JP2007262163A - Fine pigment particles, liquid dispersion and its manufacturing method - Google Patents

Fine pigment particles, liquid dispersion and its manufacturing method Download PDF

Info

Publication number
JP2007262163A
JP2007262163A JP2006086577A JP2006086577A JP2007262163A JP 2007262163 A JP2007262163 A JP 2007262163A JP 2006086577 A JP2006086577 A JP 2006086577A JP 2006086577 A JP2006086577 A JP 2006086577A JP 2007262163 A JP2007262163 A JP 2007262163A
Authority
JP
Japan
Prior art keywords
naphthalocyanine
vanadyl
dispersion
acid
liquid dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006086577A
Other languages
Japanese (ja)
Inventor
Takuma Amamiya
拓馬 雨宮
Keizo Kimura
桂三 木村
Hiroshi Hashimoto
博司 橋本
Yuichiro Murayama
裕一郎 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006086577A priority Critical patent/JP2007262163A/en
Publication of JP2007262163A publication Critical patent/JP2007262163A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/0086Non common dispersing agents anionic dispersing agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fine pigment particles as a near-infrared ray-absorbing material that satisfies both invisibility that performs important roles as an optoelectronics-related product such as a near-infrared ray-absorbing filter and other properties, a liquid dispersion and its manufacturing method. <P>SOLUTION: The fine pigment particles comprises fine particles of vanadyl-2,3-naphthalocyanine having an average particle size of at most 0.5 μm. The fine particles are manufactured via a liquid dispersion which is obtained by dispersing a mixture of a solvent and vanadyl-2,3-naphthalocyanine using at least one surfactant selected from among cationic surfactants, anionic surfactants and nonionic surfactants thereby converting vanadyl-2,3-naphthalocyanine into fine particles having an average particle size of at most 0.5 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は顔料微粒子およびそれを含有する液分散物、ならびにその製造方法に関するものであって、更に詳しくは近赤外線吸収フィルター、近赤外線吸収着色組成物、液晶表示素子、光カード、光記録媒体、保護眼鏡などオプトエレクトロニクス関連に重要な役割を果たす不可視性と近赤外線吸収特性を両立する近赤外線吸収材料の顔料微粒子、液分散物およびその製造方法に関する。   The present invention relates to pigment fine particles, a liquid dispersion containing the same, and a method for producing the same, and more specifically, a near infrared absorption filter, a near infrared absorption coloring composition, a liquid crystal display element, an optical card, an optical recording medium, The present invention relates to pigment fine particles, liquid dispersions of near-infrared absorbing materials that achieve both invisibility and near-infrared absorbing properties that play an important role in optoelectronics such as protective glasses, and a method for producing the same.

可視光を実質的に吸収しないが、赤外線を吸収する近赤外線吸収色素は近赤外線吸収フィルター等、種々のオプトエレクトロニクス製品に用いられている。これらには肉眼で見たときに着色していない、即ち可視域に吸収を持たないという、不可視性が求められる。そのためには本来可視域に吸収を持たないことが重要であるとともに、近赤外域の吸収をできるだけ強く持つことが要求される。これについては会合性を抑制して本来の吸収を発現できるように構造設計する方法(例えば特許文献1)や、吸収波長を長波化することで吸収ピークの短波側裾切れを良くし、不可視性を高める(例えば特許文献2〜4)が良好であることが見出されていたが、更なる改良が望まれた。
特開平2−296885号公報 特開平11−152413号公報 特開平11−152414号公報 特開平11−152415号公報
Near-infrared absorbing dyes that do not substantially absorb visible light but absorb infrared rays are used in various optoelectronic products such as near-infrared absorbing filters. These are required to be invisible, that is, they are not colored when viewed with the naked eye, that is, have no absorption in the visible range. For this purpose, it is essential that the absorption is not visible in the visible region, and that the absorption in the near infrared region is as strong as possible. For this, a method of designing the structure so as to suppress the associative property so that the original absorption can be expressed (for example, Patent Document 1), and by increasing the absorption wavelength, the short-wave side tail of the absorption peak is improved and invisibility is increased. However, further improvements have been desired.
JP-A-2-29685 Japanese Patent Laid-Open No. 11-152413 Japanese Patent Laid-Open No. 11-152414 Japanese Patent Laid-Open No. 11-152415

本発明の目的は近赤外線吸収フィルター、近赤外線吸収着色組成物、液晶表示素子、光カード、光記録媒体、保護眼鏡などオプトエレクトロニクス関連に重要な役割を果たす不可視性と近赤外線吸収特性を両立する近赤外線吸収材料の顔料微粒子、液分散物およびその製造方法を提供することにある。   The object of the present invention is to achieve both invisibility and near-infrared absorption characteristics that play an important role in optoelectronics such as near-infrared absorption filters, near-infrared absorption coloring compositions, liquid crystal display elements, optical cards, optical recording media, and protective glasses. An object of the present invention is to provide a pigment fine particle, a liquid dispersion and a method for producing the same of a near-infrared absorbing material.

本発明者らは鋭意検討の結果、下記手段により本発明の上記目的が達成されることを見出した。   As a result of intensive studies, the present inventors have found that the above object of the present invention can be achieved by the following means.

