JP2007263000A - Pump having resin component and method of manufacturing resin component for pump - Google Patents

Pump having resin component and method of manufacturing resin component for pump Download PDF

Info

Publication number
JP2007263000A
JP2007263000A JP2006089758A JP2006089758A JP2007263000A JP 2007263000 A JP2007263000 A JP 2007263000A JP 2006089758 A JP2006089758 A JP 2006089758A JP 2006089758 A JP2006089758 A JP 2006089758A JP 2007263000 A JP2007263000 A JP 2007263000A
Authority
JP
Japan
Prior art keywords
mold
resin
pump device
pump
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006089758A
Other languages
Japanese (ja)
Inventor
Sunao Miyauchi
直 宮内
Minoru Sakuta
実 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2006089758A priority Critical patent/JP2007263000A/en
Publication of JP2007263000A publication Critical patent/JP2007263000A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resinified pump device and a manufacturing method suitable for a resin component for such a pump, for reducing weight, and improving corrosion resistance, by resinifying in a state of being superior in productivity, with sufficient strength, even in a component requiring high strength such as an impeller. <P>SOLUTION: In this manufacturing method of the resin component for the pump device, the resin component for the pump device such as the impeller 4 is made by the manufacturing method comprising a preliminary process (a) of sealing a reinforced fiber material 10 in a mold 11, a resin injection process (b) of sucking and injecting a synthetic resin into the mold 11 in a fluid state by putting the inside of the mold 11 sealed with the reinforced fiber material 10 under negative pressure, and a hardening process (c) of hardening resin injected into the mold 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給水ポンプ、排水ポンプ、立軸ポンプ等の樹脂部品を有するポンプ及びポンプ用樹脂部品の製造方法に関するものである。   The present invention relates to a pump having resin parts such as a water supply pump, a drainage pump, and a vertical shaft pump, and a method for producing a resin part for a pump.

従来、羽根車、案内羽根、揚水管等の各種ポンプ部品の材料としては、一般的に強度を有する鋳鉄等の金属材料が用いられている。一方、可搬型ポンプの持運び等の取扱い性の改善や、海水用ポンプ、化学用ポンプでは耐食性の向上等が望まれてきている。それらの要望に答えてポンプの軽量化や耐食性の向上を図るために、例えば特許文献1において開示されるように、ポンプの構成部品を金属材料から樹脂材料に変更すること、即ち樹脂化することが試されてきている。   Conventionally, as materials for various pump parts such as impellers, guide vanes, and pumping pipes, metal materials such as cast iron having high strength are generally used. On the other hand, improvement in handling properties such as carrying of a portable pump and improvement in corrosion resistance have been desired for seawater pumps and chemical pumps. In order to reduce the weight and improve the corrosion resistance of the pump in response to those requests, for example, as disclosed in Patent Document 1, the components of the pump are changed from a metal material to a resin material, that is, converted into a resin. Has been tried.

上記特許文献1においては、フランジ部分の構造に主眼を置いた揚水管等のパイプ部品の樹脂化に関する技術が示されているが、ポンプにおいて最も強度的に厳しい羽根車の樹脂化に関しては記載されていない。そこで、図10に示されるように、羽根車を樹脂化する技術が考えられている。   In the above-mentioned Patent Document 1, a technique related to resinization of pipe parts such as a pumping pipe focusing on the structure of the flange part is shown, but the resinization of an impeller which is the most severe in the pump is described. Not. Therefore, as shown in FIG. 10, a technique for converting the impeller into a resin is considered.

図10は羽根車21の部分断面図を示しており、23は主軸22に一体回転状態に外嵌自在な合成樹脂製のボス部、24はボス部23から起立形成される合成樹脂製の羽根部であり、この羽根部24はボス部23の周方向に均等角度毎に5箇所形成されている。ボス部23は、主軸22にスプライン構造等によって咬合するための金属(ステンレス材等)製で筒状のハブ部25がインサートされる筒部分23Aと、羽根部24を取付けるために筒部分23Aから放射状に5箇所形成される支持部23Bと、筒部分23Aと支持部23Bの先端側部分とに亘って形成されるリブ部23C等を有して構成されている。   FIG. 10 shows a partial cross-sectional view of the impeller 21. Reference numeral 23 denotes a synthetic resin boss that can be externally fitted to the main shaft 22 in an integrally rotated state, and reference numeral 24 denotes a synthetic resin blade that is formed upright from the boss 23. The blade portion 24 is formed at five locations at equal angles in the circumferential direction of the boss portion 23. The boss portion 23 is made of a metal (stainless steel or the like) for engagement with the main shaft 22 by a spline structure or the like, and a cylindrical portion 23A into which the cylindrical hub portion 25 is inserted, and a cylindrical portion 23A for attaching the blade portion 24. The support portion 23B is formed at five locations radially, and the rib portion 23C is formed over the cylindrical portion 23A and the tip side portion of the support portion 23B.

羽根部21は、ボス部23の支持部23Bに取付け固定される基盤部24Aと、基盤部24Aから立設される羽根部分24Bとを有して構成されている。基盤部24Aの内径側には、支持部23Bに形成されている被係合部23kに嵌りあって引掛り係合される段差状の係合部24kが形成されるとともに、その外径側と支持部23Bの外径側とがボルト・ナット26によって相対固定されている。つまり、ボス部23と5枚の羽根部24とを別部品として、係合構造部27とボルト・ナット26とによって結合一体化する構造とすることにより、最も応力の作用する羽根部24のボス部23に対する付け根部分を強度十分に構成させようとする手段である。
特開2005−155350号公報
The blade portion 21 includes a base portion 24A that is attached and fixed to the support portion 23B of the boss portion 23, and a blade portion 24B that is erected from the base portion 24A. On the inner diameter side of the base portion 24A, there is formed a stepped engagement portion 24k that is engaged with and engaged with the engaged portion 23k formed on the support portion 23B. The outer diameter side of the support portion 23 </ b> B is relatively fixed by a bolt / nut 26. In other words, the boss portion 23 and the five blade portions 24 are separate parts, and the engagement structure portion 27 and the bolt / nut 26 are combined and integrated so that the boss of the blade portion 24 on which the stress is most exerted is obtained. This is a means for making the base portion with respect to the portion 23 have sufficient strength.
JP 2005-155350 A

