JP2007257816A - Method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP2007257816A
JP2007257816A JP2006348656A JP2006348656A JP2007257816A JP 2007257816 A JP2007257816 A JP 2007257816A JP 2006348656 A JP2006348656 A JP 2006348656A JP 2006348656 A JP2006348656 A JP 2006348656A JP 2007257816 A JP2007257816 A JP 2007257816A
Authority
JP
Japan
Prior art keywords
filler
detected
recording
workpiece
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348656A
Other languages
Japanese (ja)
Other versions
JP4626611B2 (en
Inventor
Takahiro Suwa
孝裕 諏訪
Kazuhiro Hattori
一博 服部
Shuichi Okawa
秀一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006348656A priority Critical patent/JP4626611B2/en
Publication of JP2007257816A publication Critical patent/JP2007257816A/en
Application granted granted Critical
Publication of JP4626611B2 publication Critical patent/JP4626611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing magnetic recording media, by which a magnetic recording medium that has a recording layer formed in a concavo-convex pattern, a sufficiently flat surface, and good recording/reproducing properties can be manufactured. <P>SOLUTION: A first filling material 36 is deposited over a workpiece 10 having the recording layer 32 where recording elements 32A are formed as convex portions of the concavo-convex pattern so as to cover the recording elements 32A and to fill at least a part of a concave portion. A detection material 44 is deposited over the first filling material 36, a second filling material 45 is deposited over the detection material 44, a surface of the workpiece 10 is irradiated with a process gas to remove at least part of a deposited portion above the top surfaces of the recording elements 32A of the first filling material 36, the detection material 44 and the second filling material 45 to flatten the surface. In the flattening step, a component of the detection material 44 removed from and flying off the workpiece 10 is detected to stop the irradiation with the process gas based on a result of detecting the component of the detection material 44. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、凹凸パターンの記録層を有する磁気記録媒体の製造方法に関する。   The present invention relates to a method for manufacturing a magnetic recording medium having a recording layer with a concavo-convex pattern.

従来、ハードディスク等の磁気記録媒体は、記録層を構成する磁性粒子の微細化、材料の変更、ヘッド加工の微細化等の改良により著しい面記録密度の向上が図られており、今後も一層の面記録密度の向上が期待されているが、磁気ヘッドの加工限界、磁気ヘッドの記録磁界の広がりに起因する記録対象のトラックに隣り合うトラックへの誤った情報の記録、再生時のクロストークなどの問題が顕在化し、従来の改良手法による面記録密度の向上は限界にきている。   Conventionally, a magnetic recording medium such as a hard disk has been remarkably improved in surface recording density by improving the fineness of magnetic particles constituting the recording layer, changing the material, miniaturizing the head processing, and the like. Although the improvement in surface recording density is expected, the recording limit of the magnetic head, the recording of incorrect information on the track adjacent to the recording target track due to the expansion of the recording magnetic field of the magnetic head, the crosstalk during playback, etc. However, the improvement of the surface recording density by the conventional improvement method has reached the limit.

これに対し、一層の面記録密度の向上を実現可能である磁気記録媒体の候補として、記録層が凹凸パターンで形成され、記録要素が凹凸パターンの凸部として形成されたディスクリートトラックメディアや、パターンドメディアが提案されている。一方、ハードディスク等の磁気記録媒体ではヘッド浮上高さを安定させて良好な記録/再生特性を得るために表面の平坦性が重視される。従って、記録要素の間の凹部を充填材で充填し、記録要素及び充填材の上面を平坦化することが提案されている(例えば、特許文献1参照)。   On the other hand, as a candidate for a magnetic recording medium that can realize a further improvement in surface recording density, a discrete track medium in which a recording layer is formed in a concavo-convex pattern and a recording element is formed as a convex part of a concavo-convex pattern, or a pattern Media has been proposed. On the other hand, in a magnetic recording medium such as a hard disk, the flatness of the surface is important in order to stabilize the flying height of the head and obtain good recording / reproducing characteristics. Accordingly, it has been proposed to fill the recesses between the recording elements with a filler, and to flatten the upper surfaces of the recording elements and the filler (for example, see Patent Document 1).

記録層を凹凸パターンに加工する手法としては、ドライエッチング等の加工手法を利用しうる。凹部に充填材を充填し、記録要素及び充填材の上面を平坦化する手法としては、スパッタリング法、CVD(Chemical Vapor Deposition)法、IBD(Ion Beam Deposition)法等で凹凸パターンの記録層上に充填材を成膜して記録要素の間の凹部を充填してから、記録要素の上面よりも上側(基板と反対側)に成膜された余剰の充填材をドライエッチングで除去する手法を利用しうる。   As a method for processing the recording layer into the concavo-convex pattern, a processing method such as dry etching can be used. As a method of filling the concave portion with a filler and flattening the recording element and the upper surface of the filler, a sputtering method, a CVD (Chemical Vapor Deposition) method, an IBD (Ion Beam Deposition) method or the like is applied on the recording layer of the concave-convex pattern. Uses a method to remove the excess filler deposited on the upper side of the recording element (on the opposite side of the substrate) by dry etching after forming the filler and filling the recesses between the recording elements Yes.

記録層の良好な磁気特性を得るためには、記録要素の上面を加工しないように余剰の充填材を完全に除去することが好ましい。即ち、加工終点が記録要素の上面と一致するように平坦化工程のドライエッチングを制御することが好ましい。   In order to obtain good magnetic properties of the recording layer, it is preferable to completely remove excess filler so as not to process the upper surface of the recording element. That is, it is preferable to control the dry etching in the planarization process so that the processing end point coincides with the upper surface of the recording element.

ドライエッチングの場合、被加工体から除去されて飛散する記録要素の成分を二次イオン質量分析法(SIMS(Secondary−Ion Mass Spectrometry))や四重極質量分析法(QMS(Quadrupole Mass Spectrometry))により検出でき、記録要素の成分を検出して加工を停止することにより、加工終点のばらつきを記録要素の上面に対して数nmの範囲内に抑制することが可能である。   In the case of dry etching, secondary ion mass spectrometry (SIMS (Secondary-Ion Mass Spectrometry)) or quadrupole mass spectrometry (QMS (Quadrupole Mass Spectrometry)) is used to remove the components of the recording element that are removed from the workpiece and scatter. By detecting the component of the recording element and stopping the processing, it is possible to suppress the variation of the processing end point within a range of several nm with respect to the upper surface of the recording element.

しかしながら、二次イオン質量分析法や四重極質量分析法で記録要素の成分を検出するためには余剰の充填材だけでなく記録要素もエッチングする必要がある。従って、記録要素の上部近傍の数nm程度の部分が確実にエッチングされることとなり、磁気特性の悪化が懸念される。   However, in order to detect the components of the recording element by secondary ion mass spectrometry or quadrupole mass spectrometry, it is necessary to etch not only the excess filler but also the recording element. Therefore, a portion of about several nanometers near the upper part of the recording element is surely etched, and there is a concern about deterioration of magnetic characteristics.

これに対し、半導体の分野では、記録要素に相当するエッチングから保護すべき部分の上に被検出材を成膜し、被検出材の成分を検出することでエッチングを停止する技術が知られている(例えば、特許文献2参照)。   On the other hand, in the semiconductor field, a technique is known in which etching is stopped by forming a material to be detected on a portion to be protected from etching corresponding to a recording element and detecting a component of the material to be detected. (For example, refer to Patent Document 2).

磁気記録媒体の分野でもこの技術を利用し、凹凸パターンの記録層の上に被検出材を成膜し、エッチングが被検出材まで及び、除去されて飛散する被検出材の成分が検出され始めた直後、又は一旦検出された被検出材の成分が消失した直後にエッチングを停止することにより、エッチングが記録要素に及ばないように余剰の充填材を除去することが期待される。   Using this technology also in the field of magnetic recording media, a detection material is deposited on the recording layer of the concavo-convex pattern, etching reaches the detection material, and components of the detection material that are removed and scattered begin to be detected. It is expected to remove the excess filler so that the etching does not reach the recording element by stopping the etching immediately after the detection or immediately after the component of the detected material disappeared.

特開平9−97419号公報JP-A-9-97419 特開2003−078185号公報JP 2003-078185 A

しかしながら、被検出材が飛散し始めた直後は被検出材の成分の飛散量が少ないため、二次イオン質量分析法や四重極質量分析法では被検出材の成分が検出され始めたことを示すデータとノイズとの差異が明確でないことがあり、被検出材にエッチングが及んだ時点を明確に検出することが困難な場合がある。   However, immediately after the material to be detected begins to scatter, the amount of the component of the material to be detected is small, so that secondary ion mass spectrometry and quadrupole mass spectrometry have detected that the component of the material to be detected has started to be detected. The difference between the data shown and the noise may not be clear, and it may be difficult to detect clearly when the detected material has been etched.

一方、一旦検出された被検出材が実質的に消失したことを判定することは比較的容易であるが、二次イオン質量分析法や四重極質量分析法は除去されて飛散する被検出材の成分を検出する分析法であるため、実際に被検出材が被加工体から完全に除去される時点と被検出材が消失したと判定される時点との間には数秒のタイムラグがある。   On the other hand, it is relatively easy to determine that the detected material that has been detected has substantially disappeared, but secondary ion mass spectrometry and quadrupole mass spectrometry are removed and scattered. Therefore, there is a time lag of several seconds between the time when the material to be detected is completely removed from the workpiece and the time when it is determined that the material to be detected has disappeared.

従って、被検出材が消失したと判定した直後にエッチングを停止する場合、実際には被検出材が被加工体から完全に除去され、更にエッチングが進行して記録要素がエッチングされてしまうことがある。   Therefore, when the etching is stopped immediately after it is determined that the detected material has disappeared, the detected material is actually completely removed from the workpiece, and the etching further proceeds to etch the recording element. is there.

又、記録要素がエッチングされると記録要素の間の凹部を充填する充填材もエッチングされる。記録要素と充填材とは材料が異なりエッチングに対する加工速度も一般的に異なるため、記録要素と共に凹部を充填する充填材が更にエッチングされることで記録要素の上面と充填材の上面との間に数nm程度の段差が生じてしまうことがある。面記録密度が高いディスクリートトラックメディアや、パターンドメディアの場合、5〜15nm程度の微小なヘッドの浮上高さが想定されるため、数nm程度の段差であってもヘッドのクラッシュ等の問題の原因となりうる。尚、このような数nm程度の段差は半導体の製造工程においても同様に生じうるが、半導体の場合はヘッドのクラッシュ等の問題がないため数nm程度の段差は一般的に問題とならない。   Further, when the recording elements are etched, the filler filling the recesses between the recording elements is also etched. Since the recording element and the filler are different materials and the processing speed for etching is generally different, the filler filling the recesses together with the recording element is further etched so that the gap between the upper surface of the recording element and the upper surface of the filler A step of about several nanometers may occur. In the case of discrete track media with high surface recording density and patterned media, the flying height of a small head of about 5 to 15 nm is assumed, so even a step of about several nm may cause problems such as head crashes. It can be a cause. Such a step of about several nanometers can occur in the semiconductor manufacturing process as well, but in the case of a semiconductor, there is no problem such as a head crash, so that a step of about several nanometers is generally not a problem.

本発明は、以上の問題点に鑑みてなされたものであって、凹凸パターンの記録層を有し、表面が充分に平坦で、記録/再生特性が良好な磁気記録媒体を製造できる磁気記録媒体の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can provide a magnetic recording medium having a recording layer with a concavo-convex pattern, a sufficiently flat surface, and good recording / reproducing characteristics. It aims at providing the manufacturing method of.

本発明は、凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して記録要素を被覆すると共に記録要素の間の凹部を少なくとも部分的に充填し、第1の充填材の上に被検出材を成膜し、被検出材の上に第2の充填材を成膜し、被加工体の表面に加工用ガスを照射して第1の充填材、被検出材及び第2の充填材のうち記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化し、この平坦化工程において被加工体から除去されて飛散する被検出材の成分を検出し、該被検出材の成分の検出結果に基いて加工用ガスの照射を停止することにより、上記目的を達成するものである。   According to the present invention, a first filler is formed on a workpiece having a recording layer on which a recording element is formed as a convex part of a concavo-convex pattern to cover the recording element and at least a concave part between the recording elements is provided. Partially filling, forming a material to be detected on the first filler, forming a second filler on the material to be detected, and irradiating the surface of the workpiece with a processing gas Then, at least a part of the first filler, the material to be detected, and the second filler formed on the upper side of the recording element is removed to flatten the surface. The object is achieved by detecting the component of the material to be detected which is removed from the workpiece and scattered, and stopping the irradiation of the processing gas based on the detection result of the component of the material to be detected.