(1)平均粒径が0.5μm以下であることを特徴とするバナジル−2,3−ナフタロシアニンの微粒子。
(2)前記(1)に記載の微粒子を含有することを特徴とする液分散物。
(3)分散液の成分に水を含むことを特徴とする(2)に記載の液分散物。
(4)前記液分散物が、カチオン系界面活性剤、アニオン系界面活性剤またはノニオン系界面活性剤から選択される少なくとも1種を含有することを特徴とする(2)または(3)に記載の液分散物。
(5)前記液分散物が、ビーズ分散によって得られることを特徴とする(2)〜(4)のいずれか1項に記載の液分散物。
(6)溶媒およびバナジル−2,3−ナフタロシアニン混合物を、カチオン系界面活性剤、アニオン系界面活性剤またはノニオン系界面活性剤から選択される少なくとも1種の界面活性剤で分散し、バナジル−2,3−ナフタロシアニンの平均粒径を0.5μm以下の微粒子とすることを特徴とする液分散物の製造方法。
(7)ビーズ分散により分散されたことを特徴とする(6)に記載の液分散物の製造方法。
(8)バナジル−2,3−ナフタロシアニンを易溶解性溶媒中に溶解した溶液を、難溶解性溶媒に添加することを特徴とする液分散物の製造方法。
(1) Fine particles of vanadyl-2,3-naphthalocyanine having an average particle size of 0.5 μm or less.
(2) A liquid dispersion comprising the fine particles according to (1).
(3) The liquid dispersion according to (2), wherein the dispersion component contains water.
(4) The liquid dispersion contains at least one selected from a cationic surfactant, an anionic surfactant or a nonionic surfactant, as described in (2) or (3) Liquid dispersion.
(5) The liquid dispersion according to any one of (2) to (4), wherein the liquid dispersion is obtained by bead dispersion.
(6) A solvent and a vanadyl-2,3-naphthalocyanine mixture are dispersed with at least one surfactant selected from a cationic surfactant, an anionic surfactant, or a nonionic surfactant, and vanadyl- A method for producing a liquid dispersion, characterized in that the average particle size of 2,3-naphthalocyanine is fine particles of 0.5 μm or less.
(7) The method for producing a liquid dispersion according to (6), wherein the dispersion is dispersed by bead dispersion.
(8) A method for producing a liquid dispersion, wherein a solution obtained by dissolving vanadyl-2,3-naphthalocyanine in an easily soluble solvent is added to the hardly soluble solvent.

本発明により近赤外線吸収フィルター、近赤外線吸収着色組成物、液晶表示素子、光カード、光記録媒体、保護眼鏡などオプトエレクトロニクス関連に重要な役割を果たす不可視性と近赤外吸収特性を両立する近赤外線吸収材料の顔料微粒子、液分散物およびその製造方法を提供することができる。   The near infrared absorption filter, near infrared absorption coloring composition, liquid crystal display element, optical card, optical recording medium, protective glasses, etc. It is possible to provide a pigment fine particle, a liquid dispersion of an infrared absorbing material, and a production method thereof.

以下、本発明の実施の形態について詳しく説明する。
本発明のバナジル−2,3−ナフタロシアニン微粒子は、平均粒径が0.5μm以下であり、好ましくは0.4μm以下、好ましくは0.35μm以下である。バナジル−2,3−ナフタロシアニン微粒子の平均粒径が、0.5μmを越えると、近赤外領域の吸収特性がみられない。
Hereinafter, embodiments of the present invention will be described in detail.
The vanadyl-2,3-naphthalocyanine fine particles of the present invention have an average particle size of 0.5 μm or less, preferably 0.4 μm or less, preferably 0.35 μm or less. When the average particle size of the vanadyl-2,3-naphthalocyanine fine particles exceeds 0.5 μm, absorption characteristics in the near infrared region are not observed.

本発明におけるバナジル−2,3−ナフタロシアニンは、例えば特開平10−158533号公報に記載の方法で製造することができる。本発明における分散原料としてのバナジル−2,3−ナフタロシアニンは、純度は90%以上が好ましいが、好ましくは95%以上である。
本発明における0,5μm以下のバナジル−2,3−ナフタロシアニンの微粒子を得るには、1)機械的な分散によって微粒子化する方法としてビーズ分散(ビーズミル分散)、ロールミル分散、超音波分散などがあり、「顔料分散技術 表面処理と分散剤の使い方および分散性評価」(技術情報協会 編)に記載されているが、なかでもビーズ分散が好ましい。
2)溶解性の差を利用した方法として、バナジル−2,3−ナフタロシアニンが溶解した反応混合物をそのまま貧溶媒(例えば水、メタノール)に添加して結晶を析出させる方法、あるいは一度単離したバナジル−2,3−ナフタロシアニンの結晶を易溶解性溶媒(例えば硫酸)に溶解した後、難溶解性溶媒(例えば水)に添加して結晶を析出させる方法(例えばアシッド・ペースト法)がある。
The vanadyl-2,3-naphthalocyanine in the present invention can be produced, for example, by the method described in JP-A-10-158533. The purity of vanadyl-2,3-naphthalocyanine as a dispersion raw material in the present invention is preferably 90% or more, but preferably 95% or more.
In order to obtain fine particles of vanadyl-2,3-naphthalocyanine of 0.5 μm or less in the present invention, 1) bead dispersion (bead mill dispersion), roll mill dispersion, ultrasonic dispersion, etc. are methods for making fine particles by mechanical dispersion. Yes, described in “Pigment Dispersion Technology Surface Treatment and Use of Dispersing Agents and Evaluation of Dispersibility” (Edited by Technical Information Association), among them, bead dispersion is preferable.
2) As a method using the difference in solubility, a reaction mixture in which vanadyl-2,3-naphthalocyanine is dissolved is added as it is to a poor solvent (for example, water, methanol) to precipitate crystals, or isolated once. There is a method (for example, an acid paste method) in which a crystal of vanadyl-2,3-naphthalocyanine is dissolved in an easily soluble solvent (for example, sulfuric acid) and then added to a hardly soluble solvent (for example, water) to precipitate the crystal. .

ビーズ分散においては、溶媒およびバナジル−2,3−ナフタロシアニンの混合物をカチオン系界面活性剤、アニオン系界面活性剤またはノニオン系界面活性剤から選択される少なくとも1種の界面活性剤で分散する。   In bead dispersion, a mixture of a solvent and vanadyl-2,3-naphthalocyanine is dispersed with at least one surfactant selected from a cationic surfactant, an anionic surfactant, or a nonionic surfactant.