しかしながら、ポンプにおける羽根車21は、水等の流体による強い負荷を受けながら高速回転されるので、上記のボス部23と羽根部24との合体構造では、使用が進むに連れて係合構造部27のガタツキによる磨耗や、それによるポンプ性能や耐久性の低下が懸念されるとともに、コストが高く、しかも組付け工数が多く生産性を高くし難い面もあり、更なる改善の余地が残されている。また、従来の樹脂化技術として多用されているHLU(ハンド・レイ・アップ)工法による樹脂部品は、型費は比較的安価ではあるが、平滑な面は片面にだけしか成形できないこと、寸法精度が悪いこと、熟練を要する手作業であり、それによって生産性が低いこと、作業環境が芳しくない、といった各点では改善の余地が残されている。   However, since the impeller 21 in the pump is rotated at a high speed while receiving a strong load due to a fluid such as water, in the combined structure of the boss portion 23 and the blade portion 24, the engagement structure portion is used as the use proceeds. There are concerns about wear due to rattling of 27 and a decrease in pump performance and durability due to this, as well as high cost, a large number of assembly steps, and difficulty in increasing productivity, leaving room for further improvement. ing. In addition, resin parts made by the HLU (hand lay-up) method, which is widely used as a conventional resin technology, have relatively low mold costs, but the smooth surface can only be molded on one side. However, there is still room for improvement in terms of poorness, manual work requiring skill, low productivity, and poor working environment.

本発明の目的は、羽根車等の高強度が要求される部品であっても強度が十分で、かつ、生産性も優れた状態で樹脂化し、軽量化や耐食性の向上が図れる樹脂部品を有するポンプ装置を提供する点にある。また、そのようなポンプ用樹脂部品に好適な製造方法を得ることにある。   The object of the present invention is to provide a resin component that can be made into a resin in a state where the strength is sufficient and the productivity is excellent even for a component requiring high strength such as an impeller, and the weight can be reduced and the corrosion resistance can be improved. The point is to provide a pump device. Another object is to obtain a manufacturing method suitable for such a resin component for a pump.

請求項1に係る発明は、樹脂部品を有するポンプ装置において、流動可能な状態の合成樹脂を、プリフォームされた強化繊維材が封入されている成形型に加圧注入し、硬化させることによって成形される少なくとも表裏2面が平滑な繊維強化樹脂部品を有することを特徴とするものである。   According to a first aspect of the present invention, in a pump apparatus having a resin component, molding is performed by injecting a synthetic resin in a flowable state into a molding die encapsulating a preformed reinforcing fiber material and curing it. And at least two front and back surfaces have smooth fiber-reinforced resin parts.

請求項2に係る発明は、樹脂部品を有するポンプ装置において、流動可能な状態の合成樹脂を、強化繊維材が封入されている成形型内を負圧にすることによって前記成形型内に吸引注入し、硬化させることによって成形される少なくとも表裏2面が平滑な繊維強化樹脂部品を有することを特徴とするものである。   According to a second aspect of the present invention, in the pump device having a resin component, the flowable synthetic resin is sucked and injected into the mold by making the inside of the mold in which the reinforcing fiber material is enclosed negative pressure. And at least two front and back surfaces molded by curing have smooth fiber reinforced resin parts.

請求項3に係る発明は、請求項1又は2に記載の繊維強化樹脂部品を有するポンプ装置において、前記樹脂部品が羽根車であることを特徴とするものである。   The invention according to claim 3 is the pump device having the fiber-reinforced resin part according to claim 1 or 2, wherein the resin part is an impeller.

請求項4に係る発明は、請求項3に記載の繊維強化樹脂部品を有するポンプ装置において、前記羽根車が、主軸挿通用の装着孔を有するボス部と、複数の羽根と、前記羽根が起立形成される状態で前記ボス部に一体化されるとともに流体を導く案内面となる環状壁とを有して成り、前記強化繊維として、前記羽根から前記環状壁に跨る状態で包含される跨り強化繊維を有していることを特徴とするものである。   The invention according to claim 4 is the pump device having the fiber reinforced resin part according to claim 3, wherein the impeller includes a boss portion having a mounting hole for inserting a main shaft, a plurality of blades, and the blades stand up. In the formed state, it is integrated with the boss part, and has an annular wall that serves as a guide surface for guiding the fluid, and the reinforcing reinforcement is included as the reinforcing fiber in a state of straddling the annular wall from the blades. It is characterized by having fibers.

請求項5に係る発明は、請求項4に記載の繊維強化樹脂部品を有するポンプ装置において、前記跨り強化繊維、前記羽根の表面に沿う羽根側部分と前記環状壁の外周表面に沿う根元側部分とを有していることを特徴とするものである。   The invention according to claim 5 is the pump device having the fiber reinforced resin part according to claim 4, wherein the straddle reinforcing fiber, the blade side portion along the surface of the blade, and the root side portion along the outer peripheral surface of the annular wall It is characterized by having.

請求項6に係る発明は、請求項1又は2に記載の繊維強化樹脂部品を有するポンプ装置において、前記樹脂部品が、案内羽根、羽根車室、揚水管、吐出管、吸入管のうちの何れか一つ以上に適用されていることを特徴とするものである。   The invention according to claim 6 is the pump device having the fiber-reinforced resin part according to claim 1 or 2, wherein the resin part is any one of a guide blade, an impeller chamber, a pumping pipe, a discharge pipe, and a suction pipe. Or more than one.

