JP2007262352A - Method for producing vinyl chloride-based copolymer resin - Google Patents

Method for producing vinyl chloride-based copolymer resin Download PDF

Info

Publication number
JP2007262352A
JP2007262352A JP2006092862A JP2006092862A JP2007262352A JP 2007262352 A JP2007262352 A JP 2007262352A JP 2006092862 A JP2006092862 A JP 2006092862A JP 2006092862 A JP2006092862 A JP 2006092862A JP 2007262352 A JP2007262352 A JP 2007262352A
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
macromonomer
weight
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092862A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Kuwahata
光良 桑畑
Kisaburo Noguchi
貴三郎 野口
Toshito Kawachi
俊人 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006092862A priority Critical patent/JP2007262352A/en
Publication of JP2007262352A publication Critical patent/JP2007262352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production by which the time to recover the residual vinyl chloride monomer of a vinyl chloride-based copolymer resin prepared by copolymerizing a vinyl chloride-based monomer with a macromonomer is shortened and the outflow of a slurry to the outside of a polymerizer is reduced. <P>SOLUTION: The method for producing the vinyl chloride-based copolymer resin is carried out as follows. An aqueous dispersion in which the ratio of the vinyl chloride-based monomer to the total amount of constituent monomer components is ≥50 to <100 wt.% is prepared so that the total weight (M) of the macromonomer and the vinyl chloride-based monomer and the initial amount (H) of water are within the range of formula (1) 0<H/M≤3.0 (1) and the amount of an added dispersing agent in the initial water is >0 to ≤0.1 pt.wt. based on 100 pts.wt. of the total amount of the charged monomers. A water-soluble polymerization inhibitor in an amount to be ≥0.0001 to ≤0.001 pt.wt. is then charged. The macromonomer is subsequently dispersed in the initial water and the vinyl chloride-based monomer is charged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は塩化ビニル系共重合樹脂の製造方法に関するものであり、さらに詳しくは、塩化ビニル系モノマーと二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーとの混合溶解時に水溶性禁止剤を投入することで、水系懸濁液中の微粒子が少なく、重合終了後に塩化ビニルモノマーを回収する際に液面上昇を抑制し、残存モノマー回収時間を短縮することができる塩化ビニル系共重合樹脂の製造方法に関するものである。     The present invention relates to a method for producing a vinyl chloride copolymer resin, and more specifically, a macromonomer having a vinyl chloride monomer and a polymer comprising an ethylenically unsaturated monomer containing a double bond in the main chain. By adding a water-soluble inhibitor at the time of mixing and dissolving, there are few fine particles in the aqueous suspension, and when the vinyl chloride monomer is recovered after the polymerization is completed, the rise in the liquid level can be suppressed and the residual monomer recovery time can be shortened. The present invention relates to a method for producing a vinyl chloride copolymer resin.

片末端に重合性官能基を有するオリゴマーやポリマーであるいわゆるマクロモノマーの合成技術の進歩により、これを用いたクシ状共重合樹脂の開発と応用に関心が寄せられている。このような共重合樹脂を製造する場合、両者を重合開始剤とともに適当な溶剤に溶解して共重合する溶液重合が一般的である。   Advances in the synthesis technology of so-called macromonomers, which are oligomers and polymers having a polymerizable functional group at one end, have attracted interest in the development and application of comb-like copolymer resins using these. When such a copolymer resin is produced, solution polymerization is generally performed in which both are dissolved in a suitable solvent together with a polymerization initiator.

しかし、溶液重合法は、溶剤への連鎖移動が生じやすいため、高分子のクシ状共重合樹脂を製造し難く、得られた共重合樹脂の物性も目的とする成形材料には採用し難いという問題があり、本発明者らは水系懸濁重合法について検討を重ねてきた(特許文献1)。   However, since the solution polymerization method easily causes chain transfer to a solvent, it is difficult to produce a polymer comb-like copolymer resin, and the physical properties of the obtained copolymer resin are difficult to adopt for molding materials. There is a problem, and the present inventors have repeatedly studied an aqueous suspension polymerization method (Patent Document 1).

通常、塩化ビニル系樹脂は、懸濁重合法で重合中に生成する微粒子を低減するために、重合初期での攪拌数の変更を行うことや、ケン化度の高いPVAを分散剤として使用する方法、重合途中において水溶性禁止剤を添加する方法が知られている(特許文献2)。微粒子生成と水溶性重合禁止剤の添加効果の発現機構は明確ではないが、このような微粒子が自圧回収時に液界面に浮いてくることで、ドライフォームと呼ばれる泡が形成され、スラリーの飛散や液面の上昇を生じさせることが知られている。それらを防止するため、水溶性禁止剤を重合途中に微量添加し、微粒子形成を抑制する方法が挙げられている。   Usually, in order to reduce the fine particles generated during the polymerization by suspension polymerization, the vinyl chloride resin changes the number of stirring at the initial stage of polymerization or uses PVA having a high degree of saponification as a dispersant. A method of adding a water-soluble inhibitor during polymerization and polymerization is known (Patent Document 2). Although the mechanism of the generation of fine particles and the effect of adding a water-soluble polymerization inhibitor is not clear, when such fine particles float at the liquid interface during self-pressure recovery, bubbles called dry foam are formed and the slurry is scattered. It is known to cause an increase in the liquid level. In order to prevent them, a method of suppressing the formation of fine particles by adding a small amount of a water-soluble inhibitor during polymerization is mentioned.

一方、本発明者らは、本発明の塩化ビニル系共重合樹脂を製造する際に、自圧回収時の液面上昇を防止するために、重合途中に生成される微粒子とドライフォームの防止について鋭意検討を進めてきた。しかし、本発明の塩化ビニル系共重合樹脂の場合は、従来の塩化ビニル系樹脂とは異なり、自圧回収時のスラリー飛散や液面の上昇の原因が、水相の界面張力が著しく低下することが主要因であることをつきとめ、初期水に投入されるマクロモノマーの微分散体を、水相中で重合禁止することにより、水相中の表面張力低下を抑制することを見出し、本発明を完成した。
特開2005−179599号公報 特開平08−217806号公報
On the other hand, when the present inventors produce the vinyl chloride copolymer resin of the present invention, in order to prevent the rise of the liquid level during the self-pressure recovery, the prevention of fine particles and dry foam generated during the polymerization. We have been studying earnestly. However, in the case of the vinyl chloride copolymer resin of the present invention, unlike the conventional vinyl chloride resin, the interfacial tension of the aqueous phase is remarkably reduced due to the scattering of the slurry and the rise of the liquid level during the self-pressure recovery. The main factor is that the macromonomer fine dispersion added to the initial water is inhibited from polymerization in the aqueous phase, thereby suppressing the decrease in surface tension in the aqueous phase. Was completed.
JP 2005-179599 A Japanese Patent Laid-Open No. 08-217806

本発明は、塩化ビニル系モノマーと二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーとを共重合してなる塩化ビニル系共重合樹脂の残存塩化ビニルモノマー回収時間を短縮し、重合機外へのスラリー流出を低減する製造方法を提供することを課題とする。   The present invention recovers a residual vinyl chloride monomer of a vinyl chloride copolymer resin obtained by copolymerizing a vinyl chloride monomer and a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain. It is an object of the present invention to provide a production method that shortens the time and reduces the outflow of slurry to the outside of the polymerization machine.

本発明者らは鋭意研究の結果、水に予め水相重合禁止剤を投入しておくことで、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーの混合、溶解を行い、然る後に共重合反応を開始することにより上記課題を解決できることを見出し、本発明を完成した。   As a result of diligent research, the inventors of the present invention introduced a water phase polymerization inhibitor into water in advance, whereby a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain and chlorination. The present inventors have found that the above-mentioned problems can be solved by mixing and dissolving vinyl monomers and then starting a copolymerization reaction, thereby completing the present invention.

すなわち本発明は、
(1) 塩化ビニル系モノマーと、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーとを共重合させて塩化ビニル系共重合樹脂を懸濁重合にて製造するに際し、
初期水中の分散剤の添加量が、構成するモノマー成分の総量(以下、「仕込モノマー総量」)100重量部に対して、0重量部より多く0.1重量部以下となるように調整後、水溶性重合禁止剤が仕込モノマー総量100重量部に対して0.0001部以上0.001部以下となる量を投入した後、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入し、初期水中に分散させた後、塩化ビニル系モノマーを投入することを特徴とする塩化ビニル系共重合樹脂の製造方法(請求項1)、
(2)仕込みモノマー総量に対する塩化ビニル系モノマーの比率が、50重量%以上100重量%未満であり、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーとの総重量(M)と初期水重量(H)が、次式(1)の範囲
0< H/M ≦3.0 (1)
であることを特徴とする請求項1に記載の塩化ビニル系共重合樹脂の製造方法(請求項2)、
(3)水溶性重合禁止剤が、チオシアン酸塩、亜硝酸塩、水溶性イオウ含有有機化合物から選ばれる少なくとも一つであることを特徴とする請求項1または請求項2に記載の塩化ビニル系共重合樹脂の製造方法(請求項3)、
に関する。
That is, the present invention
(1) Manufacture vinyl chloride copolymer resin by suspension polymerization by copolymerizing vinyl chloride monomer and macromonomer having polymer consisting of ethylenically unsaturated monomer containing double bond in the main chain. When doing
After adjusting the amount of the dispersant in the initial water to be more than 0 parts by weight and 0.1 parts by weight or less with respect to 100 parts by weight of the total amount of monomer components (hereinafter referred to as “total amount of charged monomers”), After the water-soluble polymerization inhibitor is added in an amount of 0.0001 part or more and 0.001 part or less with respect to 100 parts by weight of the total amount of charged monomers, a polymer composed of an ethylenically unsaturated monomer containing a double bond is mainly used. A method for producing a vinyl chloride copolymer resin, wherein a macromonomer having a chain is charged, dispersed in initial water, and then a vinyl chloride monomer is charged (claim 1),
(2) The ratio of vinyl chloride monomer to the total amount of charged monomers is 50% by weight or more and less than 100% by weight, and the macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain and chloride The total weight (M) and initial water weight (H) of the vinyl monomer are within the range of the following formula (1): 0 <H / M ≦ 3.0 (1)
The method for producing a vinyl chloride copolymer resin according to claim 1 (claim 2),
(3) The vinyl chloride copolymer according to claim 1 or 2, wherein the water-soluble polymerization inhibitor is at least one selected from thiocyanate, nitrite, and a water-soluble sulfur-containing organic compound. A method for producing a polymerized resin (claim 3),
About.

