JP2007263600A - Sample target - Google Patents

Sample target Download PDF

Info

Publication number
JP2007263600A
JP2007263600A JP2006085763A JP2006085763A JP2007263600A JP 2007263600 A JP2007263600 A JP 2007263600A JP 2006085763 A JP2006085763 A JP 2006085763A JP 2006085763 A JP2006085763 A JP 2006085763A JP 2007263600 A JP2007263600 A JP 2007263600A
Authority
JP
Japan
Prior art keywords
substrate
sample
ionization
sample target
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085763A
Other languages
Japanese (ja)
Inventor
Noriaki Kanamaru
訓明 金丸
Shoji Okuno
昌二 奥野
Masato Kiuchi
正人 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shimadzu Corp
Priority to JP2006085763A priority Critical patent/JP2007263600A/en
Publication of JP2007263600A publication Critical patent/JP2007263600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample target capable of realizing the laser dissociating ionization of a sample to be analyzed with high efficiency without using a matrix. <P>SOLUTION: In the sample target used in the ionization of a sample due to laser beam irradiation and having a substrate wherein at least the surface to be irradiated with a laser beam has a porous structure and a thin film comprising a metal or a semiconductor covering the surface to be irradiated with the laser beam, the heat conductivity of the surface layer participated in the ionizing reaction due to the laser beam of the substrate and that of a bulk part other than the surface layer are made equal or the heat conductivity of the bulk part is made lower than that of the surface layer part. For example, the sample target 10 is constituted of a substrate 20 comprising a silica monolithic plate having a double pore structure and the Pt thin film 30 which covers the surface to be irradiated with the laser beam of the substrate 20. By this constitution, the loss of energy due to the heat conduction from the surface layer part of the target substrate 20 to the bulk part is suppressed and ionization efficiency can be enhanced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、質量分析法において分析対象試料を保持するための試料ターゲットに関し、特に、マトリックスを用いることなくレーザー光照射による分析対象試料のイオン化を可能とする試料ターゲットに関する。   The present invention relates to a sample target for holding a sample to be analyzed in mass spectrometry, and more particularly to a sample target that enables ionization of a sample to be analyzed by laser light irradiation without using a matrix.

近年、タンパク質・糖鎖・DNAなどの生体試料や合成ポリマーなどの高分子を対象とした定性・定量分析手法として質量分析法が広く利用されている。これは分析対象試料をイオン化し、エネルギーを与えることによって生じるイオンの質量/電荷数比(m/z)を利用して物理的なフィルタリングを行い、得られた質量スペクトルから分析を行うものである。質量分析装置には様々な種類があるが、例えば、イオン発生部で生成したイオンを所定の強さの電場によって引き出して電場及び磁場を有さない飛行空間内に導入し、イオン検出器に到達するまでの飛行時間に応じて、各種イオンを質量/電荷数比毎に分離・検出する飛行時間型質量分析装置(Time Of Flight Mass Spectrometry: TOFMS)等が知られている。   In recent years, mass spectrometry has been widely used as a qualitative / quantitative analysis technique for biological samples such as proteins, sugar chains, and DNA, and polymers such as synthetic polymers. This is a method of performing physical filtering using the mass / charge number ratio (m / z) of ions generated by ionizing and applying energy to a sample to be analyzed, and analyzing from the obtained mass spectrum. . There are various types of mass spectrometers. For example, ions generated by the ion generator are extracted by an electric field of a predetermined strength, introduced into a flight space that does not have an electric field and a magnetic field, and reach the ion detector. A time-of-flight mass spectrometer (TOFMS) that separates and detects various ions for each mass / charge number ratio according to the flight time until the time is known is known.

