used as the above standard bubbles, The following can be mentioned.

すなわち、分相性基礎ガラスとして、特許第1504002号に開示されたCaO−B2 3 −SiO2 −Al2 3 系多孔質ガラス、特許第1518989号および米国特許第4857875号に開示されたCaO−B2 3 −SiO2 −Al2 3 −Na2 O系多孔質ガラス、CaO−B2 3 −SiO2 −Al2 3 −Na2 O−MgO系多孔質ガラス、あるいは、SiO2 −ZrO2 −Al2 3 −B2 3 −Na2 O−CaO系多孔質ガラス、もしくは、Na2 O−K2 O−CaO−Al2 3 −B2 3 −ZrO2 −SiO2 系ガラスなどを熱処理により分相した後、酸や熱水等によりこれらに溶出しやすいガラス相を溶出させて得られる孔径の均一な多孔質ガラス成形体を好適に用いることができる。 That is, as a phase separation base glass, CaO—B 2 O 3 —SiO 2 —Al 2 O 3 based porous glass disclosed in Patent No. 1504002, CaO disclosed in Patent No. 1518989 and US Pat. No. 4,857,875. —B 2 O 3 —SiO 2 —Al 2 O 3 —Na 2 O porous glass, CaO—B 2 O 3 —SiO 2 —Al 2 O 3 —Na 2 O—MgO porous glass, or SiO 2 -ZrO 2 -Al 2 O 3 -B 2 O 3 -Na 2 O-CaO -based porous glass or,, Na 2 O-K 2 O-CaO-Al 2 O 3 -B 2 O 3 -ZrO 2 - A porous glass molded article having a uniform pore diameter obtained by separating a SiO 2 glass or the like by heat treatment and then eluting a glass phase that is likely to be eluted with acid or hot water can be suitably used.

本発明によれば、均一な細孔を有する膜状多孔質成形体を気液分散素子として用いて液体中に単分散の気泡を発生させ、その気泡に向けてレーザ光を照射して得られる回折・散乱光の強度を計測する動作を、膜状多孔質成形体に対して供給する気体の流量を変化させて逐次行うことにより、気体の供給流量、換言すれば液体中に存在する気泡の量(体積)と、その気泡による回折・散乱光強度の関係を求める校正を行うので、その校正結果を用いることにより、未知の気泡にレーザ光を照射して得られる回折・散乱光の強度の測定結果から、従来測定することのできなかった液体中の気泡の体積濃度を正確に測定することができるようになった。   According to the present invention, a membrane-like porous molded body having uniform pores is used as a gas-liquid dispersion element to generate monodisperse bubbles in a liquid, and obtained by irradiating a laser beam toward the bubbles. The operation of measuring the intensity of the diffracted / scattered light is sequentially performed by changing the flow rate of the gas supplied to the membranous porous molded body, so that the gas supply flow rate, in other words, the bubbles present in the liquid Calibration is performed to obtain the relationship between the volume (volume) and the intensity of diffraction / scattered light by the bubble. By using the calibration result, the intensity of diffracted / scattered light obtained by irradiating laser light to an unknown bubble From the measurement results, it was possible to accurately measure the volume concentration of bubbles in a liquid that could not be measured conventionally.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明を適用した測定装置の全体構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a measuring apparatus to which the present invention is applied.

レーザ回折・散乱式粒度分布測定装置1は、液体が流されるフローセル11と、そのフローセル内の液体に対してレーザ光を照射する照射光学系12、フローセル1内の気泡による回折・散乱光の空間強度分布を測定する測定光学系13、およびその測定光学系13からの測定結果を取り込んでミーの散乱理論ないしはフラウンホーファの回折理論に基づく演算により気泡の粒度分布を算出するパーソナルコンピュータを主体とする演算装置14によって構成されている。   The laser diffraction / scattering particle size distribution measuring apparatus 1 includes a flow cell 11 through which a liquid flows, an irradiation optical system 12 that irradiates laser light to the liquid in the flow cell, and a space of diffraction / scattered light by bubbles in the flow cell 1. Calculation mainly based on a measurement optical system 13 for measuring an intensity distribution and a personal computer that takes in the measurement results from the measurement optical system 13 and calculates the particle size distribution of bubbles by calculation based on Mie's scattering theory or Fraunhofer's diffraction theory The device 14 is configured.

