JP2007260666A - Simultaneous forming method for laminated thin film - Google Patents

Simultaneous forming method for laminated thin film Download PDF

Info

Publication number
JP2007260666A
JP2007260666A JP2007037378A JP2007037378A JP2007260666A JP 2007260666 A JP2007260666 A JP 2007260666A JP 2007037378 A JP2007037378 A JP 2007037378A JP 2007037378 A JP2007037378 A JP 2007037378A JP 2007260666 A JP2007260666 A JP 2007260666A
Authority
JP
Japan
Prior art keywords
thin film
substrate
solution
laminated thin
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007037378A
Other languages
Japanese (ja)
Inventor
Takayuki Kawabe
隆之 川邊
Kakujitsuraku Goto
敖登格日楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EINTESLA Inc
Original Assignee
EINTESLA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EINTESLA Inc filed Critical EINTESLA Inc
Priority to JP2007037378A priority Critical patent/JP2007260666A/en
Priority to PCT/JP2007/062204 priority patent/WO2008102465A1/en
Publication of JP2007260666A publication Critical patent/JP2007260666A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily simultaneously forming two or more laminated thin films on the surface of a base material using a simple step, the method having superior productivity. <P>SOLUTION: The simultaneously forming method for simultaneously forming two or more laminated thin films on the surface of the base material, comprises steps of: stopping the base material dipped in a dispersion forming a lowest layer of the laminated thin film or a lowest phase liquid of a solution; forming a phase-separated liquid separating from each other by sequentially dripping or spraying any one of the dispersion, solution or fine particles onto the lowest phase liquid during stoppage; and drawing up the base material from the phase-separated liquid at very low speed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の液から構成された相分離液を適宜組み合わせて、該相分離液由来の薄膜層を多層状に積み重ねた積層薄膜の同時形成方法に関する。   The present invention relates to a method for simultaneously forming laminated thin films in which phase separation liquids composed of a plurality of liquids are appropriately combined, and thin film layers derived from the phase separation liquids are stacked in a multilayer shape.

物質の表面は、組成、構造、電子状態等バルクと異なることも多く、また、それらは温度や雰囲気によっても変化する等、様々な興味深い現象を発現することが知られている。
例えば、触媒作用、電極反応、濡れ、接着等々、物質の表面の変化の利用は、今日の重要な工業プロセスの基礎を担っているものが多い。
これらの表面化学の実際は、原子・分子レベルで起こる固体表面の化学反応によることが多く、表面原子・表面分子の構造や配向に依存している。つまり、表面における原子・分子の構造や配向を制御できれば、任意の機能を発現させることができるわけである。このような観点から、ある材料表面に目的とする機能性分子を薄膜として原子・分子の構造や配向を整えて修飾し、これを機能性材料として活用しようとされてきている。
The surface of a substance is often different from the bulk, such as composition, structure, and electronic state, and they are known to exhibit various interesting phenomena such as changes depending on temperature and atmosphere.
For example, the use of surface changes in materials such as catalysis, electrode reaction, wetting, adhesion, etc., is often the basis of today's important industrial processes.
The actual surface chemistry often depends on the chemical reaction of the solid surface that occurs at the atomic / molecular level and depends on the structure and orientation of the surface atoms / surface molecules. In other words, if the structure and orientation of atoms / molecules on the surface can be controlled, an arbitrary function can be expressed. From such a point of view, it has been attempted to modify the structure and orientation of atoms and molecules by using the target functional molecule as a thin film on the surface of a certain material, and to utilize this as a functional material.

従来知られている機能性分子を薄膜として基板表面に修飾する方法は、大きく別けて2つの方法があり、一つはドライプロセスであり、他はウエットプロセスに大別される。前者のドライプロセスは、分子を気化させた後、基板表面に付着させて修飾を行う方法である。後者のウエットプロセスは、目的とする機能性分子を溶媒に溶解又は分散させ、この溶液又は分散液を基板に塗布したり、溶液又は分散液中に基板を浸したりして表面修飾を行う方法である。   Conventionally known methods for modifying functional molecules on a substrate surface as a thin film are roughly divided into two methods, one is a dry process and the other is roughly divided into a wet process. The former dry process is a method in which molecules are vaporized and then attached to the substrate surface for modification. The latter wet process is a method in which the target functional molecule is dissolved or dispersed in a solvent, and this solution or dispersion is applied to the substrate, or the substrate is immersed in the solution or dispersion to modify the surface. is there.

近年、撥水・撥油材料、接着剤、酸化防止膜、又は光・電子、バイオデバイス等、多様な有機薄膜材料の機能や物性は、薄膜の表面又はバルク構造と密接な関係があると指摘され、薄膜における構造形態やその制御は、材料の性能を左右するだけでなく、新しい機能の創出やこれまでに見られなかった優れた物性の発現にも重要な役割を果たすと考えられてきている。   In recent years, it has been pointed out that the functions and physical properties of various organic thin film materials such as water / oil repellent materials, adhesives, antioxidant films, optical / electronic and biodevices are closely related to the surface or bulk structure of thin films. In addition, the structural form and control of thin films not only affect the performance of materials, but are also thought to play an important role in creating new functions and developing superior physical properties that were not seen before. Yes.

これら薄膜を作製する技術として、たとえば、フォトレジストに代表されるリソグラフィー技術やマイクロコンタクトプリンティング法といったスタンプ技術、又は溶液キャスト法による自己組織化技術等数多くの方法が開発されてきている。   As a technique for producing these thin films, for example, a number of methods such as a lithography technique typified by a photoresist, a stamp technique such as a microcontact printing method, or a self-organization technique using a solution cast method have been developed.