本発明によれば、重合終了後の塩化ビニルモノマー回収に要する時間を短縮することができる。また、本発明によれば、重合終了後の塩化ビニルモノマー回収時にスラリーの起泡を抑制することができる。   According to the present invention, the time required for recovering the vinyl chloride monomer after completion of the polymerization can be shortened. Moreover, according to this invention, foaming of a slurry can be suppressed at the time of vinyl chloride monomer collection | recovery after completion | finish of superposition | polymerization.

本発明の塩化ビニル系共重合樹脂の製造方法については、予め重合機または分散混合槽等に初期水を投入しておき、その中に水溶性重合禁止剤を投入した後、初期水中に二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入しながら、或いは投入後に分散した後、塩化ビニル系モノマーを投入し、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーを分散混合して共重合反応を開始することが好ましい。     With respect to the method for producing the vinyl chloride copolymer resin of the present invention, the initial water is put in advance in a polymerization machine or a dispersion mixing tank, a water-soluble polymerization inhibitor is put in it, and then doubled in the initial water. Disperse after or after the introduction of a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a bond in the main chain, and then add a vinyl chloride monomer to the ethylenically unsaturated containing a double bond. It is preferable to start a copolymerization reaction by dispersing and mixing a macromonomer having a polymer composed of monomers in the main chain and a vinyl chloride monomer.

本発明の塩化ビニル系共重合樹脂の製造に使用される水溶性重合禁止剤は、重合反応中に水相中でのラジカル反応を停止させ、水相中での塩化ビニル系共重合樹脂の微小粒子の発生を抑制する効果が発現すればよく、好ましくはチオシアン酸塩、亜硝酸塩、水溶性イオウ含有有機化合物から選ばれる少なくとも一つであり、特に好ましくは亜硝酸塩であり、最も好ましくは亜硝酸ナトリウムである。   The water-soluble polymerization inhibitor used in the production of the vinyl chloride copolymer resin of the present invention stops the radical reaction in the aqueous phase during the polymerization reaction, and the minute amount of the vinyl chloride copolymer resin in the aqueous phase. It is sufficient that the effect of suppressing the generation of particles is manifested, preferably at least one selected from thiocyanate, nitrite, and water-soluble sulfur-containing organic compound, particularly preferably nitrite, most preferably nitrous acid. Sodium.

本発明に使用される水溶性重合禁止剤は、塩化ビニル系モノマーおよび二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーのモノマー成分の総量100重量部に対し、0.0001部以上0.001部以下であるとマクロモノマーの含量の高い微粒子の生成が抑制されるため好ましい。また、0.0001部以上0.0005部以下であれば、重合速度を大きく低下させることなく、モノマー回収時の時間を短縮することができるため更に好ましい。   The water-soluble polymerization inhibitor used in the present invention is based on 100 parts by weight of the total amount of monomer components of a macromonomer having a polymer composed of a vinyl chloride monomer and an ethylenically unsaturated monomer containing a double bond in the main chain. 0.0001 part or more and 0.001 part or less is preferable because formation of fine particles having a high macromonomer content is suppressed. Moreover, if it is 0.0001 part or more and 0.0005 part or less, since the time at the time of monomer collection | recovery can be shortened, without significantly reducing a polymerization rate, it is still more preferable.

本発明で使用する分散混合槽とは、分散混合をすることができる装置であれば特に制約はない。例えば、重合反応機を使用しても良いし、ジャケットおよび攪拌機を備えた、重合反応機以外の容器を使用しても良い。また、「分散」とは、分散混合槽等に投入した初期水へ、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入しながら、或いは投入後に攪拌機等の機械的剪断を加えて、水中に滴を形成させることを言う。「分散混合」とは、塩化ビニル系モノマーと、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーの両者が、境目なく一様に混ざり合い、見かけ上両者の区別ができなくなることを言う。   The dispersion mixing tank used in the present invention is not particularly limited as long as it is an apparatus capable of performing dispersion mixing. For example, a polymerization reactor may be used, or a container other than the polymerization reactor equipped with a jacket and a stirrer may be used. In addition, “dispersion” means a stirrer while or after the introduction of a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the initial water charged into a dispersion mixing tank or the like. And so on, to form droplets in water. “Dispersed and mixed” means that both a vinyl chloride monomer and a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain are uniformly mixed without any boundary. It will be impossible to distinguish.

ここで、本発明を構成するモノマー成分は、塩化ビニル系モノマーと、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーであり、これらのモノマー成分が分散混合されたものを「仕込モノマー」と、構成するモノマー成分の総量を「仕込モノマー総量」と称する。   Here, the monomer component constituting the present invention is a macromonomer having a polymer composed of a vinyl chloride monomer and an ethylenically unsaturated monomer containing a double bond in the main chain, and these monomer components are dispersed and mixed. This is referred to as “charged monomer”, and the total amount of monomer components constituting it is referred to as “total amount of charged monomer”.

本発明の塩化ビニル系共重合樹脂の製造方法に使用される「初期水」とは、重合機または分散混合槽等へ、塩化ビニル系モノマーまたは二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入する前に投入しておく、重合仕込み水の一部または全量である。初期水量は特に制約はなく、初期水中で塩化ビニル系モノマーまたは二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーが分散混合する量であればよいが、仕込み水の総重量の1重量%から100重量%を初期水とすることが好ましく、より好ましくは仕込水の総重量の1重量%から50重量%、更に好ましくは仕込水の総重量の1重量%から30重量%の範囲の量とすれば、分散混合する時間が短時間となり特に好ましい。   "Initial water" used in the method for producing a vinyl chloride copolymer resin of the present invention comprises a vinyl chloride monomer or an ethylenically unsaturated monomer containing a double bond to a polymerization machine or a dispersion mixing tank. This is a part or the whole amount of the polymerization charge water that is added before introducing the macromonomer having the polymer in the main chain. The initial water amount is not particularly limited and may be any amount in which the macromonomer having a polymer composed of a vinyl chloride monomer or an ethylenically unsaturated monomer containing a double bond in the main chain is dispersed and mixed in the initial water. It is preferable that 1% to 100% by weight of the total weight of water is the initial water, more preferably 1% to 50% by weight of the total weight of the feed water, and more preferably 1% by weight of the total weight of the feed water. To an amount in the range of 30 to 30% by weight is particularly preferable because the dispersion and mixing time is short.

また、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーとの総重量(M)と初期水重量(H)が、0<H/M≦3.0の範囲であれば二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーが分散混合しやすいため好ましく、0<H/M≦1.0の範囲であれば初期水に予め分散しておいた二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーが、塩化ビニル系モノマーを投入したときに、分散液中で相転換が生じ、塩化ビニル系モノマーが連続相となり、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーとの分散混合時間が短縮されるため更に好ましい。   The total weight (M) and initial water weight (H) of the macromonomer and vinyl chloride monomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain are 0 <H / M. ≦ 3.0 is preferable because a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain and a vinyl chloride monomer are easily dispersed and mixed, and 0 <H / M ≦ When the macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond dispersed in the initial water in the main chain is added to the initial water, the vinyl chloride monomer is added. Phase transformation occurs in the dispersion, the vinyl chloride monomer becomes a continuous phase, and the macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain and the vinyl chloride monomer Further preferred the dispersion mixing time is shortened and over.

また、初期水中に予め調整する分散剤は、仕込モノマー総量100重量部に対して、0重量部より多く0.1%以下となるように調整することが好ましく、その後、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入し、初期水中に分散させると、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーの粘度が高い場合においても、初期水中で液滴を形成し、安定に重合を進行させることができ、また缶内および攪拌翼、攪拌軸への付着を少なくすることができ、反応機内の凹部への浸入を減らすことができるため好ましい。また、初期水中に予め分散剤が0重量部より多く0.08重量部以下となるように調整後、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入し、初期水中に分散させると、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーの液滴が、塩化ビニル系モノマーを投入したときに、分散液中で容易に相転換を生じさせ、マクロモノマーの液滴が残りにくいため更に好ましい。   Moreover, it is preferable to adjust so that the dispersing agent adjusted beforehand in initial water may be more than 0 weight part and 0.1% or less with respect to 100 weight part of preparation monomer total amount, and contains a double bond after that. When a macromonomer having a polymer composed of an ethylenically unsaturated monomer in the main chain is introduced and dispersed in initial water, a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain is obtained. Even when the viscosity is high, droplets can be formed in the initial water and polymerization can proceed stably, and adhesion to the can, stirring blade and stirring shaft can be reduced, and to the recess in the reactor. This is preferable because it can reduce the intrusion. In addition, a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain after adjusting so that the dispersant is more than 0 part by weight and not more than 0.08 part by weight in initial water. When injected and dispersed in initial water, macromonomer droplets having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain are injected into the dispersion when the vinyl chloride monomer is added. It is more preferable because it easily causes phase transition and macromonomer droplets hardly remain.