請求項7に係る発明は、請求項1〜6の何れか一項に記載の樹脂部品を有するポンプ装置において、前記強化繊維がガラスクロスであることを特徴とするものである。   The invention according to claim 7 is the pump device having the resin part according to any one of claims 1 to 6, wherein the reinforcing fiber is a glass cloth.

請求項8に係る発明は、ポンプ装置用繊維強化樹脂部品の製造方法において、プリフォームされた強化繊維材を成形型に封入する予備工程と、流動可能な状態の合成樹脂を前記予備工程を経た後の成形型に加圧注入する樹脂注入工程と、前記成形型内に注入されている樹脂を硬化させる硬化工程と、を有することを特徴とするものである。   According to an eighth aspect of the present invention, in the method for manufacturing a fiber reinforced resin part for a pump device, a preliminary process of encapsulating a preformed reinforcing fiber material in a mold and a flowable synthetic resin through the preliminary process. It has a resin injection step of pressure-injecting into a later mold and a curing step of curing the resin injected into the mold.

請求項9に係る発明は、ポンプ装置用繊維強化樹脂部品の製造方法において、強化繊維材を成形型に封入する予備工程と、強化繊維材が封入されている成形型内を負圧にして流動可能な状態の合成樹脂を前記成形型内に吸引注入する樹脂注入工程と、前記成形型内に注入されている樹脂を硬化させる硬化工程と、を有することを特徴とするものである。   According to a ninth aspect of the present invention, there is provided a method for producing a fiber reinforced resin part for a pump device, wherein a preliminary step of encapsulating the reinforcing fiber material in the mold and a negative pressure inside the mold in which the reinforcing fiber material is encapsulated are flowed The method includes a resin injection step of sucking and injecting a synthetic resin in a possible state into the mold, and a curing step of curing the resin injected into the mold.

本発明によれば、以下に記す種々の作用や効果を得ることができる。請求項1の発明はRTM工法(後述)によってポンプ装置用部品を樹脂化するものであり、請求項2の発明はライトRTM工法(後述)によってポンプ装置用部品を樹脂化するものである。RTMやライトRTMによれば、下記(イ)〜(ヘ)の作用、効果がある。加えて、ライトRTMによれば、下記(ト)〜(リ)の作用、効果もある。   According to the present invention, various actions and effects described below can be obtained. The invention of claim 1 is to resinize a pump device component by an RTM method (described later), and the invention of claim 2 is to resinize a pump device component by a light RTM method (described later). According to RTM and LIGHT RTM, there are the following actions (a) to (f). In addition, according to LIGHT RTM, there are the following actions (g) to (ri).

(イ)金属鋳造に比べて軽作業、軽設備で済むとともに、作業環境も改善される利点がある。(ロ)成形後における型の分離(型ばらし)が容易であり、例えば成形対象部品が羽根車である場合には、羽根に型分離操作に因る応力が殆ど作用しないようになり、寸法精度の向上や羽根表面に荒れが無い等の部品表面の仕上げ精度が向上する効果がある。(ハ)例えば、HLU工法では片面しか平滑な面が得られないが、RTMやライトRTMによれば両面共に平滑な仕上げ面にすることができ、表裏2面が接液する場合に流れに悪影響を及ぼさないという有利性がある。これによりポンプ装置の樹脂部品を、少なくとも表裏2面が平滑な繊維強化樹脂部品とすることが可能である。(ニ)金属鋳造においては必要となる後処理(グラインダ処理等)が不要になる。(ホ)金属鋳物よりも部品単価を安価にできる。(ヘ)嵌め合い公差を従来の樹脂部品よりも小さく(±0.1mm程度)することが可能になる。寸法精度も、金属鋳物よりも向上させること(±0.2mm程度)が可能になるので、樹脂部品個々の寸法精度が上がり、その結果ポンプ装置としての性能を実質的に向上させることが可能になる。   (B) Compared to metal casting, light work and light equipment are sufficient, and the working environment is also improved. (B) Mold separation (mold separation) after molding is easy. For example, when the part to be molded is an impeller, the stress due to mold separation operation hardly acts on the blade, and dimensional accuracy There is an effect of improving the finishing accuracy of the part surface such as improvement of the surface and no roughness of the blade surface. (C) For example, the HLU method can only provide a smooth surface on one side, but according to RTM and Light RTM, both surfaces can be smooth and have a negative effect on the flow when the front and back surfaces are in contact with each other. Is advantageous. Thereby, the resin component of the pump device can be a fiber reinforced resin component having at least two smooth surfaces. (D) No post-processing (such as grinder processing) required in metal casting is required. (E) The unit price can be made lower than that of metal casting. (F) It is possible to make the fitting tolerance smaller (about ± 0.1 mm) than the conventional resin parts. Since the dimensional accuracy can be improved (about ± 0.2mm) compared to metal castings, the dimensional accuracy of each resin component is increased, and as a result, the performance as a pump device can be substantially improved. Become.

(ト)成形型の肉厚を薄くでき、それによって型の軽量化ができる。成形型には従来のような大きな圧は作用しないので、成形型の取扱いが簡単化で自由度も高い。(チ)ライトRTM工法はRTM工法に比べた場合、強化繊維材として用いることができる種類が増えるので、コストや強度に対して柔軟に対応してポンプ装置用樹脂部品を作成できる利点がある。(リ)成形型に大圧力が作用しないので、鋼材等の型補強を要することなく型を薄くすることが可能であり、型材も安価な樹脂や木材の使用が可能になる。   (G) The thickness of the mold can be reduced, thereby reducing the weight of the mold. Since a large pressure as in the conventional case does not act on the mold, the handling of the mold is simplified and the degree of freedom is high. (H) When compared with the RTM method, the Wright RTM method has an advantage that the number of types that can be used as the reinforcing fiber material is increased, so that the resin component for the pump device can be created flexibly with respect to cost and strength. (I) Since no large pressure acts on the mold, it is possible to make the mold thinner without requiring reinforcement of the steel or the like, and the mold material can also be made of inexpensive resin or wood.