とりわけ、エネルギー変換効率の高効率化が課題である有機薄膜太陽電池において、有機半導体が分子レベルで3次元的なp−n接合を形成するナノ構造層をp―n接合界面に新たに導入することで、分子レベルでのp―n接合形成を可能とするナノp−n接合が多数形成され、光電変換層が拡大されることが見出されている。また、近年注目されている色素増感太陽電池では、用いられるTiO2粒子を数10nmのナノ粒子にすることで比表面積を非常に大きくしていることが効率上昇の点で重要となっており、現在は色素が光吸収しているが、半導体ナノ粒子は量子サイズ効果により、粒径を変えるだけで吸収スペクトルも変えることができるため、粒径分布のある粒子膜を作製することで太陽光の波長すべてを粒子が吸収するような電池の可能性もある。 In particular, in organic thin-film solar cells where high energy conversion efficiency is an issue, a nanostructure layer in which an organic semiconductor forms a three-dimensional pn junction at the molecular level is newly introduced at the pn junction interface. As a result, it has been found that a large number of nano pn junctions capable of forming a pn junction at the molecular level are formed, and the photoelectric conversion layer is enlarged. In addition, in dye-sensitized solar cells that have been attracting attention in recent years, it is important to increase the specific surface area by making the TiO 2 particles used into nanoparticles of several tens of nanometers in terms of increasing efficiency. Currently, the dye absorbs light, but the semiconductor nanoparticles can change the absorption spectrum just by changing the particle size due to the quantum size effect. There is also the possibility of a battery in which the particles absorb all of the wavelengths.

また、発光層を両側から電極(陽極と陰極)で挟んだ構造を有する有機ELでは、電子や正孔といったキャリアを発光層まで移動して発光効率を上げるために注入層や輸送層が必要になり、材料の選択や生産性から鑑みて、多層構造が考えられる。薄膜形成には、塗布や印刷技術が用いられているが、安定して多層構造を形成でき、かつ、安価である製造法が求められている。   In addition, in an organic EL having a structure in which a light emitting layer is sandwiched between electrodes (anode and cathode) from both sides, an injection layer and a transport layer are required to move carriers such as electrons and holes to the light emitting layer to increase luminous efficiency. In view of the selection of materials and productivity, a multilayer structure can be considered. Coating and printing techniques are used for thin film formation, but a manufacturing method that can stably form a multilayer structure and is inexpensive is required.

微粒子構造体を作製するのに、基板上に膜を形成し、膜を除去してパターン形成した部分に微粒子を付着させた後、すべての膜を除去して形成された微粒子配列パターンを成長の開始点とする引き上げ法によって微粒子を堆積して微粒子構造体膜を作製する方法が特開2003−290648号公報に開示されている。   In order to fabricate the fine particle structure, a film is formed on the substrate, and after removing the film and attaching the fine particles to the patterned portion, the fine particle arrangement pattern formed by removing all the films is grown. Japanese Laid-Open Patent Publication No. 2003-290648 discloses a method for producing a fine particle structure film by depositing fine particles by a pulling method as a starting point.

また、特開平9−239310号公報では、水面上に単分子膜を形成し、導電性の基板上にその単分子膜を累積させて薄膜を作成し、基板に所定の電圧を印加することにより基板上に累積する分子の配向を制御する分子累積膜の作製法が開示されている。同様に、電気化学的方法で互いに溶解しない複数の高分子を結合したブロック共重合体が一定方向に配向したミクロ相分離構造を作製する方法が特開2005−314526号公報に開示されている。   In JP-A-9-239310, a monomolecular film is formed on a water surface, the monomolecular film is accumulated on a conductive substrate to form a thin film, and a predetermined voltage is applied to the substrate. A method for producing a molecular accumulation film for controlling the orientation of molecules accumulated on a substrate is disclosed. Similarly, Japanese Patent Application Laid-Open No. 2005-314526 discloses a method for producing a microphase-separated structure in which a block copolymer in which a plurality of polymers that are not soluble in each other are bound to each other is electrochemically oriented.

一方、積層構造膜では、1回で形成する膜内は1種類の構造に限られるため、各層単位であり、一層の膜形成時間が長く、積層構造にするためには多大な時間を要していた。特開平7−142462号公報には、単分子膜を基板上に写し取る薄膜形成法において膜形成材料溶液中の成分分子と薄膜形成時の下層溶液中の成分分子の濃度平衡に関する相互作用を利用して形成される薄膜の成分濃度を制御する薄膜形成法が開示されており、この方法では、膜内の成分分子分布を層単位よりさらに細かな単位で制御でき、配向性のある膜を簡便に形成可能といわれているが、膜形成材料溶液中の成分分子と薄膜形成時の下層溶液中の成分分子の濃度平衡に関する相互作用が複雑である。   On the other hand, in a laminated structure film, since the film formed at one time is limited to one type of structure, each layer unit is long, and it takes a long time to form a laminated structure. It was. Japanese Patent Application Laid-Open No. 7-142462 utilizes an interaction relating to concentration equilibrium between component molecules in a film-forming material solution and component molecules in a lower-layer solution at the time of thin film formation in a thin film forming method in which a monomolecular film is copied onto a substrate. In this method, the distribution of component molecules in the film can be controlled in finer units than the layer unit, and an oriented film can be easily formed. Although it is said that it can be formed, the interaction regarding the concentration equilibrium between the component molecules in the film forming material solution and the component molecules in the lower layer solution at the time of forming the thin film is complicated.

また、易溶性ホスト分子が溶解された下層液上に難溶性球状ゲスト分子を分散させ、気液界面において易溶性ホスト分子と難溶性ゲスト分子間に働くホスト−ゲスト相互作用により両親媒性超分子を調製せしめて気液界面に超分子膜を形成し、この超分子膜を基板上に移し取るという超分子薄膜の製造法が特開2004−105896号公報に開示されている。
しかし、上述するような従来知られる方法は、いずれも基材上表面への単分子膜の形成であり、これらの方法では基材上表面に単分子膜しか形成されず、2以上の積層膜を同時に形成できる方法は知られていない。
In addition, a slightly soluble spherical guest molecule is dispersed on a lower layer solution in which an easily soluble host molecule is dissolved, and an amphiphilic supramolecule is formed by a host-guest interaction that works between the easily soluble host molecule and the hardly soluble guest molecule at the gas-liquid interface. JP-A-2004-105896 discloses a method for producing a supramolecular thin film in which a supramolecular film is formed at the gas-liquid interface and the supramolecular film is transferred onto a substrate.
However, all the conventionally known methods as described above are formation of a monomolecular film on the surface of the base material, and in these methods, only a monomolecular film is formed on the surface of the base material, and two or more laminated films are formed. There is no known method that can form these simultaneously.

特開2003−290648号公報JP 2003-290648 A 特開平09−239310号公報JP 09-239310 A 特開2005−314526号公報JP 2005-314526 A 特開平07−142462号公報Japanese Patent Laid-Open No. 07-142462 特開2004−105896号公報JP 2004-105896 A

本発明は、上記問題点を解決するために、簡単な工程を用いて製造が容易で生産性に優れた基材上表面に2以上の積層薄膜を同時に形成できる方法を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a method capable of simultaneously forming two or more laminated thin films on the surface of a substrate that is easy to manufacture and excellent in productivity using a simple process. To do.