本発明で分散の際に用いる溶媒は、特に限定されるものではなく、例えば、水、アミド系溶媒(例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン)、スルホン系溶媒(例えばスルホラン)、スルホキシド系溶媒(例えばジメチルスルホキシド)、エーテル系溶媒(例えばジオキサン、シクロペンチルメチルエーテル)、ケトン系溶媒(例えばアセトン、メチルエチルケトン)、炭化水素系溶媒(例えばトルエン、キシレン)、ハロゲン系溶媒(例えばテトラクロロエタン,クロロベンゼン)、アルコール系溶媒(例えばメタノール、エタノール、イソプロパノール、1−ブタノール、エチレングリコール)、ピリジン系溶媒(例えばピリジン、γ―ピコリン、2,6−ルチジン)を単独或いは混合して用いる。好ましくは、水、アミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、エーテル系溶媒、ケトン系溶媒、アルコール系溶媒であり、更に好ましくは、水、エーテル系溶媒、ケトン系溶媒、アルコール系溶媒であり、更に好ましくは水、メタノール、エタノール、メチルエチルケトンであり、最も好ましくは水単独溶媒の場合である。これらの溶媒を分散時に添加する以外に、分散後添加、或いは蒸留して除くこともできる。   The solvent used for dispersion in the present invention is not particularly limited. For example, water, amide solvents (for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone) , Sulfone solvents (eg, sulfolane), sulfoxide solvents (eg, dimethyl sulfoxide), ether solvents (eg, dioxane, cyclopentyl methyl ether), ketone solvents (eg, acetone, methyl ethyl ketone), hydrocarbon solvents (eg, toluene, xylene) , Halogen solvents (eg, tetrachloroethane, chlorobenzene), alcohol solvents (eg, methanol, ethanol, isopropanol, 1-butanol, ethylene glycol), pyridine solvents (eg, pyridine, γ-picoline, 2,6-lutidine) alone Some Used in mixing. Preferred are water, amide solvents, sulfone solvents, sulfoxide solvents, ether solvents, ketone solvents, alcohol solvents, and more preferred are water, ether solvents, ketone solvents, alcohol solvents. More preferred are water, methanol, ethanol and methyl ethyl ketone, and most preferred is a case of water alone. In addition to adding these solvents at the time of dispersion, they can be added after dispersion or removed by distillation.

分散を行う時のバナジル−2,3−ナフタロシアニンと溶媒の質量比は、バナジル−2,3−ナフタロシアニン1に対して好ましくは溶媒3〜500であり、更に好ましくは溶媒8〜200であり、更に好ましくは溶媒15〜100であり、特に好ましくは溶媒20〜50である。   The mass ratio of vanadyl-2,3-naphthalocyanine to the solvent when dispersing is preferably 3 to 500 solvent, more preferably 8 to 200 solvent with respect to vanadyl-2,3-naphthalocyanine 1. More preferably, it is a solvent 15-100, Most preferably, it is a solvent 20-50.

本発明において、溶媒とバナジル−2,3−ナフタロシアニンの混合物を、界面活性剤で分散される。界面活性剤としては、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸またはリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。これらは必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30質量%以下が好ましく、さらに好ましくは10質量%以下である。これらの添加剤を単独あるいは2種以上を併用することができる。     In the present invention, a mixture of a solvent and vanadyl-2,3-naphthalocyanine is dispersed with a surfactant. Surfactants include alkylene oxide, glycerin, glycidol, nonionic surfactants such as alkylphenol ethylene oxide adducts, cyclic amines, ester amides, quaternary ammonium salts, hydantoin derivatives, heterocycles, phosphonium or Cationic surfactants such as sulfoniums, anionic surfactants containing acidic groups such as carboxylic acid, sulfonic acid, and sulfate ester groups, amino acids, aminosulfonic acids, amino alcohol sulfuric acid or phosphate esters, alkylbetaine type Amphoteric surfactants such as can also be used. These surfactants are described in detail in “Surfactant Handbook” (published by Sangyo Tosho Co., Ltd.). These are not necessarily pure and may contain impurities such as isomers, unreacted products, side reaction products, decomposition products, oxides, etc. in addition to the main components. These impurities are preferably 30% by mass or less, more preferably 10% by mass or less. These additives can be used alone or in combination of two or more.

添加剤のうち好ましくはノニオン系界面活性剤、アニオン系界面活性剤またはカチオン系界面活性剤であり、更に好ましくはノニオン系界面活性剤またはアニオン系界面活性剤であり、更に好ましくはアニオン系界面活性剤であり、更に好ましくは炭素数40以下の有機スルホン酸金属塩であり、更に好ましくは炭素数30以下の有機スルホン酸金属塩であり、最も好ましくは炭素数25以下の有機スルホン酸のナトリウムまたはカリウム塩である。   Of the additives, nonionic surfactants, anionic surfactants or cationic surfactants are preferred, nonionic surfactants or anionic surfactants are more preferred, and anionic surfactants are more preferred. An organic sulfonic acid metal salt having 40 or less carbon atoms, more preferably an organic sulfonic acid metal salt having 30 or less carbon atoms, and most preferably sodium or 25% of organic sulfonic acid having 25 or less carbon atoms. Potassium salt.