照射光学系11は、レーザ光源11aと、集光レンズ11b、空間フィルタ11cおよびコリメートレンズ11dによって構成され、レーザ光源11aからのレーザ光を平行光束に成形してフローセル11に向けて照射する。   The irradiation optical system 11 includes a laser light source 11a, a condensing lens 11b, a spatial filter 11c, and a collimator lens 11d. The laser light from the laser light source 11a is shaped into a parallel light beam and irradiated toward the flow cell 11.

測定光学系12は、前方所定角度までの角度領域の回折・散乱光を集光する集光レンズ12aと、その集光レンズ12aの焦点位置に置かれ、半径の異なるリング状または半リング状もしくは1/4リング状の複数の光検出素子が同心上に配置されてなるリングディテクタ12b、フローセル11の側方への散乱光を検出する側方散乱光センサ13c、後方への散乱光を検出する後方散乱光センサ13dによって構成されている。   The measurement optical system 12 is placed at a focal point of the condensing lens 12a for condensing diffracted / scattered light in an angle region up to a predetermined angle in the front, and has a ring shape or a semi-ring shape with different radii or A ring detector 12b in which a plurality of 1/4 ring-shaped photodetecting elements are concentrically arranged, a side scattered light sensor 13c for detecting scattered light to the side of the flow cell 11, and a scattered light detected backward. The back scattered light sensor 13d is used.

フローセル11には、以下に示す気泡発生装置2からの気泡を含む液体が流される。すなわち、気泡発生装置2は、気液分散素子としての多孔質ガラス膜モジュール21と、水相タンク22、その水相タンク22内の液体を多孔質ガラス膜モジュール21に供給するポンプ23、同じくその多孔質ガラス膜モジュール21に気体を供給するボンベ24、そのボンベ24から供給される気体の流量を測定するためのガス流量計25、空気の圧力を調整するための圧力調整弁26,27、およびボンベ24の出口および圧力調整弁26の出口にそれぞれ設けられた圧力計28,29によって構成されている。   In the flow cell 11, a liquid containing bubbles from the bubble generation device 2 shown below is caused to flow. That is, the bubble generator 2 includes a porous glass membrane module 21 as a gas-liquid dispersion element, a water phase tank 22, a pump 23 for supplying the liquid in the water phase tank 22 to the porous glass membrane module 21, A cylinder 24 for supplying gas to the porous glass membrane module 21, a gas flow meter 25 for measuring the flow rate of the gas supplied from the cylinder 24, pressure adjusting valves 26 and 27 for adjusting the pressure of the air, and Pressure gauges 28 and 29 are provided at the outlet of the cylinder 24 and the outlet of the pressure regulating valve 26, respectively.

水相タンク22から供給された液体には、多孔質ガラス膜モジュール21を通過する際に、当該膜モジュール21に装着した多孔質ガラス膜21を介してボンベ24からの気体が分散圧入される。これにより、液体中に単分散の微細気泡が生成される。この気泡を含む液体は、管30によりフローセル11に供給された後、管31によってタンク32に廃棄される。   When the liquid supplied from the aqueous phase tank 22 passes through the porous glass membrane module 21, the gas from the cylinder 24 is dispersed and injected through the porous glass membrane 21 attached to the membrane module 21. Thereby, monodisperse fine bubbles are generated in the liquid. The liquid containing bubbles is supplied to the flow cell 11 through the pipe 30 and then discarded into the tank 32 through the pipe 31.

このような気泡を含む液体がフローセル11を通過する際にレーザ光が照射され、気泡による回折・散乱光が測定光学系13によって測定される。その測定結果は演算装置14によって公知の演算により気泡の粒度分布に換算されるが、回折・散乱光の強度(絶対強度)を求めることもできる。   When a liquid containing such bubbles passes through the flow cell 11, laser light is irradiated, and diffraction / scattered light due to the bubbles is measured by the measurement optical system 13. The measurement result is converted into a bubble particle size distribution by a known calculation by the calculation device 14, but the intensity (absolute intensity) of diffracted / scattered light can also be obtained.