第1の充填材が記録要素と被検出材との間に成膜されているので、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行しても、第1の充填材により記録要素をエッチングから保護できる。   Since the first filling material is formed between the recording element and the detected material, the first filling is performed even if etching further proceeds after the detected material on the recording element is completely removed. The material can protect the recording element from etching.

又、第1の充填材を凹部の深さ以上の厚さで成膜する場合、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行し、記録要素の上の第1の充填材と共に記録要素の間の凹部を充填する第1の充填材がエッチングされても、記録要素の上でも凹部の上でも第1の充填材がエッチングされるので、記録要素と充填材とがエッチングされる場合のような段差は生じない。   In addition, when the first filler is formed with a thickness greater than the depth of the concave portion, the etching proceeds further after the detected material on the recording element is completely removed, and the first filler on the recording element. Even if the first filler that fills the recesses between the recording elements together with the filler is etched, the first filler is etched both on the recording elements and on the recesses. No step is produced as in the case of etching.

尚、第1の充填材を凹部の深さよりも薄く成膜する場合は凹部の上部は第2の充填材で充填され、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行すると、記録要素の上の第1の充填材と共に凹部を充填する第2の充填材がエッチングされるが、この場合も、第1の充填材、第2の充填材として同じ材料や平坦化工程のドライエッチングに対するエッチングレートが近い材料を選択することで、記録要素と充填材とがエッチングされる場合のような段差が生じにくくなり、表面を充分に平坦化できる。   When the first filler is deposited to be thinner than the depth of the recess, the upper portion of the recess is filled with the second filler, and etching is performed after the detected material on the recording element is completely removed. As it progresses, the first filler on the recording element and the second filler filling the recesses are etched, but in this case as well, the same material or planarization as the first filler and the second filler By selecting a material having a similar etching rate to the dry etching in the process, it becomes difficult to produce a step as in the case where the recording element and the filler are etched, and the surface can be sufficiently flattened.

又、ドライエッチングは凹部よりも凸部を選択的に早く除去するだけでなく、凸部の中でも端部が中央部よりも早く除去されるので、記録要素の上の被検出材は端部から除々に除去される。従って、記録要素の幅が広いと記録要素の中央部の上の被検出材にエッチングが及ぶ時点と記録要素の端部の上の被検出材にエッチングが及ぶ時点との時間差が大きくなり、ノイズと明確に区別できる程度に被検出材の飛散量が増大する時点のばらつきも大きくなる。このため、エッチングを目的の位置で高精度で停止させることが困難な場合がある。   In addition, the dry etching not only removes the convex portion selectively than the concave portion, but also removes the end portion of the convex portion earlier than the central portion. Gradually removed. Therefore, if the width of the recording element is wide, the time difference between the time when the material to be detected above the central part of the recording element is etched and the time when the material to be detected above the edge of the recording element is etched becomes large, and noise is increased. The variation at the time when the amount of scattered material to be detected increases to such an extent that it can be clearly distinguished from the above becomes large. For this reason, it may be difficult to stop the etching at a target position with high accuracy.

これに対し、凹部の中央部の上の被検出材にエッチングが及ぶ時点と凹部の端部の上の被検出材にエッチングが及ぶ時点との時間差は小さく、ノイズと明確に区別できる程度に被検出材の飛散量が増大する時点のばらつきも小さい。従って、第1の充填材を凹部の深さと同等又はこれよりも厚い厚さで成膜してから被検出材を成膜し、凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて平坦化工程のエッチングを停止すれば、エッチングを目的の位置で高精度で停止させることができる。   On the other hand, the time difference between the time when the etching is applied to the material to be detected above the central portion of the recess and the time when the etching is applied to the material to be detected above the end of the recess is small, so that the time can be clearly distinguished from noise. The variation at the time when the amount of detection material scattered increases is small. Therefore, after forming the first filler with a thickness equal to or greater than the depth of the recess, the detected material is deposited, and the components of the detected material that are removed from the recess and scattered are detected. If the etching in the planarization process is stopped based on the result, the etching can be stopped at a target position with high accuracy.

即ち、次のような本発明により、上記目的を達成することができる。   That is, the above-described object can be achieved by the following present invention.

(1)基板及び該基板の上に所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して前記記録要素を被覆すると共に該記録要素の間の凹部を少なくとも部分的に充填する第1の充填材成膜工程と、前記第1の充填材の上に被検出材を成膜する被検出材成膜工程と、前記被検出材の上に第2の充填材を成膜する第2の充填材成膜工程と、前記被加工体の表面に加工用ガスを照射して前記第1の充填材、前記被検出材及び前記第2の充填材のうち前記記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化する平坦化工程と、をこの順で実行し、前記平坦化工程において前記被加工体から除去されて飛散する前記被検出材の成分を検出し、該被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。 (1) A first filler is formed on a substrate and a workpiece having a recording layer formed on the substrate in a predetermined concavo-convex pattern and having recording elements formed as convex portions of the concavo-convex pattern. A first filler film forming step for covering the recording elements and at least partially filling the recesses between the recording elements; and a detection target for forming a detection material on the first filler A material film forming step, a second filler film forming step for forming a second filler on the material to be detected, and a processing gas on the surface of the workpiece to irradiate a processing gas. A flattening step of flattening the surface by removing at least a part of a portion of the filler, the material to be detected and the second filler formed above the upper surface of the recording element; The components of the detected material that are removed from the workpiece and scattered in the planarization step are executed in order. Out method of manufacturing a magnetic recording medium characterized by stopping the irradiation of the processing gas on the basis of the detection result of the component of 該被 detection material.

(2) (1)において、前記第1の充填材成膜工程において前記凹凸パターンの凹部を完全に充填するように前記第1の充填材を前記凹部の深さ以上の厚さで成膜し、前記平坦化工程において前記被検出材のうち前記凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。 (2) In (1), the first filler is deposited with a thickness equal to or greater than the depth of the recess so as to completely fill the recess of the uneven pattern in the first filler deposition step. In the flattening step, irradiation of the processing gas is stopped based on a detection result of a component of the detected material that is removed from the concave portion of the detected material and scattered. Manufacturing method.

(3) (1)又は(2)において、前記被検出材成膜工程において前記第1の充填材の上に非酸化物を成膜して前記被検出材を形成し、前記第1の充填材及び前記第2の充填材の少なくとも一方として酸化物を用いることを特徴とする磁気記録媒体の製造方法。 (3) In (1) or (2), in the detected material film forming step, the detected material is formed by forming a non-oxide film on the first filler, and the first filling is performed. A method of manufacturing a magnetic recording medium, wherein an oxide is used as at least one of a material and the second filler.

(4) (3)において、前記被検出材成膜工程において前記被検出材を前記第1の充填材の上に分散させて、且つ、該第1の充填材を完全に被覆しないように薄く成膜することを特徴とする磁気記録媒体の製造方法。 (4) In (3), in the detected material film forming step, the detected material is dispersed on the first filler, and is thin so as not to completely cover the first filler. A method of manufacturing a magnetic recording medium, comprising forming a film.

(5) (1)乃至(4)のいずれかにおいて、前記平坦化工程において二次イオン質量分析法及び四重極質量分析法のいずれかにより前記被検出材の成分を検出することを特徴とする磁気記録媒体の製造方法。 (5) In any one of (1) to (4), in the planarization step, a component of the detected material is detected by either secondary ion mass spectrometry or quadrupole mass spectrometry. A method for manufacturing a magnetic recording medium.

尚、本出願において、「所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層」とは、連続記録層が所定のパターンで多数の記録要素に分割された記録層の他、例えばトラックの形状の記録要素同士が端部で連続する記録層や記録要素が螺旋状の渦巻き形状である記録層のように基板上に部分的に形成される記録層、凹部が厚さ方向の途中まで形成され基板側の面が連続した記録層、凹凸パターンの基板や下層の表面に倣って形成された連続した記録層、凹凸パターンの基板や下層の凸部の上面及び凹部の底面に分割されて形成された記録層も含む意義で用いることとする。   In this application, “a recording layer formed with a predetermined concavo-convex pattern and having a recording element formed as a convex portion of the concavo-convex pattern” means that the continuous recording layer is divided into a large number of recording elements with a predetermined pattern. In addition to the recording layer, for example, a recording layer in which the recording elements in the form of tracks are continuous at the end or a recording layer in which the recording elements are partly formed on the substrate, such as a recording layer in which the recording element has a spiral shape, a recess Is formed in the middle of the thickness direction and the substrate side surface is continuous, the continuous recording layer formed following the surface of the concave / convex pattern substrate or the lower layer, the upper surface of the concave / convex pattern substrate or the lower convex portion, and The term “recording layer” is used to include a recording layer formed by being divided on the bottom surface of the recess.

又、本出願において「記録要素の上面」という用語は、記録層における基板と反対側の面という意義で用いることとする。   In this application, the term “the upper surface of the recording element” is used to mean the surface of the recording layer opposite to the substrate.

又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気のみを用いるハードディスク、フロッピー(登録商標)ディスク、磁気テープ等に限定されず、磁気と光を併用するMO(Magneto Optical)等の光磁気記録媒体、磁気と熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。   In addition, the term “magnetic recording medium” in the present application is not limited to a hard disk, a floppy (registered trademark) disk, a magnetic tape, or the like that uses only magnetism for recording and reading information, and MO (Magneto) using both magnetism and light. It is used in the meaning including a magneto-optical recording medium such as Optical) and a heat-assisted recording medium using both magnetism and heat.

本発明によれば、凹凸パターンの記録層を有し、表面が充分に平坦で、記録/再生特性が良好な磁気記録媒体を製造できる。   According to the present invention, a magnetic recording medium having a recording layer with a concavo-convex pattern, a sufficiently flat surface, and good recording / reproducing characteristics can be manufactured.

以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図1に示されるような基板12の上に連続記録層20等を形成してなる被加工体10の出発体に加工を施すことにより、連続記録層20を図2に示されるように多数の記録要素32Aに分割して所定の凹凸パターンの記録層32を形成し、記録層32の上に第1の充填材36等を成膜して記録要素32Aの間の凹部34を充填し、記録要素32Aの上面よりも上側の余剰の第1の充填材36等を除去して表面を平坦化し、磁気記録媒体30を製造する方法に関するものであり、余剰の第1の充填材36等を除去して表面を平坦化する工程に特徴を有している。他の工程については本第1実施形態の理解のために特に重要とは思われないため説明を適宜省略する。   In the first embodiment of the present invention, the continuous recording layer 20 is formed by processing the starting body of the workpiece 10 formed by forming the continuous recording layer 20 and the like on the substrate 12 as shown in FIG. As shown in FIG. 2, the recording layer 32 having a predetermined concavo-convex pattern is formed by dividing into a large number of recording elements 32A, and a first filler 36 or the like is formed on the recording layer 32 to form the recording elements 32A. The present invention relates to a method of manufacturing the magnetic recording medium 30 by filling the recesses 34 between them and removing the excess first filler 36 and the like above the upper surface of the recording element 32A to flatten the surface. It has a feature in the process of removing the first filler 36 and the like to flatten the surface. The other steps are not considered particularly important for the understanding of the first embodiment, and thus the description thereof will be omitted as appropriate.

図1に示される被加工体10の出発体は、基板12の上に、下地層14、反強磁性層15、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24、レジスト層26がこの順で形成された構成である。   The starting body of the workpiece 10 shown in FIG. 1 includes a base layer 14, an antiferromagnetic layer 15, a soft magnetic layer 16, an orientation layer 18, a continuous recording layer 20, and a first mask layer 22 on a substrate 12. The second mask layer 24 and the resist layer 26 are formed in this order.

基板12の材料は、ガラス、Al23等である。下地層14は、厚さが2〜40nmで、材料はTa等である。反強磁性層15は、厚さが5〜50nmで、材料はPtMn合金、RuMn合金等である。軟磁性層16は、厚さが50〜300nmで、材料はFe合金又はCo合金である。配向層18は、厚さが2〜40nmで、材料は非磁性のCoCr合金、Ti、Ru、RuとTaの積層体、MgO等である。 The material of the substrate 12 is glass, Al 2 O 3 or the like. The underlayer 14 has a thickness of 2 to 40 nm and is made of Ta or the like. The antiferromagnetic layer 15 has a thickness of 5 to 50 nm and is made of a PtMn alloy, a RuMn alloy, or the like. The soft magnetic layer 16 has a thickness of 50 to 300 nm and is made of an Fe alloy or a Co alloy. The alignment layer 18 has a thickness of 2 to 40 nm, and is made of a nonmagnetic CoCr alloy, Ti, Ru, a laminate of Ru and Ta, MgO, or the like.