本発明では、積層薄膜の最下層を形成する分散液や溶液に基材を微速に浸漬し、該分散液表面に分散液と混合しない相分離液の層を形成して該分散液や溶液から基材を微速で引き上げることにより基材表面に積層薄膜を形成させる方法を見出した。すなわち、互いに混合しない相を形成する最下相液及び相分離液として、最下相液は、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つから選ばれ、相分離液は、上記した有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つ以上から選ばれる。これらの最下相液及び相分離液の存在する液槽中に、ハニカム状、棒状、シート状の形状をした金属、その他の無機材質、有機材質からなる基材を浸漬し、微速で引き上げることにより基材表面に薄膜を同時的に形成する方法を見出し、本発明を完成するに至った。   In the present invention, the substrate is dipped at a low speed in a dispersion or solution that forms the lowermost layer of the laminated thin film, and a layer of a phase separation liquid that does not mix with the dispersion is formed on the surface of the dispersion. The present inventors have found a method of forming a laminated thin film on a substrate surface by pulling up the substrate at a slow speed. That is, as the bottom phase liquid and the phase separation liquid that form phases that are not mixed with each other, the bottom phase liquid is an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersion aqueous solution, an organic or inorganic fine particle dispersion organic solvent. The phase separation liquid is selected from any one of the solutions, the organic solvent, the aqueous solution, the organic solvent solution, the organic or inorganic fine particle, the organic or inorganic fine particle dispersed aqueous solution, the organic or inorganic fine particle dispersed organic solvent solution. Any one or more are selected. A substrate made of metal in the shape of a honeycomb, rod, or sheet, other inorganic materials, or organic materials is immersed in the liquid tank in which these bottom phase liquid and phase separation liquid are present, and pulled up at a slow speed. Thus, a method for simultaneously forming a thin film on the surface of a substrate was found, and the present invention was completed.

すなわち、本願の特許請求の範囲に記載の請求項1〜7に係る発明は、前記課題を達成するために以下の構成を特徴とする。
請求項1に係る発明は、基材表面に2以上の積層薄膜を同時に形成する積層薄膜の同時形成方法であって、前記積層薄膜の最下層を形成する分散液又は溶液の最下相液に浸漬された基材を停止させる工程と、その停止している間に、該最下相液上に分散液、溶液又は微粒子の何れか一つを順次滴下又は散布して互いに分離する相分離液を形成する工程と、該相分離液から基材を微速で引き上げる工程とから成ることを特徴とする。
請求項2に係る発明は、前記互いに分離する相分離液が比重差に応じて順次分離相を形成することを特徴とする。
請求項3に係る発明は、前記最下相液が、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つから選ばれることを特徴とする。
請求項4に係る発明は、前記相分離液が、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つ以上から選ばれることを特徴とする。
請求項5に係る発明は、基材表面に形成される積層薄膜が、樹脂膜、微粒子膜又は微粒子を含む樹脂膜からなる2以上の多層薄膜であることを特徴とする。
請求項6に係る発明は、基材が無機材質、有機材質又は金属から選ばれ、かつ、ハニカム状、棒状又はシート状のものであることを特徴とする。
請求項7に係る発明は、基材が連続長尺のものであって、連続的に走行せしめることを特徴とする。
That is, the invention according to claims 1 to 7 described in the claims of the present application is characterized by the following configuration in order to achieve the above-described problem.
The invention according to claim 1 is a method of simultaneously forming a laminated thin film in which two or more laminated thin films are simultaneously formed on the surface of a substrate, and the dispersion liquid or the lowest phase liquid of the solution that forms the lowermost layer of the laminated thin film A step of stopping the immersed substrate, and a phase separation liquid in which any one of a dispersion, a solution, or fine particles is sequentially dropped or sprayed on the bottom phase liquid while the base material is stopped. And a step of pulling up the substrate from the phase separation liquid at a slow speed.
The invention according to claim 2 is characterized in that the phase separation liquids separated from each other sequentially form separated phases in accordance with the specific gravity difference.
In the invention according to claim 3, the bottom phase liquid is selected from any one of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution. It is characterized by.
In the invention according to claim 4, the phase separation liquid is any one of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution. It is selected from two or more.
The invention according to claim 5 is characterized in that the laminated thin film formed on the surface of the base material is two or more multilayer thin films made of a resin film, a fine particle film, or a resin film containing fine particles.
The invention according to claim 6 is characterized in that the base material is selected from an inorganic material, an organic material, or a metal, and has a honeycomb shape, a rod shape, or a sheet shape.
The invention according to claim 7 is characterized in that the base material is a continuous long one and runs continuously.

従来技術の積層薄膜を形成させる手段として知られる電極反応を用いる場合は、分散液の導電性や積層薄膜を形成させる基材の材質等を考慮しなければ実用性に乏しいのに対して、本発明の積層薄膜の同時形成方法によれば、基材を最下相液及び相分離液に浸漬した後微速で引き上げる操作により基材の材質や形状にかかわりなく、基材の表面に2以上の積層薄を同時に形成することができる。   In the case of using an electrode reaction known as a means for forming a multilayer thin film in the prior art, it is not practical unless the conductivity of the dispersion or the material of the substrate on which the multilayer thin film is formed is considered. According to the simultaneous formation method of the laminated thin film of the present invention, the surface of the base material is not less than two or more on the surface of the base material regardless of the material or shape of the base material by immersing the base material in the lowest phase liquid and the phase separation liquid and then pulling up at a slow speed Laminate thins can be formed simultaneously.

本発明では、最下相液及び相分離液を適宜組み合わせて、微速の浸漬処理の可能な浸漬法を採用することによって、基材上に目的とする複数の薄膜を同時に簡単に形成できる。また、基材を含む各層ないし各膜の間の接着性には全く問題がない。
また、得られた積層薄膜形成した製品は、撥水・撥油材料、接着剤、酸化防止膜、又は光・電子、バイオデバイス等、多様な有機薄膜の安価な製造法として期待できる。
In the present invention, a plurality of target thin films can be easily and simultaneously formed on the substrate by appropriately combining the bottom phase liquid and the phase separation liquid and adopting a dipping method capable of a slow dipping treatment. Further, there is no problem in the adhesion between each layer or each film including the substrate.
Further, the obtained product formed with a laminated thin film can be expected as an inexpensive method for producing various organic thin films such as water / oil repellent materials, adhesives, antioxidant films, optical / electronic, biodevices, and the like.