校正に際しては、多孔質ガラス膜モジュール21に供給する気体の流量を種々に変化させ、その各供給流量ごとに回折・散乱光の強度を求め、これら両者の関係を算出して記憶する。未知の気泡試料の粒度分布測定時においては、未知試料による回折・散乱光の強度の測定結果と、上記の校正で求めた気体の供給流量と回折・散乱光の強度との関係とから、未知の気泡試料の体積濃度を算出することができる。   At the time of calibration, the flow rate of the gas supplied to the porous glass membrane module 21 is changed variously, the intensity of diffracted / scattered light is obtained for each supply flow rate, and the relationship between these is calculated and stored. When measuring the particle size distribution of an unknown bubble sample, the unknown result is obtained from the measurement result of the intensity of diffraction / scattered light from the unknown sample and the relationship between the gas supply flow rate and the intensity of diffraction / scattered light obtained in the above calibration. The volume concentration of the bubble sample can be calculated.

以下、図1の装置を用いて実際に校正を行った例について述べる。
多孔質ガラス膜モジュール21において、平均孔径1.0μmの管状多孔質ガラス膜(SPG テクノ(株)社製)を用いて気泡を発生させ、レーザ回折・散乱式粒度分布測定装置1((株)島津製作所製、SALD2100)のフローセル11に供給して気泡の粒度分布を求めた。気体は空気を、水相は0.3wt%のドデシル硫酸ナトリウム水溶液を用いた。空気の流量はガス流量計25により計測し、レーザ回折・散乱式粒度分布測定装置1による回折・散乱光の絶対強度と空気流量の関係を求めた。その結果を図2にグラフで示す。また、図3(A)〜(C)には、図2における各プロットを得たときの回折・散乱光の強度測定結果を、図4(A)〜(C)にはこれらの回折・散乱光の空間強度分布から算出した気泡の粒度分布を示す。
Hereinafter, an example of actual calibration using the apparatus of FIG. 1 will be described.
In the porous glass membrane module 21, bubbles are generated using a tubular porous glass membrane (manufactured by SPG Techno Co., Ltd.) having an average pore diameter of 1.0 μm, and a laser diffraction / scattering type particle size distribution measuring apparatus 1 (Corporation) It was supplied to a flow cell 11 of Shimadzu Corporation, SALD2100, and the particle size distribution of the bubbles was determined. The gas was air, and the aqueous phase was a 0.3 wt% sodium dodecyl sulfate aqueous solution. The flow rate of air was measured by the gas flow meter 25, and the relationship between the absolute intensity of the diffracted / scattered light and the air flow rate was determined by the laser diffraction / scattering particle size distribution measuring apparatus 1. The results are shown graphically in FIG. 3A to 3C show the intensity measurement results of the diffracted / scattered light when each plot in FIG. 2 is obtained, and FIGS. 4A to 4C show these diffracted and scattered light. The bubble particle size distribution calculated from the spatial intensity distribution of light is shown.

図2のグラフから、回折・散乱光の絶対強度と気体の流量とは正の相関があり、この校正方法により、回折・散乱光の絶対強度と気泡体積の関係をあらかじめ求めておけば、未知の気泡試料の測定時に回折・散乱光の絶対強度を測定することによって、その体積濃度を計測できることは明らかである。   From the graph in FIG. 2, there is a positive correlation between the absolute intensity of the diffracted / scattered light and the gas flow rate. If the relationship between the absolute intensity of the diffracted / scattered light and the bubble volume is obtained in advance by this calibration method, It is clear that the volume concentration can be measured by measuring the absolute intensity of the diffracted / scattered light when measuring the bubble sample.

また、図4の各グラフから、多孔質ガラス膜モジュール21を用いた図1の気泡発生装置2により、粒径の揃った単分散の気泡を再現性よく発生させ得ることも確かめられた。   Further, it was confirmed from the respective graphs in FIG. 4 that the bubble generating device 2 in FIG. 1 using the porous glass membrane module 21 can generate monodisperse bubbles having uniform particle diameters with good reproducibility.

本発明方法を適用した実施の形態の全体構成図である。1 is an overall configuration diagram of an embodiment to which a method of the present invention is applied. 図1の装置を用いた校正結果の例を示すグラフである。It is a graph which shows the example of the calibration result using the apparatus of FIG. 図2のグラフを得たときの回折・散乱光の絶対強度の測定結果を示すグラフである。It is a graph which shows the measurement result of the absolute intensity | strength of diffracted / scattered light when the graph of FIG. 2 is obtained. 図3の各グラフをそれぞれ粒度分布に換算した結果を示すグラフである。It is a graph which shows the result of having converted each graph of Drawing 3 into a particle size distribution, respectively.