TOFMSにおけるサンプルのイオン化法としてはマトリックス支援レーザー脱離イオン化(Matrix Assisted Laser Desorption/Ionization: MALDI)が一般的に用いられている。MALDIは、分析対象試料をマトリックスと呼ばれる化合物と混合して試料ターゲットと呼ばれる金属板の上に塗布し、これにイオン化室内でパルスレーザー光を照射することでイオン化する方法であり、レーザー光を吸収したマトリックスが急速に加熱され気化するのに伴って、サンプル分子が脱離及びイオン化される。すなわち、MALDI法はマトリックスの吸収したエネルギーをサンプルが間接的に受け取ることによるソフトなイオン化法であり、そのため巨大分子を断片化させることなくイオン化することが可能となる。しかし、MALDIによる測定に際しては、適当なマトリックスを選定して試料と混合する手間を要し、また、低分子量領域においてマトリックス由来のバックグランドイオンが生じるため、マススペクトルの解析が困難になる場合がある。   As a sample ionization method in TOFMS, Matrix Assisted Laser Desorption / Ionization (MALDI) is generally used. MALDI is a method in which a sample to be analyzed is mixed with a compound called a matrix and coated on a metal plate called a sample target, and this is ionized by irradiating it with pulsed laser light in an ionization chamber, which absorbs the laser light. As the matrix is rapidly heated and vaporized, the sample molecules are desorbed and ionized. In other words, the MALDI method is a soft ionization method in which the sample indirectly receives the energy absorbed by the matrix, so that it becomes possible to ionize macromolecules without fragmenting them. However, measurement by MALDI requires time and effort to select an appropriate matrix and mix it with the sample, and background ions derived from the matrix are generated in the low molecular weight region, making it difficult to analyze the mass spectrum. is there.

このため、上記試料ターゲット自体にイオン化能を付加することでマトリックスを用いることなくレーザー脱離/イオン化による試料のイオン化を達成する手法として、シリコン上脱離イオン化(Desorption/Ionization On (porous) Silicon: DIOS)法と呼ばれる手法が開発されている。これはSi基板の表面に電気化学的酸化処理を施すことによりサブミクロンオーダーの多孔質層を設けたポーラスシリカプレート上に分析対象試料を塗布し、レーザー光の照射により該試料をイオン化するものである。また、Si以外の材料を基材とする表面支援レーザー脱離イオン化(Surface Assisted Laser Desorption/Ionization:SALDI)法と呼ばれる手法も開発されており、これらDIOSやSALDI等のマトリックス・フリーな(マトリックスを用いない)レーザー脱離/イオン化法がMALDIを補完する形で実用化されつつある。   Therefore, desorption / ionization on (porous) Silicon: As a technique to achieve ionization of the sample by laser desorption / ionization without using a matrix by adding ionization capability to the sample target itself, A technique called the DIOS method has been developed. In this method, the sample to be analyzed is applied to a porous silica plate provided with a porous layer of submicron order by subjecting the surface of the Si substrate to electrochemical oxidation, and the sample is ionized by irradiation with laser light. is there. In addition, a technique called surface-assisted laser desorption / ionization (SALDI) based on materials other than Si has also been developed, and these matrix-free (such as DIOS and SALDI) (Not used) Laser desorption / ionization methods are being put into practical use in a form that complements MALDI.

更に、このようなマトリックス・フリーなイオン化法における試料ターゲットを改良するものとして、Alの表面を電気化学的な酸化により多孔質化したポーラスアルミナを基材とし、これを貴金属や半導体から成る薄膜で被覆したものも考案されており、これにより、試料ターゲットのイオン化能を長期に亘って安定化させることができると共に、分子量10,000程度の試料のイオン化が可能となることが報告されている(非特許文献1)。   Furthermore, to improve the sample target in such a matrix-free ionization method, porous alumina whose surface is made porous by electrochemical oxidation is used as a base material, and this is a thin film made of noble metal or semiconductor. A coated one has also been devised, and it has been reported that the ionization ability of the sample target can be stabilized over a long period of time, and that a sample having a molecular weight of about 10,000 can be ionized (non-patented). Reference 1).