上述したように、従来の積層薄膜の形成法では、積層薄膜形成材料溶液の成分分子と薄膜形成時の下層溶液中の成分分子の濃度平衡に関する相互作用を利用したり、易溶性ホスト分子が溶解された下層液上に難溶性球状ゲスト分子を分散させ、気液界面において易溶性ホスト分子と難溶性ゲスト分子間に働くホスト−ゲスト相互作用により両親媒性超分子を調製して気液界面に超分子膜を形成させるように積層膜間の相互作用が積層薄膜形成の大きな因子となっており、積層薄膜形成方法として複雑になり、薄膜形成成分の制約も大きい。   As described above, in the conventional method for forming a laminated thin film, the interaction with the concentration equilibrium between the component molecules of the laminated thin film forming material solution and the component molecules in the lower layer solution at the time of thin film formation is utilized, or the readily soluble host molecule is dissolved. The poorly soluble spherical guest molecules are dispersed on the lower layer liquid prepared, and amphiphilic supramolecules are prepared by the host-guest interaction acting between the easily soluble host molecule and the hardly soluble guest molecule at the gas-liquid interface to form the gas-liquid interface. As the supramolecular film is formed, the interaction between the laminated films is a major factor in forming the laminated thin film, which complicates the method of forming the laminated thin film, and the restrictions on the components for forming the thin film are large.

本発明による層薄膜の同時形成方法では、薄膜形成時の最下相液及び相分離液との相互の界面で互いに混じり合わないこと、相互に比重の差あること、そして、膜を形成する物質同士の親和力が大きいことを利用して複数の薄膜をきわめて容易に形成する方法であり、基材の形状にも影響されない。   In the method for simultaneously forming layer thin films according to the present invention, the thin film does not mix with each other at the interface between the lowermost phase liquid and the phase separation liquid, there is a difference in specific gravity, and the substance that forms the film This is a method of forming a plurality of thin films very easily using the fact that the affinity between them is great, and is not affected by the shape of the substrate.

すなわち、基材を最下相液及び相分離液中に浸漬し、相分離液より比重の大きな分散液又は溶液によって積層薄膜の最下相液を形成すると同時に、該最下相液の上に互いに混じり合わない相分離液の相からなる薄膜層を形成し、得られた2つ以上の薄膜層を有する最下相液及び相分離液中から基材を微速で引き上げることによって基材表面に同時に2以上の液から形成された薄膜を積層形成させることが本発明の方法の最も特徴的なところである。   That is, the base material is immersed in the lowermost phase liquid and the phase separation liquid, and the lowermost phase liquid of the laminated thin film is formed with a dispersion or solution having a specific gravity larger than that of the phase separation liquid. Forming a thin film layer composed of phases of a phase separation liquid that does not mix with each other, and pulling up the base material at a low speed from the bottom phase liquid and the phase separation liquid having two or more thin film layers obtained on the surface of the base material It is the most characteristic feature of the method of the present invention that a thin film formed from two or more liquids is formed at the same time.

なお、「最下相液」は相分離液と比べて最も比重が大きいもので、最初に浴槽に注がれて最も下の液相を形成するものを意味し、そして、「相分離液」はその「最下相液」上に比重差に応じて1以上の分散液、溶液等が順次注がれて、分離液の相を形成するものを意味している。
そして、発明の詳細な説明で、「相」は液槽中の液体間の異なる外見のことを意味し、「層」は基材に積層された薄膜間の異なる外見のことを意味している。
The “bottom phase liquid” has the highest specific gravity compared to the phase separation liquid, means the one that is poured first into the bath to form the lowest liquid phase, and the “phase separation liquid” Means that one or more dispersions, solutions, and the like are sequentially poured onto the “lowermost phase liquid” according to the specific gravity difference to form a phase of the separation liquid.
In the detailed description of the invention, “phase” means a different appearance between liquids in a liquid tank, and “layer” means a different appearance between thin films laminated on a substrate. .

本発明における積層薄膜の層の数は、使用する最下相液として有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つを、そして、相分離液として水、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つ以上を選択することにより任意の成分及び層数の薄膜積層体を形成することが可能である。   In the present invention, the number of layers of the laminated thin film is any one of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution as the lowest phase liquid to be used. And, as the phase separation liquid, any one or more of water, organic solvent, aqueous solution, organic solvent solution, organic or inorganic fine particles, organic or inorganic fine particle dispersed aqueous solution, organic or inorganic fine particle dispersed organic solvent solution is selected. Thus, it is possible to form a thin film laminate having an arbitrary component and number of layers.

本発明で用いる最下相液は、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つが用いられる。有機溶剤は、例えば、トルエン、四塩化炭素、酢酸エチル、酢酸ブチル、ジクロロエタン等の単品或いは混合したもの等が、水溶液は、例えば、ポリビニルアルコール、ポリビニルピロリドン、水溶性色素等の単品或いは混合したものを水に溶かしたもの等が、有機溶剤溶液は、例えば、ポリビニルカルバゾール、ナイロン、塩化ビニル、アクリル等の単品或いは混合したものを有機溶剤に溶かしたもの等が、有機又は無機の微粒子分散水溶液は、例えば、水或いは水溶液に微粒子を分散させたもの等が、有機又は無機の微粒子分散有機溶剤溶液は、例えば、有機溶剤或いは有機溶剤溶液に微粒子を分散させたもの等が挙げられる。   As the bottom phase liquid used in the present invention, any one of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution is used. Examples of the organic solvent include toluene, carbon tetrachloride, ethyl acetate, butyl acetate, dichloroethane and the like, or a mixture of them, and examples of the aqueous solution include polyvinyl alcohol, polyvinyl pyrrolidone, water-soluble dyes, and the like. In organic solvent solution, for example, polyvinylcarbazole, nylon, vinyl chloride, acrylic, etc. dissolved in an organic solvent or a mixture of organic or inorganic fine particle dispersed aqueous solution Examples of the organic or inorganic fine particle-dispersed organic solvent solution include fine particles dispersed in water or an aqueous solution. Examples of the organic or inorganic fine particle-dispersed organic solvent solution include those obtained by dispersing fine particles in an organic solvent or an organic solvent solution.