請求項4の羽根車において、請求項5のように、羽根の表面に沿う羽根側部分と環状壁の外周表面に沿う根元側部分とを有する跨り強化繊維を持つ構造とすれば、羽根車において最も強度を要する羽根の付け根部分を飛躍的に強度アップすることができるので、その結果、軽量化や生産効率向上、耐食性の向上等の種々の利点を有する羽根車の樹脂化を強度的な不利益なく実現できる効果がある。また、請求項6のように、このように種々の利点を持つポンプ装置用樹脂部品としては、案内羽根、揚水管、吐出管、吸入管等に適用することが可能であり、より軽量で安価、また持運びし易い等の取扱い性や耐食性も向上するポンプ装置の実現に寄与することができるようになる。   In the impeller of Claim 4, if it is set as the structure with the straddle reinforcement fiber which has the blade | wing side part along the surface of a blade | wing and the base side part along the outer peripheral surface of an annular wall like Claim 5, in an impeller Since the root part of the blade that requires the most strength can be dramatically increased, the result is that the impeller resin having various advantages such as weight reduction, production efficiency improvement, and corrosion resistance improvement is not strong enough. There is an effect that can be realized without profit. Further, as described in claim 6, the resin component for a pump device having various advantages as described above can be applied to guide vanes, pumping pipes, discharge pipes, suction pipes, etc., and is lighter and less expensive. In addition, it is possible to contribute to the realization of a pump device that improves handling and corrosion resistance, such as being easy to carry.

以下に、本発明による樹脂部品を有するポンプ及びポンプ用樹脂部品の製造方法の実施の形態を、図面を参照しながら説明する。図1はポンプ装置の一例を示す構造図、図2〜図4は羽根車を示す各図、図5,6はライトRTM工法による樹脂部品の製造方法や製造装置を示す概略図、図7,8はライトRTM工法及びRTM工法を示すブロック図、図9はRTM工法とライトRTM工法との特性比較表である。   Embodiments of a pump having a resin part and a method for producing a resin part for a pump according to the present invention will be described below with reference to the drawings. FIG. 1 is a structural view showing an example of a pump device, FIGS. 2 to 4 are views showing an impeller, FIGS. 5 and 6 are schematic views showing a resin part manufacturing method and manufacturing apparatus by the Light RTM method, FIG. 8 is a block diagram showing the light RTM method and the RTM method, and FIG. 9 is a characteristic comparison table between the RTM method and the light RTM method.

図1に立軸斜流ポンプ(「樹脂部品を有するポンプ」の一例)Pとそれの駆動モータ1とを備えて成る揚水ポンプ装置Aが示されている。立軸斜流ポンプPは、ポンプ胴体2と、羽根車室3と、駆動モータ1で駆動回転される主軸5の下端に一体回転状態で装備される羽根車4等を有して構成されている。ポンプ胴体(揚水管の一例)2は、曲り管2A、上縦管2B、下縦管2C等から構成されており、その内部中央には主軸5が回転自在に支持されている。   FIG. 1 shows a vertical-pumped diagonal flow pump (an example of a “pump having a resin part”) P and a drive motor 1 for the pump. The vertical shaft mixed flow pump P includes a pump body 2, an impeller chamber 3, and an impeller 4 that is provided in an integrally rotated state at a lower end of a main shaft 5 that is driven and rotated by a drive motor 1. . A pump body (an example of a pumping pipe) 2 includes a bent pipe 2A, an upper vertical pipe 2B, a lower vertical pipe 2C, and the like, and a main shaft 5 is rotatably supported at the center of the inside thereof.

羽根車4は、下縦管2Cに連結される羽根車室3に収容されており、羽根車室3は、案内羽根6と、ベルマウス(吸入管の一例)7とを有して構成されている。合成樹脂製の羽根車4は、図2,図3に示すように、キーとキー溝とによる構造やスプライン等によって主軸5に一体回転状態で嵌合される装着孔4aを有するボス部4Aと、複数枚(5枚)の羽根4Bと、羽根4Bをボス部4Aに一体化するとともに流体を導く案内面となる略裁頭円錐筒状の傾斜環状壁4Cと、ボス部4Aと傾斜環状壁4Cとに亘って架設される複数のリブ壁4Dとを有して構成されている。   The impeller 4 is accommodated in an impeller chamber 3 connected to the lower vertical pipe 2 </ b> C, and the impeller chamber 3 includes a guide vane 6 and a bell mouth (an example of a suction pipe) 7. ing. As shown in FIGS. 2 and 3, the synthetic resin impeller 4 includes a boss portion 4A having a mounting hole 4a that is fitted to the main shaft 5 in an integrally rotated state by a structure or a spline with a key and a key groove. A plurality (five) of blades 4B, a blade 4B integrated with the boss 4A, and a substantially truncated cone-shaped inclined annular wall 4C serving as a guide surface for guiding fluid, and the boss 4A and the inclined annular wall 4C and a plurality of rib walls 4D constructed over 4C.