アナリティカル・ケミストリー(Analytical Chemistry)、米国、 2005年、第77巻、第16号、pp.5364-5369Analytical Chemistry, USA, 2005, 77, 16, pp.5364-5369

上述のように、近年、生体試料や高分子試料の定性・定量分析への質量分析の適用は益々拡大しており、これに伴ってマトリックスフリーなイオン化法の更なる高性能化、特にイオン化効率の向上が強く求められている。そこで、本発明が解決しようとする課題は、マトリックスを用いることなく分析対象試料のレーザー脱離/イオン化を行うために用いられる試料ターゲットにおいて、従来よりも高いイオン化効率を実現することである。   As described above, in recent years, the application of mass spectrometry to qualitative and quantitative analysis of biological samples and polymer samples has been increasing, and along with this, further enhancement of the performance of matrix-free ionization methods, especially ionization efficiency. Improvement is strongly demanded. Therefore, the problem to be solved by the present invention is to realize higher ionization efficiency than before in a sample target used for laser desorption / ionization of a sample to be analyzed without using a matrix.

上記課題に鑑み、本願発明者らは上記従来の試料ターゲットにおいて基体表層の多孔質部は共有結合性の酸化物被膜であるのに対し、バルクは熱伝導度の高い金属Alのままである点に着目し、レーザー光によって試料ターゲットに与えられた熱エネルギーが、表面に被覆された金属薄膜から熱伝導率の高いバルクを介して放散されることがイオン化効率低下の一因であることに想到し、本願発明に至った。   In view of the above-mentioned problems, the inventors of the present invention have a structure in which the porous portion of the substrate surface layer is a covalently bonded oxide film in the conventional sample target, whereas the bulk remains as metal Al having high thermal conductivity. As a result, the thermal energy given to the sample target by the laser light is dissipated from the metal thin film coated on the surface through the bulk with high thermal conductivity, which is one of the causes of the decrease in ionization efficiency. And it came to this invention.

すなわち、上記課題を解決するために成された本発明の第1の態様のものは、レーザー光照射による試料のイオン化に用いられ、少なくともレーザー被照射面が多孔質構造を有する基体と、該レーザー被照射面を被覆する金属若しくは半導体から成る薄膜とを有する試料ターゲットであって、
前記基体のレーザー光によるイオン化反応に関与する表層部と該表層部以外のバルク部の熱伝導率が同等、又は表層部よりもバルク部の熱伝導率が低いことを特徴としている。
That is, the first aspect of the present invention made to solve the above problems is used for ionization of a sample by laser light irradiation, and at least a laser-irradiated surface having a porous structure, the laser A sample target having a thin film made of a metal or a semiconductor covering the irradiated surface,
The thermal conductivity of the surface layer part involved in the ionization reaction by laser light of the substrate and the bulk part other than the surface layer part is equal, or the thermal conductivity of the bulk part is lower than the surface layer part.

上記課題を解決するために成された本発明の第2の態様のものは、レーザー光照射による試料のイオン化に用いられ、少なくともレーザー被照射面が多孔質構造を有する基体と、該レーザー被照射面を被覆する金属若しくは半導体から成る薄膜とを有する試料ターゲットであって、
前記基体と薄膜の間に断熱層を設けたことを特徴としている。
The second aspect of the present invention made to solve the above problems is used for ionization of a sample by laser light irradiation, at least a laser irradiated surface has a porous structure, and the laser irradiated A sample target having a metal or semiconductor thin film covering the surface,
A heat insulating layer is provided between the substrate and the thin film.

上記構成を有する本発明の第1の態様のものによれば、試料ターゲットにおけるバルク部の熱伝導度が表層部と同等又はそれ以下であるため、表層部からバルク部への熱伝導によるエネルギーのロスを抑えることができる。その結果、より多くのイオン化エネルギーが試料へと供給されることとなり、マトリックス・フリーなレーザー脱離イオン化におけるイオン化効率を向上させることが可能となる。   According to the first aspect of the present invention having the above-described configuration, the thermal conductivity of the bulk portion in the sample target is equal to or less than that of the surface layer portion, so that the energy of heat conduction from the surface layer portion to the bulk portion is reduced. Loss can be suppressed. As a result, more ionization energy is supplied to the sample, and the ionization efficiency in matrix-free laser desorption ionization can be improved.