水性懸濁液中の小粒子重量は、重合で得られた塩化ビニル系共重合樹脂水性懸濁液中を200メッシュ篩(JIS Z8801−1 目開き350μm)で篩分けし、その通過液を100℃にて十分に乾燥して重量を測定し、重合で得られた塩化ビニル系共重合樹脂水性懸濁液を100℃にて十分に乾燥して得られた樹脂の重量で除した割合であり、2重量%未満であることが好ましい。2重量%未満であると、脱水時の排液中のCODが低下するため好ましい。更に、1.5重量%以下であると重合終了時の塩化ビニルモノマーの回収工程において、泡によるスラリー液面の上昇が少なくなり好ましい。1重量%以下であると、乾燥後の製品のブロッキング性が改善され最も好ましい。   The small particle weight in the aqueous suspension was obtained by sieving the inside of the aqueous vinyl chloride copolymer resin suspension obtained by polymerization with a 200 mesh sieve (JIS Z8801-1 opening of 350 μm), and the passing liquid was 100 It is a ratio obtained by dividing the weight of the resin obtained by sufficiently drying at 100 ° C. the aqueous vinyl chloride copolymer resin suspension obtained by sufficiently drying at ℃ and measuring the weight. It is preferably less than 2% by weight. If it is less than 2% by weight, COD in the drainage during dehydration is reduced, which is preferable. Further, it is preferably 1.5% by weight or less because in the vinyl chloride monomer recovery step at the end of the polymerization, the rise of the slurry liquid level due to bubbles is reduced. When the content is 1% by weight or less, the blocking property of the product after drying is improved, which is most preferable.

塩化ビニル系モノマーに二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを分散混合する際の分散液温度(内温)は、10℃以上60℃以下であることが好ましく、20℃以上50℃以下であることがさらに好ましい。10℃以上60℃以下であると、分散混合槽の圧力を分散混合に適した状態に保ちながら、塩化ビニル系モノマーに二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを均一に分散混合させることができる。   The dispersion temperature (internal temperature) when dispersing and mixing a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in a vinyl chloride monomer in the main chain is 10 ° C. or higher and 60 ° C. or lower. It is preferably 20 ° C. or higher and 50 ° C. or lower. A polymer composed of an ethylenically unsaturated monomer containing a double bond in a vinyl chloride monomer is maintained in the main chain while maintaining the pressure of the dispersion mixing vessel at a temperature suitable for dispersion mixing as 10 ° C or more and 60 ° C or less. The macromonomer which has can be disperse-mixed uniformly.

初期水中に、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入する速度は、投入後分散した状態となれば特に制約はなく、連続的に投入する方法、一括して投入する方法、分割して投入する方法のどの方法でもよい。例えば、高粘度の二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入する場合は、初期水中で分散させるために、連続的に少量ずつ投入することで、重合機または分散混合槽等の内壁等に未分散の付着物やスラリー中の未溶解の残渣が残りにくくなる。   The rate at which the macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain is introduced into the initial water is not particularly limited as long as it is in a dispersed state after the addition, and is continuously added. Any of a method, a method of batch loading, and a method of batch loading may be used. For example, when introducing a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a high-viscosity double bond in the main chain, in order to disperse it in the initial water, it can be added in small portions continuously. In addition, undispersed deposits and undissolved residues in the slurry are less likely to remain on the inner wall of a polymerization machine or a dispersion mixing tank.

本発明の塩化ビニル系共重合体の製造方法において、初期水に二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを分散させる際の回転数、分散時間は、攪拌機の形状や攪拌機から重合機または分散混合槽等内壁までの間隙によって様々であるため特に制約はないが、例えば、パドル型攪拌機径(d)と重合機径(D)の比(d/D)が3.0のような場合、50rpm以上の回転数であることが好ましい。   In the method for producing a vinyl chloride copolymer of the present invention, the rotational speed and dispersion time when dispersing a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in initial water in the main chain are as follows: There are no particular restrictions because it varies depending on the shape of the stirrer and the gap from the stirrer to the inner wall of the polymerization apparatus or dispersion mixing tank, but for example, the ratio of the paddle type stirrer diameter (d) to the polymerization apparatus diameter (D) (d / When D) is 3.0, the number of rotations is preferably 50 rpm or more.

また、塩化ビニル系モノマーに二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを分散混合する際の時間は、充分に分散混合することができれば特に制約はないが、1分以上であることが好ましい。1分以上であると、塩化ビニル系モノマーに二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを均一に分散混合させることができる。   Further, the time for dispersing and mixing the macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the vinyl chloride monomer in the main chain is not particularly limited as long as it can be sufficiently dispersed and mixed. Is preferably 1 minute or longer. When it is 1 minute or longer, a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the vinyl chloride monomer as a main chain can be uniformly dispersed and mixed.

これらの方法により、塩化ビニル系モノマーに、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを均一に分散混合することにより、
例えば、「共重合が異常重合となり正常な粒子が得られない」、「正常粒子が得られた場合でもスケールが多く発生する」といった問題の発生を抑制することができる。
By these methods, by uniformly dispersing and mixing a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain with a vinyl chloride monomer,
For example, problems such as “copolymerization becomes abnormal polymerization and normal particles cannot be obtained” and “a large amount of scale occurs even when normal particles are obtained” can be suppressed.

本発明で使用される塩化ビニル系モノマーとしては特に限定はなく、例えば塩化ビニルモノマー、塩化ビニリデンモノマー、酢酸ビニルモノマーまたはこれらの混合物、または、この他にこれらと共重合可能で、好ましくは重合後の重合体主鎖に反応性官能基を有しないモノマー、例えばエチレン、プロピレンなどのα−オレフィン類から選ばれる1種または2種以上の混合物を使用しても良い。2種以上の混合物を使用する場合は、塩化ビニル系モノマー全体に占める塩化ビニルモノマーの含有率を50重量%以上、特に70重量%以上とすることが好ましい。中でも得られる共重合樹脂の物性等から、塩化ビニルモノマーあるいは塩化ビニリデンモノマーのいずれか1種のみを使用することが好ましく、塩化ビニルモノマーを使用することがさらに好ましい。   The vinyl chloride monomer used in the present invention is not particularly limited. For example, vinyl chloride monomer, vinylidene chloride monomer, vinyl acetate monomer, or a mixture thereof, or other copolymerizable with these, preferably after polymerization. A monomer having no reactive functional group in the polymer main chain, for example, one or a mixture of two or more selected from α-olefins such as ethylene and propylene may be used. When using 2 or more types of mixtures, it is preferable that the content rate of the vinyl chloride monomer which occupies for the whole vinyl chloride monomer is 50 weight% or more, especially 70 weight% or more. Among these, from the physical properties of the copolymer resin obtained, it is preferable to use only one of vinyl chloride monomer or vinylidene chloride monomer, and it is more preferable to use vinyl chloride monomer.

一般にマクロモノマーとは、重合体の末端に反応性の官能基を有するオリゴマー分子である。本発明で使用される二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーは、反応性官能基として、アリル基、ビニルシリル基、ビニルエーテル基、ジシクロペンタジエニル基、下記一般式(1)から選ばれる重合性の炭素−炭素二重結合を有する基を、少なくとも1分子あたり1個、分子末端に有する、ラジカル重合によって製造されたものである。
特に、塩化ビニル系モノマーとの反応性が良好なことから、重合性の炭素−炭素二重結合を有する基が、下記一般式:
−OC(O)C(R)=CH2
で表される基が好ましい。
In general, a macromonomer is an oligomer molecule having a reactive functional group at the end of a polymer. The macromonomer having, in the main chain, a polymer composed of an ethylenically unsaturated monomer containing a double bond used in the present invention is an allyl group, a vinylsilyl group, a vinyl ether group, dicyclopentadienyl as a reactive functional group. It is produced by radical polymerization having at least one group having a polymerizable carbon-carbon double bond selected from the following general formula (1) at the molecular end.
In particular, since the reactivity with the vinyl chloride monomer is good, the group having a polymerizable carbon-carbon double bond is represented by the following general formula:
—OC (O) C (R) ═CH 2
The group represented by these is preferable.

式中、Rの具体例としては特に限定されず、例えば、−H、−CH3、−CH2CH3、−(CH2nCH3(nは2〜19の整数を表す)、−C65、−CH2OH、−CNの中から選ばれる基が好ましく、さらに好ましくは−H、−CH3である。 In the formula, specific examples of R are not particularly limited. For example, —H, —CH 3 , —CH 2 CH 3 , — (CH 2 ) n CH 3 (n represents an integer of 2 to 19), — A group selected from C 6 H 5 , —CH 2 OH and —CN is preferred, and —H and —CH 3 are more preferred.