〔実施例1〕
次に、羽根車4等のポンプ装置用樹脂部品の製造方法について説明する。実施例1による樹脂部品の製造方法は、FRPを作成する手段であるライトRTM(Light Resin Transufer Molding)工法によるものである。羽根車4等の樹脂部品は、流動可能な状態の合成樹脂を、強化繊維材が封入されている成形型内を負圧にして成形型内に吸引注入し、硬化させることによって成形されている。つまり、図5〜図7に示すように、強化繊維材10を成形型11に封入する予備工程aと、強化繊維材10が封入されている成形型11内を負圧にしてすることで流動可能な状態の熱硬化性樹脂を成形型11内に吸引注入する樹脂注入工程bと、樹脂が注入されている成形型11を加熱して成形型11内に注入されている樹脂を硬化させる硬化工程cと、を有する製造方法によって作成される。尚、図5,6は、便宜上、一般的な樹脂部品の製造方法として示してある。
[Example 1]
Next, a method for manufacturing a resin component for a pump device such as the impeller 4 will be described. The manufacturing method of the resin component according to Example 1 is based on the Light RTM (Light Resin Transfer Molding) method which is a means for creating FRP. Resin parts such as the impeller 4 are molded by sucking and injecting a synthetic resin in a flowable state into the molding die with a negative pressure inside the molding die in which the reinforcing fiber material is sealed. . That is, as shown in FIG. 5 to FIG. 7, the preliminary process a in which the reinforcing fiber material 10 is enclosed in the mold 11 and the inside of the mold 11 in which the reinforcing fiber material 10 is encapsulated are set to a negative pressure. Resin injection step b for sucking and injecting a thermosetting resin in a possible state into the mold 11 and curing to cure the resin injected into the mold 11 by heating the mold 11 into which the resin is injected And a manufacturing method having step c. 5 and 6 are shown as a general method for manufacturing a resin part for the sake of convenience.

予備工程aは、図5(a)に示すように、下型11Aに強化繊維材10を入れる装填工程sと、図5(b)に示すように、強化繊維材10が入れられた下型11Aに上型11Bを被せる型セット工程kとを有している。強化繊維材10としては、主に樹脂流れの良いプリフォームの要らないガラス繊維、カーボン繊維、アラミド繊維、或いはそれらの複合等の材料が使用可能である。図5においては、強化繊維材10をガラスクロスとして描いてある。また、上型11Bが下型11Aにセットされたら、吸引装置(後述)12で成形型11のフランジ部分11fを吸引して型締めを行っても良い。   As shown in FIG. 5A, the preliminary step a includes a loading step s for putting the reinforcing fiber material 10 into the lower die 11A, and a lower die in which the reinforcing fiber material 10 is put as shown in FIG. 5B. A mold setting step k for covering the upper mold 11B with 11A. As the reinforcing fiber material 10, materials such as glass fiber, carbon fiber, aramid fiber, or a composite thereof, which do not require a preform with good resin flow, can be used. In FIG. 5, the reinforcing fiber material 10 is drawn as a glass cloth. Further, when the upper mold 11B is set on the lower mold 11A, the mold may be clamped by sucking the flange portion 11f of the mold 11 with a suction device (described later) 12.

樹脂注入工程bは、図6,図7に示すように、フロアf上に配置されている成形型11内部を、上型11Bに設けられた吸引部13及び吸引ホース14を介して吸引装置12で吸引して減圧する減圧工程gと、その減圧工程gを経た状態の成形型11内に成形機15より樹脂と硬化剤とを混ぜたものを注入する注入工程tとを有して成るものである。合成樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシ樹脂等の多品種に及び、必要に応じて顔料、充填材、水酸化アルミ、炭酸カルシウムを組み合わせても良い。   In the resin injection step b, as shown in FIGS. 6 and 7, the inside of the molding die 11 arranged on the floor f is sucked through the suction part 13 and the suction hose 14 provided on the upper die 11 </ b> B. And a pressure reducing step g for reducing pressure by suction, and an injection step t for injecting a mixture of a resin and a curing agent from the molding machine 15 into the mold 11 that has undergone the pressure reducing step g. It is. As synthetic resins, there are various types such as unsaturated polyester resins, vinyl ester resins, phenol resins, and epoxy resins, and pigments, fillers, aluminum hydroxide, and calcium carbonate may be combined as necessary.

硬化工程cは、図6,図7に示すように、負圧によって成形型11内に注入された合成樹脂が含有する硬化剤の作用によって自然に硬化するまで、注入工程tが終了した状態を維持させる工程であり、樹脂が硬化するまで吸引装置12による吸引動作を続けると良い。樹脂が硬化したら吸引装置12を停止させて成形型11内の吸引を止めて大気圧に戻し、それから成形型11を開いて硬化したポンプ装置用樹脂部品(例えば羽根車4)を取出すのである。   As shown in FIGS. 6 and 7, the curing step c is a state in which the injection step t is completed until it is naturally cured by the action of the curing agent contained in the synthetic resin injected into the mold 11 by negative pressure. It is a process to maintain, and it is good to continue the suction operation by the suction device 12 until the resin is cured. When the resin is cured, the suction device 12 is stopped to stop the suction in the mold 11 and return to atmospheric pressure. Then, the mold 11 is opened and the cured resin part for the pump device (for example, the impeller 4) is taken out.

上記ライトRTM工法によって製造される樹脂部品は、次の1.〜4.のような特徴を有している。1.樹脂の注入圧力が低い。2.型締めが容易。3.型費が比較的安価(例としては、ハンドレイアップ工法の2倍程度)。鋼材による型補強が不要である。また、成形対象となる部品の大きさが大きいもの(大物)であっても非常に薄い厚みの型で成形することができる。4.含浸される強化繊維として種々のものが使用可能。RTM工法のようなプリフォームは不要である。   The resin parts manufactured by the above-mentioned light RTM method are as follows. ~ 4. It has the following features. 1. Low resin injection pressure. 2. Easy mold clamping. 3. The mold cost is relatively low (for example, about twice the hand lay-up method). There is no need to reinforce the mold with steel. Further, even if the part to be molded is large (large), it can be molded with a very thin mold. 4). Various kinds of reinforcing fibers to be impregnated can be used. A preform like the RTM method is not necessary.