本発明の分散液には上記した界面活性剤の他に必要に応じて添加剤を加えることができる。
添加剤としてはシリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸基、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸およびそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、(イソ)ノニルホスホン酸、(イソ)デシルホスホン酸、(イソ)ウンデシルホスホン酸、(イソ)ドデシルホスホン酸、(イソ)ヘキサデシルホスホン酸、(イソ)オクタデシルホスホン酸、(イソ)エイコシルホスホン酸等のアルキルホスホン酸およびそのアルカリ金属塩、燐酸フェニル、燐酸ベンジル、燐酸フェネチル、燐酸α−メチルベンジル、燐酸1−メチル−1−フェネチル、燐酸ジフェニルメチル、燐酸ビフェニル、燐酸ベンジルフェニル、燐酸α−クミル、燐酸トルイル、燐酸キシリル、燐酸エチルフェニル、燐酸クメニル、燐酸プロピルフェニル、燐酸ブチルフェニル、燐酸ヘプチルフェニル、燐酸オクチルフェニル、燐酸ノニルフェニル等の芳香族燐酸エステルおよびそのアルカリ金属塩、燐酸オクチル、
In addition to the surfactant described above, additives can be added to the dispersion of the present invention as necessary.
Additives include silicone oil, silicone with polar group, fatty acid-modified silicone, fluorine-containing silicone, fluorine-containing alcohol, fluorine-containing ester, polyolefin, polyglycol, polyphenyl ether, phenylphosphonic acid, benzylphosphonic acid group, phenethylphosphonic acid , Α-methylbenzylphosphonic acid, 1-methyl-1-phenethylphosphonic acid, diphenylmethylphosphonic acid, biphenylphosphonic acid, benzylphenylphosphonic acid, α-cumylphosphonic acid, toluylphosphonic acid, xylylphosphonic acid, ethylphenylphosphonic acid, Aromatic ring-containing organics such as cumenylphosphonic acid, propylphenylphosphonic acid, butylphenylphosphonic acid, heptylphenylphosphonic acid, octylphenylphosphonic acid, nonylphenylphosphonic acid Phosphonic acid and its alkali metal salts, octylphosphonic acid, 2-ethylhexylphosphonic acid, isooctylphosphonic acid, (iso) nonylphosphonic acid, (iso) decylphosphonic acid, (iso) undecylphosphonic acid, (iso) dodecylphosphonic Acids, alkylphosphonic acids such as (iso) hexadecylphosphonic acid, (iso) octadecylphosphonic acid, (iso) eicosylphosphonic acid and alkali metal salts thereof, phenyl phosphate, benzyl phosphate, phenethyl phosphate, α-methylbenzyl phosphate, 1-methyl-1-phenethyl phosphate, diphenylmethyl phosphate, biphenyl phosphate, benzyl phenyl phosphate, α-cumyl phosphate, toluyl phosphate, xylyl phosphate, ethyl phenyl phosphate, cumenyl phosphate, propyl phenyl phosphate, butyl phenyl phosphate, heptyl phenyl phosphate, Phosphoric acid Aromatic phosphates such as octylphenyl, nonylphenyl phosphate and alkali metal salts thereof, octyl phosphate,

燐酸2−エチルヘキシル、燐酸イソオクチル、燐酸(イソ)ノニル、燐酸(イソ)デシル、燐酸(イソ)ウンデシル、燐酸(イソ)ドデシル、燐酸(イソ)ヘキサデシル、燐酸(イソ)オクタデシル、燐酸(イソ)エイコシル等の燐酸アルキルエステルおよびそのアルカリ金属塩、アルキルスルホン酸エステルおよびそのアルカリ金属塩、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸、酸等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸およびこれらの金属塩、または、ステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタンジステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸と炭素数2〜22の不飽和結合を含んでも分岐していても良い1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していても良いアルコキシアルコールまたはアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステルまたは多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基およびF、Cl、Br、CF3、CCl3、CBr3等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基をもつものでも良い。 2-ethylhexyl phosphate, isooctyl phosphate, (iso) nonyl phosphate, (iso) decyl phosphate, (iso) undecyl phosphate, (iso) dodecyl phosphate, (iso) hexadecyl phosphate, (iso) octadecyl phosphate, (iso) eicosyl phosphate, etc. Alkyl phosphates and their alkali metal salts, alkyl sulfonic acid esters and their alkali metal salts, fluorine-containing alkyl sulfates and their alkali metal salts, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, butyl stearate, Monobasic fatty acids that may contain or be branched, such as oleic acid, linoleic acid, linolenic acid, elaidic acid, erucic acid, acid, etc., or branched, and their metal salts, or stearic acid Butyl, octyl stearate, stearic acid Unsaturated bonds having 10 to 24 carbon atoms, such as sodium, isooctyl stearate, octyl myristate, butyl laurate, butoxyethyl stearate, anhydrosorbitan monostearate, anhydrosorbitan distearate, anhydrosorbitan tristearate A monobasic fatty acid that may be branched or branched, a 1 to 6-valent alcohol that may be branched or include an unsaturated bond having 2 to 22 carbon atoms, or an unsaturated bond that has 12 to 22 carbon atoms Mono-fatty acid ester, difatty acid ester or polyvalent fatty acid ester, any one of alkoxy alcohol which may be branched or monoalkyl ether of alkylene oxide polymer, C2-C22 fatty acid amide, C8- 22 aliphatic amines can be used. In addition to the above hydrocarbon groups, alkyl groups, aryl groups, and aralkyl groups substituted with nitro groups and groups other than hydrocarbon groups such as halogen-containing hydrocarbons such as F, Cl, Br, CF 3 , CCl 3 , and CBr 3 It may be one with

上記した界面活性剤等の分散剤の添加量は、溶媒とバナジル−2,3−ナフタロシアニン等を含む混合物中に2質量%以下が好ましく、更に好ましくは0.01〜15質量%であり、更に好ましくは0.05〜12質量%であり、更に好ましくは0.1〜10質量%であり、更に好ましくは1〜8質量%である。   The amount of the dispersing agent such as the surfactant described above is preferably 2% by mass or less, more preferably 0.01 to 15% by mass in the mixture containing the solvent and vanadyl-2,3-naphthalocyanine and the like. More preferably, it is 0.05-12 mass%, More preferably, it is 0.1-10 mass%, More preferably, it is 1-8 mass%.

分散メディアについては、従来から用いられているガラスビーズ、金属ビーズ、アルミナビーズ、チタニアビーズ、ジルコニアビーズ等が使用可能であるが、好ましくはジルコニアビーズ、チタニアビーズなどのセラミック系ビーズであり、最も好ましくはジルコニアビーズである。   For the dispersion media, conventionally used glass beads, metal beads, alumina beads, titania beads, zirconia beads, etc. can be used, preferably ceramic beads such as zirconia beads, titania beads, most preferably. Are zirconia beads.

分散メディアの直径は小径化するほど表面の凹凸を減少させることができ、好ましくは2.0mm以下であり、更に好ましくは1.5mm以下であり、更に好ましくは1.0mm以下であり、最も好ましくは0.05〜0.5mmである。   As the diameter of the dispersion medium is reduced, the unevenness of the surface can be reduced, and is preferably 2.0 mm or less, more preferably 1.5 mm or less, further preferably 1.0 mm or less, and most preferably. Is 0.05 to 0.5 mm.