本発明で用いる相分離液は、上記最下相液で述べた有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つ以上が用いられる。前記相分離液の例として、上記最下相液で記述して示したものが挙げられる。   The phase separation liquid used in the present invention is an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersion, an organic or inorganic fine particle dispersion aqueous solution, or an organic or inorganic fine particle dispersion organic solvent solution described in the bottom phase liquid. Any one or more are used. Examples of the phase separation liquid include those described and shown as the lowermost phase liquid.

基材が連続長尺のものであって連続的に走行せしめる場合、例えば、プリント基板に用いられている金属箔の電鋳の場合には、よく知られている連続製造方法を応用し、ゆっくり回転しているドラムの一部を本発明の最下相液及び相分離液に浸積させて、ドラムに沿った基材を引上げる等連続的に該最下相液及び相分離液から微速で引き上げる工程を加えることで目的が達せられる。   When the substrate is continuously long and runs continuously, for example, in the case of electroforming metal foil used for printed circuit boards, a well-known continuous manufacturing method is applied and slowly applied. A part of the rotating drum is immersed in the lowermost phase liquid and the phase separation liquid of the present invention, and the substrate along the drum is pulled up. The purpose can be achieved by adding a process of pulling up.

本発明では、溶液又は分散液に各種形状の基材を浸漬する際に、基材表面に気泡を有した状態で浸漬すると、基材表面に積層むらを生じることになり、このような積層むらを生じないためには、基材を溶液又は分散液に微速で浸漬した後、微速で引き上げることが必要である。また、基材表面を清浄にするために予め洗浄処理しておくことが効果的である。さらには、基材表面に付着する気泡を除去するために、溶液又は分散液に浸漬した基材に超音波振動等の機械的振動を与えてから微速で引き上げるとさらに好都合である。   In the present invention, when a substrate of various shapes is immersed in a solution or dispersion, if the substrate is immersed in a state having bubbles on the surface of the substrate, uneven lamination will occur on the surface of the substrate. In order not to cause the problem, it is necessary to immerse the base material in the solution or dispersion at a slow speed and then pull it up at a slow speed. In addition, it is effective to perform a cleaning process in advance in order to clean the substrate surface. Furthermore, in order to remove bubbles adhering to the surface of the substrate, it is more convenient to apply mechanical vibration such as ultrasonic vibration to the substrate immersed in the solution or dispersion and then pull it up at a very low speed.

基材表面に形成される積層薄膜は、樹脂膜、微粒子膜又は微粒子を含む樹脂膜からなる2以上の多層薄膜である。例えば、樹脂膜としてはフォトレジスト膜、ポリビニルカルバゾール膜、ナイロン膜、ポリビニルアルコール膜、ポリスチレン膜等、微粒子膜は酸化チタン粒子膜、アルミニウム粒子膜、銅粒子膜等、微粒子を含む樹脂膜はPMMA(ポリメタクリル酸メチル)粒子を含むポリビニルアルコール膜、銅粒子を含むポリスチレン膜等が挙げられる。   The laminated thin film formed on the substrate surface is two or more multilayer thin films composed of a resin film, a fine particle film, or a resin film containing fine particles. For example, as a resin film, a photoresist film, a polyvinyl carbazole film, a nylon film, a polyvinyl alcohol film, a polystyrene film, a fine particle film is a titanium oxide particle film, an aluminum particle film, a copper particle film, and the like, and a resin film containing fine particles is PMMA ( Examples thereof include a polyvinyl alcohol film containing (polymethyl methacrylate) particles and a polystyrene film containing copper particles.

(実施例)
以下、本発明の積層膜形成法について実施例を挙げてより具体的に説明するが、本発明はこれらに限定されるものではない。
(Example)
Hereinafter, although the example is given and the laminated film formation method of this invention is demonstrated more concretely, this invention is not limited to these.

TiO2粉末(富士チタン(株)製、TA-100、粒径300nm)10gとグリセリン2mlを蒸留水20mlに入れ、30分間の超音波撹拌により酸化チタン分散液を調製した。超微速浸漬処理機であるディップコーター((株)SDI社製、ND-0407)を浸漬速度10mm/sec、停止時間60sec、引き上げ速度2mm/secに設定した。
基材は、濃硫酸に一日浸して、蒸留水で洗浄する前処理を施したガラス基板(26×10×1mm)を使用した。
相分離液として、フォトレジスト液((株)プリンテック社製、MT-UV-6602(ネガ型)、組成:アクリル樹脂15〜25%、アクリルモノマー5〜15%、光重合開始剤1〜5%、メチルエチルケトン49%以下及びプロピレングリコールモノメチルエーテルアセテート20〜25%)からなるものを使用した。
10 g of TiO 2 powder (manufactured by Fuji Titanium Co., Ltd., TA-100, particle size 300 nm) and 2 ml of glycerin were placed in 20 ml of distilled water, and a titanium oxide dispersion was prepared by ultrasonic stirring for 30 minutes. A dip coater (ND-0407, manufactured by SDI Co., Ltd.), which is an ultra-low speed immersion treatment machine, was set to an immersion speed of 10 mm / sec, a stop time of 60 sec, and a lifting speed of 2 mm / sec.
The substrate used was a glass substrate (26 × 10 × 1 mm) that had been pretreated by immersion in concentrated sulfuric acid for one day and washed with distilled water.
As phase separation liquid, photoresist liquid (manufactured by Printec Co., Ltd., MT-UV-6602 (negative type)), composition: acrylic resin 15-25%, acrylic monomer 5-15%, photopolymerization initiator 1-5 %, Methyl ethyl ketone 49% or less and propylene glycol monomethyl ether acetate 20-25%).

上記酸化チタン分散液に、ガラス基板を微速(浸漬速度10mm/sec)で浸漬させ、ガラス基板が完全に浸漬状態となった後の停止時間中(停止時間60sec)に上記フォトレジスト液を微速で滴下させて相分離液を調製した。
得られた相分離液の中からガラス基板を2mm/secで引き上げた。
引き上げたガラス基板を一昼夜自然乾燥し、SEM(日立ハイテク(株)製、TM-1000)により基板断面を観察した。
The glass substrate is immersed in the titanium oxide dispersion at a slow speed (immersion rate of 10 mm / sec), and the photoresist solution is added at a slow speed during the stop time (stop time 60 seconds) after the glass substrate is completely immersed. A phase separation liquid was prepared by dropwise addition.
The glass substrate was pulled up from the obtained phase separation liquid at 2 mm / sec.
The pulled glass substrate was air-dried all day and night, and the cross section of the substrate was observed with SEM (manufactured by Hitachi High-Tech Co., Ltd., TM-1000).