また、ライトRTM工法、RTM工法のいずれかによって製造される樹脂部品は、次の5〜7のような特徴を有している。5.両面共に平滑である(少なくとも表裏2面が平滑な繊維強化樹脂部品とすることが可能である)。6.従来の鋳製ポンプに比べて粗度を大幅に小さくすることができる。7.従来の鋳製ポンプに比べて成形寸法精度の向上が可能である。   Moreover, the resin component manufactured by either the light RTM construction method or the RTM construction method has the following characteristics 5-7. 5. Both surfaces are smooth (a fiber-reinforced resin part having at least two front and back surfaces that are smooth). 6). Roughness can be greatly reduced compared to conventional casting pumps. 7). The dimensional accuracy can be improved as compared with a conventional casting pump.

羽根車4をライトRTM工法(又はRTM工法)を用いて作成する場合、強化繊維材10の入れ方としては図4に示すように行うのが望ましい。即ち、羽根車4に用いられる強化繊維材10として、羽根4Bから傾斜環状壁4Cに跨る状態で包含される跨り強化繊維10Mを有している。跨り強化繊維10Mは、羽根4Bの表面4bに沿う羽根側部分16と傾斜環状壁4Cの外周表面4cに沿う根元側部分17とを有するように屈曲されて含浸されている。また、両表面に対応して設けられる跨り強化繊維10Mの間の中央部には、ほぼ直線状の(平面状の)平坦強化繊維10H、やこれら跨り強化繊維10Mと平坦強化繊維10Hとの間に配置されるやや屈曲された準跨り強化繊維10J等を有している。   When the impeller 4 is produced using the light RTM method (or RTM method), it is desirable to insert the reinforcing fiber material 10 as shown in FIG. That is, the reinforcing fiber material 10 used for the impeller 4 includes the straddling reinforcing fiber 10M included in a state of straddling the blade 4B and the inclined annular wall 4C. The straddling reinforcing fiber 10M is bent and impregnated so as to have a blade side portion 16 along the surface 4b of the blade 4B and a root side portion 17 along the outer peripheral surface 4c of the inclined annular wall 4C. Moreover, in the center part between the straddle reinforcement fiber 10M provided corresponding to both surfaces, it is between the substantially straight (planar) flat reinforcement fiber 10H and these straddle reinforcement fiber 10M and flat reinforcement fiber 10H. And a slightly bent semi-strand reinforcing fiber 10J.

このように、羽根4Bと傾斜環状壁4Cとに跨るように強化繊維材10を設けたので、最も厳しい応力が作用する羽根4Bの付け根部の強度や剛性が大幅に改善され、大出力機種にも耐える。また、長時間の使用にも疲労破壊し難く、耐久性や信頼性が十分備わる樹脂化された羽根車4を実現できる。さらに、流体と接する羽根4Bの表面4bは、表裏2面とも平滑であり、流れに悪影響を与えることもない。なお、上記実施例としては、傾斜環状壁4Cを有する羽根車を例に説明を行ったが、環状壁が軸心に平行であっても良い。   As described above, since the reinforcing fiber material 10 is provided so as to straddle the blade 4B and the inclined annular wall 4C, the strength and rigidity of the base portion of the blade 4B on which the most severe stress acts are greatly improved, and a high output model is achieved. Also endure. In addition, it is possible to realize a resin-made impeller 4 that is not easily damaged by fatigue even when used for a long time and has sufficient durability and reliability. Furthermore, the surface 4b of the blade 4B in contact with the fluid is smooth on both the front and back surfaces, and does not adversely affect the flow. In the above embodiment, the impeller having the inclined annular wall 4C has been described as an example. However, the annular wall may be parallel to the axis.

〔実施例2〕
次に、実施例2よる樹脂部品の製造方法について説明する。実施例2は、FRPを作成する手段であるRTM(Resin Transufer Molding)工法によるものである。羽根車4等の樹脂部品は、流動可能な状態の合成樹脂を、プリフォームされた強化繊維材が封入されている成形型に加圧注入し、硬化させることによって成形される。つまり、図8に示すように、強化繊維材を成形型に封入する予備工程yと、強化繊維材が封入されている成形型内を負圧にして流動可能な状態の合成樹脂を成形型内に吸引注入する樹脂注入工程jと、成形型内に注入されている樹脂を硬化させる硬化工程cと、を有する製造方法である。
[Example 2]
Next, a method for manufacturing a resin component according to Example 2 will be described. The second embodiment is based on an RTM (Resin Transfer Molding) method which is a means for creating an FRP. A resin component such as the impeller 4 is molded by pressurizing and curing a flowable synthetic resin into a mold in which a preformed reinforcing fiber material is enclosed. That is, as shown in FIG. 8, a preliminary step y for encapsulating the reinforcing fiber material in the mold and a synthetic resin in a state in which the reinforcing fiber material is allowed to flow under a negative pressure inside the mold are sealed in the mold. And a curing step c for curing the resin injected into the mold.

実施例1のライトRTM工法と良く似ているが、強化繊維材はプリフォームされたものであること、及び溶融樹脂の注入は正圧によって為されること(要するに圧を掛けて押し込むこと)の各点で異なる工法である。図9に、RTM工法とライトRTM工法との主な特徴比較表を示す。図9の比較表から分かるように、RTM工法は、ライトRTM工法と比べた場合にはやや見劣りする点もあるが、従来のHLU(ハンド・レイ・アップ)工法に比べると、作業者による品質のばらつきが無く、生産に関する能率面で優れるとともに、表裏面共に平滑できれいな仕上げ面に成形できる、寸法精度が良い等の利点がある。   It is very similar to the Light RTM method of Example 1, except that the reinforcing fiber material is preformed and that the molten resin is injected by positive pressure (in short, it is pushed in under pressure). The construction method is different in each point. FIG. 9 shows a main feature comparison table between the RTM method and the light RTM method. As can be seen from the comparison table in FIG. 9, the RTM method is slightly inferior to the light RTM method, but the quality by the operator compared to the conventional HLU (hand lay-up) method. There is an advantage that the production efficiency is excellent, the front and back surfaces can be molded into a smooth and clean finished surface, and the dimensional accuracy is good.