本発明で使用されるマクロモノマーの主鎖である、二重結合を含有するエチレン性不飽和モノマーからなる重合体は、ラジカル重合によって製造される。ラジカル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを使用して、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と、末端などの制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類できる。   A polymer composed of an ethylenically unsaturated monomer containing a double bond, which is the main chain of the macromonomer used in the present invention, is produced by radical polymerization. The radical polymerization method uses “a general radical polymerization method” in which a monomer having a specific functional group and a vinyl monomer are simply copolymerized using an azo compound or a peroxide as a polymerization initiator, It is possible to classify into a “controlled radical polymerization method” in which a specific functional group can be introduced at a controlled position.

「一般的なラジカル重合法」は、特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使用する必要がある。またフリーラジカル重合であるため、分子量分布が広く、粘度の低い重合体は得にくい。   In the “general radical polymerization method”, a monomer having a specific functional group is introduced into the polymer only in a probabilistic manner. Must be used in large quantities. Moreover, since it is free radical polymerization, it is difficult to obtain a polymer having a wide molecular weight distribution and a low viscosity.

「制御ラジカル重合法」は、さらに、特定の官能基を有する連鎖移動剤を使用して重合を行うことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と、重合生長末端が停止反応などを起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに分類することができる。   “Controlled radical polymerization method” further includes a “chain transfer agent method” in which a vinyl polymer having a functional group at a terminal is obtained by polymerization using a chain transfer agent having a specific functional group, It can be classified as a “living radical polymerization method” in which a polymer having a molecular weight almost as designed can be obtained by growing a growth terminal without causing a termination reaction or the like.

「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対して特定の官能基を有する連鎖移動剤を必要とする。また上記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の低い重合体は得にくい。   The “chain transfer agent method” can obtain a polymer having a high functionalization rate, but requires a chain transfer agent having a specific functional group with respect to the initiator. Further, like the above-mentioned “general radical polymerization method”, since it is free radical polymerization, it is difficult to obtain a polymer having a wide molecular weight distribution and a low viscosity.

これらの重合法とは異なり、「リビングラジカル重合法」は、本件出願人自身の発明に係る国際公開WO99/65963号公報に記載されるように、重合速度が大きく、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御の難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い、例えば、重量平均分子量Mwと数平均分子量Mnの比(Mw/Mn)が1.1〜1.5程度の重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量は自由にコントロールすることができる。   Unlike these polymerization methods, the “living radical polymerization method” has a high polymerization rate due to coupling between radicals and the like as described in International Publication WO99 / 65963 relating to the applicant's own invention. Although radical polymerization is considered to be difficult to control because it tends to cause a termination reaction, the termination reaction is difficult to occur and the molecular weight distribution is narrow. For example, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn) is 1. While a polymer of about 1 to 1.5 is obtained, the molecular weight can be freely controlled by the charging ratio of the monomer and the initiator.

従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、本発明において、上記の如き特定の官能基を有するビニル系重合体の製造方法としてはより好ましい重合法である。   Accordingly, the “living radical polymerization method” can obtain a polymer having a narrow molecular weight distribution and a low viscosity, and a monomer having a specific functional group can be introduced at almost any position of the polymer. In the present invention, the method for producing a vinyl polymer having a specific functional group as described above is a more preferable polymerization method.

「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」(Atom Transfer Radical Polymerization:ATRP)は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えばMatyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁等が挙げられる。   Among “Living Radical Polymerization Methods”, “Atom Transfer Radical Polymerization (ATRP)” is a method in which vinyl halide monomers are polymerized using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst. In addition to the above-mentioned characteristics of the “living radical polymerization method”, it has a halogen which is relatively advantageous for functional group conversion reaction at the terminal, and has a large degree of freedom in designing initiators and catalysts. It is further preferable as a method for producing a vinyl-based polymer having Examples of this atom transfer radical polymerization method include Matyjaszewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614.

本発明におけるマクロモノマーの製法として、これらのうちどの方法を使用するかは特に制約はないが、通常、制御ラジカル重合法が利用され、さらに制御の容易さなどからリビングラジカル重合法が好ましく用いられ、特に原子移動ラジカル重合法が最も好ましい。   There is no particular limitation as to which of these methods is used as a method for producing a macromonomer in the present invention, but usually a controlled radical polymerization method is used, and a living radical polymerization method is preferably used because of ease of control. In particular, the atom transfer radical polymerization method is most preferable.

また本発明で使用されるマクロモノマーの主鎖が有する、二重結合を含有するエチレン性不飽和モノマーからなる重合体としては特に制約はなく、該重合体を構成する二重結合を含有するエチレン性不飽和モノマーとしては、各種のものを使用することができる。例えば(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシブチル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマー;スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニルモノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化アリル、アリルアルコール等が挙げられる。これらは単独で使用しても良いし、2種以上を共重合させても構わない。中でも生成物の物性等から、スチレン系モノマーあるいは(メタ)アクリル酸系モノマーが好ましい。より好ましくはアクリル酸エステルモノマーあるいはメタクリル酸エステルモノマーであり、さらに好ましくはアクリル酸エステルモノマーであり、最も好ましくはアクリル酸ブチルである。本発明においてはこれらの好ましいモノマーを他のモノマーと共重合させても良く、その際はこれらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。ここで、例えば「(メタ)アクリル酸」とは、アクリル酸あるいはメタクリル酸を意味するものである。   In addition, there is no particular limitation on the polymer composed of an ethylenically unsaturated monomer containing a double bond, which the macromonomer main chain used in the present invention has, and ethylene containing a double bond constituting the polymer. Various kinds of unsaturated unsaturated monomers can be used. For example, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid-n-butyl, (meth ) Isobutyl acrylate, (meth) acrylic acid-tert-butyl, (meth) acrylic acid-n-pentyl, (meth) acrylic acid-n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-n- Heptyl, (n-octyl) (meth) acrylate, (2-ethylhexyl) (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, Toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, (meth) 3-methoxybutyl crylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylic acid 2 -Aminoethyl, γ- (methacryloyloxypropyl) trimethoxysilane, ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate, (meth ) 2-perfluoroethylethyl acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, 2-perfluoroethyl (meth) acrylate, perfluoromethyl (meth) acrylate, (meta ) Diperfluoromethyl methyl acrylate, (meth) acrylic 2-perfluoromethyl-2-perfluoroethyl methyl phosphate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, 2-perfluorohexadecyl (meth) acrylate (Meth) acrylic acid monomers such as ethyl; styrene monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof; fluorine such as perfluoroethylene, perfluoropropylene, vinylidene fluoride -Containing vinyl monomers; silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl esters and dialkyl esters of maleic acid; fumaric acid, monoalkyl esters of fumaric acid and dia Kill esters; maleimide monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, cyclohexylmaleimide; containing nitrile groups such as acrylonitrile and methacrylonitrile Vinyl monomers; amide group-containing vinyl monomers such as acrylamide and methacrylamide; vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate; alkenes such as ethylene and propylene; butadiene And conjugated dienes such as isoprene; allyl chloride, allyl alcohol and the like. These may be used alone or two or more of them may be copolymerized. Of these, a styrene monomer or a (meth) acrylic acid monomer is preferred from the viewpoint of physical properties of the product. An acrylate monomer or a methacrylic acid ester monomer is more preferable, an acrylate monomer is more preferable, and butyl acrylate is most preferable. In the present invention, these preferable monomers may be copolymerized with other monomers, and in this case, it is preferable that these preferable monomers are contained in an amount of 40% or more by weight. Here, for example, “(meth) acrylic acid” means acrylic acid or methacrylic acid.

本発明で使用されるマクロモノマーは、これら二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有し、さらに反応性官能基を、少なくとも1分子あたり1個、分子末端に有することを特徴としている。   The macromonomer used in the present invention has a polymer composed of an ethylenically unsaturated monomer containing these double bonds in the main chain, and further has at least one reactive functional group per molecule at the molecular end. It is characterized by having.

さらに、本発明の塩化ビニル系モノマーと共重合可能なマクロモノマーは1種のみを用いてもよく、構成するエチレン性不飽和モノマーが異なるマクロモノマーを2種以上併用してもよい。   Furthermore, only one type of macromonomer copolymerizable with the vinyl chloride monomer of the present invention may be used, or two or more types of macromonomers having different ethylenically unsaturated monomers may be used in combination.

また、本発明の塩化ビニル系モノマーと共重合可能なマクロモノマーの分子量は、GPCによるスチレン換算した数平均分子量で、1000〜100000であることが好ましい。更に、1000〜30000であれば粘度が低いため、重合初期でのマクロモノマー含量の高い微粒子が少なくなるため好ましい。また、1000〜15000であれば、塩化ビニル系モノマーとの分散混合時間が短縮でき、重合終了後の残塩化ビニルモノマー回収時間が短縮できるため最も好ましい。   Further, the molecular weight of the macromonomer copolymerizable with the vinyl chloride monomer of the present invention is preferably a number average molecular weight in terms of styrene by GPC, and is 1,000 to 100,000. Furthermore, if it is 1000-30000, since a viscosity is low, since the microparticles | fine-particles with a high macromonomer content in the early stage of polymerization decrease, it is preferable. Moreover, if it is 1000-15000, since dispersion | distribution mixing time with a vinyl chloride monomer can be shortened and the vinyl chloride monomer recovery time after completion | finish of superposition | polymerization can be shortened, it is the most preferable.