また、本発明の第2の態様のものによれば、上記基体とそのレーザー被照射面を被覆する薄膜の間に断熱層を設けることにより、レーザー光によって与えられた熱エネルギーが上記薄膜から基体側へ放散されるのを抑えることができ、その結果、上記第1の態様のものと同様に、イオン化効率を向上させることができる。   According to the second aspect of the present invention, by providing a heat insulating layer between the base and the thin film covering the laser irradiated surface, the thermal energy given by the laser beam is transferred from the thin film to the base. As a result, ionization efficiency can be improved as in the first aspect.

本発明の試料ターゲットにおいて、表層部とはレーザー脱離/イオン化においてイオン化反応に寄与する領域を意味し、具体的にはレーザー被照射面からレーザー光の波長と同程度の深さまでの領域を指す。また、バルク部とはターゲット基体中の上記表層部以外の領域を指しており、上記従来のポーラスアルミナを用いた試料ターゲットではこのバルク部の熱伝導率が表層部(多孔質の酸化物皮膜)よりも高かったために熱エネルギーのロスを招いていた。これに対し、本発明ではバルク部の熱伝導率を表層部と同等以下とすることにより前記表層部で吸収された熱エネルギーがこのバルク部を伝って放散されるのを防止することができ、イオン化効率が向上される。   In the sample target of the present invention, the surface layer means a region contributing to an ionization reaction in laser desorption / ionization, and specifically refers to a region from the laser irradiated surface to a depth similar to the wavelength of the laser beam. . The bulk portion refers to a region other than the surface layer portion in the target substrate, and in the sample target using the conventional porous alumina, the thermal conductivity of the bulk portion is the surface layer portion (porous oxide film). It caused a loss of thermal energy because it was higher. On the other hand, in the present invention, by making the thermal conductivity of the bulk part equal to or less than that of the surface layer part, it is possible to prevent the heat energy absorbed in the surface layer part from being dissipated through the bulk part, Ionization efficiency is improved.

ここで、本発明の試料ターゲットにおいては、上記基体を非金属から成るものとすることが望ましい。これにより、従来のようにバルク部がAl等の金属から成る試料ターゲットに比べ、イオン化エネルギーのロスを抑えることができる。ここで、前記非金属は、カーボンを除くいずれのものであってもよく、例えばポリマーなどを用いることもできる。但し、耐熱性の点に鑑みると無機材料を用いることが望ましく、例えば、酸化物セラミックや窒化物セラミックなどのセラミック材料を好適に用いることができる。ここで、セラミックとはガラス、ゲルを含む無機固体材料を意味し、より好ましくは後述のような二重細孔構造を有する多孔質シリカゲルを用いることが望ましい。   Here, in the sample target of the present invention, it is desirable that the substrate is made of a nonmetal. Thereby, compared with the sample target whose bulk part consists of metals, such as Al like the past, the loss of ionization energy can be suppressed. Here, the nonmetal may be any material except carbon, and for example, a polymer or the like can be used. However, in view of heat resistance, it is desirable to use an inorganic material. For example, a ceramic material such as an oxide ceramic or a nitride ceramic can be suitably used. Here, ceramic means an inorganic solid material including glass and gel, and it is more preferable to use porous silica gel having a double pore structure as described later.