連続記録層20は、厚さが5〜30nmで、材料はCoCr合金である。第1のマスク層22は、厚さが3〜50nmで、材料はC(炭素)である。第2のマスク層24は、厚さが1〜30nmで、材料はNiである。レジスト層26は、厚さが30〜300nmで材料は樹脂である。   The continuous recording layer 20 has a thickness of 5 to 30 nm and is made of a CoCr alloy. The first mask layer 22 has a thickness of 3 to 50 nm and is made of C (carbon). The second mask layer 24 has a thickness of 1 to 30 nm and is made of Ni. The resist layer 26 has a thickness of 30 to 300 nm and is made of resin.

磁気記録媒体30は、垂直記録型のディスクリートトラックメディアである。   The magnetic recording medium 30 is a perpendicular recording type discrete track medium.

記録層32の記録要素32Aは、データ領域において同心円弧状のトラックの形状で径方向に微細な間隔で多数形成されている。尚、記録要素32Aはサーボ領域においてコンタクトホールを含む所定のサーボパターンで形成されている。   A large number of recording elements 32A of the recording layer 32 are formed in the data region in the shape of concentric arc-shaped tracks at fine intervals in the radial direction. The recording element 32A is formed with a predetermined servo pattern including a contact hole in the servo area.

第1の充填材36としては、SiO2等の非磁性の酸化物を用いることができる。 As the first filler 36, a nonmagnetic oxide such as SiO 2 can be used.

記録要素32A及び第1の充填材36の上には保護層38、潤滑層40がこの順で形成されている。保護層38の材料は、ダイヤモンドライクカーボンと呼称される硬質炭素膜である。潤滑層40の材料はPFPE(パーフロロポリエーテル)である。   On the recording element 32A and the first filler 36, a protective layer 38 and a lubricating layer 40 are formed in this order. The material of the protective layer 38 is a hard carbon film called diamond-like carbon. The material of the lubricating layer 40 is PFPE (perfluoropolyether).

次に、図3に示すフローチャートに沿って磁気記録媒体30の製造方法を説明する。   Next, a method for manufacturing the magnetic recording medium 30 will be described along the flowchart shown in FIG.

まず、被加工体作製工程を実行する(S102)。具体的には、図1に示される被加工体10の出発体を加工し、図5に示されるような基板12の上に凹凸パターンで形成されて該凹凸パターンの凸部として記録要素32Aが形成された記録層32を有する被加工体10を作製する。   First, a workpiece manufacturing process is executed (S102). Specifically, the starting body of the workpiece 10 shown in FIG. 1 is processed, and the recording element 32A is formed as a convex / concave pattern on the substrate 12 as shown in FIG. A workpiece 10 having the formed recording layer 32 is produced.

被加工体10の出発体は基板12の上に、下地層14、反強磁性層15、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24をこの順でスパッタリング法により形成し、更にレジスト層26をスピンコート法で塗布することにより得られる。   The starting body of the workpiece 10 is a substrate 12, an underlayer 14, an antiferromagnetic layer 15, a soft magnetic layer 16, an orientation layer 18, a continuous recording layer 20, a first mask layer 22, and a second mask layer. 24 is formed by sputtering in this order, and further a resist layer 26 is applied by spin coating.

この被加工体10の出発体のレジスト層26に転写装置(図示省略)を用いて、図4に示されるように記録層32の凹凸パターンに相当する凹凸パターンをナノ・インプリント法により転写し、O2又はO3ガスを反応ガスとする反応性イオンビームエッチングにより、凹部底部のレジスト層26を除去する。尚、レジスト層26を露光・現像して、レジスト層26を凹凸パターンに加工してもよい。 Using a transfer device (not shown), a concavo-convex pattern corresponding to the concavo-convex pattern of the recording layer 32 is transferred to the resist layer 26 as a starting body of the workpiece 10 by a nano-imprint method as shown in FIG. The resist layer 26 at the bottom of the recess is removed by reactive ion beam etching using O 2 or O 3 gas as a reactive gas. The resist layer 26 may be exposed and developed to process the resist layer 26 into a concavo-convex pattern.

次に、Arガスを用いたイオンビームエッチングにより、凹部底部の第2のマスク層24を除去する。更に、SF6ガスを用いた反応性イオンエッチングにより、凹部底部の第1のマスク層22を除去する。次に、Arガスを用いたイオンビームエッチングにより、凹部底部の連続記録層20を除去し、連続記録層20を多数の記録要素32Aに分割する。尚、記録要素32Aの上に残存する第1のマスク層は、SF6ガスを用いた反応性イオンエッチングにより除去する。 Next, the second mask layer 24 at the bottom of the recess is removed by ion beam etching using Ar gas. Further, the first mask layer 22 at the bottom of the recess is removed by reactive ion etching using SF 6 gas. Next, the continuous recording layer 20 at the bottom of the recess is removed by ion beam etching using Ar gas, and the continuous recording layer 20 is divided into a large number of recording elements 32A. Note that the first mask layer remaining on the recording element 32A is removed by reactive ion etching using SF 6 gas.

これにより、図5に示されるような、基板12及び基板12の上に凹凸パターンで形成されて該凹凸パターンの凸部として記録要素32Aが形成された記録層32を有する被加工体10が得られる。   As a result, as shown in FIG. 5, the substrate 10 and the workpiece 10 having the recording layer 32 formed on the substrate 12 in a concavo-convex pattern and having the recording elements 32A formed as the convex portions of the concavo-convex pattern are obtained. It is done.

次に、第1の充填材成膜工程を実行する(S104)。具体的には、バイアススパッタリング法により図6に示されるように、記録要素32Aを被覆すると共に凹部34を完全に充填するように記録層32の上に第1の充填材36を凹部34の深さ以上の厚さ(凹部34における厚さ)で成膜する。第1の充填材36の厚さは凹部34の深さに対して0〜10nm厚いことが好ましい。第1の充填材36の粒子は被加工体10の表面に一様に堆積しようとするので、表面が凹凸形状となるが、被加工体10にバイアス電圧を印加することにより、スパッタリングガスは被加工体10の方向に付勢されて堆積済みの第1の充填材36に衝突し、堆積済みの第1の充填材36の一部をエッチングする。このエッチング作用は、堆積済みの第1の充填材36のうち、突出した部分をその端部から他部(周囲の突出していない部分)よりも早く選択的に除去する傾向があるので、記録要素32Aの上の表面の凸部は記録要素32Aよりも幅が減少する。成膜作用がエッチング作用を上回ることで表面の凹凸が抑制されつつ成膜が進行する。これにより、表面の凹凸がある程度抑制された形状で第1の充填材36が記録要素32Aを覆うように成膜される。   Next, a first filler film forming step is executed (S104). Specifically, as shown in FIG. 6 by bias sputtering, the first filler 36 is formed on the recording layer 32 so as to cover the recording element 32A and completely fill the concave portion 34. The film is formed with a thickness greater than that (thickness in the recess 34). The thickness of the first filler 36 is preferably 0 to 10 nm thicker than the depth of the recess 34. Since the particles of the first filler 36 try to be uniformly deposited on the surface of the workpiece 10, the surface has an uneven shape. By applying a bias voltage to the workpiece 10, the sputtering gas is It is urged in the direction of the workpiece 10 and collides with the deposited first filler 36, and a part of the deposited first filler 36 is etched. This etching action tends to selectively remove the protruding portion of the deposited first filler 36 from its end portion earlier than the other portion (the surrounding non-protruding portion). The convex portion on the surface above 32A has a smaller width than the recording element 32A. When the film forming action exceeds the etching action, film formation proceeds while suppressing surface irregularities. As a result, the first filler 36 is formed in a shape in which unevenness on the surface is suppressed to some extent so as to cover the recording element 32A.

次に、被検出材成膜工程を実行する(S106)。具体的には、スパッタリング法により図7に示されるように、第1の充填材36の上に被検出材44を成膜する。被検出材44は、記録層32や第1の充填材36、第2の充填材45を構成する元素と異なる元素を含む例えばNb等の非酸化物を成膜して形成することができる。被検出材44は、第1の充填材36の表面の凹凸に倣って一様に成膜される。尚、本第1実施形態では、第1の充填材36を完全に被覆するように被検出材44を成膜する。被検出材44の厚さは製造効率等を考慮すると5nm以下であることが好ましい。   Next, a detected material film forming step is executed (S106). Specifically, as shown in FIG. 7, the detection target material 44 is formed on the first filler 36 by sputtering. The detected material 44 can be formed by depositing a non-oxide such as Nb containing an element different from the elements constituting the recording layer 32, the first filler 36, and the second filler 45. The material to be detected 44 is uniformly formed following the irregularities on the surface of the first filler 36. In the first embodiment, the detected material 44 is formed so as to completely cover the first filler 36. The thickness of the material to be detected 44 is preferably 5 nm or less in consideration of manufacturing efficiency and the like.

Nb等の非酸化物は、酸化物である第1の充填材36と接触すると、下面の部分が第1の充填材36中の酸素が拡散することで酸化される。   When the non-oxide such as Nb comes into contact with the first filler 36 that is an oxide, the lower surface portion is oxidized by the diffusion of oxygen in the first filler 36.

次に、第2の充填材成膜工程を実行する(S108)。具体的には、第1の充填材成膜工程(S104)と同様にバイアススパッタリング法により、図8に示されるように被検出材44の上に第2の充填材45を成膜する。第2の充填材45としては第1の充填材36と同様にSiO等の非磁性の酸化物を用いることができる。酸化物である第2の充填材45が被検出材44の上面に接触して成膜されることで、被検出材44の上面に第2の充填材45中の酸素が拡散し、被検出材44の上面の部分が酸化される。即ち、被検出材44は、図9に拡大して示されるように、上面44A及び下面44Bの近傍の部分が酸化される。 Next, a second filler film forming step is executed (S108). Specifically, the second filler 45 is deposited on the detected material 44 as shown in FIG. 8 by bias sputtering as in the first filler deposition step (S104). As the second filler 45, similarly to the first filler 36, a nonmagnetic oxide such as SiO 2 can be used. When the second filler 45, which is an oxide, is formed in contact with the upper surface of the detected material 44, oxygen in the second filler 45 diffuses on the upper surface of the detected material 44, and the detected material is detected. The upper surface portion of the material 44 is oxidized. In other words, as shown in the enlarged view of FIG. 9, the detected material 44 is oxidized in the vicinity of the upper surface 44A and the lower surface 44B.

次に、平坦化工程を実行する(S110)。具体的には、イオンビームエッチングにより、図10中に矢印で示されるように、被加工体10の表面の法線に対して傾斜した方向からArガス等の加工用ガスを照射し、第1の充填材36、被検出材44及び第2の充填材45のうち記録要素32Aの上面よりも上側(基板12と反対側)に成膜された部分を除去する。このように被加工体10の表面の法線に対して傾斜した方向から加工用ガスを照射することで、凸部を凹部よりも速く除去する傾向が高くなる。   Next, a planarization process is performed (S110). Specifically, as shown by arrows in FIG. 10, ion beam etching irradiates a processing gas such as Ar gas from a direction inclined with respect to the normal line of the surface of the workpiece 10 to obtain the first The portion formed on the upper side (opposite side of the substrate 12) of the recording element 32A of the filler 36, the detected material 44, and the second filler 45 is removed. Thus, by irradiating the processing gas from a direction inclined with respect to the normal line of the surface of the workpiece 10, the tendency to remove the convex portion faster than the concave portion is increased.

この際、二次イオン質量分析法、四重極質量分析法等により被加工体10から除去されて飛散する被検出材44の成分を検出しつつイオンビームエッチングを制御する。   At this time, ion beam etching is controlled while detecting components of the material 44 to be detected that are removed from the workpiece 10 and scattered by secondary ion mass spectrometry, quadrupole mass spectrometry, or the like.

被検出材44が飛散し始めた直後は被検出材44の成分の飛散量が少なく、被検出材44の成分の検出を示すデータとノイズとの差異は明確でないことがある。   Immediately after the material to be detected 44 starts to scatter, the amount of scattering of the component of the material to be detected 44 is small, and the difference between the data indicating the detection of the component of the material to be detected 44 and noise may not be clear.