本発明の塩化ビニル系共重合樹脂を構成するモノマー成分の総量に対する塩化ビニル系モノマーの比率は、本発明の効果を奏する範囲であれば特に制約はないが、50重量%以上100重量%未満であることが好ましく、さらに好ましくは50重量%以上99.95重量%以下であり、特に好ましくは50重量以上97重量以下である。塩化ビニル系モノマーの比率が50重量%以上100重量%未満の範囲であれば、共重合反応が安定である上に、得られる塩化ビニル系共重合樹脂が粉粒体になり、加工方法の自由度を増すという効果が期待できる。   The ratio of the vinyl chloride monomer to the total amount of the monomer components constituting the vinyl chloride copolymer resin of the present invention is not particularly limited as long as the effect of the present invention is exhibited, but is 50 wt% or more and less than 100 wt%. Preferably, it is 50 to 99.95% by weight, more preferably 50 to 97% by weight. If the ratio of the vinyl chloride monomer is in the range of 50% by weight or more and less than 100% by weight, the copolymerization reaction is stable and the resulting vinyl chloride copolymer resin becomes a granular material, so that the processing method is free. The effect of increasing the degree can be expected.

本発明の塩化ビニル系共重合樹脂の平均重合度または平均分子量は特に限定されず、通常製造および使用される塩化ビニル系樹脂と同様に、JIS K 7367−2に従って測定したK値が50〜95の範囲である。また、平均粒径としては、通常10〜500μmの範囲である。   The average degree of polymerization or the average molecular weight of the vinyl chloride copolymer resin of the present invention is not particularly limited, and the K value measured according to JIS K 7367-2 is 50 to 95 as in the case of a vinyl chloride resin usually produced and used. Range. Moreover, as an average particle diameter, it is the range of 10-500 micrometers normally.

本発明の塩化ビニル系共重合樹脂の製造方法については、特に制約はないが、重合反応熱の除熱や暴走反応の抑制といった重合制御の簡便性から、水性媒体中での共重合が好ましく、懸濁重合法を用いることが好ましい。   The method for producing the vinyl chloride copolymer resin of the present invention is not particularly limited, but copolymerization in an aqueous medium is preferable from the viewpoint of simplicity of polymerization control such as removal of polymerization reaction heat and suppression of runaway reaction, It is preferable to use a suspension polymerization method.

本発明においては、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーに塩化ビニル系モノマーを分散混合したのち、要すれば懸濁重合法で使用される分散剤、重合開始剤、界面活性剤、分散助剤、抗酸化剤、重合度調節剤、連鎖移動剤、粒子径調節剤、pH調節剤、ゲル化性改良剤、帯電防止剤、安定剤、スケール防止剤等を、必要に応じ一括あるいは分割または連続して仕込み、所定の重合温度で共重合反応を行う。   In the present invention, a vinyl chloride monomer is dispersed and mixed in a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain, and if necessary, a dispersion used in a suspension polymerization method. Agent, polymerization initiator, surfactant, dispersion aid, antioxidant, polymerization degree regulator, chain transfer agent, particle size regulator, pH regulator, gelling agent, antistatic agent, stabilizer, scale An inhibitor or the like is charged all at once, divided or continuously as required, and a copolymerization reaction is performed at a predetermined polymerization temperature.

懸濁重合法に使用される分散剤としては、本発明の目的を損なわない範囲のものであれば、特に限定されずに使用することができる。そのような分散剤としては、例えば、部分鹸化ポリ酢酸ビニル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等の水溶性セルロースエーテル;ポリエチレンオキサイド;ポリビニルピロリドン;ポリアクリル酸;酢酸ビニル−マレイン酸共重合体;スチレン−マレイン酸共重合体;ゼラチン;デンプン、等の有機高分子分散剤が使用可能であり、これらは単独または2種以上を組み合わせて使用することができる。   The dispersant used in the suspension polymerization method is not particularly limited as long as it does not impair the object of the present invention. Examples of such a dispersant include partially saponified polyvinyl acetate; water-soluble cellulose ethers such as methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and carboxymethylcellulose; polyethylene oxide; polyvinylpyrrolidone; polyacrylic acid; -Maleic acid copolymer; Styrene-maleic acid copolymer; Gelatin; Starch and other organic polymer dispersants can be used, and these can be used alone or in combination of two or more.

また重合開始剤としては、特に限定されずに本発明の目的を損なわない範囲の油溶性重合開始剤を添加すれば良いが、これらの開始剤のうち10時間半減期温度が30〜65℃のものを1種または2種以上使用するのが好ましい。このような重合開始剤としては、例えば、アセチルシクロヘキシルスルフォニルパーオキサイド、2,4,4トリメチルペンチル−2−パーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシネオデカノエイト、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物系重合開始剤;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤が挙げられ、これらは単独または2種以上を組み合わせて使用することができる。これら油溶性重合開始剤は特に制約のない状態で添加することができるが、例えば有機溶剤に溶解して使用する場合には、その有機溶剤の例としては、トルエン、キシレン、ベンゼン等の芳香族炭化水素;ヘキサン、イソパラフィン等の脂肪族炭化水素;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、ジオクチルフタレート等のエステル類が挙げられ、これらは単独または2種以上を組み合わせて使用することができる。   In addition, the polymerization initiator is not particularly limited, and an oil-soluble polymerization initiator within a range that does not impair the object of the present invention may be added. Among these initiators, the 10-hour half-life temperature is 30 to 65 ° C. It is preferable to use one or more of them. Examples of such polymerization initiators include acetylcyclohexylsulfonyl peroxide, 2,4,4 trimethylpentyl-2-peroxyneodecanoate, diisopropyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate. , T-butyl peroxypivalate, t-butyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 3,5,5-trimethylhexa Organic peroxide polymerization initiators such as noyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2 ′ -Azo polymerization initiators such as -azobis- (2,4-dimethylvaleronitrile) These may be used alone or in combination of two or more. These oil-soluble polymerization initiators can be added without any particular restrictions. For example, when used by dissolving in an organic solvent, examples of the organic solvent include aromatics such as toluene, xylene, and benzene. Hydrocarbons; Aliphatic hydrocarbons such as hexane and isoparaffin; Ketones such as acetone and methyl ethyl ketone; Esters such as ethyl acetate, butyl acetate and dioctyl phthalate are used, and these should be used alone or in combination of two or more. Can do.

その他、抗酸化剤、重合度調節剤、連鎖移動剤、粒子径調節剤、pH調節剤、ゲル化性改良剤、帯電防止剤、安定剤、スケール防止剤等は、一般に塩化ビニル系樹脂の製造に使用されるものを、必要に応じて任意に使用することができ、その仕込量も特に限定されない。   In addition, antioxidants, polymerization degree regulators, chain transfer agents, particle size regulators, pH regulators, gelling modifiers, antistatic agents, stabilizers, scale inhibitors, etc. are generally used in the production of vinyl chloride resins. What is used for can be used arbitrarily as needed, and the amount charged is not particularly limited.

一般に、塩化ビニル系樹脂の用途は多岐に渡り、その用途に適した製造方法で製造した樹脂が用いられる。例えば、パイプ、継手、板などの硬質用途や、シート、フィルム、電線被覆などの軟質用途には、主として懸濁重合法により製造された塩化ビニル系樹脂が用いられる。本発明の塩化ビニル系樹脂の製造方法は、これらいずれの製造方法にも好適に用いることができ、本発明により、種々の用途に応じた塩化ビニル系共重合樹脂を得ることができる。   In general, vinyl chloride resins are used for various purposes, and a resin manufactured by a manufacturing method suitable for the application is used. For example, vinyl chloride resins produced mainly by suspension polymerization are used for hard applications such as pipes, joints, and plates, and soft applications such as sheets, films, and wire coatings. The vinyl chloride resin production method of the present invention can be suitably used for any of these production methods, and according to the present invention, vinyl chloride copolymer resins suitable for various applications can be obtained.

本発明を実施例に基づいて詳細に説明するが、本発明は以下の実施例に限定されるものではない。ここで、特に断りのない限り、実施例中の「部」は「重量部」を、「%」は「重量%」を意味する。   EXAMPLES Although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example. Here, unless otherwise specified, “parts” in the examples means “parts by weight” and “%” means “% by weight”.

<200メッシュ篩分け(小粒子量)の評価>
得られたスラリーを200メッシュ篩(JIS Z8801−1 目開き350μm)で篩分けし、その通過液を100℃にて十分に乾燥して重量を測定した(スラリー200メッシュ篩通過乾燥樹脂重量)。一方、得られたスラリーを100℃にて十分に乾燥して得られた固形分重量を測定し(全スラリー乾燥樹脂重量)、下記計算式により、200メッシュ篩通過樹脂比率を算出した。
<Evaluation of 200 mesh sieving (small particle amount)>
The obtained slurry was sieved with a 200-mesh sieve (JIS Z8801-1 opening 350 μm), the passing liquid was sufficiently dried at 100 ° C., and the weight was measured (weight of slurry 200-mesh sieve passed dry resin). On the other hand, the weight of the solid content obtained by sufficiently drying the obtained slurry at 100 ° C. was measured (total slurry dry resin weight), and the 200 mesh sieve passing resin ratio was calculated by the following calculation formula.