符号の説明Explanation of symbols

1 レーザ回折・散乱式粒度分布測定装置
11 フローセル
12 照射光学系
13 測定光学系
14 演算装置
2 気泡発生装置
21 多孔質ガラス膜モジュール
22 水相タンク
23 ポンプ
24 ボンベ
25 ガス流量計
26,27 圧力調整弁
28,29 圧力計
30,31 管
DESCRIPTION OF SYMBOLS 1 Laser diffraction / scattering type particle size distribution measuring apparatus 11 Flow cell 12 Irradiation optical system 13 Measurement optical system 14 Arithmetic apparatus 2 Bubble generator 21 Porous glass membrane module 22 Water phase tank 23 Pump 24 Cylinder 25 Gas flow meter 26, 27 Pressure adjustment Valve 28, 29 Pressure gauge 30, 31 pipe

Claims (3)

レーザ回折・散乱式の粒度分布測定法により液体中の気泡を測定するに当たっての校正方法であって、
均一な細孔を有する膜状多孔質成形体を介して液体中に気体を圧入分散することにより生成した単分散気泡にレーザ光を照射して得られる回折・散乱光の強度測定する動作を、上記膜状多孔質成形体に対する気体の供給流量を複数にわたって変化させて行い、各回の測定で得られた回折・散乱光強度と気体の供給流量との関係を求めることを特徴とするレーザ回折・散乱式粒度分布測定法における校正方法。
A calibration method for measuring bubbles in a liquid by a laser diffraction / scattering particle size distribution measurement method,
The operation of measuring the intensity of diffracted / scattered light obtained by irradiating laser light to monodisperse bubbles generated by press-fitting and dispersing gas into a liquid through a membrane-like porous molded body having uniform pores, Performing by changing the gas supply flow rate to the membrane-like porous molded body over a plurality of times, and determining the relationship between the diffraction / scattered light intensity obtained by each measurement and the gas supply flow rate. Calibration method in the scattering particle size distribution measurement method.
上記膜状多孔質成形体が、ガラス多孔質成形体であることを特徴とする請求項1に記載のレーザ回折・散乱式粒度分布測定法における校正方法。   2. The calibration method in the laser diffraction / scattering particle size distribution measuring method according to claim 1, wherein the membranous porous compact is a glass porous compact. 液体中の気泡の体積濃度を測定する方法であって、
レーザ回折・散乱式の粒度分布測定装置を用いて、気泡を含む液体に対してレーザ光を照射し、気泡による回折・散乱光の強度を測定し、その測定結果から、請求項1または2に記載の方法による校正結果を用いた演算により液体中の気泡の体積濃度を求めることを特徴とする液体中の気泡の体積濃度の測定方法。
A method for measuring the volume concentration of bubbles in a liquid,
A laser diffraction / scattering type particle size distribution measuring device is used to irradiate a liquid containing bubbles with laser light and measure the intensity of the diffraction / scattered light from the bubbles. A method for measuring a volume concentration of bubbles in a liquid, wherein the volume concentration of bubbles in the liquid is obtained by calculation using a calibration result according to the method described above.
JP2006091939A 2006-03-29 2006-03-29 Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid Pending JP2007263876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091939A JP2007263876A (en) 2006-03-29 2006-03-29 Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091939A JP2007263876A (en) 2006-03-29 2006-03-29 Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid

Publications (1)

Publication Number Publication Date
JP2007263876A true JP2007263876A (en) 2007-10-11

Family

ID=38637001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091939A Pending JP2007263876A (en) 2006-03-29 2006-03-29 Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid

Country Status (1)