又、イオンビームエッチングのようなドライエッチングは凹部よりも凸部を選択的に早く除去するだけでなく、凸部の中でも端部が中央部よりも早く除去され、記録要素32Aの上の被検出材44は端部から除々に除去される。記録要素32Aの幅が広いと記録要素32Aの中央部の上の被検出材44にエッチングが及ぶ時点と記録要素32Aの端部の上の被検出材44にエッチングが及ぶ時点との時間差が大きくなり、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきも大きくなる。従って、記録要素32Aの幅が広い場合には、記録要素32Aの上から除去されて飛散する被検出材44の成分を検出したことに基いて加工用ガスの照射を停止すると、エッチングを目的の位置で高精度で停止させることが困難である。   In addition, dry etching such as ion beam etching not only removes the convex portion selectively rather than the concave portion, but also removes the end portion of the convex portion earlier than the central portion, thereby detecting the detection on the recording element 32A. The material 44 is gradually removed from the ends. When the width of the recording element 32A is wide, there is a large time difference between the time when the detected material 44 on the center of the recording element 32A is etched and the time when the detected material 44 on the end of the recording element 32A is etched. Therefore, the variation at the time when the amount of scattering of the detected material 44 increases to such an extent that it can be clearly distinguished from noise also increases. Therefore, when the width of the recording element 32A is wide, if the irradiation of the processing gas is stopped based on the detection of the component of the detected material 44 that is removed from the recording element 32A and scattered, the etching is performed. It is difficult to stop with high accuracy at the position.

これに対し、エッチングが更に進行し、図11に示されるように凹部34の上の被検出材44が露出すると、凹部34の上の被検出材44は凹部34の幅に拘わらず大部分が同時にエッチングされ、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが小さいので、凹部34の上から除去されて飛散する被検出材44の成分を検出したことに基いて加工用ガスの照射を停止すれば、エッチングを目的の位置で高精度で停止させることができる。   On the other hand, when the etching further proceeds and the detected material 44 on the concave portion 34 is exposed as shown in FIG. 11, most of the detected material 44 on the concave portion 34 is irrespective of the width of the concave portion 34. Since the variation at the time when the amount of scattering of the detected material 44 increases to such an extent that it can be clearly distinguished from noise is detected at the same time, the component of the detected material 44 that is removed from the concave portion 34 and scattered is detected. If the processing gas irradiation is stopped based on this, etching can be stopped at a target position with high accuracy.

図12に示されるように、被検出材44の飛散量は、エッチング開始後次第に増加するが記録要素32Aの上の被検出材44が除去されると一旦減少する。エッチングが凹部34の上の被検出材44に及ぶと被検出材44の飛散量は再び増加して凹部34の上の被検出材44が除去されると急速に減少する。従って、後半の被検出材44の飛散量の増減に基いて、凹部34の上の被検出材44にエッチングが及んだことを検知できる。   As shown in FIG. 12, the scattering amount of the detected material 44 gradually increases after the start of etching, but once decreases when the detected material 44 on the recording element 32A is removed. When the etching reaches the detected material 44 on the concave portion 34, the amount of scattering of the detected material 44 increases again, and rapidly decreases when the detected material 44 on the concave portion 34 is removed. Therefore, it can be detected that etching has reached the detected material 44 on the recess 34 based on the increase or decrease in the amount of scattering of the detected material 44 in the latter half.

本第1実施形態では、被検出材44のうち凹部34の上から除去されて飛散する被検出材44の成分の検出結果に基いて加工用ガスの照射を停止し、エッチングを停止する。例えば、凹部34の上の被検出材44にエッチングが及んで被検出材44の成分の検出量が極大値となり、更にエッチングが進行して被検出材44が実質的に消失したと判定された時点で加工用ガスの照射を停止し、エッチングを停止する。   In the first embodiment, the irradiation of the processing gas is stopped based on the detection result of the component of the detected material 44 that is removed from the concave portion 34 of the detected material 44 and scattered, and the etching is stopped. For example, it is determined that the detected material 44 on the concave portion 34 is etched and the detected amount of the component of the detected material 44 reaches the maximum value, and further, the etching progresses and the detected material 44 is substantially lost. At that time, irradiation of the processing gas is stopped, and etching is stopped.

又、被検出材44の成分の検出量の予め定めた基準値に基いて、検出量が該基準値に達した時点で加工用ガスの照射を停止してもよいし、その時点から一定時間後に加工用ガスの照射を停止するようにしてもよい。   Further, based on a predetermined reference value of the detected amount of the component of the detected material 44, the irradiation of the processing gas may be stopped when the detected amount reaches the reference value, and for a certain time from that point. You may make it stop irradiation of the processing gas later.

尚、二次イオン質量分析法及び四重極質量分析法は、被検出材を構成する単体の元素がエッチングされているときよりもその酸化物がエッチングされている時の方が被検出材を構成する元素の検出量が大きくなる。本第1実施形態では、第2の充填材45が酸化物であり、被検出材44の上面44Aの近傍の部分が酸化されているので、被検出材44が飛散し始める時点を検出しやすくなっている。又、第1の充填材45も酸化物であり、被検出材44の下面44Bの近傍の部分も酸化されているので、被検出材44が消失する時点も検出しやすくなっている。   In addition, in the secondary ion mass spectrometry and the quadrupole mass spectrometry, the detected material is more easily etched when the oxide is etched than when the single element constituting the detected material is etched. The detection amount of the constituent elements increases. In the first embodiment, since the second filler 45 is an oxide and the portion in the vicinity of the upper surface 44A of the detected material 44 is oxidized, it is easy to detect when the detected material 44 starts to scatter. It has become. Further, since the first filler 45 is also an oxide, and the portion near the lower surface 44B of the detected material 44 is oxidized, it is easy to detect when the detected material 44 disappears.

このように、被検出材44における上面44A及び下面44Bの近傍の部分だけを酸化させるためには、被検出材44は3nm以上であることが好ましい。尚、被検出材44の上面44A及び下面44Bの近傍の部分だけを酸化させる場合、被検出材44の飛散量は、記録要素32Aの上の被検出材44がエッチングされる間又は凹部34の上の被検出材44がエッチングされる間のそれぞれにおいて2回増減し、全体として被検出材44の飛散量が3〜4回増減することもあるが、この場合も、記録要素32Aの上の被検出材44がエッチングされる際の被検出材44の飛散量の増減と凹部34の上の被検出材44がエッチングされる際の被検出材44の飛散量の増減とを識別することは容易であり、凹部34の上の被検出材44にエッチングが及んだことを検知できる。   As described above, in order to oxidize only portions of the detected material 44 near the upper surface 44A and the lower surface 44B, the detected material 44 is preferably 3 nm or more. When only the portions in the vicinity of the upper surface 44A and the lower surface 44B of the detected material 44 are oxidized, the amount of scattering of the detected material 44 depends on whether the detected material 44 on the recording element 32A is etched or in the recess 34. While the upper detection material 44 is etched, it increases and decreases twice, and as a whole, the scattering amount of the detection material 44 may increase and decrease three to four times. It is possible to identify the increase / decrease in the amount of scattering of the detected material 44 when the detected material 44 is etched and the increase / decrease in the amount of scattering of the detected material 44 when the detected material 44 on the recess 34 is etched. It is easy to detect that the material to be detected 44 on the recess 34 has been etched.

一方、被検出材44を例えば1nmよりも薄く成膜すれば、被検出材44の成分の検出量は凹部34の上の被検出材44がエッチングされる後半において1回だけ極大(最大)となるので、被検出材44の飛散量が極大値に達する時点の判定が容易である。   On the other hand, if the detected material 44 is formed to be thinner than 1 nm, for example, the detected amount of the component of the detected material 44 is maximized (maximum) only once in the latter half of the etching of the detected material 44 on the recess 34. Therefore, it is easy to determine when the amount of scattering of the detection target material 44 reaches the maximum value.

尚、二次イオン質量分析法や四重極質量分析法は、除去されて飛散する物質を検出するため、実際にその物質が除去される時点とその物質が検出される時点との間にタイムラグがある。従って、被検出材44の成分の検出結果に基いてエッチングを停止しても、実際には被検出材44が完全に除去された後にエッチングが更に進行することがある。   Since secondary ion mass spectrometry and quadrupole mass spectrometry detect substances that are removed and scattered, there is a time lag between when the substance is actually removed and when the substance is detected. There is. Therefore, even if the etching is stopped based on the detection result of the component of the detected material 44, the etching may actually further proceed after the detected material 44 is completely removed.

しかしながら、第1の充填材36は凹部34の深さよりも厚く成膜されており、被検出材44の下面は記録要素32Aの上面よりも0〜10nm上側(基板12と反対側)に位置するので、被検出材44が完全に除去された後にエッチングを停止しても、記録要素32Aはエッチングから保護される。尚、万が一、エッチングが記録要素32Aの上面まで及んだとしても、記録要素32Aの加工量は磁気特性に対する影響を無視しうる程度の微小量に抑制される。   However, the first filler 36 is formed to be thicker than the depth of the recess 34, and the lower surface of the detected material 44 is located 0 to 10 nm above the upper surface of the recording element 32A (on the side opposite to the substrate 12). Therefore, even if the etching is stopped after the detected material 44 is completely removed, the recording element 32A is protected from the etching. Even if the etching reaches the upper surface of the recording element 32A, the processing amount of the recording element 32A is suppressed to a minute amount so that the influence on the magnetic characteristics can be ignored.

又、被検出材44が完全に除去された後に更にエッチングが進行し、記録要素32の上の第1の充填材36と共に凹部34を充填する第1の充填材36をエッチングしても、凹部34の上でも記録要素32Aの上でも第1の充填材36がエッチングされるので、記録要素と充填材とをエッチングする場合のような段差が生じにくく、表面を充分に平坦化できる。   Even if the etching progresses further after the material to be detected 44 is completely removed and the first filler 36 filling the recess 34 together with the first filler 36 on the recording element 32 is etched, the recess Since the first filler 36 is etched both on the recording element 32A and on the recording element 32A, a step difference is hardly generated as in the case where the recording element and the filler are etched, and the surface can be sufficiently flattened.

被検出材44が完全に除去されてからエッチングの進行が止まる時点までの間にエッチングされる被検出材44の下の第1の充填材36の厚さの分だけ、第1の充填材36を凹部34の深さよりも厚く成膜することで、記録要素32Aの上面のエッチングを防止又は磁気特性に対する影響を無視しうる程度に充分に抑制できる。   The first filler 36 is equal to the thickness of the first filler 36 under the detected material 44 to be etched after the detected material 44 is completely removed until the etching stops. By forming a film thicker than the depth of the concave portion 34, it is possible to prevent the etching of the upper surface of the recording element 32A or to sufficiently suppress the influence on the magnetic characteristics.

次に、CVD法により記録要素32A及び第1の充填材36の上面に1〜5nmの厚さで保護層38を成膜し(S112)、更に、ディッピング法により保護層38の上に1〜2nmの厚さで潤滑層40を成膜する(S114)。これにより、前記図2に示される磁気記録媒体30が完成する。   Next, a protective layer 38 is formed with a thickness of 1 to 5 nm on the upper surface of the recording element 32A and the first filler 36 by the CVD method (S112), and further, 1 to 3 is formed on the protective layer 38 by the dipping method. The lubricating layer 40 is formed with a thickness of 2 nm (S114). Thereby, the magnetic recording medium 30 shown in FIG. 2 is completed.

次に、本発明の第2実施形態について説明する。   Next, a second embodiment of the present invention will be described.

前記第1実施形態では被検出材成膜工程(S106)において第1の充填材36を完全に被覆するように被検出材44を成膜していたのに対し、本第2実施形態は、被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜することを特徴としている。他の工程については前記第1実施形態と同様であるので第1実施形態と同一符号を用いることとして説明を適宜省略する。   In the first embodiment, the detected material 44 is formed so as to completely cover the first filler 36 in the detected material film forming step (S106), whereas in the second embodiment, It is characterized in that the material to be detected 44 is dispersed on the first filler 36 and is thinly formed so as not to completely cover the first filler 36. Since other steps are the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used, and the description thereof is omitted as appropriate.

このように被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜すると、図13に示されるように、被検出材44は連続膜とはならず、被検出材44の大部分が第1の充填材36又は第2の充填材45からの酸素の拡散により酸化されるので被検出材44の検出量が大きくなる。   In this way, when the material to be detected 44 is dispersed on the first filler 36 and thinly formed so as not to completely cover the first filler 36, as shown in FIG. The detection material 44 does not become a continuous film, and most of the detection material 44 is oxidized by the diffusion of oxygen from the first filler 36 or the second filler 45, so that the detection amount of the detection material 44 is small. growing.