(200メッシュ篩通過樹脂比率)=(スラリー200メッシュ篩通過乾燥樹脂重量)/(全スラリー乾燥樹脂重量)
200メッシュ篩通過樹脂比率が2%未満であると脱水時の排液中のCODが低下するため好ましい。
(Ratio of resin passing through 200 mesh sieve) = (weight of slurry passing through 200 mesh sieve) / (weight of all slurry dry resin)
A 200 mesh sieve passing resin ratio is preferably less than 2% because the COD in the drainage during dehydration is reduced.

<樹脂中のマクロモノマー含量の定量>
全スラリー、又は200メッシュ篩通過液を100℃で乾固した乾固物1gを特級THF(テトラヒドロフラン)試薬30gに溶解し、溶解液をKBrプレートに塗布、乾燥させた後IR測定機(パーキンエルマー製フーリエ変換赤外分光光度計SPECRUM1000)にて4000cm-1から400cm-1の吸収を測定した。カルボニル基由来のシグナル(1730cm-1付近のピークトップ)と、炭素−塩素由来のシグナル(615cm-1付近のピークトップ)のベースラインに対するピーク高さの比をマクロモノマー含量に対し検量線を引き、試料のIRを測定することで、それぞれ、全樹脂中および小粒子樹脂中のマクロモノマー含量を算出した。
<スラリーの自圧回収時間>
重合機内に予め超音波式液面検出装置を挿入し、気−液界面(泡液面)のレベルを確認しながら回収をおこなった。重合機の空間部を超えないように(回収ラインに泡が流れないように)、回収バルブの開度を調整し、重合機内圧が0.05MPa以下となったところで真空ポンプに切替え、−0.05MPaとなったところで窒素により0MPaまで圧を戻す。回収開始から窒素による圧戻しまでの時間を回収時間と定義する。液面(レベル)は、回収前の液面をL0、重合機の空間容積を断面積で除した液面L100、回収時の泡の高さをLとして、L/(L100−L0)×100[%]として、回収期間中最も高い液面をLmaxと定義する。
<二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーの製造>
二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーの製造は、下記の製造例に示す手順に従って行った。
<Quantification of macromonomer content in resin>
1 g of the whole slurry or a dried product obtained by drying a liquid passing through a 200 mesh sieve at 100 ° C. was dissolved in 30 g of a special grade THF (tetrahydrofuran) reagent, and the solution was applied to a KBr plate and dried, and then an IR measuring machine (Perkin Elmer). absorption was measured 400 cm -1 from 4000 cm -1 in manufacturing a Fourier transform infrared spectrophotometer SPECRUM1000). A signal derived from the carbonyl group (peak top in the vicinity of 1730 cm -1), carbon - draw a calibration curve ratio of the peak height relative to the macromonomer content relative baseline chlorine from the signal (peak top in the vicinity of 615 cm -1) By measuring the IR of the sample, the macromonomer content in the total resin and the small particle resin was calculated, respectively.
<Slurry pressure recovery time>
An ultrasonic liquid level detector was inserted in the polymerization machine in advance, and recovery was performed while checking the level of the gas-liquid interface (foam liquid level). In order not to exceed the space of the polymerization machine (so that bubbles do not flow in the collection line), the opening of the collection valve is adjusted, and when the polymerization machine internal pressure becomes 0.05 MPa or less, it is switched to a vacuum pump. When the pressure reaches 0.05 MPa, the pressure is returned to 0 MPa with nitrogen. The time from the start of recovery to the pressure return with nitrogen is defined as the recovery time. The liquid level (level) is L / (L100−L0) × 100, where L0 is the liquid level before recovery, L100 is the liquid volume obtained by dividing the space volume of the polymerization apparatus by the cross-sectional area, and L is the height of bubbles at the time of recovery. As [%], the highest liquid level during the collection period is defined as Lmax.
<Manufacture of a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain>
Production of a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain was carried out according to the procedure shown in the following production example.

(製造例)
還流管および攪拌機付きの2Lのセパラブルフラスコに、CuBr(5.54g)を仕込み、反応容器内を窒素置換した。アセトニトリル(73.8ml)を加え、オイルバス中70℃で30分間攪拌した。これにアクリル酸−n−ブチル(132g)、2−ブロモプロピオン酸メチル(7.2ml)、ペンタメチルジエチレントリアミン(4.69ml)を加え、反応を開始した。70℃で加熱攪拌しながら、アクリル酸−n−ブチル(528g)を90分かけて連続的に滴下し、さらに80分間加熱攪拌した。
(Production example)
CuBr (5.54 g) was charged into a 2 L separable flask equipped with a reflux tube and a stirrer, and the inside of the reaction vessel was purged with nitrogen. Acetonitrile (73.8 ml) was added, and the mixture was stirred in an oil bath at 70 ° C. for 30 minutes. To this, n-butyl acrylate (132 g), methyl 2-bromopropionate (7.2 ml) and pentamethyldiethylenetriamine (4.69 ml) were added to initiate the reaction. While heating and stirring at 70 ° C., acrylate-n-butyl (528 g) was continuously added dropwise over 90 minutes, and the mixture was further heated and stirred for 80 minutes.

反応混合物をトルエンで希釈し、活性アルミナカラムを通したのち、揮発分を減圧留去することにより、片末端Br基ポリ(アクリル酸−n−ブチル)を得た。   The reaction mixture was diluted with toluene, passed through an activated alumina column, and then the volatile component was distilled off under reduced pressure to obtain one-terminal Br group poly (acrylic acid-n-butyl).

フラスコに、メタノール(800ml)を仕込み、0℃に冷却した。そこへ、t−ブトキシカリウム(130g)を数回に分けて加えた。この反応溶液を0℃に保持して、アクリル酸(100g)のメタノール溶液を滴下した。滴下終了後、反応液の温度を0℃から室温に戻したのち、反応液の揮発分を減圧留去することにより、アクリル酸カリウム(CH2=CHCO2K)を得た。 The flask was charged with methanol (800 ml) and cooled to 0 ° C. Thereto, t-butoxypotassium (130 g) was added in several portions. The reaction solution was kept at 0 ° C., and a methanol solution of acrylic acid (100 g) was added dropwise. After completion of the dropwise addition, the temperature of the reaction solution was returned from 0 ° C. to room temperature, and then the volatile content of the reaction solution was distilled off under reduced pressure to obtain potassium acrylate (CH 2 = CHCO 2 K).

還流管付き500mLフラスコに、得られた片末端Br基ポリ(アクリル酸−n−ブチル)(150g)、アクリル酸カリウム(7.45g)、ジメチルアセトアミド(150ml)を仕込み、70℃で3時間加熱攪拌した。反応混合物よりジメチルアセトアミドを留去し、トルエンに溶解させ、活性アルミナカラムを通したのち、トルエンを留去することにより片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマーを得た。
25℃での片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマーの粘度は、約40Pa・sであった。
A 500 mL flask equipped with a reflux tube was charged with the obtained one-terminal Br group poly (acrylic acid-n-butyl) (150 g), potassium acrylate (7.45 g), dimethylacetamide (150 ml), and heated at 70 ° C. for 3 hours. Stir. Dimethylacetamide was distilled off from the reaction mixture, dissolved in toluene, passed through an activated alumina column, and then toluene was distilled off to obtain a one-terminal acryloyl group poly (acrylic acid-n-butyl) macromonomer.
The viscosity of the one-end acryloyl group poly (acrylic acid-n-butyl) macromonomer at 25 ° C. was about 40 Pa · s.