Country Link
JP (1) JP2007263876A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216575A (en) * 2008-03-11 2009-09-24 Shimadzu Corp Particle size distribution measuring device, and volume concentration calculation method using it
JP2009300099A (en) * 2008-06-10 2009-12-24 Shimadzu Corp Particle size distribution measuring device
JP2010281814A (en) * 2009-05-26 2010-12-16 Krones Ag Foam density determination method and foam density determination device
JP2016048183A (en) * 2014-08-27 2016-04-07 株式会社島津製作所 Method and device for measuring bubble diameter distribution
JP2016109453A (en) * 2014-12-02 2016-06-20 シーエムシー技術開発 株式会社 Method and apparatus for measuring size distribution of fine bubbles
KR101793797B1 (en) 2012-08-21 2017-11-03 지멘스 악티엔게젤샤프트 Method and device for measuring the gas content in a liquid, and use of such a device
JP2018004450A (en) * 2016-07-01 2018-01-11 株式会社島津製作所 Bubble diameter distribution measuring apparatus and bubble diameter distribution measuring method
WO2018070411A1 (en) * 2016-10-14 2018-04-19 株式会社堀場製作所 Particle diameter distribution measurement device and program for particle diameter distribution measurement device
WO2018092462A1 (en) * 2016-11-17 2018-05-24 株式会社堀場製作所 Particle size distribution measuring device and program for particle size distribution measuring device
CN109900616A (en) * 2019-03-19 2019-06-18 江苏安全技术职业学院 A kind of foam slurry material foam cell uniformity quantitatively characterizing method
KR102245068B1 (en) * 2019-10-23 2021-04-28 안양대학교 산학협력단 Portable nano-bubble concentration measurement and analysis device
US11898949B2 (en) 2017-12-04 2024-02-13 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987340A (en) * 1982-11-10 1984-05-19 Nippon Furnace Kogyo Kaisha Ltd Method of measurement of concentration in water current model
JPH03289504A (en) * 1990-04-05 1991-12-19 Sumitomo Heavy Ind Ltd Bubble measuring apparatus
JPH05164679A (en) * 1991-12-12 1993-06-29 Meidensha Corp Calibration method of sludge densitometer
JPH05256760A (en) * 1984-12-04 1993-10-05 Dow Chem Co:The Method for measuring size and/or concentration of substance in suspended matter
JPH1090157A (en) * 1996-09-19 1998-04-10 Zexel Corp Method and apparatus for measuring spray utilizing laser diffraction
JP2004361291A (en) * 2003-06-05 2004-12-24 Masaaki Kawahashi Droplet state measuring device and state measuring method
JP2004361921A (en) * 2003-05-15 2004-12-24 Fuji Photo Film Co Ltd Digital camera
JP2005169359A (en) * 2003-12-15 2005-06-30 Miyazaki Prefecture Method of preparing monodisperse air bubble
WO2005091970A2 (en) * 2004-03-06 2005-10-06 Michael Trainer Methods and apparatus for determining the size and shape of particles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987340A (en) * 1982-11-10 1984-05-19 Nippon Furnace Kogyo Kaisha Ltd Method of measurement of concentration in water current model
JPH05256760A (en) * 1984-12-04 1993-10-05 Dow Chem Co:The Method for measuring size and/or concentration of substance in suspended matter
JPH03289504A (en) * 1990-04-05 1991-12-19 Sumitomo Heavy Ind Ltd Bubble measuring apparatus
JPH05164679A (en) * 1991-12-12 1993-06-29 Meidensha Corp Calibration method of sludge densitometer
JPH1090157A (en) * 1996-09-19 1998-04-10 Zexel Corp Method and apparatus for measuring spray utilizing laser diffraction
JP2004361921A (en) * 2003-05-15 2004-12-24 Fuji Photo Film Co Ltd Digital camera
JP2004361291A (en) * 2003-06-05 2004-12-24 Masaaki Kawahashi Droplet state measuring device and state measuring method
JP2005169359A (en) * 2003-12-15 2005-06-30 Miyazaki Prefecture Method of preparing monodisperse air bubble
WO2005091970A2 (en) * 2004-03-06 2005-10-06 Michael Trainer Methods and apparatus for determining the size and shape of particles
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216575A (en) * 2008-03-11 2009-09-24 Shimadzu Corp Particle size distribution measuring device, and volume concentration calculation method using it
JP2009300099A (en) * 2008-06-10 2009-12-24 Shimadzu Corp Particle size distribution measuring device
JP2010281814A (en) * 2009-05-26 2010-12-16 Krones Ag Foam density determination method and foam density determination device
KR101793797B1 (en) 2012-08-21 2017-11-03 지멘스 악티엔게젤샤프트 Method and device for measuring the gas content in a liquid, and use of such a device
JP2016048183A (en) * 2014-08-27 2016-04-07 株式会社島津製作所 Method and device for measuring bubble diameter distribution
JP2016109453A (en) * 2014-12-02 2016-06-20 シーエムシー技術開発 株式会社 Method and apparatus for measuring size distribution of fine bubbles
JP2018004450A (en) * 2016-07-01 2018-01-11 株式会社島津製作所 Bubble diameter distribution measuring apparatus and bubble diameter distribution measuring method
JPWO2018070411A1 (en) * 2016-10-14 2019-07-25 株式会社堀場製作所 Particle size distribution measuring device and program for particle size distribution measuring device
WO2018070411A1 (en) * 2016-10-14 2018-04-19 株式会社堀場製作所 Particle diameter distribution measurement device and program for particle diameter distribution measurement device
GB2573655A (en) * 2016-10-14 2019-11-13 Horiba Ltd Particle diameter distribution measurement device and program for particle diameter distribution measurement device
US11169068B2 (en) 2016-10-14 2021-11-09 Horiba, Ltd. Particle size distribution measurement device and program for a particle size distribution measurement device
WO2018092462A1 (en) * 2016-11-17 2018-05-24 株式会社堀場製作所 Particle size distribution measuring device and program for particle size distribution measuring device
JPWO2018092462A1 (en) * 2016-11-17 2019-10-17 株式会社堀場製作所 Particle size distribution measuring device and program for particle size distribution measuring device
GB2573410A (en) * 2016-11-17 2019-11-06 Horiba Ltd Particle size distribution measuring device and program for particle size distribution measuring device
GB2573410B (en) * 2016-11-17 2021-12-29 Horiba Ltd Particle size distribution measurement device and program for a particle size distribution measurement device
US11415499B2 (en) 2016-11-17 2022-08-16 Horiba, Ltd. Particle size distribution measurement device and program for a particle size distribution measurement device
US11898949B2 (en) 2017-12-04 2024-02-13 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device
CN109900616A (en) * 2019-03-19 2019-06-18 江苏安全技术职业学院 A kind of foam slurry material foam cell uniformity quantitatively characterizing method
CN109900616B (en) * 2019-03-19 2021-10-01 江苏安全技术职业学院 Quantitative characterization method for foam slurry material cell uniformity
KR102245068B1 (en) * 2019-10-23 2021-04-28 안양대학교 산학협력단 Portable nano-bubble concentration measurement and analysis device