また、本発明に係る試料ターゲットにおいては、上記基体を多孔質体から成るものとすることが望ましい。これにより、多孔質の構造的な断熱性によって表層部からバルク部への熱エネルギーの放散を抑えることができ、レーザー被照射面で吸収された熱エネルギーをより効率よく試料に供給することが可能となる。ここで、上記多孔質体はいかなる素材から成るものであってもよく、熱伝導率の点から非金属を用いることが望ましいが、いわゆる金属多孔質材料を用いてもよい。更に、多孔質体としては、メゾスケール〜マクロスケール(0.2〜1μm)の細孔と該細孔の内壁面に形成されたナノスケール(10〜25nm)の微細孔とから成るいわゆる二重細孔構造を有するものを用いることが望ましい。なお、前記多孔質体は全体が多孔質構造から成るものであることが望ましいが、イオン化に際して十分な断熱効果が得られるのであれば、表層部に近い領域だけが多孔質化されたものであってもよい。   In the sample target according to the present invention, it is desirable that the substrate is made of a porous body. This makes it possible to suppress the dissipation of thermal energy from the surface layer to the bulk due to the porous structural heat insulation, and more efficiently supply the thermal energy absorbed by the laser irradiated surface to the sample. It becomes. Here, the porous body may be made of any material, and it is desirable to use a nonmetal from the viewpoint of thermal conductivity, but a so-called metal porous material may be used. Furthermore, as the porous body, so-called double pores comprising mesoscale to macroscale (0.2 to 1 μm) pores and nanoscale (10 to 25 nm) micropores formed on the inner wall surface of the pores. It is desirable to use one having a structure. The porous body preferably has a porous structure as a whole. However, if a sufficient heat insulating effect is obtained during ionization, only the region close to the surface layer portion is made porous. May be.

なお、上記金属若しくは半導体から成る薄膜によるコーティングは、レーザー被照射面のみに施してもよく、基体全体に施すようにしてもよい。また、該金属若しくは半導体によるコーティングにはスパッタ法、蒸着法、イオンプレーティング法、化学気層蒸着(Chemical Vapor Deposition:CVD)等の乾式コーティング法や、電解メッキ、非電解メッキなどの湿式コーティング法などいかなる手法を利用してもよい。   The coating with a thin film made of the metal or semiconductor may be applied only to the laser irradiated surface or may be applied to the entire substrate. In addition, the coating with the metal or semiconductor can be performed by a dry coating method such as sputtering, vapor deposition, ion plating, chemical vapor deposition (CVD), or by wet coating such as electrolytic plating or non-electrolytic plating. Any method may be used.

上記本発明の第2の態様において、断熱層は、少なくとも上記薄膜よりも熱伝導率が低いものであればよく、例えば、上記のような非金属や多孔質体を用いることができる。また、該断熱層は、いかなる方法により形成してもよいが、例えば、上記薄膜と同様の手法によって形成することができる。   In the second aspect of the present invention, the heat insulating layer only needs to have a thermal conductivity lower than that of at least the thin film, and for example, the above-mentioned nonmetal or porous material can be used. The heat insulating layer may be formed by any method, but for example, can be formed by the same method as the above thin film.

直径500nm程度のメゾスケールの細孔22と直径12nm程度のナノスケールの微細孔(図示略)を有する30×20×1.2mmのシリカモノリスプレート(株式会社京都モノテック製)を基体20とし、その表面にイオンビームスパッタ法によってPtを5〜50nm、好ましくは20〜50nmの膜厚でコーティングして薄膜30を形成することにより、TOFMS用試料ターゲット10を作製する(図1及び図2)。このようにして得られる本実施例の試料ターゲット10においては、シリカモノリスプレートから成る基体20のレーザー被照射面21に近い領域が上記表層部に相当し、その下の領域が上記バルク部に相当する。なお、Ptのコーティング方法としては、上記のようにコーティング剤の強固な付着が期待できるイオンビームスパッタ法を用いることが好ましいが、その他、いかなる方法を用いてもよい。また、このとき適当なマスクを用いて部分的なコーティングを施すことにより、レーザー被照射面21に図3に示すような試料保持部(ウェル)31を形成するようにしてもよい。   A 30 × 20 × 1.2 mm silica monolith plate (manufactured by Kyoto Monotech Co., Ltd.) having mesoscale pores 22 having a diameter of about 500 nm and nanoscale micropores (not shown) having a diameter of about 12 nm is used as the substrate 20. A TOFMS sample target 10 is formed by coating the surface with Pt by ion beam sputtering to a thickness of 5 to 50 nm, preferably 20 to 50 nm, to form a thin film 30 (FIGS. 1 and 2). In the sample target 10 of this example obtained in this way, a region close to the laser irradiated surface 21 of the substrate 20 made of a silica monolith plate corresponds to the surface layer portion, and a region below it corresponds to the bulk portion. To do. As the Pt coating method, it is preferable to use an ion beam sputtering method that can expect a strong adhesion of the coating agent as described above, but any other method may be used. At this time, a sample holding portion (well) 31 as shown in FIG. 3 may be formed on the laser irradiated surface 21 by applying a partial coating using an appropriate mask.