(実施例1)
ジャケット及び攪拌機を備えた内容量25リットルのステンレス鋼製重合反応機に初期水として、全モノマーに対し40部相当の水を予め仕込み、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.02部を添加し、重合反応機内温を20℃に制御して、1分間あたり900回転の回転速度で攪拌しながら溶解した。亜硝酸ナトリウム0.00015部添加した後、攪拌しながら、製造例の片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマー40部を仕込んで、脱気したのち、塩化ビニルモノマー60部を仕込み、投入後から10分間攪拌することにより、該塩化ビニルモノマーに該マクロモノマーを分散混合させた。t−ブチルパーオキシネオデカノエイト0.03部、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート0.01部を仕込んだ後、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.08部、平均分子量約450万のポリエチレンオキサイド0.005部を60℃の温水110部とともに仕込み、重合温度57℃で約6時間重合した。ジャケット温度を57℃のままで制御して、自圧回収を開始した。回収時間は0.5時間、Lmaxは90%であった。自圧回収・重合樹脂評価の結果を表1に示す。
Example 1
A stainless steel polymerization reactor having a volume of 25 liters equipped with a jacket and a stirrer is charged with 40 parts of water as the initial water in advance, and partially saponified with a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000. 0.02 part of polyvinyl acetate was added, the polymerization reactor internal temperature was controlled at 20 ° C., and the mixture was dissolved while stirring at a rotation speed of 900 revolutions per minute. After adding 0.00015 part of sodium nitrite and stirring, 40 parts of acryloyl group poly (n-butyl acrylate) macromonomer of Production Example was charged and degassed, and then 60 parts of vinyl chloride monomer was added. The macromonomer was dispersed and mixed in the vinyl chloride monomer by stirring for 10 minutes after charging and charging. After adding 0.03 part of t-butylperoxyneodecanoate and 0.01 part of 1,1,3,3-tetramethylbutylperoxyneodecanoate, the degree of saponification was about 80 mol% and the average degree of polymerization. 0.08 part of partially saponified polyvinyl acetate having a molecular weight of about 2000 and 0.005 part of polyethylene oxide having an average molecular weight of about 4.5 million were charged together with 110 parts of hot water at 60 ° C. and polymerized at a polymerization temperature of 57 ° C. for about 6 hours. Self-pressure recovery was started by controlling the jacket temperature at 57 ° C. The recovery time was 0.5 hours and Lmax was 90%. Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(実施例2)
ジャケット及び攪拌機を備えた内容量25リットルのステンレス鋼製重合反応機に初期水として、全モノマーに対し100部相当の水を予め仕込み、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.01部を、重合反応機内温を40℃に制御して、1分間あたり450回転の回転速度で攪拌しながら溶解した。攪拌しながら、亜硝酸ナトリウム0.00015部添加した後、製造例の片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマー6部を仕込んで、脱気したのち、塩化ビニルモノマー94部を仕込み、投入後から15分間攪拌することにより、該塩化ビニルモノマーに該マクロモノマーを分散混合させた。t−ブチルパーオキシネオデカノエイト0.03部、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート0.01部を仕込んだ後、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.04部、平均分子量約450万のポリエチレンオキサイド0.005部を60℃の温水50部とともに仕込み、重合温度57℃で約6時間重合した。ジャケット温度を65℃に制御して自圧回収を開始した。回収時間は0.4時間、Lmaxは70%であった。自圧回収・重合樹脂評価の結果を表1に示す。
(Example 2)
A stainless steel polymerization reactor having a volume of 25 liters equipped with a jacket and a stirrer is charged with 100 parts of water in advance as the initial water, and partially saponified with a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000. 0.01 parts of polyvinyl acetate was dissolved while stirring at a rotational speed of 450 revolutions per minute while controlling the internal temperature of the polymerization reactor at 40 ° C. While stirring, 0.00015 part of sodium nitrite was added, 6 parts of acryloyl group poly (n-butyl acrylate) macromonomer of Production Example was charged, degassed, and 94 parts of vinyl chloride monomer was added. The macromonomer was dispersed and mixed in the vinyl chloride monomer by stirring for 15 minutes after charging and charging. After adding 0.03 part of t-butylperoxyneodecanoate and 0.01 part of 1,1,3,3-tetramethylbutylperoxyneodecanoate, the degree of saponification was about 80 mol% and the average degree of polymerization. 0.04 part of partially saponified polyvinyl acetate having a molecular weight of about 2000 and 0.005 part of polyethylene oxide having an average molecular weight of about 4.5 million were charged together with 50 parts of hot water at 60 ° C. and polymerized at a polymerization temperature of 57 ° C. for about 6 hours. Self-pressure recovery was started by controlling the jacket temperature to 65 ° C. The recovery time was 0.4 hours and Lmax was 70%. Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(実施例3)
ジャケット及び攪拌機を備えた内容量1500リットルのステンレス鋼製重合反応機に初期水として、全モノマーに対し300部相当の水を予め仕込み、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.01部、平均分子量約450万のポリエチレンオキサイド0.005部を、重合反応機内温を25℃に制御して、1分間あたり560回転の回転速度で攪拌しながら溶解した。攪拌しながら、亜硝酸ナトリウム0.00015部添加した後、製造例の片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマー3部を仕込んで、脱気したのち、塩化ビニルモノマー97部を仕込み、投入後から20分間攪拌することにより、該塩化ビニルモノマーに該マクロモノマーを分散混合させた。t−ブチルパーオキシネオデカノエイト0.0075部、t−ヘキシルパーオキシピバレイト0.02部を仕込んだ後、次いで鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.05部、平均分子量約450万のポリエチレンオキサイド0.005部を60℃の温水50部とともに仕込み、重合温度66.5℃で約5.5時間重合した。ジャケット温度を66.5℃のままで制御して、自圧回収を開始した。回収時間は2時間、Lmaxは85%であった。自圧回収・重合樹脂評価の結果を表1に示す。
(Example 3)
A stainless steel polymerization reactor with an internal capacity of 1500 liters equipped with a jacket and a stirrer is charged with 300 parts of water as initial water in advance, and partially saponified with a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000. 0.01 part of polyvinyl acetate and 0.005 part of polyethylene oxide having an average molecular weight of about 4.5 million were dissolved while stirring at a rotational speed of 560 revolutions per minute while controlling the internal temperature of the polymerization reactor at 25 ° C. While stirring, 0.00015 part of sodium nitrite was added, and after 3 parts of acryloyl group poly (acrylic acid-n-butyl) macromonomer of Production Example was charged and degassed, 97 parts of vinyl chloride monomer were added. The macromonomer was dispersed and mixed in the vinyl chloride monomer by stirring for 20 minutes after charging and charging. After charging 0.0075 part of t-butylperoxyneodecanoate and 0.02 part of t-hexylperoxypivalate, then partially saponified polyvinyl acetate having a saponification degree of about 80 mol% and an average degree of polymerization of about 2000 0.05 part of polyethylene oxide (0.005 part) having an average molecular weight of about 4.5 million was charged together with 50 parts of hot water at 60 ° C. and polymerized at a polymerization temperature of 66.5 ° C. for about 5.5 hours. The jacket temperature was controlled at 66.5 ° C., and self-pressure recovery was started. The recovery time was 2 hours and Lmax was 85%. Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(実施例4)
ジャケット及び攪拌機を備えた内容量1500リットルのステンレス鋼製重合反応機に初期水として、全モノマーに対し20部相当の水を予め仕込み、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.016部を、重合反応機内温を25℃に制御して、1分間あたり560回転の回転速度で攪拌しながら溶解した。攪拌しながら、亜硝酸ナトリウム0.00030部添加した後、製造例の片末端アクリロイル基ポリ(アクリル酸−n−ブチル)マクロモノマー10部を仕込んで、脱気したのち、塩化ビニルモノマー90部を仕込み、投入後から30分間攪拌することにより、該塩化ビニルモノマーに該マクロモノマーを分散混合させた。t−ブチルパーオキシネオデカノエイト0.0075部、t−ヘキシルパーオキシピバレイト0.02部を仕込んだ後、次いで鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.084部60℃の温水130部を仕込み、重合温度66.5℃で約5.5時間重合した。ジャケット温度を75℃で制御して、自圧回収を開始した。回収時間は1.5時間、Lmaxは80%であった。自圧回収・重合樹脂評価の結果を表1に示す。
Example 4
A stainless steel polymerization reactor having a capacity of 1500 liters equipped with a jacket and a stirrer is preliminarily charged with 20 parts of water as the initial water, and partially saponified with a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000. 0.016 parts of polyvinyl acetate was dissolved while stirring at a rotational speed of 560 revolutions per minute while controlling the internal temperature of the polymerization reactor at 25 ° C. While stirring, 0.00030 part of sodium nitrite was added, 10 parts of acryloyl group poly (acrylic acid-n-butyl) macromonomer of Production Example was charged, degassed, and 90 parts of vinyl chloride monomer was added. The macromonomer was dispersed and mixed in the vinyl chloride monomer by stirring for 30 minutes after charging and charging. After charging 0.0075 part of t-butylperoxyneodecanoate and 0.02 part of t-hexylperoxypivalate, then partially saponified polyvinyl acetate having a saponification degree of about 80 mol% and an average degree of polymerization of about 2000 0.084 parts 60 parts of warm water of 130 ° C. was charged and polymerized at a polymerization temperature of 66.5 ° C. for about 5.5 hours. The jacket temperature was controlled at 75 ° C. and self-pressure recovery was started. The recovery time was 1.5 hours and Lmax was 80%. Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(比較例1)
実施例1の亜硝酸ナトリウムを0.00015部から0部に変更した以外は、実施例1と同様に仕込・重合を実施した。重合6時間後、ジャケット温度を57℃のままで制御して、自圧回収を開始した。急激な圧力開放により、泡(スラリー)が重合機から飛散しないようにゆっくりと圧を開放したことから回収時間は1時間かかり、Lmaxは100%(泡の一部が重合機から回収ラインに流れ出た)。自圧回収・重合樹脂評価の結果を表1に示す。
(Comparative Example 1)
Preparation and polymerization were carried out in the same manner as in Example 1 except that the sodium nitrite of Example 1 was changed from 0.00015 part to 0 part. After 6 hours of polymerization, the jacket temperature was controlled at 57 ° C., and autogenous pressure recovery was started. Since the pressure was released slowly so that bubbles (slurry) did not scatter from the polymerization machine due to sudden pressure release, the recovery time took 1 hour and Lmax was 100% (a part of the bubbles flowed from the polymerization machine to the recovery line). ) Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(比較例2)
実施例1の亜硝酸ナトリウムを0.00015部から0.002部に変更した以外は、実施例1と同様に仕込・重合を実施した。重合6時間後、未だ缶内圧力は実施例1よりも高かったが(塩化ビニルモノマーがより多く残っており、同重合時間で塩化ビニルモノマーが消費されなかったと判断した)、ジャケット温度を57℃のままで制御して、自圧回収を開始した。実施例1と同重合時間において十分な圧低下がみられず(重合遅延)、急激な圧力開放により、泡(スラリー)が重合機から飛散しないようにゆっくりと圧を開放したことから回収時間は2.5時間かかり、Lmaxは100%(泡の一部が重合機から回収ラインに流れ出た)。自圧回収・重合樹脂評価の結果を表1に示す。
(Comparative Example 2)
The charging and polymerization were carried out in the same manner as in Example 1 except that the sodium nitrite of Example 1 was changed from 0.00015 part to 0.002 part. After 6 hours of polymerization, the pressure inside the can was still higher than in Example 1 (it was judged that more vinyl chloride monomer remained and no vinyl chloride monomer was consumed in the same polymerization time), but the jacket temperature was 57 ° C. The self-pressure recovery was started under the control. In the same polymerization time as in Example 1, no sufficient pressure drop was observed (polymerization delay), and the pressure was slowly released so that bubbles (slurry) did not scatter from the polymerization machine due to rapid pressure release. It took 2.5 hours and Lmax was 100% (a part of the bubbles flowed from the polymerization machine to the recovery line). Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(比較例3)
実施例4の亜硝酸ナトリウムを0.00030部から0部に変更した以外は、実施例4と同様に仕込・重合を実施した。重合5.5時間後、ジャケット温度を66.5℃のままで制御して、自圧回収を開始した。急激な圧力開放により、泡(スラリー)が重合機から飛散しないようにゆっくりと圧を開放したことから回収時間は5時間かかり、Lmaxは100%(泡の一部が重合機から回収ラインに流れ出た)。自圧回収・重合樹脂評価の結果を表1に示す。
(Comparative Example 3)
Preparation and polymerization were carried out in the same manner as in Example 4 except that the sodium nitrite of Example 4 was changed from 0.00030 part to 0 part. After 5.5 hours of polymerization, the jacket temperature was controlled at 66.5 ° C., and auto-pressure recovery was started. Since the pressure was released slowly so that bubbles (slurry) did not scatter from the polymerizer due to sudden pressure release, the recovery time took 5 hours, and Lmax was 100% (a part of the bubbles flowed from the polymerizer to the recovery line). ) Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