Similar Documents

Publication Publication Date Title
JP2007263876A (en) Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid
Ahmed et al. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure
Kudo et al. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization
JP4915369B2 (en) Particle size distribution measuring apparatus and volume concentration calculation method using the same
NL2014178B1 (en) System and method for controlled manufacturing of mono-disperse microbubbles.
Schultz et al. Reflection coefficients of homopore membranes: effect of molecular size and configuration.
CN107850521A (en) viscosity measurement
Bissig et al. Micro-flow facility for traceability in steady and pulsating flow
JP7001712B2 (en) Fine bubble removing method and fine bubble removing device, as well as bubble diameter distribution measuring method and bubble diameter distribution measuring device
EP1849857B1 (en) Microinjection device and microinjection method
JP2022188187A (en) Fine bubble feeding device and fine bubble analysis system
JP2010125441A (en) System for producing liquid containing bubble particle
JP6264229B2 (en) Bubble diameter distribution measuring method and bubble diameter distribution measuring apparatus
Wenyuan et al. Study on the flow field around two parallel moving bubbles and interaction between bubbles rising in CMC solutions by PIV
Gu et al. In vivo and continuous measurement of bisulfide in the hippocampus of rat's brain by an on-line integrated microdialysis/droplet-based microfluidic system
US20230366816A1 (en) Turbidimeter
CN105699138A (en) Fluid bubble removing device and water quality monitoring system
KR20200102382A (en) System for detecting underwater bacteria in real time using bubble
Brown Apparatus 4 flow through cell: some thoughts on operational characteristics
Sonoda Real UFB sample measurements: A few cases
Kim et al. Analysis of the linear decrease in the reflectivity measured for bubbles growing on a substrate in a liquid for dissolved-gas sensor applications
Quadt et al. Membranes: optimising the regeneration of ceramic membranes
JP7164846B1 (en) Fine bubble generation method
TW200712451A (en) Flow measuring method for treatment fluid, treatment method using the treatment fluid, its apparatus, and storage medium for treatment
JP6872557B2 (en) Program for particle size distribution measuring device and particle size distribution measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110810