直径500nm程度のメゾスケールの細孔を有する30×20×1.2mmのAg多孔質体を基体20とし、その表面にSiO2(熱伝導率:0.07〜0.12kcal/m・hr・℃)をRF-ダイオードスパッタ、又はオフアクシススパッタにより50〜300nmの膜厚でコーティングすることで断熱層40を形成する。その後、更にDC-スパッタによってPtを20〜50nmの膜厚でコーティングして薄膜30を形成することにより試料ターゲット10を作製する(図4)。基体20としてAgのような金属を用いた場合、試料ターゲット10の強度を高めることができる一方で、高い熱伝導率によりイオン化効率が低下するという欠点がある。しかし、本実施例では基体20を構成する金属材料として多孔質性のものを用いることで構造的な断熱性が得られることに加え、レーザー被照射面21を被覆する薄膜30の下に上記のような断熱層40を設けたことにより、上記欠点を回避してイオン化能の高い試料ターゲットを提供することが可能となる。 A 30 × 20 × 1.2 mm Ag porous body having mesoscale pores with a diameter of about 500 nm is used as the substrate 20, and SiO 2 (thermal conductivity: 0.07 to 0.12 kcal / m · hr · ° C.) is RF on the surface. The heat insulation layer 40 is formed by coating with a film thickness of 50 to 300 nm by diode sputtering or off-axis sputtering. Thereafter, the sample target 10 is fabricated by further coating the Pt with a film thickness of 20 to 50 nm by DC-sputtering to form the thin film 30 (FIG. 4). When a metal such as Ag is used as the substrate 20, the strength of the sample target 10 can be increased, but there is a drawback that ionization efficiency is lowered due to high thermal conductivity. However, in this embodiment, in addition to obtaining a structural heat insulating property by using a porous metal material constituting the substrate 20, the above-described structure is provided below the thin film 30 covering the laser irradiated surface 21. By providing such a heat insulating layer 40, it is possible to avoid the above-mentioned drawbacks and provide a sample target with high ionization ability.

本発明の第1の実施例に係る試料ターゲットを示す断面図。Sectional drawing which shows the sample target which concerns on 1st Example of this invention. 同実施例に係る試料ターゲットのレーザー被照射面近傍を示す拡大断面図。The expanded sectional view which shows the laser irradiated surface vicinity of the sample target which concerns on the Example. 同実施例に係る試料ターゲットにおいて試料保持部を設けた場合を示す図であり、(a)は上面図、(b)は長手方向断面図である。It is a figure which shows the case where the sample holding part is provided in the sample target which concerns on the Example, (a) is a top view, (b) is longitudinal direction sectional drawing. 本発明の第2の実施例に係る試料ターゲットを示す断面図。Sectional drawing which shows the sample target which concerns on the 2nd Example of this invention.