分散を行う時のバナジル−2,3−ナフタロシアニンと分散メディアの質量比は、好ましくはバナジル−2,3−ナフタロシアニン1に対して分散メディアを1〜1、000であり、更に好ましくは5〜200であり、更に好ましくは10〜150であり、更に好ましくは15〜100であり、最も好ましくは20〜50である。   The mass ratio of vanadyl-2,3-naphthalocyanine to the dispersion medium during dispersion is preferably 1 to 1,000, more preferably 5 for the dispersion medium with respect to vanadyl-2,3-naphthalocyanine 1. It is -200, More preferably, it is 10-150, More preferably, it is 15-100, Most preferably, it is 20-50.

分散工程に使用される分散機としてはアシザワ・ファインテック(株)製アジテーターミルLMJ、LMZもしくは超微粉砕機AMC、浅田鉄工(株)製ピュアミル、ナノミルもしくはピコミル、コトブキ技研工業(株)製スーパーアペックスミル、三井鉱山(株)製SCミル等を使用することが可能である。   Dispersers used in the dispersion process include Ashizawa Finetech Co., Ltd. agitator mill LMJ, LMZ or ultra-fine crusher AMC, Asada Tekko Co., Ltd. Pure Mill, Nano Mill or Picomill, Kotobuki Giken Kogyo Co., Ltd. Super Apex mills, SC mills manufactured by Mitsui Mining Co., Ltd., etc. can be used.

上記した界面活性剤等の分散剤を添加する工程は、好ましくは分散工程や分散後に添加する場合が好ましく、なかでも分散工程で添加する方法が最も好ましい。分散後とは粒子のブレークダウンを行い、メディアとの分離を終了した後の工程をいう。   The step of adding a dispersant such as the above-described surfactant is preferably added in the dispersion step or after the dispersion, and the method of adding in the dispersion step is most preferable. The term “after dispersion” refers to the step after the breakdown of the particles and the separation from the media.

分散工程において、ビーズの種類、ビーズの径、サンドミル等によっても異なるが、サンドミルにて500〜6000rpm、1000〜4000rpmで分散時間は3分〜12時間が好ましく、より好ましくは15分〜3時間である。   In the dispersion step, it varies depending on the type of beads, the diameter of the beads, the sand mill, etc., but the dispersion time is preferably 500 to 6000 rpm, 1000 to 4000 rpm in the sand mill, and preferably 3 minutes to 12 hours, more preferably 15 minutes to 3 hours. is there.

分散を行ったものの分散物粘度は、好ましくは溶媒10〜100000[mPa・S]であり、より好ましくは30〜30000[mPa・S]であり、更に好ましくは50〜10000[mPa・S]である。   The dispersion viscosity of the dispersion is preferably 10 to 100000 [mPa · S], more preferably 30 to 30000 [mPa · S], and still more preferably 50 to 10000 [mPa · S]. is there.

本発明は、上記したビーズ分散による方法の他に、バナジル−2,3−ナフタロシアニンの溶解性の差を利用した方法を用いることもできる。
例えば、バナジル−2,3−ナフタロシアニンが溶解した反応混合物をそのまま貧溶媒(例えば水、メタノール)に添加して結晶を析出させる方法、或いは、あるいは一度単離したバナジル−2,3−ナフタロシアニンの結晶を易溶解性溶媒に溶解した後、難溶解性溶媒に添加して結晶を析出させる方法(例えばアシッド・ペースト法)がある。
In the present invention, a method using the difference in solubility of vanadyl-2,3-naphthalocyanine can be used in addition to the above-described method using bead dispersion.
For example, a method in which a reaction mixture in which vanadyl-2,3-naphthalocyanine is dissolved is added as it is to a poor solvent (for example, water, methanol) to precipitate crystals, or once isolated vanadyl-2,3-naphthalocyanine There is a method (for example, acid paste method) in which the crystal is dissolved in an easily soluble solvent and then added to the hardly soluble solvent to precipitate the crystal.

ここで、易溶解性溶媒とは、25℃において、溶媒100g中にバナジル−2,3−ナフタロシアニンを添加したとき、バナジル−2,3−ナフタロシアニンが2g以上溶解する溶媒を言う。
このような溶媒の例としては、硫酸が好ましい。また、難溶解性溶媒とは、溶媒100g中にバナジル−2,3−ナフタロシアニンを添加したとき、バナジル−2,3−ナフタロシアニンが0.5gで溶解することなく、溶液が不透明となり始める溶媒を言う。
このような溶媒の例としては、例えば、水、酢酸エチル、ヘキサン等が挙げられ、これらの中で易溶解性溶媒との混合性の点から、水が好ましい。
Here, the easily soluble solvent means a solvent in which 2 g or more of vanadyl-2,3-naphthalocyanine is dissolved when vanadyl-2,3-naphthalocyanine is added to 100 g of the solvent at 25 ° C.
As an example of such a solvent, sulfuric acid is preferable. Further, the hardly soluble solvent is a solvent in which when vanadyl-2,3-naphthalocyanine is added to 100 g of the solvent, vanadyl-2,3-naphthalocyanine does not dissolve at 0.5 g, and the solution starts to become opaque. Say.
Examples of such a solvent include, for example, water, ethyl acetate, hexane and the like. Among these, water is preferable from the viewpoint of miscibility with an easily soluble solvent.

本発明の方法で製造されたバナジル−2,3−ナフタロシアニンの粒径を測定するには公知の種々の方法を用いることができるが、好ましくは光散乱などの光学的方法である。   Various known methods can be used to measure the particle size of vanadyl-2,3-naphthalocyanine produced by the method of the present invention, and an optical method such as light scattering is preferred.

以下に本発明を実施例により、更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下、「部」は『質量部』を意味する。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Hereinafter, “part” means “part by mass”.