その結果、ガラス基板上にTiO2層が最下層として存在し、その上にフォトレジストの薄い層が積層していることが観察された。
ガラス表面と酸化チタンの層及びその上のフォトレジスト層の接着性は全く問題なかった。
As a result, it was observed that a TiO 2 layer was present as the lowest layer on the glass substrate, and a thin layer of photoresist was laminated thereon.
There was no problem with the adhesion between the glass surface and the titanium oxide layer and the photoresist layer thereon.

TiO2粉末(富士チタン(株)製、TA-100,粒径300nm)10gを蒸留水20mlに加え、30分間超音波撹拌を行い、酸化チタン分散液を調製した。
実施例1で用いた超微速浸漬処理機のディップコーターを浸漬速度5mm/sec、停止時間30sec、引き上げ速度5μm/secに設定した。
10 g of TiO 2 powder (manufactured by Fuji Titanium Co., Ltd., TA-100, particle size 300 nm) was added to 20 ml of distilled water, and ultrasonic stirring was performed for 30 minutes to prepare a titanium oxide dispersion.
The dip coater of the ultra-low speed immersion treatment machine used in Example 1 was set to an immersion speed of 5 mm / sec, a stop time of 30 seconds, and a lifting speed of 5 μm / sec.

実施例1と同様の前処理を施したガラス基板をTiO2分散液に5mm/secで浸漬させた。ガラス基板が完全に浸漬した後の停止時間中に、TiO2分散液に対してアルミニウム粉末を水面上に散布させた相分離液から、ガラス基板を5μm/secの速度で引き上げた。
引き上げた基板を一昼夜自然乾燥した後、実施例1と同様にSEM観察したところ、ガラス基板上にTiO2の層が存在し、その上にアルミニウム粉末の層が薄く積層した積層膜が形成されていた。
ガラス表面と酸化チタンの層及びその上のアルミニウム粉末の層の接着性は全く問題なかった。
A glass substrate subjected to the same pretreatment as in Example 1 was immersed in a TiO 2 dispersion at 5 mm / sec. During the stop time after the glass substrate was completely immersed, the glass substrate was pulled up at a rate of 5 μm / sec from the phase separation liquid in which aluminum powder was dispersed on the water surface with respect to the TiO 2 dispersion.
After the substrate was naturally dried all day and night, SEM observation was performed in the same manner as in Example 1. As a result, a TiO 2 layer was present on the glass substrate, and a laminated film in which a thin layer of aluminum powder was laminated thereon was formed. It was.
There was no problem with the adhesion between the glass surface and the titanium oxide layer and the aluminum powder layer thereon.

実施例1で用いたディップコーターを浸漬速度10mm/sec、停止時間60sec、引き上げ速度15μm/secに設定した。
予め蒸留水、濃硫酸と0.1mol/L苛性ソーダ溶液にそれぞれ30秒間入れて洗浄したアルミニウム箔基板(30 × 20 × 0.012mm)を実施例1で用いたフォトレジスト溶液に浸漬させた。
アルミニウム箔基板をフォトレジスト溶液中に上記浸漬条件下で浸漬し、停止している間に溶液表面に銅粉末を微速で溶液表面に散布させる。上記停止時間経過後に、アルミニウム箔基板を15μm/secで引き上げた。
The dip coater used in Example 1 was set to an immersion speed of 10 mm / sec, a stop time of 60 sec, and a pulling speed of 15 μm / sec.
An aluminum foil substrate (30 × 20 × 0.012 mm), which was previously washed in distilled water, concentrated sulfuric acid and 0.1 mol / L sodium hydroxide solution for 30 seconds, was immersed in the photoresist solution used in Example 1.
The aluminum foil substrate is immersed in the photoresist solution under the above immersion conditions, and copper powder is sprinkled on the solution surface at a slow speed while the aluminum foil substrate is stopped. After the stop time, the aluminum foil substrate was pulled up at 15 μm / sec.

引き上げが終わったアルミニウム箔基板を一昼夜自然乾燥した。
得られたアルミニウム基板の断面をSEM観察したところ、アルミニウム基板上にフォトレジスト層と銅粉末層がそれぞれ薄く積層膜を形成していることが認められた。
アルミニウム箔基板の表面、フォトレジスト層及び銅粉末層の各層の接着性は全く問題なかった。
The aluminum foil substrate that had been pulled up was naturally dried all day and night.
When a cross section of the obtained aluminum substrate was observed with an SEM, it was found that the photoresist layer and the copper powder layer were formed thinly on the aluminum substrate, respectively.
There was no problem with the adhesion of each surface of the surface of the aluminum foil substrate, the photoresist layer and the copper powder layer.

実施例1で使用した微速浸漬処理機のディップコーターを浸漬速度5mm/sec、停止時間60sec、引上げ速度0.1μm/secに設定した。
濃硫酸で一日浸して、蒸留水で洗浄するという前処理を行ったガラス基板(26×10×1mm)を、1%ポリスチレン粒子((株)モリテックス,蛍光粒子G830, 粒径830nm)を水に分散させた分散液に浸漬させた。ガラス基板が完全に浸漬した状態で停止している間、分散液表面にMEK(メチルエチルケトン)にPMMA(ポリメタクリル酸メチル)粒子(粒径820nm)の1%を分散させた相分離液を微速で滴下し、分散させた。
The dip coater of the slow dipping processor used in Example 1 was set to an immersion speed of 5 mm / sec, a stop time of 60 sec, and a pulling speed of 0.1 μm / sec.
A glass substrate (26 × 10 × 1 mm) that has been pretreated by immersing in concentrated sulfuric acid for one day and washed with distilled water is used, and 1% polystyrene particles (Mortex, Inc., fluorescent particle G830, particle size 830 nm) are water. It was immersed in the dispersion liquid dispersed. While the glass substrate is stopped in a completely immersed state, a phase separation liquid in which 1% of PMMA (polymethyl methacrylate) particles (particle size 820 nm) are dispersed in MEK (methyl ethyl ketone) on the surface of the dispersion at a low speed. Dropped and dispersed.