又、このように第1の充填材36を薄く成膜することで、被検出材44の成分の検出量は凹部34の上の被検出材44がエッチングされる後半において1回だけ極大(最大)となるので、検出量が最大値に達する時点の判定が容易である。更に、検出量が極大(最大)となるのが1回だけのため、この点でも検出量が大きくなる。   In addition, by thinly forming the first filler 36 as described above, the detected amount of the component of the detected material 44 is maximized only once in the latter half of the etching of the detected material 44 on the recess 34 (maximum). Therefore, it is easy to determine when the detected amount reaches the maximum value. Furthermore, since the detection amount becomes maximum (maximum) only once, the detection amount also increases at this point.

即ち、二次イオン質量分析法、四重極質量分析法による被検出材44の検出量が大きくなり、被検出材44を例えば1nmよりも薄く成膜しても、エッチングが被検出材44まで及んだことを明確に検出することができる。被検出材44の検出量を大きくするためには被検出材44を0.3〜1nmの厚さで成膜することが好ましく、0.4〜0.6nmの厚さで成膜することがより好ましい。尚、このように薄く成膜される被検出材44の厚さを実際に測定することは困難であり、上記の被検出材44の厚さは成膜レート及び成膜時間から算出される厚さの目標値を示したものである。   That is, the detection amount of the material to be detected 44 by the secondary ion mass spectrometry and the quadrupole mass spectrometry becomes large, and even if the material to be detected 44 is formed to be thinner than 1 nm, the etching is performed up to the material to be detected 44. It is possible to clearly detect what has been reached. In order to increase the detection amount of the material to be detected 44, it is preferable to form the material to be detected 44 with a thickness of 0.3 to 1 nm, and preferably with a thickness of 0.4 to 0.6 nm. More preferred. Note that it is difficult to actually measure the thickness of the material to be detected 44 thus thinly formed, and the thickness of the material to be detected 44 is a thickness calculated from the film formation rate and the film formation time. This shows the target value.

次に、本発明の第3実施形態について説明する。   Next, a third embodiment of the present invention will be described.

前記第1実施形態では第1の充填材成膜工程(S104)において凹部34を完全に充填するように記録層32の上に第1の充填材36を凹部34の深さ以上の厚さで成膜し、凹部34の上の被検出材44の成分の検出結果に基いて加工用ガスの照射を停止していたのに対し、本第3実施形態は、図14に示されるように記録層32の上に第1の充填材36を凹部34の深さよりも薄く成膜し、記録要素32Aの上の被検出材44の成分の検出結果に基いて加工用ガスの照射を停止することを特徴としている。尚、凹部34は、第1の充填材36、被検出材44及び第2の充填材45で充填される。他の工程については前記第1実施形態と同様であるので第1実施形態と同一符号を用いることとして説明を適宜省略する。   In the first embodiment, in the first filler film forming step (S104), the first filler 36 is formed on the recording layer 32 with a thickness greater than the depth of the recess 34 so that the recess 34 is completely filled. While the film was deposited and the irradiation of the processing gas was stopped based on the detection result of the component of the detected material 44 on the concave portion 34, the third embodiment records as shown in FIG. The first filler 36 is deposited on the layer 32 to be thinner than the depth of the recess 34, and the irradiation of the processing gas is stopped based on the detection result of the component of the detected material 44 on the recording element 32A. It is characterized by. The recess 34 is filled with the first filler 36, the material to be detected 44 and the second filler 45. Since other steps are the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used, and the description thereof is omitted as appropriate.

本第3実施形態では、平坦化工程(S110)において図15に示されるように記録要素32Aの上の被検出材44までエッチングが及んだ時点で、除去されて飛散する被検出材44の成分を検出し、エッチングを停止する。即ち、記録要素32Aの上の被検出材44までエッチングが及んだことを検出してエッチングを停止する。   In the third embodiment, as shown in FIG. 15, in the planarization step (S110), when the detection material 44 on the recording element 32A is etched, it is removed and scattered. The component is detected and the etching is stopped. That is, the etching is stopped by detecting that the etching has reached the material 44 to be detected on the recording element 32A.

本第3実施形態でも、第1の充填材36が記録要素32Aと被検出材44との間に成膜されているので、記録要素32Aの上の被検出材44が完全に除去されてから更にエッチングが進行しても、第1の充填材36により記録要素32Aをエッチングから保護できる。   Also in the third embodiment, since the first filler 36 is formed between the recording element 32A and the detected material 44, the detected material 44 on the recording element 32A is completely removed. Even if the etching further proceeds, the recording element 32A can be protected from the etching by the first filler 36.

又、本第3実施形態でも、記録要素32Aの上の被検出材44が完全に除去されてから更にエッチングが進行し、記録要素32Aの上の第1の充填材36と凹部34を充填する第2の充填材45とがエッチングされても、記録要素32Aの上でも凹部34の上でもSiO2(第1の充填材36、第2の充填材45)がエッチングされるので、記録要素と充填材とがエッチングされる場合のような段差が生じにくく、表面を充分に平坦化できる。 Also in the third embodiment, after the detected material 44 on the recording element 32A is completely removed, the etching further proceeds to fill the first filler 36 and the recess 34 on the recording element 32A. Even if the second filler 45 is etched, SiO 2 (the first filler 36 and the second filler 45) is etched both on the recording element 32A and on the recess 34. A level difference is unlikely to occur when the filler is etched, and the surface can be sufficiently flattened.

又、本第3実施形態でも、非酸化物である被検出材44の上面44A及び下面44Bの近傍の部分が第1の充填材36、第2の充填材45からの酸素の拡散により酸化されるので、二次イオン質量分析法、四重極質量分析法による被検出材44の検出量が大きくなり、エッチングが被検出材44に及んだことを検出できる。   Also in the third embodiment, portions near the upper surface 44A and the lower surface 44B of the non-oxide detected material 44 are oxidized by the diffusion of oxygen from the first filler 36 and the second filler 45. Therefore, the detection amount of the material to be detected 44 by the secondary ion mass spectrometry and the quadrupole mass spectrometry is increased, and it can be detected that the etching has reached the material 44 to be detected.

本第3実施形態でも、前記第2実施形態のように、第1の充填材成膜工程(S104)において被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜してもよい。   Also in the third embodiment, as in the second embodiment, the detection material 44 is dispersed on the first filler 36 in the first filler film forming step (S104), and the first filler The filler 36 may be thinly formed so as not to be completely covered.

尚、前記第1〜第3実施形態において、被検出材44としてNbが例示されているが、被検出材として例えばAl、Y、Zr、Rh、Ag、Tb、Ta、Au、Bi、Ti、In、W等の他の元素を用いてもよい。又、被検出材44は記録層32を構成する元素と異なる単体の元素からなる材料であってもよいし、これらの元素やNbの中から選択される複数の元素からなる材料であってもよい。又、被検出材として、例えばこれらの元素やNbの酸化物を用いてもよい。このように被検出材として酸化物を用いることで、二次イオン質量分析法及び四重極質量分析法による検出量を大きくする効果が得られる。二次イオン質量分析法及び四重極質量分析法による検出が比較的容易なNb等の原子番号が大きい金属元素は、酸化物よりも酸化されていない状態で成膜する方が成膜が容易であるので、前記第1〜第3実施形態のように第1の充填材及び第2の充填材の少なくとも一方として酸化物を用い、第1の充填材や第2の充填材からの酸素の拡散により被検出材を酸化することが好ましい。尚、被検出材44の一部又は全部が酸化物である場合も単体の元素の質量数に基づいて飛散する被検出材44を検出する。又、Zr、Ag、Ta、Ti、In、Wについては複数の同位体のうち、自然界における存在比率が最も高い同位体の質量数に基づいて飛散する被検出材44を検出することが好ましい。   In the first to third embodiments, Nb is exemplified as the material to be detected 44. However, as the material to be detected, for example, Al, Y, Zr, Rh, Ag, Tb, Ta, Au, Bi, Ti, Other elements such as In and W may be used. The detected material 44 may be a material composed of a single element different from the elements constituting the recording layer 32, or may be a material composed of a plurality of elements selected from these elements and Nb. Good. Further, for example, these elements or oxides of Nb may be used as the material to be detected. Thus, by using an oxide as a material to be detected, an effect of increasing the detection amount by secondary ion mass spectrometry and quadrupole mass spectrometry can be obtained. Metal elements with a large atomic number, such as Nb, which are relatively easy to detect by secondary ion mass spectrometry and quadrupole mass spectrometry, are easier to form when they are not oxidized than oxides. Therefore, as in the first to third embodiments, an oxide is used as at least one of the first filler and the second filler, and oxygen from the first filler and the second filler is reduced. It is preferable to oxidize the material to be detected by diffusion. Even when a part or all of the detected material 44 is an oxide, the detected material 44 scattered is detected based on the mass number of a single element. For Zr, Ag, Ta, Ti, In, and W, it is preferable to detect the material to be detected 44 scattered based on the mass number of the isotope having the highest abundance ratio in the natural world among a plurality of isotopes.

又、前記第1〜第3実施形態において、第1の充填材36及び第2の充填材45はいずれもSiO2であるが、第1の充填材36及び第2の充填材45として異なる酸化物を用いても良い。又、第1の充填材36及び第2の充填材45の一方として非酸化物を用いてもよい。又、第1の充填材36及び第2の充填材45の両方が非酸化物でもよい。前記第3実施形態のように第2の充填材が凹部34の上部を充填する場合、第1の充填材36及び第2の充填材45は、平坦化工程(S110)のドライエッチングに対するエッチングレートが近い材料であることが好ましい。 In the first to third embodiments, the first filler 36 and the second filler 45 are both SiO 2 , but different oxidation is used as the first filler 36 and the second filler 45. You may use things. Further, a non-oxide may be used as one of the first filler 36 and the second filler 45. Further, both the first filler 36 and the second filler 45 may be non-oxides. In the case where the second filler fills the upper portion of the recess 34 as in the third embodiment, the first filler 36 and the second filler 45 have an etching rate for dry etching in the planarization step (S110). Is preferably a close material.

尚、前記第3実施形態では、第2の充填材45が凹部34を充填しているのに対し、前記第1及び第2実施形態では、第1の充填材36が凹部34の深さ以上の厚さで成膜され、第2の充填材45は凹部34を充填してないが、このような場合も、本出願では便宜上「第2の充填材」という用語を用いることとする。   In the third embodiment, the second filler 45 fills the recess 34, whereas in the first and second embodiments, the first filler 36 is greater than the depth of the recess 34. The second filler 45 does not fill the concave portion 34, but in this case, the term “second filler” is used in this application for convenience.

又、前記第1〜第3実施形態において、平坦化工程(S110)のドライエッチングとして、Arガスを用いたイオンビームエッチングを例示しているが、Kr、Xe等の他の希ガスを用いたイオンビームエッチングを採用してもよく、更に、例えばSF6、CF4、C26等のハロゲン系の反応ガスを用いた反応性イオンエッチング、反応ガスと希ガスとの混合ガスを用いた反応性イオンビームエッチング等の他のドライエッチングを採用してもよい。 In the first to third embodiments, ion beam etching using Ar gas is exemplified as dry etching in the planarization step (S110). However, other rare gases such as Kr and Xe are used. Ion beam etching may be employed, and for example, reactive ion etching using a halogen-based reaction gas such as SF 6 , CF 4 , C 2 F 6, or a mixed gas of a reaction gas and a rare gas is used. Other dry etching such as reactive ion beam etching may be employed.

又、前記第1〜第3実施形態において、平坦化工程(S110)において、被加工体10から除去されて飛散する被検出材44の成分を検出する方法として、二次イオン質量分析法や四重極質量分析法が例示されているが、被加工体10から除去されて飛散する被検出材44の成分を高精度で検出できれば他の方法を用いてもよい。   In the first to third embodiments, as a method of detecting the component of the detection target material 44 that is removed from the workpiece 10 and scattered in the planarization step (S110), secondary ion mass spectrometry or fourth method is used. Although the quadrupole mass spectrometry is exemplified, other methods may be used as long as the components of the detected material 44 that are removed from the workpiece 10 and scattered can be detected with high accuracy.

又、前記第1〜第3実施形態において、バイアススパッタリング法により第1の充填材36、第2の充填材45を成膜しているが、例えば、バイアスパワーを印加しないスパッタリング法や、CVD法、IBD法等の他の成膜手法を用いて、第1の充填材36、第2の充填材45を成膜してもよい。   In the first to third embodiments, the first filler 36 and the second filler 45 are formed by the bias sputtering method. For example, the sputtering method or the CVD method in which no bias power is applied. The first filler 36 and the second filler 45 may be deposited using other deposition methods such as the IBD method.