(実施例1)
:バナジル−2,3−ナフタロシアニン微粒子の作製
粗製バナジル−2,3−ナフタロシアニン 3部
水 20部
ドデシルベンゼンスルホン酸ナトリウム(和光純薬工業製) 0.09部
0.3mmΦジルコニアビーズ 100部
上記原料を上記比率でバッチ式サンドミルにて、3000rpmで1時間処理を行った。ビーズとバナジル−2,3−ナフタロシアニンの水分散物を分離し、粒径分布を測定したところ、平均粒径は0.31μmであり、E型粘度計で粘度を測定したところ950 [mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。不可視性は、可視吸収領域である400nmの吸収値を、近赤外吸収域(800〜1100nm)でのλmaxで割った値で評価した。
なお、粘度測定には東機産業製 E型粘度計RE−80Rを用いて、25℃で測定した。分散物の粒度分布は堀場製作所製 レーザー回折・散乱式 粒度径分布測定装置LA−920Aを用いた。IR吸収テストは、次の操作でガラス板に塗布し、透過光を測定することで評価を行った。測定には日立製分光光度計U−4100を使用した。
Example 1
: Preparation of vanadyl-2,3-naphthalocyanine fine particles Crude vanadyl-2,3-naphthalocyanine 3 parts Water 20 parts Sodium dodecylbenzenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.09 parts 0.3 mmΦ zirconia beads 100 parts The raw material was processed at 3000 rpm for 1 hour in the batch ratio sand mill. When an aqueous dispersion of beads and vanadyl-2,3-naphthalocyanine was separated and the particle size distribution was measured, the average particle size was 0.31 μm, and the viscosity was measured with an E-type viscometer to find 950 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired. Invisibility was evaluated by a value obtained by dividing an absorption value at 400 nm, which is a visible absorption region, by λmax in a near infrared absorption region (800 to 1100 nm).
The viscosity was measured at 25 ° C. using a Toki Sangyo E-type viscometer RE-80R. For the particle size distribution of the dispersion, a laser diffraction / scattering type particle size distribution analyzer LA-920A manufactured by HORIBA, Ltd. was used. The IR absorption test was evaluated by applying it to a glass plate by the following operation and measuring the transmitted light. Hitachi spectrophotometer U-4100 was used for the measurement.

(評価用ガラス板の作製)
ポリスチレン10g、バナジル−2,3−ナフタロシアニン0.1g(乾燥重量)にクロロホルム100mlを加えて、40℃にて攪拌・分散させたものを、ガラス板に塗布して室温にて乾燥し、サンプルを作製した。
(Production of glass plate for evaluation)
A sample obtained by adding 100 ml of chloroform to 10 g of polystyrene and 0.1 g of vanadyl-2,3-naphthalocyanine (dry weight) and stirring and dispersing at 40 ° C. is applied to a glass plate and dried at room temperature. Was made.

(実施例2)
実施例1のメディアを0.3mmΦジルコニアビーズ 100部から0.5mmΦジルコニアビーズ150部に替えた以外は、実施例1と同様に行った。
粒径分布を測定したところ、平均粒径は0.41μmであり、E型粘度計で粘度を測定したところ240[mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
(Example 2)
The same procedure as in Example 1 was performed except that the media of Example 1 was changed from 100 parts of 0.3 mmΦ zirconia beads to 150 parts of 0.5 mmΦ zirconia beads.
When the particle size distribution was measured, the average particle size was 0.41 μm, and when the viscosity was measured with an E-type viscometer, it was 240 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired.

(実施例3)
実施例1の界面活性剤をドデシルベンゼンスルホン酸ナトリウム0.09部から、DINSNa(ジイソプロピルナフタレンスルホン酸ナトリウム)0.3部に替えた以外は、実施例1と同様に行った。
粒径分布を測定したところ、平均粒径は0.27μmであり、E型粘度計で粘度を測定したところ500[mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
(Example 3)
The same procedure as in Example 1 was performed except that the surfactant in Example 1 was changed from 0.09 part of sodium dodecylbenzenesulfonate to 0.3 part of DINSNa (sodium diisopropylnaphthalenesulfonate).
When the particle size distribution was measured, the average particle size was 0.27 μm, and when the viscosity was measured with an E-type viscometer, it was 500 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired.

(実施例4)
実施例1の界面活性剤をドデシルベンゼンスルホン酸ナトリウム0.09部から、PEG−OP(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)0.09部へ替え、メディアを0.3mmΦジルコニアビーズ 100部から0.5mmΦジルコニアビーズ150部に替えた以外は、実施例1と同様に行った。
粒径分布を測定したところ、平均粒径は0.47μmであり、E型粘度計で粘度を測定したところ120[mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
Example 4
The surfactant of Example 1 was changed from 0.09 part of sodium dodecylbenzenesulfonate to 0.09 part of PEG-OP (polyethylene glycol mono-4-octylphenyl ether), and the media was changed from 100 parts of 0.3 mmΦ zirconia beads. The same procedure as in Example 1 was performed except that the content was changed to 150 parts of 0.5 mmΦ zirconia beads.
When the particle size distribution was measured, the average particle size was 0.47 μm, and when the viscosity was measured with an E-type viscometer, it was 120 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired.

(実施例5)
実施例1の界面活性剤をドデシルベンゼンスルホン酸ナトリウム0.09部から、PEG−OP(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)0.15部へ替え、メディアを0.3mmΦジルコニアビーズ 100部から0.3mmΦチタニアビーズ90部に替えた以外は、実施例1と同様に行った。
粒径分布を測定したところ、平均粒径は0.30μmであり、E型粘度計で粘度を測定したところ7000[mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
(Example 5)
The surfactant of Example 1 was changed from 0.09 part of sodium dodecylbenzenesulfonate to 0.15 part of PEG-OP (polyethylene glycol mono-4-octylphenyl ether), and the media was changed from 100 parts of 0.3 mmΦ zirconia beads. The same procedure as in Example 1 was performed except that 90 parts of 0.3 mmφ titania beads were used.
When the particle size distribution was measured, the average particle size was 0.30 μm, and when the viscosity was measured with an E-type viscometer, it was 7000 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired.