分散終了後に、ガラス基板を引上げた。
引上げが終わった後、一昼夜自然乾燥した。ガラス基板上にポリスチレンの単粒子膜が得られ、その上にPMMAの最密充填六方格子単粒子膜が得られた。
ガラス基板の表面、ポリスチレン膜及びPMMAの各膜の接着性は全く問題なかった。
After the completion of dispersion, the glass substrate was pulled up.
After the pulling was over, it was naturally dried all day and night. A single particle film of polystyrene was obtained on a glass substrate, and a close packed hexagonal lattice single particle film of PMMA was obtained thereon.
There was no problem with the adhesion of the glass substrate surface, polystyrene film and PMMA film.

実施例1で用いたディップコーターを浸漬速度が10mm/sec、停止時間が60sec、引き上げ速度が5mm/secに設定した。
ITO基板(26×10×1mm)の表面を界面活性剤及び有機溶媒を用いて超音波洗浄を行った。
ITO基板を、ポリビニルカルバゾールを3%溶かしたジクロロエタン溶液中に上記浸漬条件下で浸漬し、基板が浸漬液中に停止している間に溶液表面にポリビニルアルコールの3%を溶かした水溶液を滴下させ、次に、ポリスチレンの3%をトルエンに溶かしたトルエン溶液を滴下させ、ジクロロエタン/水/トルエンの三相からなる相分離を配置した。上記停止時間の経過後に、基板を5mm/sec で引き上げた。
The dip coater used in Example 1 was set to an immersion speed of 10 mm / sec, a stop time of 60 sec, and a pulling speed of 5 mm / sec.
The surface of the ITO substrate (26 × 10 × 1 mm) was subjected to ultrasonic cleaning using a surfactant and an organic solvent.
The ITO substrate is immersed in a dichloroethane solution in which 3% polyvinyl carbazole is dissolved under the above immersion conditions, and an aqueous solution in which 3% polyvinyl alcohol is dissolved is dropped onto the solution surface while the substrate is stopped in the immersion liquid. Next, a toluene solution in which 3% of polystyrene was dissolved in toluene was dropped, and phase separation consisting of three phases of dichloroethane / water / toluene was arranged. After the lapse of the stop time, the substrate was pulled up at 5 mm / sec.

一昼夜自然乾燥して得られたITO基板の断面をSEM観察したところ、ITO基板上にポリビニルカルバゾール層、ポリビニルアルコール層とポリスチレン層がそれぞれ薄い積層膜を形成していることが認められた。
各層の接着性は全く問題なかった。
When the cross section of the ITO substrate obtained by natural drying all day and night was observed by SEM, it was found that the polyvinyl carbazole layer, the polyvinyl alcohol layer, and the polystyrene layer each formed a thin laminated film on the ITO substrate.
There was no problem with the adhesion of each layer.

実施例1で用いたディップコーターを浸漬速度が1mm/sec、停止時間が60sec、引き上げ速度が10mm/secに設定した。
ITO基板(26×10×1mm)の表面を界面活性剤及び有機溶媒を用いて超音波洗浄を行った。
ITO基板を、ナイロンの3%を四塩化炭素溶液に溶かした最下相液中に上記浸漬条件下で浸漬し、基板が浸漬液中に停止している間に溶液表面に水、ポリスチレンの3%を酢酸エチル溶液に溶かした相分離液を順次に滴下させ、四塩化炭素/水/酢酸エチルの三相からなる相分離を配置した。上記停止時間の経過後に、基板を10mm/sec で引き上げた。
The dip coater used in Example 1 was set to an immersion speed of 1 mm / sec, a stop time of 60 sec, and a pulling speed of 10 mm / sec.
The surface of the ITO substrate (26 × 10 × 1 mm) was subjected to ultrasonic cleaning using a surfactant and an organic solvent.
The ITO substrate was immersed in the lowest phase solution in which 3% of nylon was dissolved in a carbon tetrachloride solution under the above immersion conditions. While the substrate stopped in the immersion solution, water and polystyrene 3 A phase separation solution in which% was dissolved in an ethyl acetate solution was dropped successively, and phase separation consisting of three phases of carbon tetrachloride / water / ethyl acetate was arranged. After the elapse of the stop time, the substrate was pulled up at 10 mm / sec.

一昼夜自然乾燥して得られたITO基板の断面をSEM観察したところ、ITO基板上にナイロン層とポリスチレン層がそれぞれ薄い積層膜を形成していることが認められた。
各層の接着性は全く問題なかった。
When the cross section of the ITO substrate obtained by natural drying overnight was observed by SEM, it was found that the nylon layer and the polystyrene layer each formed a thin laminated film on the ITO substrate.
There was no problem with the adhesion of each layer.

以上の実施例の結果によれば、薄膜形成時の最下相液及び相分離液として、液の相互の界面で互いに混じり合わないこと、相互に比重の差あること、そして、膜を形成する物質同士の親和力が大きいことの三つの条件を満たすものを用いること、そして、微速による浸漬処理の可能なディップコーターを用いることによって、基板上に目的とする薄い積層膜を同時に簡単に形成できることが分かった。また、基板を含む各層ないし各膜の間の接着性には全く問題がなかった。
得られた薄膜積層体は、適宜基板から剥離することも可能で、撥水撥油材料、接着剤、酸化防止膜、又は光・電子、バイオデバイス等の多様な有機薄膜の安価な製造法として期待できる。
According to the results of the above examples, as the lowermost phase liquid and the phase separation liquid at the time of forming the thin film, they do not mix with each other at the interface between the liquids, there is a difference in specific gravity, and a film is formed. By using a material that satisfies the three conditions of high affinity between substances, and using a dip coater that can be immersed at a low speed, the target thin laminated film can be easily formed on the substrate simultaneously. I understood. Moreover, there was no problem in the adhesion between each layer or each film including the substrate.
The obtained thin film laminate can be peeled off from the substrate as appropriate, as a cheap method for producing various organic thin films such as water / oil repellent materials, adhesives, antioxidant films, optical / electronic, biodevices, etc. I can expect.