〔別実施例〕
上述した実施例1や2の製造方法(ライトRTM工法、RTM工法)によって成形されるポンプ装置用樹脂部品としては、前述の羽根車4の他、案内羽根6、羽根車室3、ポンプ胴体2、吐出管、ベルマウス7等が挙げられるが、それ以外の部品でも可能である。これらの部品のなかでは、表裏両面が接液状態となり、平滑な表面が要求される案内羽根6等の部品に特に適している。
[Another Example]
Examples of the resin component for the pump device molded by the manufacturing method (Light RTM method, RTM method) of the first and second embodiments described above include the guide vane 6, the impeller chamber 3, the pump body 2 in addition to the impeller 4 described above. , Discharge tube, bell mouth 7 and the like, but other parts are also possible. Among these parts, both the front and back surfaces are in a liquid contact state, and are particularly suitable for parts such as the guide blade 6 that requires a smooth surface.

立軸斜流ポンプの概略構造を示す一部切欠きの側面図(実施例1)Side view of a partially cutout showing a schematic structure of a vertical shaft mixed flow pump (Example 1) 羽根車の部分正面図Partial front view of impeller 羽根車の軸方向沿う断面図Cross section along the axial direction of the impeller 羽根車の羽根付け根部分の断面図Cross-sectional view of the blade root of the impeller ライトRTM工法による樹脂部品の製造方法の要部を示す作用図であり、(a)は装填工程、(b)は型セット工程It is an action figure showing the principal part of the manufacturing method of the resin parts by a light RTM construction method, (a) is a loading process, (b) is a mold setting process. ライトRTM工法用の製造装置及び一部の製造工程を示す概略図Schematic showing manufacturing equipment for Light RTM method and some manufacturing processes ライトRTM工法を示すブロック図Block diagram showing the Light RTM method RTM工法を示す概略のブロック図Schematic block diagram showing the RTM method RTM工法とライトRTM工法との特性を示す比較表Comparison table showing characteristics of RTM method and Light RTM method 比較例による羽根車の樹脂化構成図Impurity resin configuration diagram of comparative example

符号の説明Explanation of symbols

2 揚水管
4 羽根車
4a 装着孔
4b 羽根の表面
4c 外周表面
4A ボス部
4B 羽根
4C 環状壁
6 案内羽根
7 吸入管
10 強化繊維材
11 成形型
16 羽根側部分
17 根元側部分
a 予備工程
b 樹脂注入工程
c 硬化工程
j 樹脂注入工程
y 予備工程
P ポンプ装置
2 pumping pipe 4 impeller 4a mounting hole 4b blade surface 4c outer peripheral surface 4A boss 4B blade 4C annular wall 6 guide vane 7 suction pipe 10 reinforcing fiber material 11 molding die 16 blade side portion 17 root side portion a preliminary process b resin Injection process c Curing process j Resin injection process y Preliminary process P Pump device

Claims (9)

流動可能な状態の合成樹脂を、プリフォームされた強化繊維材が封入されている成形型に加圧注入し、硬化させることによって成形される少なくとも表裏2面が平滑な繊維強化樹脂部品を有するポンプ装置。   A pump having a fiber-reinforced resin part having at least two smooth surfaces formed by pressurizing and curing a flowable synthetic resin into a mold in which a preformed reinforcing fiber material is sealed and curing apparatus. 流動可能な状態の合成樹脂を、強化繊維材が封入されている成形型内を負圧にすることによって前記成形型内に吸引注入し、硬化させることによって成形される少なくとも表裏2面が平滑な繊維強化樹脂部品を有するポンプ装置。   A synthetic resin in a flowable state is sucked and injected into the mold by setting the negative pressure in the mold in which the reinforcing fiber material is sealed, and at least two surfaces of the front and back surfaces are smoothed by being cured. Pump device with fiber reinforced resin parts. 前記樹脂部品が羽根車である請求項1又は2に記載の繊維強化樹脂部品を有するポンプ装置。   The pump device having a fiber-reinforced resin part according to claim 1 or 2, wherein the resin part is an impeller. 前記羽根車が、主軸挿通用の装着孔を有するボス部と、複数の羽根と、前記羽根が起立形成される状態で前記ボス部に一体化されるとともに流体を導く案内面となる環状壁とを有して成り、前記強化繊維として、前記羽根から前記環状壁に跨る状態で包含される跨り強化繊維を有している請求項3に記載の繊維強化樹脂部品を有するポンプ装置。   The impeller includes a boss portion having a mounting hole for inserting a main shaft, a plurality of blades, and an annular wall serving as a guide surface that guides fluid while being integrated with the boss portion in a state where the blades are formed upright. The pump device having a fiber reinforced resin component according to claim 3, wherein the reinforcing fiber includes a straddling reinforcing fiber included in a state straddling the annular wall from the blade. 前記跨り強化繊維は、前記羽根の表面に沿う羽根側部分と前記環状壁の外周表面に沿う根元側部分とを有している請求項4に記載の繊維強化樹脂部品を有するポンプ装置。   The pump device having a fiber-reinforced resin part according to claim 4, wherein the straddling reinforcing fiber has a blade side portion along the surface of the blade and a root side portion along the outer peripheral surface of the annular wall. 前記樹脂部品が、案内羽根、羽根車室、揚水管、吐出管、吸入管のうちの何れか一つ以上に適用されている請求項1又は2に記載の繊維強化樹脂部品を有するポンプ装置。   The pump apparatus having a fiber-reinforced resin part according to claim 1 or 2, wherein the resin part is applied to any one or more of a guide blade, an impeller chamber, a pumping pipe, a discharge pipe, and a suction pipe. 前記強化繊維がガラスクロスである請求項1〜6の何れか一項に記載の繊維強化樹脂部品を有するポンプ装置。   The pump device having the fiber-reinforced resin component according to any one of claims 1 to 6, wherein the reinforcing fiber is a glass cloth. プリフォームされた強化繊維材を成形型に封入する予備工程と、流動可能な状態の合成樹脂を前記予備工程を経た後の成形型に加圧注入する樹脂注入工程と、前記成形型内に注入されている樹脂を硬化させる硬化工程と、を有するポンプ装置用繊維強化樹脂部品の製造方法。   A preliminary process for encapsulating the preformed reinforcing fiber material in the mold, a resin injection process for injecting a flowable synthetic resin into the mold after the preliminary process, and an injection into the mold A method for producing a fiber reinforced resin part for a pump device, comprising: a curing step for curing the resin that is used. 強化繊維材を成形型に封入する予備工程と、強化繊維材が封入されている成形型内を負圧にして流動可能な状態の合成樹脂を前記成形型内に吸引注入する樹脂注入工程と、前記成形型内に注入されている樹脂を硬化させる硬化工程と、を有するポンプ装置用繊維強化樹脂部品の製造方法。
A preliminary step of enclosing the reinforcing fiber material in the mold, and a resin injection step of sucking and injecting a synthetic resin in a flowable state with a negative pressure inside the mold in which the reinforcing fiber material is encapsulated, A curing step of curing the resin injected into the mold, and a method for producing a fiber reinforced resin part for a pump device.
JP2006089758A 2006-03-29 2006-03-29 Pump having resin component and method of manufacturing resin component for pump Withdrawn JP2007263000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089758A JP2007263000A (en) 2006-03-29 2006-03-29 Pump having resin component and method of manufacturing resin component for pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089758A JP2007263000A (en) 2006-03-29 2006-03-29 Pump having resin component and method of manufacturing resin component for pump