(実施例6)
実施例1の界面活性剤をドデシルベンゼンスルホン酸ナトリウム0.09部から、MODA−Cl(ジメチルジオクタドデシルアンモニウムクロライド)0.3部へ替えた以外は、実施例1と同様に行った。
粒径分布を測定したところ、平均粒径は0.28μmであり、E型粘度計で粘度を測定したところ1100[mPa・S]であった。また、このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
(Example 6)
The same procedure as in Example 1 was carried out except that the surfactant of Example 1 was changed from 0.09 part of sodium dodecylbenzenesulfonate to 0.3 part of MODA-Cl (dimethyldioctadodecylammonium chloride).
When the particle size distribution was measured, the average particle size was 0.28 μm, and when the viscosity was measured with an E-type viscometer, it was 1100 [mPa · S]. Moreover, when this sample was apply | coated to the glass plate and the near-infrared absorption was measured, the favorable absorption characteristic was acquired.

(実施例7)
粗製バナジル−2,3−ナフタロシアニン(1部)を易溶性溶媒である濃硫酸(10部)に溶かした後、貧溶性溶媒である水(20部)へ注いで結晶を析出させることで、平均粒径0.30μmの微細化されたバナジル−2,3−ナフタロシアニン結晶を得た。このサンプルをガラス板に塗布し、近赤外吸収を測定したところ良好な吸収特性が得られた。
(Example 7)
By dissolving crude vanadyl-2,3-naphthalocyanine (1 part) in concentrated sulfuric acid (10 parts), which is a readily soluble solvent, and pouring it into water (20 parts), a poorly soluble solvent, to precipitate crystals, A refined vanadyl-2,3-naphthalocyanine crystal having an average particle size of 0.30 μm was obtained. When this sample was applied to a glass plate and near-infrared absorption was measured, good absorption characteristics were obtained.

比較例1
粗製バナジル−2,3−ナフタロシアニンを乳鉢ですりつぶし、得られた粉体の粒径分布を測定したところ、平均粒径は1.05μmであった。このサンプルをガラス板に塗布し、近赤外吸収を測定したが、良好な吸収特性は得られなかった。
Comparative Example 1
Crude vanadyl-2,3-naphthalocyanine was ground in a mortar, and the particle size distribution of the obtained powder was measured. The average particle size was 1.05 μm. This sample was applied to a glass plate, and near-infrared absorption was measured, but good absorption characteristics were not obtained.

比較例2
実施例1におけるサンドミル処理時間を1時間から5分に短縮以外は、実施例1と同様に行った。この操作により、平均粒径は0.54μmのバナジル−2,3−ナフタロシアニンが得られた。E型粘度計で粘度を測定したところ140[mPa・S]であった。このサンプルをガラス板に塗布し、近赤外吸収を測定したが、良好な吸収特性は得られなかった。
Comparative Example 2
The same operation as in Example 1 was performed except that the sand mill treatment time in Example 1 was reduced from 1 hour to 5 minutes. By this operation, vanadyl-2,3-naphthalocyanine having an average particle diameter of 0.54 μm was obtained. When the viscosity was measured with an E-type viscometer, it was 140 [mPa · S]. This sample was applied to a glass plate, and near-infrared absorption was measured, but good absorption characteristics were not obtained.

これらの結果を下記表1にまとめた。   These results are summarized in Table 1 below.

Figure 2007262163
Figure 2007262163

IR吸収テスト数値(不可視性)=
(400nmの吸収値)/(800−1100nmのλmaxにおける吸収値)
(界面活性剤の略号)
*DBSNa:ノルマルドデシルベンゼンスルホン酸ナトリウム
*DINSNa:ジイソプロピルナフタレンスルホン酸ナトリウム
*PEG−OP:ポリエチレングリコールモノ−4−オクチルフェニルエーテル
*MODA−Cl:ジメチルジオクタドデシルアンモニウムクロライド
IR absorption test value (invisibility) =
(Absorption value at 400 nm) / (Absorption value at λmax of 800-1100 nm)
(Abbreviation of surfactant)
* DBSNa: sodium normal dodecyl benzene sulfonate * DINSNa: sodium diisopropyl naphthalene sulfonate * PEG-OP: polyethylene glycol mono-4-octyl phenyl ether * MODA-Cl: dimethyl dioctadodecyl ammonium chloride

Claims (8)

平均粒径が0.5μm以下であることを特徴とするバナジル−2,3−ナフタロシアニンの微粒子。   Fine particles of vanadyl-2,3-naphthalocyanine having an average particle size of 0.5 μm or less. 請求項1に記載の微粒子を含有することを特徴とする液分散物。   A liquid dispersion comprising the fine particles according to claim 1. 分散液の成分に水を含むことを特徴とする請求項2に記載の液分散物。   The liquid dispersion according to claim 2, wherein water is contained in the components of the dispersion. 前記液分散物が、カチオン系界面活性剤、アニオン系界面活性剤またはノニオン系界面活性剤から選択される少なくとも1種を含有することを特徴とする請求項2または3に記載の液分散物。   4. The liquid dispersion according to claim 2, wherein the liquid dispersion contains at least one selected from a cationic surfactant, an anionic surfactant, and a nonionic surfactant. 前記液分散物が、ビーズ分散によって得られることを特徴とする請求項2〜4のいずれか1項に記載の液分散物。   The liquid dispersion according to claim 2, wherein the liquid dispersion is obtained by bead dispersion. 溶媒およびバナジル−2,3−ナフタロシアニン混合物を、カチオン系界面活性剤、アニオン系界面活性剤またはノニオン系界面活性剤から選択される少なくとも1種の界面活性剤で分散し、バナジル−2,3−ナフタロシアニンの平均粒径を0.5μm以下の微粒子とすることを特徴とする液分散物の製造方法。   A solvent and a vanadyl-2,3-naphthalocyanine mixture are dispersed with at least one surfactant selected from a cationic surfactant, an anionic surfactant, or a nonionic surfactant, and vanadyl-2,3 A method for producing a liquid dispersion, wherein the average particle diameter of naphthalocyanine is fine particles having a size of 0.5 μm or less. ビーズ分散により分散されたことを特徴とする請求項6に記載の液分散物の製造方法。   The method for producing a liquid dispersion according to claim 6, wherein the dispersion is dispersed by bead dispersion. バナジル−2,3−ナフタロシアニンを易溶解性溶媒中に溶解した溶液を、難溶解性溶媒に添加することを特徴とする液分散物の製造方法。   The manufacturing method of the liquid dispersion characterized by adding the solution which melt | dissolved vanadyl-2,3-naphthalocyanine in the easily soluble solvent to a hardly soluble solvent.
JP2006086577A 2006-03-27 2006-03-27 Fine pigment particles, liquid dispersion and its manufacturing method Pending JP2007262163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086577A JP2007262163A (en) 2006-03-27 2006-03-27 Fine pigment particles, liquid dispersion and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086577A JP2007262163A (en) 2006-03-27 2006-03-27 Fine pigment particles, liquid dispersion and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007262163A true JP2007262163A (en) 2007-10-11