符号の説明Explanation of symbols

10…試料ターゲット
20…基体
21…レーザー被照射面
22…細孔
30…薄膜
40…断熱層
DESCRIPTION OF SYMBOLS 10 ... Sample target 20 ... Base | substrate 21 ... Laser irradiated surface 22 ... Pore 30 ... Thin film 40 ... Heat insulation layer

Claims (5)

レーザー光照射による試料のイオン化に用いられ、少なくともレーザー被照射面が多孔質構造を有する基体と、該レーザー被照射面を被覆する金属若しくは半導体から成る薄膜とを有する試料ターゲットであって、
前記基体のレーザー光によるイオン化反応に関与する表層部と該表層部以外のバルク部の熱伝導率が同等、又は表層部よりもバルク部の熱伝導率が低いことを特徴とする試料ターゲット。
A sample target that is used for ionization of a sample by laser light irradiation and has a substrate having a porous structure at least on a laser irradiated surface, and a thin film made of a metal or a semiconductor that covers the laser irradiated surface,
A sample target characterized in that the thermal conductivity of the surface layer part involved in the ionization reaction by laser light of the substrate and the bulk part other than the surface layer part are equal, or the thermal conductivity of the bulk part is lower than the surface layer part.
前記基体が非金属から成ることを特徴とする請求項に1に記載の試料ターゲット。   The sample target according to claim 1, wherein the substrate is made of a nonmetal. 上記基体が多孔質体から成ることを特徴とする請求項1又は2に記載の試料ターゲット。   3. The sample target according to claim 1, wherein the substrate is made of a porous body. 上記基体が二重細孔構造を有する多孔質シリカゲルから成ることを特徴とする請求項1〜3のいずれかに記載の試料ターゲット。   The sample target according to any one of claims 1 to 3, wherein the substrate is made of porous silica gel having a double pore structure. レーザー光照射による試料のイオン化に用いられ、少なくともレーザー被照射面が多孔質構造を有する基体と、該レーザー被照射面を被覆する金属若しくは半導体から成る薄膜とを有する試料ターゲットであって、
前記基体と薄膜の間に断熱層を設けたことを特徴とする試料ターゲット。
A sample target that is used for ionization of a sample by laser light irradiation and has a substrate having a porous structure at least on a laser irradiated surface, and a thin film made of a metal or a semiconductor that covers the laser irradiated surface,
A sample target, wherein a heat insulating layer is provided between the substrate and the thin film.
JP2006085763A 2006-03-27 2006-03-27 Sample target Pending JP2007263600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085763A JP2007263600A (en) 2006-03-27 2006-03-27 Sample target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085763A JP2007263600A (en) 2006-03-27 2006-03-27 Sample target

Publications (1)

Publication Number Publication Date
JP2007263600A true JP2007263600A (en) 2007-10-11

Family

ID=38636747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085763A Pending JP2007263600A (en) 2006-03-27 2006-03-27 Sample target

Country Status (1)

Country Link
JP (1) JP2007263600A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236489A (en) * 2008-03-25 2009-10-15 Kanagawa Acad Of Sci & Technol Sample target used in mass analyzing method, its manufacturing method and mass analyzer using sample target
KR101295893B1 (en) 2009-11-02 2013-08-12 한국전자통신연구원 Target Material for Generating Proton and Treatment Apparatus Including the Same
KR20140073293A (en) * 2012-12-06 2014-06-16 한국전자통신연구원 Target member for ion or proton acceleration and method of manufacturing the same
WO2016181908A1 (en) * 2015-05-08 2016-11-17 旭硝子株式会社 Sample plate for mass spectrometric analysis, method for mass spectrometric analysis, and device for mass spectrometric analysis
WO2022049846A1 (en) * 2020-09-04 2022-03-10 浜松ホトニクス株式会社 Sample support, ionization method, and mass spectrometry method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130860A (en) * 2001-10-19 2003-05-08 Asahi Kasei Corp Automatic volatile substance analyzer
WO2005004191A2 (en) * 2003-06-09 2005-01-13 3M Innovative Properties Company Laser desorption substrate
WO2005083418A1 (en) * 2004-02-26 2005-09-09 Japan Science And Technology Agency Sample target having surface-treated plane for holding sample and method for manufacture thereof, and mass spectrometer using the sample target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130860A (en) * 2001-10-19 2003-05-08 Asahi Kasei Corp Automatic volatile substance analyzer
WO2005004191A2 (en) * 2003-06-09 2005-01-13 3M Innovative Properties Company Laser desorption substrate
WO2005083418A1 (en) * 2004-02-26 2005-09-09 Japan Science And Technology Agency Sample target having surface-treated plane for holding sample and method for manufacture thereof, and mass spectrometer using the sample target