以上の実施例1〜6に用いられた基材、最下層液、相分離液の名称と、実験により得られた結果を表1に示す。

Figure 2007260666
Table 1 shows the names of the base material, the lowermost layer liquid and the phase separation liquid used in Examples 1 to 6 and the results obtained by the experiment.
Figure 2007260666

Claims (7)

基材表面に2以上の積層薄膜を同時に形成する積層薄膜の同時形成方法であって、
前記積層薄膜の最下層を形成する分散液又は溶液の最下相液に浸漬された基材を停止させる工程と、
その停止している間に、該最下相液上に分散液、溶液又は微粒子の何れか一つを順次滴下又は散布して互いに分離する相分離液を形成する工程と、
該相分離液から基材を微速で引き上げる工程とから成ることを特徴とする積層薄膜の同時形成方法。
A method of simultaneously forming two or more laminated thin films on a substrate surface,
Stopping the substrate immersed in the lowermost phase liquid of the dispersion or solution forming the lowermost layer of the laminated thin film;
A step of forming a phase separation liquid that is separated from each other by dropping or spraying one of a dispersion liquid, a solution, or fine particles sequentially on the lowermost phase liquid while the suspension is stopped;
A method of simultaneously forming a laminated thin film comprising the step of pulling up the substrate from the phase separation liquid at a slow speed.
前記互いに分離する相分離液が比重差に応じて分離相を形成することを特徴とする請求項1に記載の積層薄膜の同時形成方法。   The method for simultaneously forming a laminated thin film according to claim 1, wherein the phase separation liquids separated from each other form a separated phase according to a specific gravity difference. 前記最下相液が、有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つから選ばれることを特徴とする請求項1又は2に記載の積層薄膜の同時形成方法。   2. The lowermost phase liquid is selected from any one of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution. 3. A method for simultaneously forming a laminated thin film according to 2. 前記相分離液が有機溶剤、水溶液、有機溶剤溶液、有機又は無機の微粒子、有機又は無機の微粒子分散水溶液、有機又は無機の微粒子分散有機溶剤溶液の何れか一つ以上から選ばれることを特徴とする請求項1又は2に記載の積層薄膜の同時形成方法。   The phase separation liquid is selected from any one or more of an organic solvent, an aqueous solution, an organic solvent solution, an organic or inorganic fine particle, an organic or inorganic fine particle dispersed aqueous solution, and an organic or inorganic fine particle dispersed organic solvent solution. The method for simultaneously forming a laminated thin film according to claim 1 or 2. 基材表面に形成される積層薄膜が、樹脂膜、微粒子膜又は微粒子を含む樹脂膜からなる2以上の多層薄膜であることを特徴とする請求項1〜4の何れか1項に記載の積層薄膜の同時形成方法。   The laminated thin film according to any one of claims 1 to 4, wherein the laminated thin film formed on the surface of the substrate is a resin film, a fine particle film, or two or more multilayer thin films comprising a resin film containing fine particles. A method for simultaneously forming thin films. 基材が無機材質、有機材質又は金属から選ばれ、かつ、ハニカム状、棒状又はシート状のものであることを特徴とする請求項1〜5の何れか1項に記載の積層薄膜の同時形成方法。   The simultaneous formation of the laminated thin film according to any one of claims 1 to 5, wherein the substrate is selected from an inorganic material, an organic material, or a metal, and has a honeycomb shape, a rod shape, or a sheet shape. Method. 基材が連続長尺のものであって、連続的に走行せしめることを特徴とする請求項1〜6の何れか1項に記載の積層薄膜の同時形成方法。   The method for simultaneously forming a laminated thin film according to any one of claims 1 to 6, wherein the base material is of a continuous length and is continuously run.
JP2007037378A 2006-03-02 2007-02-19 Simultaneous forming method for laminated thin film Withdrawn JP2007260666A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007037378A JP2007260666A (en) 2006-03-02 2007-02-19 Simultaneous forming method for laminated thin film
PCT/JP2007/062204 WO2008102465A1 (en) 2007-02-19 2007-06-18 Process for simultaneous formation of laminae

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006055720 2006-03-02
JP2007037378A JP2007260666A (en) 2006-03-02 2007-02-19 Simultaneous forming method for laminated thin film

Publications (1)

Publication Number Publication Date
JP2007260666A true JP2007260666A (en) 2007-10-11

Family

ID=38634177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037378A Withdrawn JP2007260666A (en) 2006-03-02 2007-02-19 Simultaneous forming method for laminated thin film

Country Status (1)

Country Link
JP (1) JP2007260666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515216A (en) * 2008-03-25 2011-05-19 コーニング インコーポレイテッド Substrate coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515216A (en) * 2008-03-25 2011-05-19 コーニング インコーポレイテッド Substrate coating method

Similar Documents

Publication Publication Date Title
EP1726188B1 (en) Highly efficient organic light-emitting device using substrate or electrode having nanosized half-spherical convex and method for preparing
Li et al. Recent progress in silver nanowire networks for flexible organic electronics
Liang et al. Self‐assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications
Matsushita et al. New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
KR101931831B1 (en) Graphene film transfer method, and method for manufacturing transparent conductive film
Jeong et al. Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications
Zhang et al. Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces
Wang et al. Fast photo‐switched wettability and color of surfaces coated with polymer brushes containing spiropyran
US8895844B2 (en) Solar cell comprising a plasmonic back reflector and method therefor
WO2004027889A1 (en) Material with pattern surface for use as template and process for producing the same
Lin et al. Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures
CN108132582A (en) Photo mask board
Zhang et al. Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods
CN108806885A (en) Flexible substrates-GO- metal nanometer line compound transparent electricity conductive films and preparation method thereof
CN101055830A (en) Making method of self-limited boundary film graphics
JP2007106118A (en) Multilayer structure and manufacturing process of the same
JP2007260666A (en) Simultaneous forming method for laminated thin film
Deng et al. Preparation of TiO2 nanoparticles two-dimensional photonic-crystals: a novel scattering layer of quantum dot-sensitized solar cells
Anitha et al. Fabrication of hierarchical porous anodized titania nano-network with enhanced active surface area: Ruthenium-based dye adsorption studies for dye-sensitized solar cell (DSSC) application
Hesse et al. Nanostructuring discotic molecules on ITO support
TWI383949B (en) Production Method of Transferable Carbon Nanotube Conductive Thin Films
JP6199059B2 (en) Organic electroluminescence device and method for manufacturing the same
Mitchell et al. Controlled Spreading Rates to Distribute Nanoparticles as Uniform Langmuir Films
CN102557014A (en) Method for forming patterns of graphene oxide and patterns of graphene

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511