Publications (1)

Publication Number Publication Date
JP2007263000A true JP2007263000A (en) 2007-10-11

Family

ID=38636231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089758A Withdrawn JP2007263000A (en) 2006-03-29 2006-03-29 Pump having resin component and method of manufacturing resin component for pump

Country Status (1)

Country Link
JP (1) JP2007263000A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147883B1 (en) 2008-09-19 2012-05-25 갑 수 한 The vacuum formation implantation system which uses the semicircle resin delivery passage and the resin implantation yearly notch
KR101336906B1 (en) 2013-05-15 2013-12-16 주식회사 한국종합기계 Impeller for pump using composite structural material, and manufacturing method therefor
TWI633005B (en) * 2010-08-17 2018-08-21 Mpc公司 Non-metallic vertical turbine pump
CN110321660A (en) * 2019-07-16 2019-10-11 重庆水轮机厂有限责任公司 A kind of large-scale mixed-flow pump impeller design method of radial water outlet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147883B1 (en) 2008-09-19 2012-05-25 갑 수 한 The vacuum formation implantation system which uses the semicircle resin delivery passage and the resin implantation yearly notch
TWI633005B (en) * 2010-08-17 2018-08-21 Mpc公司 Non-metallic vertical turbine pump
US10309231B2 (en) 2010-08-17 2019-06-04 Ceco Environmental Ip Inc. Non-metallic vertical turbine pump
KR101336906B1 (en) 2013-05-15 2013-12-16 주식회사 한국종합기계 Impeller for pump using composite structural material, and manufacturing method therefor
CN110321660A (en) * 2019-07-16 2019-10-11 重庆水轮机厂有限责任公司 A kind of large-scale mixed-flow pump impeller design method of radial water outlet

Similar Documents

Publication Publication Date Title
US20190338654A1 (en) Non-Metallic Vertical Turbine Pump
US6378322B1 (en) High-performance molded fan
JP2007263000A (en) Pump having resin component and method of manufacturing resin component for pump
CA2762639C (en) Composite-material vane
CN1759269A (en) Tube for transporting high-viscosity materials
CN1867770A (en) Method for manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
KR101823703B1 (en) Vacuum pump
CN108799315A (en) Composite material for vehicle transmission shaft and preparation method thereof
US20120036995A1 (en) Overmolded diaphragm pump
US6692231B1 (en) Molded fan having repositionable blades
RU2684079C2 (en) Composite housing for low pressure compressor of axial-flow turbo-machine
KR101336906B1 (en) Impeller for pump using composite structural material, and manufacturing method therefor
WO2013185452A1 (en) Method for manufacturing cylinder body of actuating cylinder
CN107701464A (en) A kind of overall plastic submersible pump and its Shooting Technique
JP2008133876A (en) Resin pipe, pump device using resin pipe, assembling method of inner mold for molding resin pipe, and method of manufacturing resin pipe
KR100497817B1 (en) A lightweight multi-stage electric pole and manufacturing method and device
JP5352051B2 (en) Self-priming centrifugal pump for circulating seawater or chemical liquids
CN207246036U (en) A kind of overall plastic submersible pump
CN106715891B (en) Apparatus and method for modifying the geometry of a turbine section
JP6648268B2 (en) Rotor blade for wind power generator and method of manufacturing the same
CN209115354U (en) A kind of condenser pump improving rotor chamber concentricity
CN2923273Y (en) Combined machine tube for plastic extruder and moulding machine
JP3173770B2 (en) Wear-resistant impeller and method of manufacturing the same
CN216199244U (en) Novel water pump body and water pump
CN214985994U (en) Propeller for water jet propeller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100202