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236489A (en) * 2008-03-25 2009-10-15 Kanagawa Acad Of Sci & Technol Sample target used in mass analyzing method, its manufacturing method and mass analyzer using sample target
KR101295893B1 (en) 2009-11-02 2013-08-12 한국전자통신연구원 Target Material for Generating Proton and Treatment Apparatus Including the Same
KR20140073293A (en) * 2012-12-06 2014-06-16 한국전자통신연구원 Target member for ion or proton acceleration and method of manufacturing the same
KR101984019B1 (en) 2012-12-06 2019-06-04 한국전자통신연구원 Target member for ion or proton acceleration and method of manufacturing the same
WO2016181908A1 (en) * 2015-05-08 2016-11-17 旭硝子株式会社 Sample plate for mass spectrometric analysis, method for mass spectrometric analysis, and device for mass spectrometric analysis
JPWO2016181908A1 (en) * 2015-05-08 2018-02-22 旭硝子株式会社 Sample plate for mass spectrometry, mass spectrometry method and mass spectrometer
US10332734B2 (en) 2015-05-08 2019-06-25 AGC Inc. Sample plate for mass spectrometric analysis, mass spectrometric analysis method, and mass spectrometric analysis device
WO2022049846A1 (en) * 2020-09-04 2022-03-10 浜松ホトニクス株式会社 Sample support, ionization method, and mass spectrometry method
JP7404195B2 (en) 2020-09-04 2023-12-25 浜松ホトニクス株式会社 Sample support, ionization method, and mass spectrometry method
EP4134669A4 (en) * 2020-09-04 2024-06-12 Hamamatsu Photonics K.K. Sample support, ionization method, and mass spectrometry method

Similar Documents

Publication Publication Date Title
Dreisewerd The desorption process in MALDI
US6617575B1 (en) Modified ion source targets for use in liquid maldi MS
JP6105182B1 (en) Surface-assisted laser desorption / ionization method, mass spectrometry method, and mass spectrometer
Kruse et al. Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon
Burton et al. Proton affinities of eight matrices used for matrix‐assisted laser desorption/ionization
Northen et al. High surface area of porous silicon drives desorption of intact molecules
US8558169B2 (en) Sample substrate for laser desorption ionization-mass spectrometry, and method and device both using the same for laser desorption ionization-mass spectrometry
US8278626B2 (en) Device for mass spectrometry, and mass spectrometry apparatus and method
JP4366508B2 (en) Ionization method and apparatus for mass spectrometry
JP2007263600A (en) Sample target
Ryumin et al. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS
Xiao et al. Impacts of surface morphology on ion desorption and ionization in desorption ionization on porous silicon (DIOS) mass spectrometry
JP3122331U (en) Sample plate and mass spectrometer equipped with the same
US8044344B2 (en) Mass spectroscope
JP7014809B2 (en) Sample plate for MALDI mass spectrometry and its manufacturing method
Yang et al. Antireflection surfaces for biological analysis using laser desorption ionization mass spectrometry
JP2010071664A (en) Device for mass spectrometric analysis, method of preparing the same, laser desorption ionization mass spectrometer using the same
Jemere et al. Matrix‐free laser desorption/ionization mass spectrometry using silicon glancing angle deposition (GLAD) films
Silina et al. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry
Moening et al. Matrix-enhanced nanostructure initiator mass spectrometry (ME-NIMS) for small molecule detection and imaging
JP2010078346A (en) Mass analyzing device, mass analyzer using the same and mass analyzing method
Moshkunov et al. Improvement of biomolecular analysis in thin films using in situ matrix enhanced secondary ion mass spectrometry
Papantonakis et al. What do matrix‐assisted laser desorption/ionization mass spectra reveal about ionization mechanisms?
Stolee et al. Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays
Wahl et al. Thin gold film-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of biomolecules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823