Family

ID=38635461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086577A Pending JP2007262163A (en) 2006-03-27 2006-03-27 Fine pigment particles, liquid dispersion and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007262163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040920A1 (en) * 2009-09-30 2011-04-07 Hewelt-Packard Development Company, L.P. Dispersion of near infrared absorbing pigments and method of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210166A (en) * 1987-02-26 1988-08-31 ゼロックス コーポレーション Production of vanadium phthalocyanine
JPH0711159A (en) * 1993-06-08 1995-01-13 Basf Ag Naphthalocyanine pigment
JPH09263717A (en) * 1996-01-25 1997-10-07 Mitsui Toatsu Chem Inc Water-base coating material containing near-infrared absorber dispersed therein and its use
JPH11130974A (en) * 1997-10-27 1999-05-18 Dainippon Ink & Chem Inc Production of organic pigment
JPH11152413A (en) * 1997-09-18 1999-06-08 Mitsui Chem Inc Nitronaphthalocyanine compound and its use
JP2000044883A (en) * 1998-05-25 2000-02-15 Mitsubishi Chemicals Corp Heat ray-shielding organic film and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210166A (en) * 1987-02-26 1988-08-31 ゼロックス コーポレーション Production of vanadium phthalocyanine
JPH0711159A (en) * 1993-06-08 1995-01-13 Basf Ag Naphthalocyanine pigment
JPH09263717A (en) * 1996-01-25 1997-10-07 Mitsui Toatsu Chem Inc Water-base coating material containing near-infrared absorber dispersed therein and its use
JPH11152413A (en) * 1997-09-18 1999-06-08 Mitsui Chem Inc Nitronaphthalocyanine compound and its use
JPH11130974A (en) * 1997-10-27 1999-05-18 Dainippon Ink & Chem Inc Production of organic pigment
JP2000044883A (en) * 1998-05-25 2000-02-15 Mitsubishi Chemicals Corp Heat ray-shielding organic film and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040920A1 (en) * 2009-09-30 2011-04-07 Hewelt-Packard Development Company, L.P. Dispersion of near infrared absorbing pigments and method of making the same
US8337610B2 (en) 2009-09-30 2012-12-25 Hewlett-Packard Development Company, L.P. Dispersion of near infrared absorbing pigments and method of making the same
EP2483355A4 (en) * 2009-09-30 2015-08-26 Hewlett Packard Development Co Dispersion of near infrared absorbing pigments and method of making the same

Similar Documents

Publication Publication Date Title
EP2772517B1 (en) Colorant, microcapsule pigment prepared by using same, and ink composition for writing instrument
JP5299151B2 (en) Fine pigment composition and method for producing the same
KR100909976B1 (en) Transparent color coating composition with nanosize dispersed pigments, coated substrates and method thereof
EP1566413B1 (en) Process for the preparation of homogeneous, storage-stable pastes, paints, laquers by using ionic liquids as dispersing aids
KR20080077613A (en) Molecules with complexing groups for aqueous nanoparticle dispersions and uses thereof
TWI472581B (en) Triarylmethane and rosy red pigment compositions, and the use of such pigment dispersions
US5554213A (en) Ink compositions for ink jet printing
JP4668705B2 (en) Method for producing titanium dioxide pigment
KR102185463B1 (en) Dispersion and sprayable composition containing nanoparticles of cesium tungsten oxide and zwitterionic stabilizer
TW201400560A (en) Dye, microcapsule pigment using same, and ink composition for writing utensils
JP6326314B2 (en) Ink composition
DE102006007888A1 (en) Aqueous alumina dispersion for use in melamine resin formulation for making cured product e.g. laminate for furniture or flooring contains highly disperse alumina surface modified with amino- and/or hydroxy-substituted organophosphonic acid
JP5964782B2 (en) Aqueous carbon black formulation for inkjet
CA1184704A (en) Stabilised opaque form of c.i. pigment yellow 74
JP2007262163A (en) Fine pigment particles, liquid dispersion and its manufacturing method
CZ249196A3 (en) Pigment composition, process of its preparation and use
JP2008105958A (en) Bonzotriazole compound, pigment microparticle, pigment microparticle dispersion, and near-infrared-absorbing material containing the pigment microparticle
TW200918610A (en) Pigment preparations based on C. I. pigment blue 15:6
TWI510562B (en) A CI pigment yellow 74 belonging to an in azo pigment and a coloring composition using the same
CN105348898B (en) A kind of water paint grinding auxiliary agent and preparation method thereof
WO2021111730A1 (en) Cellulose particles and method for producing cellulose particles
DE60014477T2 (en) Transfer in aqueous medium from a copper phthalocyanine blue crude pigment from a red to a green hue
JP2016108451A (en) Naphthol red, resin composition, water-based dispersion and solvent-based dispersion each using the same naphthol red
JP5236176B2 (en) Black resin composition
TWI743422B (en) Pigment composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124