又、前記第1〜第3実施形態において、平坦化工程(S110)だけで被加工体10の表面を平坦化しているが、平坦化工程(S110)の後に例えば他の層を成膜し、更にドライエッチング等による平坦化加工を行ってもよい。   In the first to third embodiments, the surface of the workpiece 10 is flattened only by the flattening step (S110), but after the flattening step (S110), for example, another layer is formed, Further, planarization by dry etching or the like may be performed.

又、前記第1〜第3実施形態において、連続記録層20(記録要素32A)の材料はCoCr合金であるが、例えば、鉄族元素(Co、Fe、Ni)を含む他の合金、これらの積層体等の他の材料を用いてもよい。   In the first to third embodiments, the material of the continuous recording layer 20 (recording element 32A) is a CoCr alloy. For example, other alloys containing iron group elements (Co, Fe, Ni), these alloys Other materials such as a laminate may be used.

又、前記第1〜第3実施形態において、連続記録層20の下に下地層14、反強磁性層15、軟磁性層16、配向層18が形成されているが、連続記録層20の下の層の構成は、磁気記録媒体の種類に応じて適宜変更すればよい。例えば、下地層14、反強磁性層15、軟磁性層16、配向層18のうち一又は二以上の層を省略してもよい。又、基板上に連続記録層を直接形成してもよい。   In the first to third embodiments, the underlayer 14, the antiferromagnetic layer 15, the soft magnetic layer 16, and the orientation layer 18 are formed under the continuous recording layer 20. The layer configuration may be changed as appropriate according to the type of the magnetic recording medium. For example, one or more of the underlayer 14, the antiferromagnetic layer 15, the soft magnetic layer 16, and the orientation layer 18 may be omitted. Further, the continuous recording layer may be directly formed on the substrate.

又、前記第1〜第3実施形態において、磁気記録媒体30は記録層32等が基板12の片面だけに形成されているが、基板の両面に記録層を備える両面記録式の磁気記録媒体の製造にも本発明は適用可能である。   In the first to third embodiments, the magnetic recording medium 30 has the recording layer 32 or the like formed only on one side of the substrate 12. However, the magnetic recording medium 30 is a double-sided recording type magnetic recording medium having recording layers on both sides of the substrate. The present invention can also be applied to manufacturing.

又、前記第1〜第3実施形態において、磁気記録媒体30は記録層32がトラックの径方向に微細な間隔で分割された垂直記録型のディスクリートトラックメディアであるが、記録層がトラックの周方向(セクタの方向)に微細な間隔で分割された磁気ディスク、トラックの径方向及び周方向の両方向に微細な間隔で分割されたパターンドメディア、凹凸パターンの連続した記録層を有するPERM(Pre−Embossed Recording Medium)タイプの磁気ディスク、記録層が螺旋形状をなす磁気ディスクの製造についても本発明は当然適用可能である。又、面内記録型の記録層を有する磁気記録媒体の製造に対しても本発明を適用可能である。又、MO等の光磁気ディスク、磁気と熱を併用する熱アシスト型の磁気ディスク、更に、磁気テープ等のディスク形状以外の凹凸パターンの記録層を有する磁気記録媒体の製造に対しても本発明は適用可能である。   In the first to third embodiments, the magnetic recording medium 30 is a perpendicular recording type discrete track medium in which the recording layer 32 is divided at fine intervals in the track radial direction. PERM (Pre) having a magnetic disk divided in a fine interval in the direction (sector direction), patterned media divided in a fine interval in both the radial direction and the circumferential direction of the track, and a continuous recording layer of concavo-convex patterns The present invention is naturally applicable to the manufacture of a magnetic disk of the −Embossed Recording Medium) type and a magnetic disk in which the recording layer has a spiral shape. The present invention is also applicable to the manufacture of a magnetic recording medium having an in-plane recording type recording layer. The present invention is also applicable to the manufacture of magneto-optical disks such as MO, heat-assisted magnetic disks using both magnetism and heat, and magnetic recording media having a recording layer with a concavo-convex pattern other than the disk shape, such as magnetic tape. Is applicable.

上記第1及び第2実施形態のとおりA〜Jの9種類のサンプルを10枚ずつ作製した。具体的には、まず直径が48mmの基板12及び下記の凹凸パターンの記録層32を有する90枚の被加工体10を用意した。   Nine types of samples A to J were produced 10 by 10 as in the first and second embodiments. Specifically, 90 workpieces 10 each having a substrate 12 having a diameter of 48 mm and a recording layer 32 having the following uneven pattern were prepared.

トラックピッチ :150nm
凸部の幅 : 90nm
凹部の幅 : 60nm
凹凸の段差(凹部34の深さ): 18nm
凹凸パターンを形成した範囲:中心から半径16〜18mmの範囲
Track pitch: 150 nm
Width of convex part: 90 nm
Recess width: 60 nm
Concavity and convexity step (depth of recess 34): 18 nm
Range in which the concave / convex pattern is formed: a range of 16 to 18 mm in radius from the center

次に、バイアススパッタリングにより、これら被加工体10の記録層32の上に第1の充填材36を凹部34の深さよりも厚く成膜して凹部34を完全に充填した。バイアススパッタリングの条件は以下のとおりである。尚、第1の充填材36はSiO2を用いた。 Next, the first filler 36 was deposited on the recording layer 32 of the workpiece 10 to be thicker than the depth of the recess 34 by bias sputtering to completely fill the recess 34. The conditions for bias sputtering are as follows. Incidentally, the first sealing member 36 with SiO 2.

成膜パワー(SiOのターゲットに印加するパワー) :RF500W
被加工体10に印加するバイアスパワー :RF150W
チャンバ内圧力 :0.3Pa
ターゲットと被加工体との距離 :250nm
成膜厚さ(凹部34上の第1の充填材36の厚さ) :20nm
Deposition power (power applied to SiO 2 target): RF 500 W
Bias power applied to workpiece 10: RF 150W
Chamber pressure: 0.3 Pa
Distance between target and workpiece: 250 nm
Film thickness (thickness of the first filler 36 on the recess 34): 20 nm

次に、スパッタリングにより、第1の充填材36の上に被検出材44としてNbを成膜した。被検出材44の成膜厚さはA〜J毎に異なる厚さとした。A〜J毎の被検出材44の厚さを表1に示す。尚、これらの被検出材44の成膜厚さは成膜レート及び成膜時間から算出した値である。   Next, a film of Nb was formed on the first filler 36 as the material to be detected 44 by sputtering. The film thickness of the detected material 44 was different for each of A to J. Table 1 shows the thickness of the detected material 44 for each of A to J. The film thicknesses of these materials to be detected 44 are values calculated from the film formation rate and the film formation time.

次に、バイアススパッタリングにより、これら被加工体10の被検出材44の上に第2の充填材45を成膜した。第2の充填材45としてSiOを用いた。バイアススパッタリングの条件は以下のとおりである。 Next, a second filler 45 was formed on the material to be detected 44 of the workpiece 10 by bias sputtering. SiO 2 was used as the second filler 45. The conditions for bias sputtering are as follows.

成膜パワー(SiOのターゲットに印加するパワー):RF500W
被加工体10に印加するバイアスパワー :RF150W
チャンバ内圧力 :0.3Pa
ターゲットと被加工体との距離 :250nm
成膜厚さ(凹部34上の第2の充填材45の厚さ) :40nm
Deposition power (power applied to SiO 2 target): RF 500 W
Bias power applied to workpiece 10: RF 150W
Chamber pressure: 0.3 Pa
Distance between target and workpiece: 250 nm
Film thickness (thickness of second filler 45 on recess 34): 40 nm

次に、イオンビームエッチングにより記録要素32Aの上面よりも上側の余剰の第1の充填材36、被検出材44及び第2の充填材45を除去し、表面を平坦化した。イオンビームエッチングの条件は以下のとおりである。尚、イオンビームの入射角は被加工体10の表面に対する角度である。   Next, the surplus first filler 36, detected material 44 and second filler 45 above the upper surface of the recording element 32A were removed by ion beam etching, and the surface was flattened. The ion beam etching conditions are as follows. The incident angle of the ion beam is an angle with respect to the surface of the workpiece 10.

イオンビームの入射角:約2°
ビーム電圧 :700V
ビーム電流 :1100mA
サプレッサー電圧 :400V
Arガス流量 :11sccm
チャンバ内圧力 :0.04Pa
Ion beam incident angle: approx. 2 °
Beam voltage: 700V
Beam current: 1100 mA
Suppressor voltage: 400V
Ar gas flow rate: 11 sccm
Chamber pressure: 0.04 Pa

この際、二次イオン質量分析法により、被加工体10から除去されて飛散するNb(被検出材44の成分)を検出し、Nbのカウント数が実質的に消失した時点でイオンビームエッチングを停止した。ここでNbのカウント数とは、Nbの飛散量に対応する値である。尚、Nbのカウント数のバックグラウンド値は、最表面の第2の充填材45だけをエッチングしている間でもノイズにより2000(count/sec)程度の値を示すことがあるため、(凹部34の上の被検出材44がエッチングされる後半において)Nbのカウント数が極大となった後、極大値の半分まで低下した時点を被検出材44が実質的に消失した時点とし、この時点でイオンビームエッチングを停止した。尚、H、Jについては極大値が2つ存在するため、後の極大値の半分まで低下した時点を被検出材44が実質的に消失した時点とした。   At this time, the secondary ion mass spectrometry detects Nb (component of the material to be detected 44) that is removed from the workpiece 10 and scatters, and ion beam etching is performed when the Nb count number substantially disappears. Stopped. Here, the Nb count number is a value corresponding to the scattering amount of Nb. Note that the background value of the Nb count number may show a value of about 2000 (count / sec) due to noise even while only the outermost second filler 45 is being etched. After the Nb count number reaches a maximum (in the latter half of the etching of the detection material 44 on the substrate), the time when the detection material 44 has substantially disappeared is defined as the time when the detection material 44 has substantially disappeared. Ion beam etching was stopped. Since there are two maximum values for H and J, the time when the detected material 44 substantially disappeared was the time when the value decreased to half of the subsequent maximum value.

A〜Jの平坦化に要した時間及びNbのカウント数が実質的に消失する直前のNbのカウント数の極大値を表1に示す。又、A〜Jのうち、A〜C、F〜Hの平坦化において検出されたNbのカウント数と時間との関係を図16に示す。尚、図16中の符号A〜C、F〜Hは、これらを付した曲線がそれぞれA〜C、F〜Hのデータであることを示す。又、図16において、横軸の0点は、イオンビームエッチングによる平坦化の加工を開始した時点ではなく、凹部の上の被検出材44が検出され始めた時点よりも少し前の時点である。即ち、図16は、記録要素32Aの上の被検出材44が除去された後のグラフである。   Table 1 shows the time required for flattening A to J and the maximum value of the Nb count immediately before the Nb count disappears substantially. FIG. 16 shows the relationship between the count number of Nb detected in the flattening of A to C and F to H among A to J and time. In addition, the codes A to C and F to H in FIG. 16 indicate that the curves with these are the data of A to C and F to H, respectively. In FIG. 16, the zero point on the horizontal axis is not the time when the flattening process by ion beam etching is started, but the time slightly before the time when the detected material 44 on the recess starts to be detected. . That is, FIG. 16 is a graph after the detected material 44 on the recording element 32A is removed.

平坦化後、AFM(Atomic Force Microscope)により、A〜Jの各サンプルの記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差を測定した。測定結果を表1に示す。尚、表1に示される段差は、A〜Jにおける10枚のサンプルの段差の相加平均値である。又、各サンプルの段差及びA〜J毎の10枚のサンプルの段差の標準偏差を表2に示す。表2に示される各サンプルの段差は各サンプルの複数の部位における記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差の相加平均値である。又、表1、表2において記録要素の上面が第1の充填材36の上面よりも高い場合をプラス、低い場合をマイナスで示す。   After flattening, the step between the upper surface of the recording element 32A of each sample A to J and the upper surface of the first filler 36 filling the recess 34 was measured by AFM (Atomic Force Microscope). The measurement results are shown in Table 1. In addition, the level | step difference shown in Table 1 is an arithmetic mean value of the level | step difference of 10 samples in AJ. Table 2 shows the standard deviation of the level difference of each sample and the level difference of 10 samples for each of A to J. The level difference of each sample shown in Table 2 is an arithmetic average value of the level difference between the upper surface of the recording element 32A and the upper surface of the first filler 36 filling the concave portion 34 in a plurality of portions of each sample. In Tables 1 and 2, the case where the upper surface of the recording element is higher than the upper surface of the first filler 36 is shown as plus, and the case where it is lower is shown as minus.