(比較例4)
実施例4の亜硝酸ナトリウムを0.00030部から0.0015部に変更した以外は、実施例4と同様に仕込・重合を実施した。重合5.5時間後、未だ缶内圧力は実施例1よりも高かったが(塩化ビニルモノマーがより多く残っており、同重合時間で塩化ビニルモノマーが消費されなかったと判断した)。ジャケット温度を66.5℃のままで制御して、自圧回収を開始した。実施例4と同重合時間において十分な圧低下がみられず(重合遅延)、急激な圧力開放により、泡(スラリー)が重合機から飛散しないようにゆっくりと圧を開放したことから回収時間は4時間かかり、Lmaxは100%(泡の一部が重合機から回収ラインに流れ出た)。自圧回収・重合樹脂評価の結果を表1に示す。
(Comparative Example 4)
Preparation and polymerization were performed in the same manner as in Example 4 except that the sodium nitrite of Example 4 was changed from 0.00030 part to 0.0015 part. After 5.5 hours of polymerization, the pressure inside the can was still higher than in Example 1 (it was judged that more vinyl chloride monomer remained and no vinyl chloride monomer was consumed in the same polymerization time). The jacket temperature was controlled at 66.5 ° C., and self-pressure recovery was started. In the same polymerization time as in Example 4, no sufficient pressure drop was observed (polymerization delay), and the pressure was slowly released so that bubbles (slurry) did not scatter from the polymerization machine due to rapid pressure release, so the recovery time was It took 4 hours and Lmax was 100% (a part of the bubbles flowed from the polymerization machine to the recovery line). Table 1 shows the results of the self-pressure recovery / polymerization resin evaluation.

Figure 2007262352
Figure 2007262352

Claims (3)

塩化ビニル系モノマーと、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーとを共重合させて塩化ビニル系共重合樹脂を懸濁重合にて製造するに際し、
初期水中の分散剤の添加量が、構成するモノマー成分の総量(以下、「仕込モノマー総量」)100重量部に対して、0重量部より多く0.1重量部以下となるように調整後、水溶性重合禁止剤が仕込モノマー総量100重量部に対して0.0001部以上0.001部以下となる量を投入した後、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーを投入し、初期水中に分散させた後、塩化ビニル系モノマーを投入することを特徴とする塩化ビニル系共重合樹脂の製造方法。
When copolymerizing a vinyl chloride monomer and a macromonomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain to produce a vinyl chloride copolymer resin by suspension polymerization,
After adjusting the amount of the dispersant in the initial water to be more than 0 parts by weight and 0.1 parts by weight or less with respect to 100 parts by weight of the total amount of monomer components (hereinafter referred to as “total amount of charged monomers”), After the water-soluble polymerization inhibitor is added in an amount of 0.0001 part or more and 0.001 part or less with respect to 100 parts by weight of the total amount of charged monomers, a polymer composed of an ethylenically unsaturated monomer containing a double bond is mainly used. A method for producing a vinyl chloride copolymer resin, wherein a macromonomer having a chain is introduced, dispersed in initial water, and then a vinyl chloride monomer is added.
仕込みモノマー総量に対する塩化ビニル系モノマーの比率が、50重量%以上100重量%未満であり、二重結合を含有するエチレン性不飽和モノマーからなる重合体を主鎖に有するマクロモノマーと塩化ビニル系モノマーとの総重量(M)と初期水重量(H)が、次式(1)の範囲
0< H/M ≦3.0 (1)
であることを特徴とする請求項1に記載の塩化ビニル系共重合樹脂の製造方法。
The ratio of vinyl chloride monomer to the total amount of charged monomers is 50% by weight or more and less than 100% by weight, and the macromonomer and vinyl chloride monomer having a polymer composed of an ethylenically unsaturated monomer containing a double bond in the main chain The total weight (M) and the initial water weight (H) are in the range of the following formula (1): 0 <H / M ≦ 3.0 (1)
The method for producing a vinyl chloride copolymer resin according to claim 1, wherein:
水溶性重合禁止剤が、チオシアン酸塩、亜硝酸塩、水溶性イオウ含有有機化合物から選ばれる少なくとも一つであることを特徴とする請求項1または請求項2に記載の塩化ビニル系共重合樹脂の製造方法。   3. The vinyl chloride copolymer resin according to claim 1, wherein the water-soluble polymerization inhibitor is at least one selected from thiocyanate, nitrite, and a water-soluble sulfur-containing organic compound. Production method.
JP2006092862A 2006-03-30 2006-03-30 Method for producing vinyl chloride-based copolymer resin Pending JP2007262352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092862A JP2007262352A (en) 2006-03-30 2006-03-30 Method for producing vinyl chloride-based copolymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092862A JP2007262352A (en) 2006-03-30 2006-03-30 Method for producing vinyl chloride-based copolymer resin

Publications (1)

Publication Number Publication Date
JP2007262352A true JP2007262352A (en) 2007-10-11

Family

ID=38635637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092862A Pending JP2007262352A (en) 2006-03-30 2006-03-30 Method for producing vinyl chloride-based copolymer resin

Country Status (1)

Country Link
JP (1) JP2007262352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280751A (en) * 2008-05-26 2009-12-03 Nitto Denko Corp Production method of porous polymer particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280751A (en) * 2008-05-26 2009-12-03 Nitto Denko Corp Production method of porous polymer particle

Similar Documents

Publication Publication Date Title
JP5493248B2 (en) Method for producing core-shell fine particles and method for producing intermediates thereof
WO2008009997A1 (en) Polymerisation process
TWI647242B (en) Method for producing vinyl resin
WO2020009178A1 (en) Modified vinyl alcohol polymer, method for producing same, dispersion stabilizer for suspension polymerization, and method for producing vinyl polymer
JP4596772B2 (en) Method for producing vinyl chloride copolymer resin
JP2007262352A (en) Method for producing vinyl chloride-based copolymer resin
JP2007099897A (en) Nano resin particle and its manufacturing method
JP2009132878A (en) Polymer particle and method for producing the same
JP2005206793A (en) Vinyl chloride-based polymerized resin and its manufacturing method
JP2005206815A (en) Flexible vinyl chloride-based copolymerized resin, resin composition and manufacturing method thereof
JP2007146053A (en) Method for producing vinyl chloride-based copolymer resin
JP5552726B2 (en) Method for producing polymer fine particles
JP2007002056A (en) Method for producing vinyl chloride based copolymer resin
JP2006273990A (en) Method for producing vinyl chloride copolymer resin
JP2007238679A (en) Method for producing vinyl chloride copolymer resin
KR101003326B1 (en) Method for producing vinyl chloride copolymer resin
JP2005281571A (en) Hard vinyl chloride resin composition for extrusion
JP2007182486A (en) Manufacturing method of vinyl chloride copolymer resin
JP4692335B2 (en) Method for producing core-shell fine particles and method for producing monodisperse crosslinked fine particles containing alkoxyamine groups as intermediates thereof
JP3334207B2 (en) Method for producing spherical polymer particles
JP2008156375A (en) Vinyl chloride resin dope composition
JP2007262351A (en) Method for producing vinyl chloride-based copolymer resin
JP7271962B2 (en) Method for producing water-soluble polymer
JP2006282709A (en) Vinyl chloride plastisol composition
JP3164657B2 (en) Method for producing vinyl chloride resin and chlorinated vinyl chloride resin