Figure 2007257816
Figure 2007257816

Figure 2007257816
Figure 2007257816

上記第3実施形態のとおり1種類(K)の10枚のサンプルを作製した。尚、被加工体10の記録層32の凹凸パターンは上記実施例1のA〜Jと同じである。又、製造条件についても上記実施例1のA〜Jと共通であるものが多いので共通の項目については説明を省略する。   Ten types (K) of 10 samples were produced as in the third embodiment. The concave / convex pattern of the recording layer 32 of the workpiece 10 is the same as A to J in the first embodiment. In addition, since there are many manufacturing conditions that are common to A to J of the first embodiment, description of common items is omitted.

凹凸パターンの記録層32を有する10枚の被加工体10を用意し、これら被加工体10の記録層32の上に第1の充填材36を凹部34の深さよりも薄く成膜した。具体的には、第1の充填材36を2nmの厚さ(凹部34上の第1の充填材36の厚さ)で成膜した。   Ten workpieces 10 having a recording layer 32 with a concavo-convex pattern were prepared, and a first filler 36 was formed on the recording layer 32 of the workpiece 10 to be thinner than the depth of the recesses 34. Specifically, the first filler 36 was formed with a thickness of 2 nm (the thickness of the first filler 36 on the recess 34).

次に、スパッタリングにより、第1の充填材36の上に被検出材44を0.5nmの厚さで成膜した。   Next, the material to be detected 44 was formed to a thickness of 0.5 nm on the first filler 36 by sputtering.

次に、バイアススパッタリングにより、これら被加工体10の被検出材44の上に第2の充填材45を58nmの厚さで成膜して凹部34を完全に充填した。   Next, the second filling material 45 was formed in a thickness of 58 nm on the material to be detected 44 of the workpiece 10 by bias sputtering to completely fill the recess 34.

次に、イオンビームエッチングにより記録要素32Aの上面よりも上側の余剰の第1の充填材36、被検出材44及び第2の充填材45を除去し、表面を平坦化した。   Next, the surplus first filler 36, detected material 44 and second filler 45 above the upper surface of the recording element 32A were removed by ion beam etching, and the surface was flattened.

この際、実施例1と同様に二次イオン質量分析法により、被加工体10から除去されて飛散するNb(被検出材44の成分)を検出し、Nbのカウント数が実質的に消失した時点でイオンビームエッチングを停止した。   At this time, Nb (component of the material to be detected 44) that was removed from the workpiece 10 and scattered was detected by secondary ion mass spectrometry in the same manner as in Example 1, and the count number of Nb substantially disappeared. At that time, ion beam etching was stopped.

平坦化後、AFMにより、Kの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。   After planarization, the step between the upper surface of the recording element 32A of each sample of K and the upper surface of the second filler 45 filling the concave portion 34 was measured by AFM. The measurement results and the like are shown in Table 1 and Table 2 as in Example 1.

上記実施例1のEに対し、記録層32の凹凸パターンが異なる1種類(L)の10枚のサンプルを作製した。具体的には、実施例1のEよりも記録要素32Aの幅が広い下記の凹凸パターンの記録層32を有するサンプルを作製した。   One type (L) of ten samples, in which the concave / convex pattern of the recording layer 32 is different from E in Example 1, was prepared. Specifically, a sample having a recording layer 32 having the following concavo-convex pattern in which the width of the recording element 32A is wider than E of Example 1 was prepared.

トラックピッチ :300nm
凸部の幅 :180nm
凹部の幅 :120nm
凹凸の段差(凹部34の深さ): 18nm
凹凸パターンを形成した範囲 :中心から半径16〜18mmの範囲
Track pitch: 300nm
Width of convex part: 180 nm
Recess width: 120 nm
Concavity and convexity step (depth of recess 34): 18 nm
Range where uneven pattern is formed: Range of radius 16-18mm from the center

尚、他の条件については上記実施例1のEと同じである。   The other conditions are the same as E in Example 1 above.

平坦化後、AFMにより、Lの各サンプルの記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。   After flattening, the step between the upper surface of the recording element 32A of each sample of L and the upper surface of the first filler 36 filling the recess 34 was measured by AFM. The measurement results and the like are shown in Table 1 and Table 2 as in Example 1.

上記実施例2のKに対し、記録層32の凹凸パターンが上記実施例3のLと同じであり、記録要素32Aの幅がKよりも広い1種類(M)の10枚のサンプルを作製した。他の条件については上記実施例2のKと同じである。   With respect to K in Example 2, ten samples of one type (M) in which the uneven pattern of the recording layer 32 is the same as L in Example 3 and the width of the recording element 32A is wider than K were prepared. . Other conditions are the same as K in the second embodiment.

平坦化後、AFMにより、Mの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。   After planarization, the step between the upper surface of the recording element 32A of each sample of M and the upper surface of the second filler 45 filling the concave portion 34 was measured by AFM. The measurement results and the like are shown in Table 1 and Table 2 as in Example 1.

[比較例]
上記実施例2のKに対し、第1の充填材36を成膜しないで、被検出材44を記録層32の上に0.5nmの厚さで直接成膜し、この被検出材44の上に第2の充填材45を60nmの厚さで直接成膜した。他の条件は上記実施例2のKと同様として1種類(X)の10枚のサンプルを作製した。
[Comparative example]
With respect to K in Example 2 described above, the first material 36 is not formed, and the detected material 44 is directly formed on the recording layer 32 with a thickness of 0.5 nm. A second filler 45 was directly formed thereon with a thickness of 60 nm. The other conditions were the same as in Example 2 above, and 10 samples of one type (X) were produced.

平坦化後、AFMにより、Xの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を実施例1と同様に測定した。測定結果等を上記実施例1と同様に表1及び表2に示す。   After planarization, the step between the upper surface of the recording element 32A of each sample of X and the upper surface of the second filler 45 filling the concave portion 34 was measured in the same manner as in Example 1 by AFM. The measurement results and the like are shown in Table 1 and Table 2 as in Example 1.

表1に示されるように、比較例のXは表面の段差が1.9nmで大きかった。これは被検出材44が完全に除去された後もエッチングが更に進行し、記録要素32Aの上面及び凹部34を充填する第2の充填材45の上面がエッチングされたためと考えられる。従って、記録要素32Aがエッチングされたことによる磁気特性の劣化が懸念される。   As shown in Table 1, X of the comparative example had a large surface level difference of 1.9 nm. This is presumably because the etching further progressed after the material to be detected 44 was completely removed, and the upper surface of the recording element 32A and the upper surface of the second filler 45 filling the recess 34 were etched. Therefore, there is a concern about the deterioration of magnetic characteristics due to the etching of the recording element 32A.

これに対し、実施例1〜4のサンプルA〜Mはいずれも、表面の段差が±0.3nmの範囲に抑制されていた。これは、記録要素32の上面の位置付近でエッチングが高精度で停止されたためと考えられる。即ち、実施例1〜4によれば記録要素32Aの上面の加工を防止又は磁気特性への影響を無視しうる程度に抑制しつつ記録要素32A及び第1の充填材36(又は第2の充填材45)の上面を充分に平坦化できることが確認された。   On the other hand, the samples A to M of Examples 1 to 4 all had a surface level difference of ± 0.3 nm. This is presumably because the etching was stopped with high accuracy near the position of the upper surface of the recording element 32. That is, according to the first to fourth embodiments, the recording element 32A and the first filler 36 (or the second filling) are prevented while preventing the processing of the upper surface of the recording element 32A or suppressing the influence on the magnetic characteristics to be negligible. It was confirmed that the upper surface of the material 45) can be sufficiently flattened.

又、実施例1のサンプルA〜Jのうち、被検出材44の成膜厚さが0.3〜1nmであるサンプルC〜Gは、Nbのカウント数の極大値(最大値)が大きく、被検出材44の成膜厚さが0.4〜0.6nmであるサンプルD〜Fは、Nbのカウント数の極大値(最大値)が特に大きかった。これは、被検出材44が第1の充填材36の上に分散して、且つ、第1の充填材36を被覆しないように薄く成膜され、第1の充填材36、第2の充填材45からの酸素の拡散により被検出材44の大部分が酸化されたことによると考えられる。   Further, among samples A to J of Example 1, samples C to G in which the film thickness of the detected material 44 is 0.3 to 1 nm have a large maximum value (maximum value) of the Nb count number. In Samples D to F in which the film thickness of the detection material 44 is 0.4 to 0.6 nm, the maximum value (maximum value) of the Nb count number was particularly large. This is because the material to be detected 44 is dispersed on the first filler 36 and thinly formed so as not to cover the first filler 36, and the first filler 36 and the second filler 36 are formed. This is probably because most of the detected material 44 was oxidized by the diffusion of oxygen from the material 45.

尚、被検出材44の成膜厚さが0.3nmよりも薄いサンプルA、BはNbのカウント数の極大値(最大値)が比較的小さかった。これは、被検出材44が薄すぎて飛散する被検出材44の絶対量が過度に少なかったためと考えられる。これより被検出材44の検出量を大きくするためには、被検出材44の成膜厚さが0.3〜1nmであることが好ましく、0.4〜0.6nmであればより好ましいことがわかる。   In Samples A and B where the film thickness of the material to be detected 44 is less than 0.3 nm, the maximum value (maximum value) of the Nb count number was relatively small. This is considered because the detected material 44 is too thin and the absolute amount of the detected material 44 scattered is too small. In order to increase the detection amount of the material to be detected 44, the film thickness of the material to be detected 44 is preferably 0.3 to 1 nm, more preferably 0.4 to 0.6 nm. I understand.

又、図16に示されるように、被検出材44の成膜厚さが3nmであるサンプルHは、平坦化において検出されたNbのカウント数が(凹部34の上の被検出材44がエッチングされる後半において)2つの極大値をもっていた。これは、被検出材44が厚く、上面44A及び下面44Bの下面近傍の部分だけが酸化されたためと考えられる。   Further, as shown in FIG. 16, in the sample H in which the film thickness of the detected material 44 is 3 nm, the count number of Nb detected in the planarization (the detected material 44 on the recess 34 is etched). In the second half) had two local maxima. This is probably because the material to be detected 44 is thick and only the portions near the lower surface of the upper surface 44A and the lower surface 44B are oxidized.

又、実施例4のMは、実施例1〜3のA〜Lよりも、10枚のサンプルの段差の標準偏差が大きかった。即ち、10枚のサンプルの段差のばらつきが大きかった。これは、実施例4のMは上記第3実施形態のように、凸部の上の被検出材44の検出に基いて平坦化のエッチングを停止して作製され、更に実施例1及び2のA〜Kよりも凸部の幅が広く、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが大きかったためと考えられる。   Moreover, M of Example 4 had a larger standard deviation of the level difference of 10 samples than A to L of Examples 1 to 3. That is, the variation in the level difference of the 10 samples was large. This is because M of Example 4 is produced by stopping the flattening etching based on the detection of the detection target material 44 on the convex portion as in the third embodiment, and further according to Examples 1 and 2. This is probably because the width of the convex portion is wider than A to K, and the variation at the time when the amount of scattering of the detected material 44 increases to such a degree that it can be clearly distinguished from noise.

これに対し、凹凸パターンの凸部の幅が実施例4のMと同じ180nmである実施例3のLは、10枚のサンプルの段差の標準偏差が実施例1及び2のA〜Kと同等であった。これは、実施例3が上記第1及び第2実施形態のとおり、凹部の上の被検出材44の検出に基いて平坦化のエッチングを停止して作製されたため、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが小さかったためと考えられる。   On the other hand, the width of the convex part of the concavo-convex pattern is 180 nm, which is the same as M in Example 4, and the standard deviation of the level difference of 10 samples is equivalent to AK in Examples 1 and 2 Met. Since Example 3 was produced by stopping the planarization etching based on the detection of the detected material 44 on the recess as in the first and second embodiments, it can be clearly distinguished from noise. It is considered that the variation at the time when the amount of scattering of the detected material 44 increased was small.

即ち、凸部の幅が広い場合であっても、上記第1及び第2実施形態のように凹凸パターンの凹部を完全に充填するように第1の充填材を凹部の深さ以上の厚さで成膜し、平坦化工程において被検出材のうち凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて加工用ガスの照射を停止することで表面の段差のばらつきを小さく抑制できることが確認された。   That is, even when the width of the convex portion is wide, the first filler is thicker than the depth of the concave portion so as to completely fill the concave portion of the concave-convex pattern as in the first and second embodiments. In the flattening process, the surface of the detected material is removed from the top of the recesses, and the processing gas irradiation is stopped based on the detection result of the detected material component. It was confirmed that it can be suppressed to a small size.

本発明は、例えば、ディスクリートトラックメディア、パターンドメディア等の凹凸パターンの記録層を有する磁気記録媒体を製造するために利用することができる。   The present invention can be used, for example, to manufacture a magnetic recording medium having a concavo-convex pattern recording layer such as a discrete track medium or a patterned medium.

本発明の第1実施形態に係る被加工体の出発体の構造を模式的に示す側断面図Side sectional view which shows typically the structure of the starting body of the to-be-processed body which concerns on 1st Embodiment of this invention. 同被加工体を加工して得られる磁気記録媒体の構造を模式的に示す側断面図Side sectional view schematically showing the structure of a magnetic recording medium obtained by processing the workpiece 同磁気記録媒体の製造工程の概要を示すフローチャートFlow chart showing an outline of the manufacturing process of the magnetic recording medium 前記被加工体の出発体のレジスト層に転写された凹凸パターンを模式的に示す側断面図Side sectional view which shows typically the uneven | corrugated pattern transcribe | transferred to the resist layer of the starting body of the said to-be-processed body 連続記録層が分割された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with the continuous recording layer divided 第1の充填材が成膜された前記被加工体を模式的に示す側断面図Side sectional view which shows typically the said to-be-processed object in which the 1st filler was formed into a film 被検出材が成膜された前記被加工体を模式的に示す側断面図Side sectional view schematically showing the workpiece on which the material to be detected is formed 第2の充填材が成膜された前記被加工体を模式的に示す側断面図Side sectional view which shows typically the said to-be-processed object in which the 2nd filler was formed into a film 前記被検出材の構造を拡大して模式的に示す側断面図Side sectional view schematically showing an enlarged structure of the material to be detected 平坦化工程においてエッチングが記録要素の上の被検出材に及んだ前記被加工体を模式的に示す側断面図Side sectional view schematically showing the object to be processed in which etching reaches a detection material on a recording element in a flattening step. 平坦化工程においてエッチングが凹部の上の被検出材に及んだ前記被加工体を模式的に示す側断面図Side cross-sectional view schematically showing the object to be processed in which etching has reached the material to be detected on the recess in the flattening step 同平坦化工程における被検出材の飛散量と時間との関係を模式的に示すグラフA graph schematically showing the relationship between the amount of material to be detected and the time in the flattening process 本発明の第2実施形態に係る被加工体の被検出材の周辺の構造を模式的に示す側断面図Side sectional view which shows typically the structure of the periphery of the to-be-detected material of the to-be-processed body which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る第1の充填材、被検出材及び第2の充填材が成膜された被加工体を模式的に示す側断面図Side sectional view which shows typically the to-be-processed object in which the 1st filler, to-be-detected material, and 2nd filler which concern on 3rd Embodiment of this invention were formed into a film 平坦化工程においてエッチングが記録要素の上の被検出材に及んだ同被加工体を模式的に示す側断面図Side cross-sectional view schematically showing the same workpiece in which etching has reached the detected material on the recording element in the flattening step 本発明の実施例の平坦化において検出されたNbのカウント数と時間との関係を示すグラフThe graph which shows the relationship between the count number of Nb detected in the planarization of the Example of this invention, and time.

符号の説明Explanation of symbols

10…被加工体
12…基板
14…下地層
15…反強磁性層
16…軟磁性層
18…配向層
20…連続記録層
22…第1のマスク層
24…第2のマスク層
26…レジスト層
30…磁気記録媒体
32…記録層
32A…記録要素
34…凹部
36…第1の充填材
38…保護層
40…潤滑層
44…検出材
44A…上面
44B…下面
45…第2の充填材
S102…被加工体作製工程
S104…第1の充填材成膜工程
S106…被検出材成膜工程
S108…第2の充填材成膜工程
S110…平坦化工程
S112…保護層成膜工程
S114…潤滑層成膜工程
DESCRIPTION OF SYMBOLS 10 ... Work object 12 ... Substrate 14 ... Underlayer 15 ... Antiferromagnetic layer 16 ... Soft magnetic layer 18 ... Orientation layer 20 ... Continuous recording layer 22 ... 1st mask layer 24 ... 2nd mask layer 26 ... Resist layer DESCRIPTION OF SYMBOLS 30 ... Magnetic recording medium 32 ... Recording layer 32A ... Recording element 34 ... Recessed part 36 ... 1st filler 38 ... Protective layer 40 ... Lubricating layer 44 ... Detection material 44A ... Upper surface 44B ... Lower surface 45 ... 2nd filler S102 ... Workpiece manufacturing process S104 ... first filler film forming process S106 ... detected material film forming process S108 ... second filler film forming process S110 ... flattening process S112 ... protective layer film forming process S114 ... lubricating layer forming Membrane process

Claims (5)

基板及び該基板の上に所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して前記記録要素を被覆すると共に該記録要素の間の凹部を少なくとも部分的に充填する第1の充填材成膜工程と、前記第1の充填材の上に被検出材を成膜する被検出材成膜工程と、前記被検出材の上に第2の充填材を成膜する第2の充填材成膜工程と、前記被加工体の表面に加工用ガスを照射して前記第1の充填材、前記被検出材及び前記第2の充填材のうち前記記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化する平坦化工程と、をこの順で実行し、前記平坦化工程において前記被加工体から除去されて飛散する前記被検出材の成分を検出し、該被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。   The recording material is formed by forming a first filler on a substrate and a workpiece having a recording layer formed on the substrate in a predetermined concavo-convex pattern and having recording elements formed as convex portions of the concavo-convex pattern. A first filler film forming step for covering the elements and at least partially filling the recesses between the recording elements; and a film formation for the detection material for forming the detection material on the first filler A step, a second filler film forming step of forming a second filler film on the detected material, and a surface of the workpiece to be irradiated with a processing gas, the first filler material, A flattening step of removing at least a part of a portion of the detected material and the second filler formed above the upper surface of the recording element to flatten the surface is performed in this order. And detecting a component of the material to be detected that is removed from the workpiece and scattered in the planarization step. Method of manufacturing a magnetic recording medium characterized by stopping the irradiation of the components of the detection result based in the processing gas 該被 detection material. 請求項1において、
前記第1の充填材成膜工程において前記凹凸パターンの凹部を完全に充填するように前記第1の充填材を前記凹部の深さ以上の厚さで成膜し、前記平坦化工程において前記被検出材のうち前記凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。
In claim 1,
In the first filling material film forming step, the first filling material is formed with a thickness equal to or greater than the depth of the recessed portion so as to completely fill the recessed portions of the uneven pattern, and in the planarizing step, A method of manufacturing a magnetic recording medium, wherein irradiation of the processing gas is stopped based on a detection result of a component of a detected material that is removed from the concave portion and scattered among the detecting material.
請求項1又は2において、
前記被検出材成膜工程において前記第1の充填材の上に非酸化物を成膜して前記被検出材を形成し、前記第1の充填材及び前記第2の充填材の少なくとも一方として酸化物を用いることを特徴とする磁気記録媒体の製造方法。
In claim 1 or 2,
In the detected material film forming step, a non-oxide film is formed on the first filler to form the detected material, and as at least one of the first filler and the second filler A method for producing a magnetic recording medium, comprising using an oxide.
請求項3において、
前記被検出材成膜工程において前記被検出材を前記第1の充填材の上に分散させて、且つ、該第1の充填材を完全に被覆しないように薄く成膜することを特徴とする磁気記録媒体の製造方法。
In claim 3,
In the detecting material film forming step, the detecting material is dispersed on the first filler, and a thin film is formed so as not to completely cover the first filler. A method of manufacturing a magnetic recording medium.
請求項1乃至4のいずれかにおいて、
前記平坦化工程において二次イオン質量分析法及び四重極質量分析法のいずれかにより前記被検出材の成分を検出することを特徴とする磁気記録媒体の製造方法。
In any one of Claims 1 thru | or 4,
A method of manufacturing a magnetic recording medium, comprising: detecting a component of the material to be detected by any one of secondary ion mass spectrometry and quadrupole mass spectrometry in the planarization step.
JP2006348656A 2006-02-22 2006-12-25 Method for manufacturing magnetic recording medium Expired - Fee Related JP4626611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348656A JP4626611B2 (en) 2006-02-22 2006-12-25 Method for manufacturing magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006045282 2006-02-22
JP2006348656A JP4626611B2 (en) 2006-02-22 2006-12-25 Method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2007257816A true JP2007257816A (en) 2007-10-04
JP4626611B2 JP4626611B2 (en) 2011-02-09

Family

ID=38631869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348656A Expired - Fee Related JP4626611B2 (en) 2006-02-22 2006-12-25 Method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4626611B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334426A (en) * 1989-06-30 1991-02-14 Kawasaki Steel Corp Forming method of buried oxide film
JPH03253586A (en) * 1990-02-28 1991-11-12 Hitachi Ltd Detection of end point and device therefor
JPH05291195A (en) * 1992-04-09 1993-11-05 Hitachi Ltd Thin film processing apparatus and its method
JPH065597A (en) * 1992-06-18 1994-01-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH10209128A (en) * 1997-01-23 1998-08-07 Sony Corp Method for detecting flattening end point
JP2003504616A (en) * 1999-07-09 2003-02-04 フェイ カンパニ Method and apparatus for increasing the yield of secondary ions
JP2005235357A (en) * 2004-02-23 2005-09-02 Tdk Corp Manufacturing method of magnetic recording medium
JP2006012216A (en) * 2004-06-22 2006-01-12 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device
JP2007012119A (en) * 2005-06-28 2007-01-18 Toshiba Corp Method and apparatus of manufacturing magnetic recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334426A (en) * 1989-06-30 1991-02-14 Kawasaki Steel Corp Forming method of buried oxide film
JPH03253586A (en) * 1990-02-28 1991-11-12 Hitachi Ltd Detection of end point and device therefor
JPH05291195A (en) * 1992-04-09 1993-11-05 Hitachi Ltd Thin film processing apparatus and its method
JPH065597A (en) * 1992-06-18 1994-01-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH10209128A (en) * 1997-01-23 1998-08-07 Sony Corp Method for detecting flattening end point
JP2003504616A (en) * 1999-07-09 2003-02-04 フェイ カンパニ Method and apparatus for increasing the yield of secondary ions
JP2005235357A (en) * 2004-02-23 2005-09-02 Tdk Corp Manufacturing method of magnetic recording medium
JP2006012216A (en) * 2004-06-22 2006-01-12 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device
JP2007012119A (en) * 2005-06-28 2007-01-18 Toshiba Corp Method and apparatus of manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JP4626611B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4071787B2 (en) Method for manufacturing magnetic recording medium
JP4626600B2 (en) Method for manufacturing magnetic recording medium
JP4357570B2 (en) Method for manufacturing magnetic recording medium
US7223439B2 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
JP2006012332A (en) Dry etching method, method of manufacturing magnetic recording medium, and magnetic recording medium
US7538041B2 (en) Magnetic recording medium, method of manufacturing the same, and intermediate for magnetic recording medium
JP3802539B2 (en) Method for manufacturing magnetic recording medium
JP2007257801A (en) Manufacturing method of patterned medium
JP4164110B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP2006012285A (en) Magnetic recording medium and method of manufacturing magnetic recording medium
JP4008420B2 (en) Method for manufacturing magnetic recording medium
US20090067092A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP4475147B2 (en) Method for manufacturing magnetic recording medium
JP2005228363A (en) Manufacturing method of magnetic recording medium
US7740903B2 (en) Method for manufacturing magnetic recording medium
JP5062208B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2010027193A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JP4626611B2 (en) Method for manufacturing magnetic recording medium
JP2005235356A (en) Manufacturing method of magnetic recording medium
JP4626612B2 (en) Method for manufacturing magnetic recording medium
JP2011028815A (en) Method of manufacturing magnetic recording medium
US20090168244A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
US20070196565A1 (en) Method for manufacturing magnetic recording medium
JP2006318648A (en) Method for filling recessed section in irregular pattern, and manufacturing method of magnetic recording medium
JP4319104B2 (en) Method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131119

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees