JP2007256103A - Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor - Google Patents

Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor Download PDF

Info

Publication number
JP2007256103A
JP2007256103A JP2006081391A JP2006081391A JP2007256103A JP 2007256103 A JP2007256103 A JP 2007256103A JP 2006081391 A JP2006081391 A JP 2006081391A JP 2006081391 A JP2006081391 A JP 2006081391A JP 2007256103 A JP2007256103 A JP 2007256103A
Authority
JP
Japan
Prior art keywords
film
region
chip
thickness
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006081391A
Other languages
Japanese (ja)
Inventor
Masashi Hakamata
正志 袴田
Toshihide Ezoe
利秀 江副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006081391A priority Critical patent/JP2007256103A/en
Publication of JP2007256103A publication Critical patent/JP2007256103A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film thickness measuring method for a fixing film for a measuring chip, capable of inspecting film thicknesses of the fixing films in a large number of measurement chips, in a short time, and to provide a measuring chip therefor. <P>SOLUTION: This film thickness measuring method, for the fixing film for the measuring chip, is provided with the first region 4A region with a metal film 4 and the fixing film 6, and the second region 4B, having a reflectance serving, as a reference. In the method, a calibration chip 10 is manufactured to make the fixing film 6 have a prescribed film thickness, the film thicknesses of the fixing film 6 is measured in the calibrating chip 10 prepared in the first step; a reflected luminous energy ratio of the first region 4A to the second area 4B is found at the same time, to find a relation between the reflected luminous energy ratio and the film thicknesses of the fixing film 6, a reflected luminous energy ratio of the first region 4A to the second area 4B is found as to an inspected chip 10, having an unknown film thickness of the fixing film 6, and the film thicknesses of the fixing film 6 in the inspected chip 10 is found, based on the reflected luminous energy ratio of the calibration chip 10 found in the third step, and the reflected luminous energy ratio of the inspected chip 10 found in the fourth step. This measuring chip of the present invention is constituted to be used in the film thickness measuring method for the fixing film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面プラズモン共鳴(SPR)測定装置に用いられる測定チップにおいて、表面にリガンドを固定する固定化膜の膜厚を測定する測定チップの固定化膜の膜厚測定方法、および前記固定化膜の膜厚測定方法を実現する手段を内包した測定チップに関する。   The present invention relates to a measuring chip used in a surface plasmon resonance (SPR) measuring apparatus, a method for measuring the thickness of an immobilized film of a measuring chip for measuring the thickness of an immobilized film for immobilizing a ligand on the surface, and the immobilization. The present invention relates to a measuring chip including means for realizing a film thickness measuring method.

たとえば、蛋白質やDNAなどの生化学物質の相互作用を調べたり、薬品のスクリーニングを行ったりする場合において、試料の反応を測定する測定装置としてSPRを利用した測定装置が知られている。   For example, a measurement device using SPR is known as a measurement device for measuring the reaction of a sample when investigating the interaction of biochemical substances such as proteins and DNA, or performing drug screening.

表面プラズモンは、金属中の自由電子が集団的に振動することによって生じ、その金属の表面に沿って進む自由電子の疎密波の量子のことを指す。   Surface plasmon refers to the quantum of free-electron density waves generated by the collective oscillation of free electrons in a metal and traveling along the surface of the metal.

SPR測定装置は、透明な誘電体上に形成された薄膜としての金属膜を使用し、前記金属膜の一方の面をセンサ面とし、このセンサ面にSPRを発生させ、これを検出することにより、前記センサ面で生じる物質の反応状況を測定する。   The SPR measurement device uses a metal film as a thin film formed on a transparent dielectric, and uses one surface of the metal film as a sensor surface, generates SPR on the sensor surface, and detects this. The reaction state of the substance generated on the sensor surface is measured.

金属膜におけるセンサ面の裏側に、全反射条件を満足するように光を入射すると、光入射面において全反射が起こるが、入射光のうち、わずかな光は反射せずに金属膜内を通過してセンサ面に染み出す。このセンサ面に染み出した光波がエバネッセント波と呼ばれる。エバネッセント波と表面プラズモンの振動数とが一致して共鳴すると、反射光の強度が大きく減少する。SPR測定装置は、前記光入射面で反射する反射光の減衰を捕らえることにより、その裏側のセンサ面で発生するSPRを検出する。   When light is incident on the back side of the sensor surface of the metal film so as to satisfy the total reflection condition, total reflection occurs on the light incident surface, but only a small part of the incident light passes through the metal film without being reflected. And ooze out to the sensor surface. The light wave that oozes out on the sensor surface is called an evanescent wave. When the evanescent wave and the surface plasmon frequency coincide with each other and resonate, the intensity of the reflected light is greatly reduced. The SPR measurement device detects the SPR generated on the sensor surface on the back side by capturing the attenuation of the reflected light reflected by the light incident surface.

SPRを発生させるための光の入射角即ち共鳴角は、エバネッセント波および表面プラズモンが伝播する媒質の屈折率に依存する。言い換えると、媒質の屈折率が変化すれば、SPRを発生させる共鳴角も変化する。センサ面と接する物質は、エバネッセント波および表面プラズモンを伝播させる媒質となるので、たとえばセンサ面において2種類の分子間の結合や乖離などの化学反応が生じると、それが媒質の屈折率の変化として現れて共鳴角が変化する。SPR測定装置は、この共鳴角の変化を捉えることにより、分子間の相互作用を測定する。   The incident angle or resonance angle of light for generating SPR depends on the refractive index of the medium through which the evanescent wave and the surface plasmon propagate. In other words, if the refractive index of the medium changes, the resonance angle that generates SPR also changes. The substance in contact with the sensor surface becomes a medium for propagating evanescent waves and surface plasmons. For example, when a chemical reaction such as bonding or detachment between two types of molecules occurs on the sensor surface, it is regarded as a change in the refractive index of the medium. Appears and the resonance angle changes. The SPR measurement device measures the interaction between molecules by capturing the change in the resonance angle.

生化学分野の実験や研究においては、蛋白質、DNA,薬品などがリガンドやアナライトとして使用される。たとえば、薬品をスクリーニングする場合には、リガンドとして蛋白質などの生体物質を使用し、これをセンサ面に固定して前記センサ面をアナライトである複数種の薬品を接触させ、それらの相互作用を調べる。   In experiments and research in the biochemical field, proteins, DNA, drugs, etc. are used as ligands and analytes. For example, when screening for drugs, biological substances such as proteins are used as ligands, which are fixed to the sensor surface, and the sensor surface is contacted with multiple types of drugs that are analytes, and their interaction is determined. Investigate.

測定チップは、一般的に、ガラスやプラスチックなどの透明な誘電体ブロック、前記誘電体ブロックの表面に形成された金属膜、およびその上に形成され、リガンドを固定できる官能基を有する固定化膜からなる。前記測定チップにおいては、固定化膜の官能基を介してリガンドが金属膜に固定される。   The measurement chip is generally a transparent dielectric block such as glass or plastic, a metal film formed on the surface of the dielectric block, and an immobilization film formed thereon and having a functional group capable of immobilizing a ligand. Consists of. In the measurement chip, the ligand is fixed to the metal film through the functional group of the fixed film.

SPR測定装置においては、金属膜に光を入射させるための光学系としてKreschmann配置を採用しているものがある(特許文献1)。前記SPR測定装置は、光ビームを発生させる光源と、前記光源で発生した光ビームを、測定チップの誘電体ブロックと金属膜との界面で全反射するように前記誘電体ブロックに種々の角度で入射させる光学系と、前記界面で全反射した光ビームの強度を測定してSPRの状態、即ち全反射減衰の状態を検出する光検出手段とを備える。   Some SPR measurement apparatuses employ a Kreschmann arrangement as an optical system for making light incident on a metal film (Patent Document 1). The SPR measurement device has a light source that generates a light beam and the light beam generated by the light source at various angles to the dielectric block so as to totally reflect the light beam at the interface between the dielectric block and the metal film of the measurement chip. An optical system for incidence is provided, and light detection means for detecting the SPR state, that is, the state of total reflection attenuation, by measuring the intensity of the light beam totally reflected at the interface.

なお、前記SPR測定装置において種々の入射角を得るために、光ビームに種々の角度で入射する成分が含まれるように、たとえば比較的太い光ビームを前記界面に収束状態で入射させてもよい。この場合は、種々の反射角で反射した光ビームを全て受光できる方向に伸びるエリアセンサによって検出することができる(たとえば特許文献2)。   In order to obtain various incident angles in the SPR measurement device, for example, a relatively thick light beam may be incident on the interface in a converged state so that components incident on the light beam at various angles are included. . In this case, it can be detected by an area sensor extending in a direction in which all light beams reflected at various reflection angles can be received (for example, Patent Document 2).

また、試料の2次元的な物性情報を得たい場合があるが、SPR測定装置をこのような用途に応用することが検討されている。   Further, there are cases where it is desired to obtain two-dimensional physical property information of a sample. However, application of the SPR measurement device to such a use is being studied.

たとえば、SPR測定装置による試料の2次元的な物性分析を例に挙げると、界面の2次元的な広がりを有する領域に所定の入射角で所定波長の平行光束を入射させた場合、前記領域のうち、試料の屈折率が、前記入射角および前記波長で全反射減衰を生じる屈折率である領域が暗転として検出される。そこで、ある程度広い光束断面を有する複数の波長の平行光束を用い、この平行光束から所望の単一波長の平行光束を選択し、測定チップの誘電体ブロックと金属膜との界面に入射させ、前記界面で全反射した平行光束の断面の光強度分布を検出すれば、上記界面に沿った面内での試料の2次元的な屈折率分布に関連する特性を測定できる(特許文献3〜5)。
特開平6−167443号公報 特開平11−326194号公報 特表2004−531719号公報 特表2005−515424号公報 特開2004−117298号公報
For example, taking a two-dimensional physical property analysis of a sample by an SPR measuring device as an example, when a parallel light flux having a predetermined wavelength is incident on a region having a two-dimensional spread of the interface, Among these, a region in which the refractive index of the sample is a refractive index that causes total reflection attenuation at the incident angle and the wavelength is detected as dark transition. Therefore, using a parallel light beam having a plurality of wavelengths having a somewhat wide light beam cross section, a desired single wavelength parallel light beam is selected from the parallel light beams, and is incident on the interface between the dielectric block of the measurement chip and the metal film, By detecting the light intensity distribution in the cross section of the parallel light beam totally reflected at the interface, it is possible to measure characteristics related to the two-dimensional refractive index distribution of the sample in the plane along the interface (Patent Documents 3 to 5). .
JP-A-6-167443 JP 11-326194 A JP-T-2004-531719 JP-T-2005-515424 JP 2004-117298 A

しかしながら、上述のように、SPR測定技術は、測定チップの金属膜近傍の屈折率変化を測定するものであるため、アナライトの結合量はもちろん、リガンドを固定する固定化膜の膜厚によっても測定値が異なる。   However, as described above, the SPR measurement technique measures a change in the refractive index in the vicinity of the metal film of the measurement chip. Therefore, not only the binding amount of the analyte but also the film thickness of the immobilized film that fixes the ligand. The measured value is different.

したがって、測定しようとするアナライトの結合量が同一であっても固定化膜の厚さが異なるとその近傍の屈折率も異なるから、固定化膜の厚さが一定でないと信頼性の高い測定値が得られないという問題がある。   Therefore, even if the binding amount of the analyte to be measured is the same, if the thickness of the immobilized film is different, the refractive index in the vicinity will also be different. There is a problem that the value cannot be obtained.

本発明は、上記問題を解決すべく成されたものであり、SPRを利用してアナライトの定量を行うのに使用される測定チップにおいて、製造される測定チップの固定化膜の膜厚が所定の誤差範囲内であるかどうかを判別して規定外の測定チップを除外し、信頼性の高い測定チップのみを提供するために簡便な方法で多数の測定チップの膜厚を検査するのに使用できる測定チップの固定化膜の膜厚測定方法、および前記固定化膜の膜厚測定方法を実現する手段を内包した測定チップを提供することを目的とする。   The present invention has been made to solve the above problems, and in the measurement chip used for quantifying the analyte using SPR, the thickness of the immobilized film of the measurement chip to be manufactured is In order to inspect the film thickness of a large number of measurement chips in a simple way to determine whether they are within a specified error range and to exclude non-standard measurement chips and to provide only reliable measurement chips An object of the present invention is to provide a method for measuring the thickness of an immobilized film of a measurement chip that can be used, and a measurement chip including means for realizing the method for measuring the thickness of an immobilized film.

請求項1に記載の発明は、基体の表面の少なくとも一部の領域に形成され、所定の波長および入射角の光によって表面プラズモン共鳴を生じさせるのに最適な厚さを有する金属膜と、前記金属膜の表面に所定のアナライトと相互作用するリガンドを固定する固定化膜が形成された第1領域と、前記第1領域に隣接して設けられ、前記波長および入射角の光に対して基準となる反射率を有する第2領域とを備える測定チップであって、前記第1領域における固定化膜が所定の膜厚を有する校正用チップを作製する第1ステップと、第1ステップで作製された校正用チップの第1領域における固定化膜の膜厚を測定する第2ステップと、前記校正用チップについて、第1領域および第2領域における反射光量を同時に測定し、前記第2領域と前記第1領域との反射光量の比である反射光量比を求め、次いで、前記反射光量比と固定化膜の膜厚との関係を求める第3ステップと、前記測定チップであって前記固定化膜の膜厚が未知の被検査チップについて、第1領域および第2領域における反射光量を同時に測定し、前記第2領域に対する前記第1領域の反射光量比を求める第4ステップと、前記第3ステップで求めた校正用チップの反射光量比と、前記第4ステップで求めた被検査チップの反射光量比とに基づいて前記被検査チップの膜厚を求める第5ステップとを有することを特徴とする測定チップの固定化膜の膜厚測定方法に関する。   The invention according to claim 1 is formed in at least a partial region of the surface of the substrate, and has a metal film having an optimum thickness for causing surface plasmon resonance by light having a predetermined wavelength and incident angle, A first region in which a fixed film for fixing a ligand that interacts with a predetermined analyte is formed on the surface of the metal film; and provided adjacent to the first region, for light of the wavelength and incident angle A measurement chip including a second region having a reference reflectivity, the first step of producing a calibration chip in which the immobilization film in the first region has a predetermined film thickness, and the first step. A second step of measuring the thickness of the immobilization film in the first region of the calibration chip, and simultaneously measuring the amount of reflected light in the first region and the second region for the calibration chip; Said A third step of obtaining a reflected light amount ratio, which is a ratio of a reflected light amount to one region, and then obtaining a relationship between the reflected light amount ratio and the film thickness of the immobilizing film; For the chip to be inspected whose film thickness is unknown, the reflected light amount in the first region and the second region is simultaneously measured, and the reflected light amount ratio of the first region to the second region is obtained in the fourth step and the third step. And a fifth step of determining the film thickness of the chip to be inspected based on the ratio of the reflected light quantity of the calibration chip determined and the ratio of the amount of reflected light of the chip to be inspected determined in the fourth step. The present invention relates to a method for measuring the thickness of a fixed film of a chip.

前記固定化膜の膜厚測定方法においては、前記測定チップのうち、第1領域の固定化膜が所定の膜厚を有する校正用チップについて、前記固定化膜の膜厚を測定するとともに、第1領域と第2領域との反射光量比を測定し、前記固定化膜の膜厚と反射光量比との関係を求める。   In the method for measuring the thickness of the fixed film, the thickness of the fixed film is measured for a calibration chip in which the fixed film in the first region has a predetermined thickness among the measurement chips, and The reflected light amount ratio between the first region and the second region is measured, and the relationship between the film thickness of the fixed film and the reflected light amount ratio is obtained.

次に、前記測定チップのうち、第1領域における固定化膜の膜厚が未知の被検査チップについて第1領域と第2領域との反射光量比を測定する。   Next, the reflected light amount ratio between the first region and the second region is measured for a chip to be inspected whose thickness of the immobilization film in the first region is unknown among the measurement chips.

最後に、被検査チップにおいて測定された反射光量比と、校正用チップについて求められた前記固定化膜の膜厚と反射光量比との関係とから、前記被検査チップの第1領域における固定化膜の膜厚を求める。   Finally, from the relationship between the reflected light amount ratio measured at the chip to be inspected and the film thickness of the fixing film and the reflected light amount ratio obtained for the calibration chip, immobilization in the first region of the inspection chip is performed. Obtain the film thickness.

このように被検査チップについて実際に測定するのは反射光量比のみであり、固定化膜の膜厚を直接には測定していないから、多数の被検査チップを短時間で処理できる。   As described above, only the reflected light amount ratio is actually measured for the chip to be inspected, and since the film thickness of the immobilization film is not directly measured, a large number of chips to be inspected can be processed in a short time.

したがって、多数の測定チップについて、固定化膜の膜厚が所定の誤差範囲内のものと、膜厚が規定外のものとに短時間で分別できるから、信頼性の高い測定チップのみを提供できる。   Therefore, for a large number of measurement chips, since the film thickness of the fixed film can be separated into those having a predetermined error range and those whose film thickness is not specified in a short time, only a highly reliable measurement chip can be provided. .

また、前記固定化膜の膜厚の測定方法は、このように反射光量比に基づいて被検査チップの膜厚を求めているから、入射光の光量によって測定結果が左右されることがない。したがって、得られる測定結果は信頼性が高い。   In addition, since the method for measuring the film thickness of the immobilization film obtains the film thickness of the chip to be inspected based on the reflected light amount ratio in this way, the measurement result is not influenced by the amount of incident light. Therefore, the measurement results obtained are highly reliable.

請求項2に記載の発明は、前記第1ステップにおいて、前記所定の波長および入射角の光を入射したときに表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆された第1領域と、前記基体が金属膜で被覆されていないか、または前記第1領域に形成された金属膜とは厚さの異なる金属膜で被覆されてなる第2領域とを有するとともに、前記第1および第2領域は厚さの均一な固定化膜で被覆されてなる校正用チップを作製する請求項1に記載の測定チップの固定化膜の膜厚測定方法に関する。   According to a second aspect of the present invention, in the first step, the base is coated with a metal film having an optimum thickness for generating surface plasmon resonance when light having the predetermined wavelength and incident angle is incident. A first region and a second region formed by coating the base with a metal film that is not coated with a metal film or having a thickness different from that of the metal film formed in the first region; The method according to claim 1, wherein the first and second regions are formed with a calibration chip in which the first and second regions are covered with a fixed film having a uniform thickness.

前記膜厚測定方法の第1ステップで作製される校正用チップにおいては、第1領域は、所定の波長および入射角の光に対してSPRが生じるように最適化されているのに対し、第2領域は、このような最適化がなされていない。   In the calibration chip manufactured in the first step of the film thickness measurement method, the first region is optimized so that SPR occurs with respect to light having a predetermined wavelength and incident angle. Such optimization is not performed for the two areas.

したがって、前記校正用チップを前記波長および入射角の光で照射すると、第1領域ではSPRが生じて反射光量が顕著に低下するのに対し、第2領域ではSPRが殆ど生じないから、反射光量は、第1領域ほど顕著には低下しない。   Therefore, when the calibration chip is irradiated with the light having the wavelength and the incident angle, the SPR is generated in the first region and the reflected light amount is remarkably reduced, whereas the SPR is hardly generated in the second region. Does not decrease as significantly as the first region.

また、前記校正用チップにおいては、固定化膜に固定されたリガンドがアラナイトと相互作用した場合だけでなく、固定化膜の厚さが変化することによってもSPRが生じる入射角即ち共鳴角は増減する。そして、入射光の波長と入射角とを固定すれば、固定化膜の厚さが変化することによって生じる共鳴角の増減は、反射光量の増加または減少として観測される。   In the calibration chip, not only when the ligand immobilized on the immobilized film interacts with alanite, but also when the thickness of the immobilized film changes, the incident angle, that is, the resonance angle at which SPR occurs is increased or decreased. To do. If the wavelength and the incident angle of the incident light are fixed, the increase or decrease in the resonance angle caused by the change in the thickness of the immobilized film is observed as an increase or decrease in the amount of reflected light.

したがって、前記校正用チップにおいては、第1領域においては固定化膜の膜厚が変化すると反射光量が顕著に増大または減少するのに対し、第2領域では固定化膜の膜厚が変化しても反射光量は殆ど変化しないから、第1領域と第2領域との反射光量比は、固定化膜の膜厚が変化すると顕著に増大または減少する。   Therefore, in the calibration chip, when the film thickness of the immobilization film changes in the first region, the amount of reflected light increases or decreases significantly, whereas in the second region, the film thickness of the immobilization film changes. However, since the amount of reflected light hardly changes, the ratio of the amount of reflected light between the first region and the second region increases or decreases significantly when the thickness of the immobilization film changes.

そこで、固定化膜の膜厚の異なる複数の校正用チップを作製し、夫々の校正用チップについて第1領域と第2領域との反射光量比を求め、前記反射光量比を固定化膜の膜厚に対してプロットすれば、固定化膜の膜厚と反射光量比との関係を求めることができる。   Therefore, a plurality of calibration chips having different thicknesses of the fixed film are prepared, the reflected light amount ratio between the first region and the second region is obtained for each calibration chip, and the reflected light amount ratio is determined as the fixed film thickness. By plotting against the thickness, the relationship between the thickness of the immobilization film and the reflected light amount ratio can be obtained.

前記固定化膜の膜厚の測定方法において使用される校正用チップにおいては、基板の全面に、記所定の波長および入射角の光に対してSPRを生じさせるのに最適な厚さよりも薄い厚さの金属膜を形成して第2領域とし、前記基板の一部の領域において、前記金属膜に更に重ねて金属膜を形成して記所定の波長および入射角の光に対してSPRを生じさせるのに最適な厚さにすることにより、第1領域を形成できる。また、基板の一部の領域のみを記所定の波長および入射角の光に対して表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で被覆して第1領域とし、残りの領域を第2領域としてもよい。   In the calibration chip used in the method for measuring the thickness of the immobilization film, the thickness is smaller than the optimum thickness for generating SPR for the light having the predetermined wavelength and incident angle on the entire surface of the substrate. A metal film is formed as a second region, and in a part of the substrate, a metal film is further formed on the metal film to generate an SPR for light having a predetermined wavelength and incident angle. The first region can be formed by setting the thickness to be optimal. Further, only a partial region of the substrate is described as a first region by covering with a metal film having an optimum thickness for generating surface plasmon resonance for light of a predetermined wavelength and incident angle, and the remaining region is It is good also as a 2nd field.

次に、第1領域と第2領域とが形成された基板をSAM溶液、エポキシ化剤、デキストラン溶液、ブロモ酢酸溶液の順に浸漬して第1領域と第2領域とを均一な厚さの固定化膜で被覆することにより、校正用チップを作製できる。   Next, the substrate in which the first region and the second region are formed is immersed in the order of the SAM solution, the epoxidizing agent, the dextran solution, and the bromoacetic acid solution to fix the first region and the second region to a uniform thickness. A calibration chip can be produced by coating with a chemical film.

このように、前記校正用チップにおいては、全体を均一な厚さの固定化膜で被覆すればよいから固定化膜の作製が容易である。   As described above, the calibration chip can be easily manufactured because it is sufficient to cover the whole with the fixed film having a uniform thickness.

請求項3に記載の発明は、前記第1ステップにおいて、前記所定の波長および入射角の光に対して表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆されてなるとともに、前記金属膜の表面が固定化膜で覆われた第1領域と、前記金属膜の表面が固定化膜で被覆されていない第2領域とを有する校正用チップを作製する請求項1に記載の測定チップの固定化膜の膜厚測定方法に関する。   According to a third aspect of the present invention, in the first step, the substrate is coated with a metal film having an optimum thickness for generating surface plasmon resonance with respect to light having the predetermined wavelength and incident angle. 2. A calibration chip having a first region in which a surface of the metal film is covered with an immobilization film and a second region in which the surface of the metal film is not covered with an immobilization film is produced. The present invention relates to a method for measuring a film thickness of an immobilized film of the measurement chip.

前記固定化膜の膜厚測定方法の第1ステップで作製される校正用チップにおいては、第1領域では金属膜が固定化膜で被覆され、第2領域では金属膜が露出しているから、第2領域では、共鳴角で入射する光に対してSPRを生じ、反射光量が低下する。これに対して、第1領域においては、前記光に対してSPRが生じるものの、前記第2領域とは共鳴角が異なる。したがって入射光の波長および入射角を第2領域でSPRが生じる波長および入射角に固定すれば、固定化膜の膜厚の変化に伴う共鳴角の変化は、反射光量の増減として捉えられる。   In the calibration chip produced in the first step of the method for measuring the thickness of the immobilized film, the metal film is covered with the immobilized film in the first region, and the metal film is exposed in the second region. In the second region, SPR is generated for light incident at the resonance angle, and the amount of reflected light is reduced. In contrast, in the first region, although SPR occurs with respect to the light, the resonance angle is different from that of the second region. Therefore, if the wavelength and incident angle of incident light are fixed at the wavelength and incident angle at which SPR occurs in the second region, the change in the resonance angle accompanying the change in the thickness of the immobilized film can be regarded as an increase or decrease in the amount of reflected light.

したがって、前記校正用チップにおいても、固定化膜の膜厚の異なる複数の第1領域を形成するか、または第1領域に形成される固定化膜の膜厚の異なる複数の校正用チップを形成し、第1領域と第2領域とにおける反射光量比を求めて固定化膜の膜厚に対してプロットすれば、固定化膜の膜厚と反射光量比との関係が求められる。   Therefore, also in the calibration chip, a plurality of first regions having different thicknesses of the fixing film are formed, or a plurality of calibration chips having different thicknesses of the fixing film formed in the first region are formed. Then, if the reflected light amount ratio in the first region and the second region is obtained and plotted against the film thickness of the immobilized film, the relationship between the film thickness of the immobilized film and the reflected light amount ratio is obtained.

前記固定化膜の膜厚測定方法においては、基材の全面を、所定の共鳴角でSPRが生じるような膜厚の金属膜で被覆し、前記金属膜の一部の領域を固定化膜で被覆して第1領域とすることにより、校正用チップを作製しているから、請求項2に記載の固定化膜の膜厚測定方法において使用される校正用チップよりも更に少ない手順で校正用チップを作製できる。   In the method for measuring the thickness of the immobilized film, the entire surface of the substrate is covered with a metal film having a thickness that causes SPR at a predetermined resonance angle, and a part of the metal film is covered with the immobilized film. Since the calibration chip is manufactured by covering the first region, the calibration chip is calibrated with fewer steps than the calibration chip used in the method for measuring the thickness of the immobilized film according to claim 2. A chip can be produced.

請求項4に記載の発明は、前記第4ステップにおいて、被検査チップについて前記第2領域と前記第1領域との反射光量比の2次元分布を求め、前記第5ステップにおいて、前記第3ステップで求めた校正用チップの反射光量比と、前記第4ステップで求めた被検査チップの反射光量比の二次元分布とに基づいて前記被検査チップの第1領域における膜厚の二次元分布を求める請求項1〜3の何れか1項に記載の測定チップの固定化膜の膜厚測定方法に関する。   According to a fourth aspect of the present invention, in the fourth step, a two-dimensional distribution of the reflected light amount ratio between the second region and the first region is obtained for the chip to be inspected, and in the fifth step, the third step The two-dimensional distribution of the film thickness in the first region of the chip to be inspected is calculated based on the ratio of the reflected light quantity of the calibration chip obtained in step 4 and the two-dimensional distribution of the reflected light quantity ratio of the chip to be inspected obtained in the fourth step. It is related with the film thickness measuring method of the fixed film of the measuring chip according to any one of claims 1 to 3.

前記固定化膜の膜厚測定方法においては、被検査チップの第1領域における固定化膜の膜厚の二次元分布を求めているから、測定チップの固定化膜の膜厚検査に前記固定化膜の膜厚測定方法を適用すれば、固定化膜の膜厚分布が不均一な測定チップを効果的に排除できる。   In the immobilization film thickness measurement method, since the two-dimensional distribution of the immobilization film thickness in the first region of the chip to be inspected is obtained, the immobilization film is inspected for the immobilization film thickness measurement of the measurement chip. By applying the film thickness measurement method, it is possible to effectively eliminate a measurement chip having a non-uniform thickness distribution of the fixed film.

請求項5に記載の発明は、基体の表面の少なくとも一部の領域に形成され、所定の波長および入射角の光によって表面プラズモン共鳴を生じさせるのに最適な厚さを有する金属膜と、前記金属膜の表面に所定のアナライトと相互作用するリガンドを固定する固定化膜が形成された第1領域と、前記第1領域に隣接して設けられ、前記波長および入射角の光に対して基準となる反射率を有する第2領域とを備える測定チップに関する。   According to a fifth aspect of the present invention, there is provided a metal film that is formed in at least a partial region of the surface of a substrate and has a thickness that is optimal for causing surface plasmon resonance by light having a predetermined wavelength and an incident angle; A first region in which a fixed film for fixing a ligand that interacts with a predetermined analyte is formed on the surface of the metal film; and provided adjacent to the first region, for light of the wavelength and incident angle The present invention relates to a measurement chip including a second region having a reference reflectance.

前記測定チップにおいては、第1領域においては固定化膜の厚さが変化すれば反射光量も増減するのに対し、第2領域においては固定化膜の厚さが変化しても反射光量は実質的に一定である。したがって、第1領域と第2領域との反射光量比もまた、第1領域における固定化膜の厚さが変化すると増大または減少する。   In the measurement chip, the amount of reflected light increases or decreases in the first region if the thickness of the immobilized film changes, whereas the amount of reflected light in the second region does not change even if the thickness of the immobilized film changes. Constant. Therefore, the reflected light amount ratio between the first region and the second region also increases or decreases as the thickness of the immobilization film in the first region changes.

ここで、前記反射光量比は入射光の光量には左右されない。   Here, the reflected light amount ratio does not depend on the amount of incident light.

したがって、第1領域における固定化膜の膜厚を変化させた校正用チップを作製して請求項1〜4に記載の固定化膜の膜厚測定方法を実施すれば、入射光の光量に左右されることなく、測定チップの膜厚を測定できる。   Therefore, if a calibration chip in which the film thickness of the immobilization film in the first region is changed and the film thickness measurement method for the immobilization film according to claim 1 is performed, the amount of incident light depends on the amount of incident light. Therefore, the film thickness of the measuring chip can be measured.

また、固定化膜とアナライトとを相互作用させれば、第1領域においては反射光量が変化するが、第2領域においては反射光量は一定であるから、第1領域と第2領域との反射光量比を求めることにより、入射光の光量の大小に影響されることなくアナライトを検出できる。   Further, if the immobilization film and the analyte interact, the amount of reflected light changes in the first region, but the amount of reflected light is constant in the second region. By obtaining the reflected light amount ratio, the analyte can be detected without being affected by the amount of incident light.

請求項6に記載の発明は、前記第1領域においては、前記所定の波長および入射角の光を入射したときに表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆され、前記第2領域においては、前記基体が金属膜で被覆されていないか、または前記第1領域に形成された金属膜とは厚さの異なる金属膜で被覆されてなるとともに、前記第1および第2領域は厚さの均一な固定化膜で被覆されてなる請求項5に記載の測定チップに関する。   According to a sixth aspect of the present invention, in the first region, the substrate is coated with a metal film having an optimum thickness for causing surface plasmon resonance when light having the predetermined wavelength and incident angle is incident. In the second region, the substrate is not covered with a metal film, or is coated with a metal film having a thickness different from that of the metal film formed in the first region. The measurement chip according to claim 5, wherein the second region is covered with a fixed film having a uniform thickness.

請求項2のところでも述べたように、前記測定チップにおいては、前記波長および入射角の光に対して第1領域ではSPRが生じるが、第2領域ではSPRが生じない。そして、第1領域では、固定化膜の膜厚が変化すれば、SPRが生じる共鳴角も変化し、その結果、反射光量が増大または減少するが、第2領域では、固定化膜の膜厚の如何に係わらず反射光量は一定である。   As described in the second aspect, in the measurement chip, SPR occurs in the first region with respect to the light having the wavelength and the incident angle, but no SPR occurs in the second region. In the first region, if the film thickness of the immobilization film changes, the resonance angle at which SPR occurs also changes. As a result, the amount of reflected light increases or decreases. In the second region, the film thickness of the immobilization film. Regardless of the case, the amount of reflected light is constant.

したがって、前記測定チップにおいても、第1領域と第2領域との反射光量比は、固定化膜の厚さに対応して変化するから、前記測定チップにおいて固定化膜の厚さが既知のものは、請求項1〜4に記載の固定化膜の膜厚測定方法における校正用チップとして好適に使用される。   Therefore, also in the measurement chip, the ratio of the amount of reflected light between the first region and the second region changes corresponding to the thickness of the immobilized film, and therefore the thickness of the immobilized film is known in the measurement chip. Is suitably used as a calibration chip in the method for measuring the thickness of an immobilized film according to claims 1 to 4.

請求項7に記載の発明は、前記所定の波長および入射角の光を入射したときに表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆されてなるとともに、前記第1領域においては前記金属膜の表面に固定化膜が形成され、前記第2領域においては、前記金属膜の表面は固定化膜で被覆されていない請求項5に記載の測定チップに関する。   According to a seventh aspect of the present invention, a substrate is coated with a metal film having an optimum thickness for causing surface plasmon resonance when light having the predetermined wavelength and incident angle is incident, and the first The measurement chip according to claim 5, wherein an immobilization film is formed on a surface of the metal film in the region, and a surface of the metal film is not covered with the immobilization film in the second region.

前記測定チップにおいては、第2領域では、前記波長および入射角の光に対してSPRが生じ、反射光量が顕著に低下する。しかしながら、第2領域には固定化膜は形成されていないから、反射光量は固定化膜の膜厚の影響を受けることがなく、入射光の波長、入射角、および光量が一定であれば一定の反射光量が得られる。   In the measurement chip, in the second region, SPR occurs with respect to the light having the wavelength and the incident angle, and the amount of reflected light is significantly reduced. However, since no immobilization film is formed in the second region, the amount of reflected light is not affected by the film thickness of the immobilization film, and is constant if the wavelength, incident angle, and amount of incident light are constant. Can be obtained.

したがって、前記測定チップにおいても、第1領域と第2領域との反射光量比は、固定化膜の厚さに対応して変化するから、前記測定チップにおいて固定化膜の厚さが既知のものは、請求項1〜4に記載の固定化膜の膜厚測定方法における校正用チップとして好適に使用される。   Therefore, also in the measurement chip, the ratio of the amount of reflected light between the first region and the second region changes corresponding to the thickness of the immobilized film, and therefore the thickness of the immobilized film is known in the measurement chip. Is suitably used as a calibration chip in the method for measuring the thickness of an immobilized film according to claims 1 to 4.

以上説明したように本発明によれば、測定チップの固定膜の膜厚が簡便に測定、検査できる測定チップの固定化膜の膜厚測定方法、および前記測定方法を実現する手段を有する測定チップが提供される。   As described above, according to the present invention, the method for measuring the thickness of the fixed film of the measurement chip that can easily measure and inspect the thickness of the fixed film of the measurement chip, and the measurement chip having means for realizing the measurement method Is provided.

1.実施形態1
実施形態1に係る測定チップ10は、図1に示すように長尺板状の基体2と、基体2の一方の面に形成された金属膜4と、金属膜4の表面に形成された固定化膜6とを備える。
1. Embodiment 1
As shown in FIG. 1, the measuring chip 10 according to the first embodiment includes a long plate-like base 2, a metal film 4 formed on one surface of the base 2, and a fixed formed on the surface of the metal film 4. And a chemical film 6.

基体2は、本発明の光の一例である波長532nmの入射光に対して透明な誘電体、たとえば石英ガラスや硼珪酸ガラスなどの光学ガラス類、およびポリカーボネート樹脂や環状ポリオレフィン樹脂などの光学用樹脂から形成できる。そして、図2に示すように、幅方向に沿った平面X−X’で切断した断面は、金属膜4が形成された側の面から金属膜4の形成されていない側の面に向かって縮小するプリズム状である。   The substrate 2 is a dielectric that is transparent to incident light having a wavelength of 532 nm, which is an example of the light of the present invention, such as optical glass such as quartz glass and borosilicate glass, and optical resin such as polycarbonate resin and cyclic polyolefin resin. Can be formed from And as shown in FIG. 2, the cross section cut | disconnected by plane XX 'along the width direction goes to the surface where the metal film 4 is not formed from the surface where the metal film 4 is formed. The prism shape is reduced.

金属膜4は、SPRが生じ得るものであれば特に限定はされず、たとえば金、銀、銅、アルミニウムから選択された金属を基体2の幅の広い側の面にスパッタリングして形成されるが、プラズモンの減衰のし難さの点から金および銀が好ましく、特に酸化に対する安定性に優れている点から金が好ましい。   The metal film 4 is not particularly limited as long as it can cause SPR. For example, the metal film 4 is formed by sputtering a metal selected from gold, silver, copper, and aluminum on the wide surface of the base 2. Gold and silver are preferable from the viewpoint of difficulty of plasmon attenuation, and gold is particularly preferable from the viewpoint of excellent stability against oxidation.

金属膜4は、所定の入射角たとえば反射面に対して54度の入射角で波長532nmの入射光を入射させたときに表面プラズモン共鳴を生起する厚さに形成された第1領域4Aと、前記第1領域4Aよりも厚さの薄い第2領域4Bとからなる。金属膜4における第1領域4Aの厚さt1はたとえば45nmであり、第2領域4Bの厚さt2はたとえば15nmである。   The metal film 4 has a first region 4A formed to a thickness that causes surface plasmon resonance when incident light having a wavelength of 532 nm is incident at a predetermined incident angle, for example, an incident angle of 54 degrees with respect to the reflecting surface; The second region 4B is thinner than the first region 4A. The thickness t1 of the first region 4A in the metal film 4 is, for example, 45 nm, and the thickness t2 of the second region 4B is, for example, 15 nm.

測定チップ10は、以下の手順に従って作製できる。   The measuring chip 10 can be manufactured according to the following procedure.

先ず、図3に示すように、24本の基体2を、基体2の幅の広い側がスパッタターゲット(図示せず。)に相対するようにスパッタ成膜装置(図示せず。)のサンプル台200の上に載置する。24本の基体2は4つの組に分けられ、各組は夫々等間隔に配列される。各組において、基体2は、幅方向に6本づつ密着して配列される。   First, as shown in FIG. 3, the sample base 200 of the sputter deposition apparatus (not shown) has 24 bases 2 so that the wide side of the base 2 faces the sputter target (not shown). Place on top. The 24 substrates 2 are divided into four groups, and each group is arranged at equal intervals. In each group, six substrates 2 are arranged in close contact with each other in the width direction.

スパッタ成膜装置のサンプル台200の上に基体2を配列したら、マスク20を基体2に密着させて被せる。マスク20は、図4に示すように略半径方向に沿って等間隔に連続スリット22が6本形成された連続スリット領域21が等間隔に4個形成されている。連続スリット22は基体2の全長に亘って連続するように形成されている。そして、隣り合う2つの連続スリット領域21の丁度中間に、略半径方向に沿って等間隔に断続スリット24が6本形成された断続スリット領域23が形成されている。したがって、断続スリット領域23も、連続スリット領域21と同様に等間隔に4個形成されている。断続スリット24は、連続スリット22とは異なり、破線状に断続するように形成されている。   When the substrate 2 is arranged on the sample stage 200 of the sputter deposition apparatus, the mask 20 is placed in close contact with the substrate 2. As shown in FIG. 4, the mask 20 has four continuous slit regions 21 in which six continuous slits 22 are formed at regular intervals along a substantially radial direction. The continuous slit 22 is formed so as to be continuous over the entire length of the base 2. And the intermittent slit area | region 23 in which the six intermittent slits 24 were formed at equal intervals along the substantially radial direction just in the middle of the two adjacent continuous slit area | regions 21 is formed. Therefore, four intermittent slit regions 23 are also formed at regular intervals in the same manner as the continuous slit region 21. Unlike the continuous slit 22, the intermittent slit 24 is formed to be intermittent in a broken line shape.

マスク20は、先ず、図5において(A)に示すように、断続スリット領域23が基体2の上方に位置するように配置される。これにより、断続スリット24が夫々の基体2の上方に位置する。この状態で金を30nmの厚さにスパッタリングすることにより、図5において(B)に示すように基体2の幅の広い側の面に第1領域4Aが断続的に形成される。   First, as shown in FIG. 5A, the mask 20 is arranged so that the intermittent slit region 23 is located above the base 2. As a result, the intermittent slit 24 is positioned above each base body 2. By sputtering gold to a thickness of 30 nm in this state, the first region 4A is intermittently formed on the wide surface of the substrate 2 as shown in FIG.

第1領域4Aが形成されたら、マスク20を図5の状態から45度回転させ、図6において(A)に示すように、連続スリット領域21が基体2の上方に位置するように配置される。これにより、連続スリット22が夫々の基体2の上方に位置する。この状態で金を15nmの厚さにスパッタリングすることにより、図6において(B)に示すように基体2の幅の広い側の面に第1領域4Aと第2領域4Bとが形成される。   When the first region 4A is formed, the mask 20 is rotated 45 degrees from the state of FIG. 5, and the continuous slit region 21 is disposed above the base 2 as shown in FIG. . As a result, the continuous slits 22 are positioned above the respective substrates 2. By sputtering gold to a thickness of 15 nm in this state, the first region 4A and the second region 4B are formed on the wide surface of the substrate 2 as shown in FIG. 6B.

基体2に金属膜4が形成されたら、図7に示す手順に従って金属膜4の表面に固定化膜6を形成して測定チップ10を作製する。以下に、測定チップ10を作製した手順について説明する。   When the metal film 4 is formed on the substrate 2, the measurement chip 10 is manufactured by forming the immobilization film 6 on the surface of the metal film 4 according to the procedure shown in FIG. Below, the procedure which produced the measurement chip | tip 10 is demonstrated.

エタノール/水(80/20)中、11−ヒドロキシ−1−ウンデカンチオールの5.0mM溶液を、金属膜4に接触するように添加し、25℃で18時間表面処理を行った。その後、エタノールで5回、エタノール/水混合溶媒で1回、水で5回洗浄した。   A 5.0 mM solution of 11-hydroxy-1-undecanthiol in ethanol / water (80/20) was added so as to contact the metal film 4 and surface treatment was performed at 25 ° C. for 18 hours. Then, it was washed 5 times with ethanol, once with a mixed solvent of ethanol / water, and 5 times with water.

次に、11−ヒドロキシ−1−ウンデカンチオールで被覆した表面を10重量%のエピクロロヒドリン溶液(溶媒:0.4M水酸化ナトリウムとジエチレングリコールジメチルエーテルとの1:1混合溶液)に接触させ、25℃の震盪インキュベータ中で4時間反応を進行させた。その後、表面をエタノールで2回、水で5回洗浄した。   Next, the surface coated with 11-hydroxy-1-undecanethiol was brought into contact with a 10 wt% epichlorohydrin solution (solvent: 1: 1 mixed solution of 0.4 M sodium hydroxide and diethylene glycol dimethyl ether), and 25 The reaction was allowed to proceed for 4 hours in a shaking incubator at 0 ° C. Thereafter, the surface was washed twice with ethanol and five times with water.

次に、25重量%のデキストラン(T500、Pharmacia社製)水溶液40.5mlに4.5mlの水酸化ナトリウムを添加し、その溶液をエピクロロヒドリン処理表面に接触させた。次に震盪インキュベータ中で25℃、20時間インキュベートした。そして、表面を50度の水で10回洗浄した。   Next, 4.5 ml of sodium hydroxide was added to 40.5 ml of 25% by weight dextran (T500, manufactured by Pharmacia), and the solution was brought into contact with the epichlorohydrin-treated surface. It was then incubated for 20 hours at 25 ° C. in a shaking incubator. And the surface was washed 10 times with 50 degree water.

続いてブロモ酢酸3.5gを27gの2M水酸化ナトリウム溶液に溶解した混合物を上記デキストラン処理表面に接触させ、震盪インキュベータ中で28℃16時間インキュベートした。インキュベート後、表面を水で洗浄し、上述の手順を1回繰り返した。   Subsequently, a mixture of 3.5 g of bromoacetic acid dissolved in 27 g of 2M sodium hydroxide solution was brought into contact with the dextran-treated surface and incubated at 28 ° C. for 16 hours in a shaking incubator. After incubation, the surface was washed with water and the above procedure was repeated once.

このようにして作製された測定チップ10のうちの1つを校正用チップ10として用い、エリプソメータで固定化膜の膜厚を測定する。   One of the measurement chips 10 thus produced is used as the calibration chip 10 and the thickness of the immobilization film is measured with an ellipsometer.

エリプソメータで膜厚を測定した校正用チップ10を測定装置100に装着して反射光量の二次元分布を測定し、膜厚と反射光量との関係を求めた。   The calibration chip 10 whose film thickness was measured with an ellipsometer was attached to the measuring apparatus 100, the two-dimensional distribution of the reflected light amount was measured, and the relationship between the film thickness and the reflected light amount was determined.

測定装置100は、図8に示すように、校正用チップ10が装着される測定チップホルダ102と、測定チップホルダ102に装着された校正用チップ10に向かって平行な光を照射する光源104と、校正用チップ10からの反射光の強度を測定するCCDカメラ106と、校正用チップ10からの反射光をCCDカメラ106に収束させるテレセントリックレンズ108とを備える。光源104の出射面にはp偏光光のみを透過させる偏光フィルタ110が、テレセントリックレンズ108の入射面には波長532nmの光のみを透過させる干渉フィルタ112が設けられている。更に、光源104の出射面と偏光フィルタ110との間には光源104から出射される光の幅を規制するマスク114が挿入されている。   As shown in FIG. 8, the measuring apparatus 100 includes a measuring chip holder 102 on which the calibration chip 10 is mounted, and a light source 104 that irradiates parallel light toward the calibration chip 10 mounted on the measuring chip holder 102. The CCD camera 106 that measures the intensity of the reflected light from the calibration chip 10 and the telecentric lens 108 that converges the reflected light from the calibration chip 10 on the CCD camera 106 are provided. A polarizing filter 110 that transmits only p-polarized light is provided on the exit surface of the light source 104, and an interference filter 112 that transmits only light having a wavelength of 532 nm is provided on the incident surface of the telecentric lens 108. Further, a mask 114 that restricts the width of light emitted from the light source 104 is inserted between the emission surface of the light source 104 and the polarizing filter 110.

校正用チップ10は、基体2の幅の小さい側の面、言い換えれば金属膜4および固定化膜6が形成された側とは反対側の面が、光源104およびCCDカメラ106に臨むように測定チップホルダ102に装着される。   The calibration chip 10 is measured so that the surface on the side of the base 2 having a small width, in other words, the surface opposite to the side on which the metal film 4 and the fixing film 6 are formed faces the light source 104 and the CCD camera 106. Attached to the chip holder 102.

以下、測定装置100の作用について説明する。図8に示すように、光源104から出射された光は、校正用チップ10の金属膜4を有しない側の面から金属膜4に向かって入射角θで入射し、金属膜4で反射して同様の出射角でテレセントリックレンズ108およびCCDカメラ106に入射する。測定チップ10の基体2はプリズムとして機能し、基体2に入射した光を金属膜4の基体2に接する側に入射角θで誘導する。   Hereinafter, the operation of the measuring apparatus 100 will be described. As shown in FIG. 8, the light emitted from the light source 104 enters the metal film 4 from the surface of the calibration chip 10 that does not have the metal film 4 at an incident angle θ and is reflected by the metal film 4. Then, the light enters the telecentric lens 108 and the CCD camera 106 at the same emission angle. The base 2 of the measurement chip 10 functions as a prism, and guides the light incident on the base 2 to the side of the metal film 4 in contact with the base 2 at an incident angle θ.

図9に示すように、光の金属膜4に対する入射角θが特定の値、たとえば約48〜52度のとき、金属膜4の第1領域4A、即ち厚さが45nmの領域では、入射した光によってSPRが起こり、反射光量が大きく減衰する。反射光量が最低値を示す入射角θは、同図において太い実線で示すように校正用チップ10に固定化膜6を形成しない場合は48度であり、厚さ5nmの固定化膜6を形成した場合は同図において太い破線で示すように50度であり、厚さが10nmの固定化膜6を形成した場合は同図において太い一点鎖線で示すように52度である。   As shown in FIG. 9, when the incident angle θ of light with respect to the metal film 4 is a specific value, for example, about 48 to 52 degrees, the first region 4A of the metal film 4, that is, the region having a thickness of 45 nm is incident. SPR occurs due to light, and the amount of reflected light is greatly attenuated. The incident angle θ at which the amount of reflected light has the lowest value is 48 degrees when the fixing film 6 is not formed on the calibration chip 10 as shown by the thick solid line in the figure, and the fixing film 6 having a thickness of 5 nm is formed. In this case, it is 50 degrees as shown by a thick broken line in the figure, and when the fixed film 6 having a thickness of 10 nm is formed, it is 52 degrees as shown by a thick dashed line in the figure.

入射角θが前記角度よりも大きくなると、固定化膜6の厚さによらず、反射率は上昇するが、固定化膜6を形成しない場合と固定化膜6の厚さが5nmの場合と固定化膜6の厚さが10nmの場合との反射率の差は、入射角θが54度近辺で最大になる。   When the incident angle θ is larger than the above angle, the reflectance increases regardless of the thickness of the immobilization film 6, but the immobilization film 6 is not formed and the immobilization film 6 has a thickness of 5 nm. The difference in reflectance from the case where the thickness of the immobilizing film 6 is 10 nm is maximized when the incident angle θ is around 54 degrees.

これに対し、金属膜の厚さが15nmである第2領域4Bにおいては、入射角θが54においては、図9で細い実線、破線、および一点鎖線で示すように、反射率は約0.4と固定化膜6の厚さによらず殆ど同一である。   On the other hand, in the second region 4B where the thickness of the metal film is 15 nm, when the incident angle θ is 54, the reflectance is about 0. As shown by the thin solid line, the broken line, and the alternate long and short dash line in FIG. 4 and the thickness of the immobilizing film 6 are almost the same.

入射角θが54度のときの反射率と固定化膜6の膜厚との関係を、金属膜4における厚さが45nmの第1領域4Aと厚さが15nmの第2領域4Bとについて図10の(A)に示す。図10の(A)において、第1領域4Aについては破線で、第2領域4Bについては実線で示す。図10の(A)から判るように、第1領域4Aの反射率は、固定化膜6の厚さが0nmのとき約0.205であり、5nmのときは約0.14であり、10nmのときは約0.08であり、固定化膜6の厚さが増加すると直線的に低下している。これに対し、第2領域4Bにおいては、固定化膜6の厚さによらず、反射率は0.41でほぼ一定である。実際の測定では、1枚の2次元画像の反射光分布からは反射率を直接求めることはできない。そこで、第1領域4Aと第2領域4Bとの反射率の比である反射光量比を求めた。反射光量比は、値が低くなればなるほど第1領域4Aと第2領域4Bとのコントラストが強くなることを示す。反射光量比と固定化膜6の膜厚との関係を図10の(B)に示す。図10の(B)に示すように、反射光量比は、固定化膜6の厚さが0nmのとき約0.5であり、5nmのときは約0.35であり、10nmのときは約0.2と、固定化膜6の厚さが増加すると直線的に低下していた。このように、固定化膜6の厚みが増加したときの反射光量比の低下は反射率の低下よりも著しいことが判る。   The relationship between the reflectance when the incident angle θ is 54 degrees and the film thickness of the immobilization film 6 is shown for the first region 4A having a thickness of 45 nm and the second region 4B having a thickness of 15 nm in the metal film 4. 10 (A). In FIG. 10A, the first region 4A is indicated by a broken line, and the second region 4B is indicated by a solid line. As can be seen from FIG. 10A, the reflectance of the first region 4A is about 0.205 when the thickness of the immobilizing film 6 is 0 nm, and is about 0.14 when the thickness is 5 nm. In this case, it is about 0.08, and decreases linearly as the thickness of the immobilizing film 6 increases. On the other hand, in the second region 4B, the reflectance is substantially constant at 0.41 regardless of the thickness of the immobilization film 6. In actual measurement, the reflectance cannot be obtained directly from the reflected light distribution of one two-dimensional image. Therefore, a reflected light amount ratio, which is a ratio of reflectance between the first region 4A and the second region 4B, was obtained. The reflected light amount ratio indicates that the lower the value, the stronger the contrast between the first region 4A and the second region 4B. The relationship between the reflected light amount ratio and the thickness of the immobilization film 6 is shown in FIG. As shown in FIG. 10B, the reflected light amount ratio is about 0.5 when the thickness of the immobilizing film 6 is 0 nm, about 0.35 when it is 5 nm, and about 0.35 when it is 10 nm. As the thickness of the immobilizing film 6 increased to 0.2, it decreased linearly. Thus, it can be seen that the decrease in the reflected light amount ratio when the thickness of the immobilization film 6 is increased is more significant than the decrease in the reflectance.

次に、図11に示す固定化膜6の厚みが未知の測定チップ10について図8に示す測定装置で金属膜4の反射率を測定して第1領域4Aと第2領域4Bとの反射光量比を求めた。なお、図11の測定チップも幅方向の切断面X−X’で切断した断面は図2に示す通りであり、第1領域4Aは4個設けられている。そして固定化膜6は、第2領域4Bによって、第1領域4Aの4つの領域に対応する膜厚評価ライン1、膜厚評価ライン2、膜厚評価ライン3、膜厚評価ライン4の4領域に区分されている。図11において、膜厚評価ライン1、膜厚評価ライン2、膜厚評価ライン3、膜厚評価ライン4の色の濃度の高い部分は膜厚が厚いことを、色の濃度の低い部分は膜厚が薄いことを示す。   Next, the reflectance of the metal film 4 is measured with the measuring device shown in FIG. 8 with respect to the measuring chip 10 whose thickness of the immobilizing film 6 shown in FIG. 11 is unknown, and the amount of reflected light between the first region 4A and the second region 4B. The ratio was determined. Note that the cross section of the measurement chip of FIG. 11 taken along the cross section X-X ′ in the width direction is as shown in FIG. 2, and four first regions 4 </ b> A are provided. And the fixed film | membrane 6 is 4 area | regions of the film thickness evaluation line 1, the film thickness evaluation line 2, the film thickness evaluation line 3, and the film thickness evaluation line 4 corresponding to four areas | regions of the 1st area | region 4A by the 2nd area | region 4B. It is divided into. In FIG. 11, the high color density portions of the film thickness evaluation line 1, the film thickness evaluation line 2, the film thickness evaluation line 3, and the film thickness evaluation line 4 indicate that the film thickness is thick, and the low color density portion indicates the film. Indicates that the thickness is thin.

膜厚評価ライン1、膜厚評価ライン2、膜厚評価ライン3、膜厚評価ライン4の各領域における反射率の分布を図12の(A)に示す。そして、図12の(A)に示す測定チップ10の各領域における反射率の分布と、図11の(A)に示す反射率と固定化膜6の膜厚との関係とから、各領域における固定化膜6の膜厚の分布を求めた。結果を図12の(B)に示す。   FIG. 12A shows the reflectance distribution in each region of the film thickness evaluation line 1, the film thickness evaluation line 2, the film thickness evaluation line 3, and the film thickness evaluation line 4. Then, from the distribution of reflectance in each region of the measurement chip 10 shown in FIG. 12A and the relationship between the reflectance shown in FIG. The thickness distribution of the immobilization film 6 was obtained. The results are shown in FIG.

以上、実施形態1に示す方法によれば、測定チップ10において金属膜4の反射光量を測定するだけで固定化膜6の厚さの分布が求めらる。
2.実施形態2
実施形態2に係る測定チップ11は、図13に示すように、長尺板状の基体12と、基体12の一方の面に形成された金属膜14と、金属膜14の表面に形成された固定化膜16とを備える。
As described above, according to the method shown in the first embodiment, the thickness distribution of the immobilization film 6 can be obtained only by measuring the amount of reflected light of the metal film 4 with the measurement chip 10.
2. Embodiment 2
As shown in FIG. 13, the measuring chip 11 according to the second embodiment is formed on a long plate-like base 12, a metal film 14 formed on one surface of the base 12, and a surface of the metal film 14. And an immobilization film 16.

基体12は、実施形態1に係る測定チップ10の備える基体2と同様に測定装置100の光源104から出射される光に対して透明な誘電体から形成され、金属膜14が形成される側の面から反対側の面に向かって縮小するプリズム状の断面を有する。基体12を形成するのに使用される誘電体については実施形態1のところで述べたのと同様のものが使用される。   The base 12 is formed of a dielectric that is transparent to the light emitted from the light source 104 of the measuring apparatus 100, similarly to the base 2 provided in the measurement chip 10 according to the first embodiment, and is on the side on which the metal film 14 is formed. It has a prism-shaped cross section that decreases from the surface toward the opposite surface. As the dielectric material used for forming the substrate 12, the same material as described in the first embodiment is used.

金属膜14は、実施形態1における金属膜4とは異なり、厚さ45nmの均一な金、銀、銅、またはアルミニウムの膜である。金属膜14の材質は金または銀が好ましく、中でも金が最も好ましい。   Unlike the metal film 4 in the first embodiment, the metal film 14 is a uniform film of gold, silver, copper, or aluminum having a thickness of 45 nm. The material of the metal film 14 is preferably gold or silver, and most preferably gold.

金属膜14の表面には固定化膜16が形成されているが、固定化膜16は、6個の領域に分割されている。   An immobilization film 16 is formed on the surface of the metal film 14, and the immobilization film 16 is divided into six regions.

測定チップ11は、以下の手順に従って作製できる。   The measurement chip 11 can be manufactured according to the following procedure.

先ず、図3に示すように、24本の基体12を、基体2の幅の広い側がスパッタターゲット(図示せず。)に相対するようにスパッタ成膜装置(図示せず。)のサンプル台200の上に載置する。24本の基体12は4つの組に分けられ、各組は夫々等間隔に配列される。各組において、基体12は、幅方向に6本づつ密着して配列される。   First, as shown in FIG. 3, the sample base 200 of the sputter deposition apparatus (not shown) is configured so that the 24 bases 12 are opposed to the sputter target (not shown) on the wide side of the base 2. Place on top. The 24 substrates 12 are divided into four groups, and each group is arranged at equal intervals. In each group, six bases 12 are arranged in close contact with each other in the width direction.

スパッタ成膜装置のサンプル台200の上に基体12を配列したら、図15において(A)に示すようにマスク30を基体12に密着させて被せる。マスク30は、図14に示すように略半径方向に沿って等間隔に連続スリット32が6本形成された連続スリット領域31が等間隔に4個形成されている。   When the substrate 12 is arranged on the sample stage 200 of the sputter deposition apparatus, a mask 30 is placed in close contact with the substrate 12 as shown in FIG. As shown in FIG. 14, the mask 30 has four continuous slit regions 31 each having six continuous slits 32 formed at equal intervals along the substantially radial direction.

マスク30を基体12に密着させた状態で金を45nmの厚さにスパッタリングすることにより、図15において(B)に示すように基体12の幅の広い側の面に金属膜14が形成される。   Sputtering gold to a thickness of 45 nm with the mask 30 in intimate contact with the substrate 12 forms a metal film 14 on the wide surface of the substrate 12 as shown in FIG. .

金属膜14が形成されたら、図16において(A)に示すように、弗素樹脂のシートにマスク20の断続スリット24と同様の形状および大きさの孔を穿設したキュベット本体にシリコーンゴムのシール材を重ねたものを、基体12の固定化膜16を形成すべき領域に重ね、前記領域に対応する6個のキュベット18を形成した。なお、シリコーンゴムや弗素ゴムなどの耐薬品性の高いゴムに孔を穿設してキュベット本体とシール材とを一体化したものを、前記弗素樹脂のシートとシリコーンゴムとの積層体の代わりに用いてもよい。   When the metal film 14 is formed, as shown in FIG. 16A, a silicone rubber seal is formed on a cuvette body in which holes having the same shape and size as the intermittent slits 24 of the mask 20 are formed in a fluorine resin sheet. The stacked materials were stacked on the region of the substrate 12 where the fixing film 16 was to be formed, and six cuvettes 18 corresponding to the regions were formed. In addition, instead of a laminate of the fluororesin sheet and silicone rubber, a hole made in a highly chemical-resistant rubber such as silicone rubber or fluororubber and the cuvette body and sealing material integrated is used. It may be used.

次に、各キュベット18にエタノール/水(80/20)中、11−ヒドロキシ−1−ウンデカンチオールの5.0mM溶液を注入し、25℃で18時間表面処理を行った。その後、エタノールで5回、エタノール/水混合溶媒で1回、水で5回洗浄した。   Next, a 5.0 mM solution of 11-hydroxy-1-undecanthiol in ethanol / water (80/20) was injected into each cuvette 18 and surface treatment was performed at 25 ° C. for 18 hours. Then, it was washed 5 times with ethanol, once with a mixed solvent of ethanol / water, and 5 times with water.

そして、11−ヒドロキシ−1−ウンデカンチオールで被覆した表面を10重量%のエピクロロヒドリン溶液(溶媒:0.4M水酸化ナトリウムとジエチレングリコールジメチルエーテルとの1:1混合溶液)に接触させ、25℃の震盪インキュベータ中で4時間反応を進行させた。その後、表面をエタノールで2回、水で5回洗浄した。   Then, the surface coated with 11-hydroxy-1-undecanthiol was brought into contact with a 10 wt% epichlorohydrin solution (solvent: 1: 1 mixed solution of 0.4 M sodium hydroxide and diethylene glycol dimethyl ether), and 25 ° C. The reaction was allowed to proceed for 4 hours in a shaking incubator. Thereafter, the surface was washed twice with ethanol and five times with water.

次に、25重量%のデキストラン(T500、Pharmacia社製)水溶液40.5mlに4.5mlの水酸化ナトリウムを添加し、その溶液をエピクロロヒドリン処理表面に接触させた。次に震盪インキュベータ中で25℃、20時間インキュベートした。そして、表面を50度の水で10回洗浄した。   Next, 4.5 ml of sodium hydroxide was added to 40.5 ml of 25% by weight dextran (T500, manufactured by Pharmacia), and the solution was brought into contact with the epichlorohydrin-treated surface. It was then incubated for 20 hours at 25 ° C. in a shaking incubator. And the surface was washed 10 times with 50 degree water.

続いてブロモ酢酸3.5gを27gの2M水酸化ナトリウム溶液に溶解した混合物を上記デキストラン処理表面に接触させ、震盪インキュベータ中で28℃16時間インキュベートした。インキュベート後、表面を水で洗浄し、上述の手順を1回繰り返した。   Subsequently, a mixture of 3.5 g of bromoacetic acid dissolved in 27 g of 2M sodium hydroxide solution was brought into contact with the dextran-treated surface and incubated at 28 ° C. for 16 hours in a shaking incubator. After incubation, the surface was washed with water and the above procedure was repeated once.

このようにして形成された測定チップ11においては、金属膜14における固定化膜16が形成されていない領域を基準領域として固定化膜16の厚さと金属膜14における反射率との関係を求めることができる。前記関係を求める手順および測定装置は、実施形態1のところで述べたとおりである。   In the measurement chip 11 formed in this way, the relationship between the thickness of the immobilization film 16 and the reflectance of the metal film 14 is obtained using the area in the metal film 14 where the immobilization film 16 is not formed as a reference area. Can do. The procedure for obtaining the relationship and the measuring apparatus are as described in the first embodiment.

図1は、実施形態1に係る測定チップの構成を示す長手方向の断面図である。FIG. 1 is a longitudinal sectional view showing the configuration of the measurement chip according to the first embodiment. 図2は、実施形態1に係る測定チップの構成を示す幅方向の断面図である。FIG. 2 is a cross-sectional view in the width direction illustrating the configuration of the measurement chip according to the first embodiment. 図3は、実施形態1に係る測定チップの備える基体に金属膜を作製する手順を示す工程図である。FIG. 3 is a process diagram illustrating a procedure for producing a metal film on a base body included in the measurement chip according to the first embodiment. 図4は、実施形態1に係る測定チップの備える基体に金属膜を作製するのに使用されるマスクを示す平面図である。FIG. 4 is a plan view illustrating a mask used for forming a metal film on a base body included in the measurement chip according to the first embodiment. 図5は、実施形態1に係る測定チップの備える基体に金属膜を作製する手順を示す工程図である。FIG. 5 is a process diagram illustrating a procedure for producing a metal film on a base body included in the measurement chip according to the first embodiment. 図6は、実施形態1に係る測定チップの備える基体に金属膜を作製する手順を示す工程図である。FIG. 6 is a process diagram illustrating a procedure for forming a metal film on a base body included in the measurement chip according to the first embodiment. 図7は、基体に形成された金属膜の表面に固定化膜を形成する手順を示す工程図である。FIG. 7 is a process diagram showing a procedure for forming an immobilization film on the surface of the metal film formed on the substrate. 図8は、図1に示す測定チップが装着される測定装置の構成を示す概略図である。FIG. 8 is a schematic diagram showing a configuration of a measuring apparatus to which the measuring chip shown in FIG. 1 is attached. 図9は、図1に示す測定チップの金属膜において厚さの厚い第1領域と厚さの薄い第2領域とにおける光の入射角と反射率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the incident angle of light and the reflectance in the thick first region and the thin second region in the metal film of the measurement chip shown in FIG. 図10は、図1に示す測定チップにおける固定化膜の厚さと反射率および反射光量比との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the thickness of the immobilized film, the reflectance, and the reflected light amount ratio in the measurement chip shown in FIG. 図11は、金属膜における反射率と固定化膜の厚さとの関係から固定化膜そのものの厚さを求めるのに使用された測定チップの概要を示す平面図である。FIG. 11 is a plan view showing an outline of a measurement chip used for obtaining the thickness of the immobilized film itself from the relationship between the reflectance of the metal film and the thickness of the immobilized film. 図12は、図11に示す測定チップにおける第1領域と第2領域との反射光量比の分布、および前記反射光量比の分布から求めた膜厚分布を示すグラフである。FIG. 12 is a graph showing the distribution of the reflected light amount ratio between the first region and the second region in the measurement chip shown in FIG. 11 and the film thickness distribution obtained from the distribution of the reflected light amount ratio. 図13は、実施形態2に係る測定チップの構成を示す長手方向の断面図である。FIG. 13 is a longitudinal cross-sectional view showing the configuration of the measurement chip according to the second embodiment. 図14は、実施形態2に係る測定チップの備える基体に金属膜を作製するのに使用されるマスクを示す平面図である。FIG. 14 is a plan view showing a mask used for producing a metal film on a base body included in the measurement chip according to the second embodiment. 図15は、実施形態2に係る測定チップの備える基体に金属膜を作製する手順を示す工程図である。FIG. 15 is a process diagram illustrating a procedure for producing a metal film on a base body included in the measurement chip according to the second embodiment. 図16は、実施形態2に係る測定チップにおいて基体に形成された金属膜の表面に固定化膜を形成する手順を示す工程図である。FIG. 16 is a process diagram showing a procedure for forming an immobilization film on the surface of a metal film formed on a substrate in the measurement chip according to the second embodiment.

符号の説明Explanation of symbols

2 基体
4 金属膜
4A 第1領域
4B 第2領域
6 固定化膜
10 測定チップ
11 測定チップ
12 基体
14 金属膜
16 固定化膜
18 キュベット
20 マスク
21 連続スリット領域
22 連続スリット
23 断続スリット領域
24 断続スリット
30 マスク
31 連続スリット領域
32 連続スリット
100 測定装置
102 測定チップホルダ
104 光源
106 CCDカメラ
108 テレセントリックレンズ
110 偏光フィルタ
112 干渉フィルタ
114 マスク
200 サンプル台
2 Base 4 Metal film 4A 1st area 4B 2nd area 6 Immobilization film 10 Measurement chip 11 Measurement chip 12 Base 14 Metal film 16 Immobilization film 18 Cuvette 20 Mask 21 Continuous slit area 22 Continuous slit 23 Intermittent slit area 24 Intermittent slit DESCRIPTION OF SYMBOLS 30 Mask 31 Continuous slit area 32 Continuous slit 100 Measuring apparatus 102 Measuring chip holder 104 Light source 106 CCD camera 108 Telecentric lens 110 Polarizing filter 112 Interference filter 114 Mask 200 Sample stand

Claims (7)

基体の表面の少なくとも一部の領域に形成され、所定の波長および入射角の光によって表面プラズモン共鳴を生じさせるのに最適な厚さを有する金属膜と、前記金属膜の表面に所定のアナライトと相互作用するリガンドを固定する固定化膜が形成された第1領域と、前記第1領域に隣接して設けられ、前記波長および入射角の光に対して基準となる反射率を有する第2領域とを備える測定チップであって、前記第1領域における固定化膜が所定の膜厚を有する校正用チップを作製する第1ステップと、
第1ステップで作製された校正用チップの第1領域における固定化膜の膜厚を測定する第2ステップと、
前記校正用チップについて、第1領域および第2領域における反射光量を同時に測定し、前記第1領域と前記第2領域との反射光量の比である反射光量比を求め、次いで、前記反射光量比と固定化膜の膜厚との関係を求める第3ステップと、
前記測定チップであって前記固定化膜の膜厚が未知の被検査チップについて、第1領域および第2領域における反射光量を同時に測定し、前記第1領域と前記第2領域との反射光量比を求める第4ステップと、
前記第3ステップで求めた校正用チップの反射光量比と、前記第4ステップで求めた被検査チップの反射光量比とに基づいて前記被検査チップの第1領域における固定化膜の膜厚を求める第5ステップと
を有することを特徴とする測定チップの固定化膜の膜厚測定方法。
A metal film formed in at least a partial region of the surface of the substrate and having an optimum thickness for causing surface plasmon resonance by light of a predetermined wavelength and incident angle; and a predetermined analyte on the surface of the metal film A first region on which an immobilization film for immobilizing a ligand that interacts with the first region is formed; and a second region that is provided adjacent to the first region and has a reflectance that serves as a reference for light having the wavelength and the incident angle. A first step of producing a calibration chip having a predetermined thickness of the immobilization film in the first region,
A second step of measuring the thickness of the immobilization film in the first region of the calibration chip produced in the first step;
For the calibration chip, the amount of reflected light in the first region and the second region is simultaneously measured to obtain a reflected light amount ratio that is a ratio of the reflected light amount between the first region and the second region, and then the reflected light amount ratio And a third step for determining the relationship between the thickness of the fixed film and the immobilized film;
With respect to the chip to be inspected whose thickness of the immobilization film is unknown, the reflected light amount in the first region and the second region is simultaneously measured, and the reflected light amount ratio between the first region and the second region is measured. A fourth step for determining
Based on the reflected light amount ratio of the calibration chip obtained in the third step and the reflected light amount ratio of the chip to be inspected obtained in the fourth step, the thickness of the immobilization film in the first region of the chip to be inspected is determined. And a method for measuring the thickness of the fixed film of the measuring chip.
前記第1ステップにおいて、前記所定の波長および入射角の光に対して表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆された第1領域と、前記基体が金属膜で被覆されていないか、または前記第1領域に形成された金属膜とは厚さの異なる金属膜で被覆されてなる第2領域とを有するとともに、前記第1および第2領域は厚さの均一な固定化膜で被覆されてなる校正用チップを作製する請求項1に記載の測定チップの固定化膜の膜厚測定方法。   In the first step, a first region in which a substrate is coated with a metal film having an optimum thickness for generating surface plasmon resonance for light of the predetermined wavelength and incident angle; and the substrate is a metal film. A second region which is not covered or is covered with a metal film having a thickness different from that of the metal film formed in the first region, and the first and second regions have a uniform thickness. The method for measuring a film thickness of an immobilized film of a measurement chip according to claim 1, wherein a calibration chip coated with a fixed film is prepared. 前記第1ステップにおいて、前記所定の波長および入射角の光に対して表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆されてなるとともに、
前記金属膜の表面が固定化膜で覆われた第1領域と、前記金属膜の表面が固定化膜で被覆されていない第2領域とを有する校正用チップを作製する請求項1に記載の測定チップの固定化膜の膜厚測定方法。
In the first step, the substrate is coated with a metal film having an optimum thickness for causing surface plasmon resonance with respect to the light having the predetermined wavelength and incident angle,
2. The calibration chip according to claim 1, wherein the calibration chip has a first region in which a surface of the metal film is covered with an immobilization film and a second region in which the surface of the metal film is not covered with an immobilization film. A method for measuring the thickness of the fixed film of the measuring chip.
前記第4ステップにおいて、被検査チップについて前記第2領域と前記第1領域との反射光量比の2次元分布を求め、
前記第5ステップにおいて、前記第3ステップで求めた校正用チップの反射光量比と、前記第4ステップで求めた被検査チップの反射光量比の二次元分布とに基づいて前記被検査チップの第1領域における膜厚の二次元分布を求める
請求項1〜3の何れか1項に記載の測定チップの固定化膜の膜厚測定方法。
In the fourth step, a two-dimensional distribution of the reflected light amount ratio between the second region and the first region is obtained for the chip to be inspected,
In the fifth step, based on the reflected light ratio of the calibration chip obtained in the third step and the two-dimensional distribution of the reflected light ratio of the chip to be inspected obtained in the fourth step, The method for measuring a film thickness of an immobilized film of a measurement chip according to any one of claims 1 to 3, wherein a two-dimensional distribution of film thickness in one region is obtained.
基体の表面の少なくとも一部の領域に形成され、所定の波長および入射角の光によって表面プラズモン共鳴を生じさせるのに最適な厚さを有する金属膜と、
前記金属膜の表面に所定のアナライトと相互作用するリガンドを固定する固定化膜が形成された第1領域と、
前記第1領域に隣接して設けられ、前記波長および入射角の光に対して基準となる反射率を有する第2領域とを備えてなることを特徴とする測定チップ。
A metal film formed in at least a partial region of the surface of the substrate and having an optimum thickness for causing surface plasmon resonance by light of a predetermined wavelength and incident angle;
A first region in which an immobilized film for fixing a ligand that interacts with a predetermined analyte is formed on the surface of the metal film;
A measurement chip comprising: a second region that is provided adjacent to the first region and has a reflectance that serves as a reference for the light having the wavelength and the incident angle.
前記第1領域においては、前記所定の波長および入射角の光を入射したときに表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆され、
前記第2領域においては、前記基体が金属膜で被覆されていないか、または前記第1領域に形成された金属膜とは厚さの異なる金属膜で被覆されてなるとともに、前記第1および第2領域は厚さの均一な固定化膜で被覆されてなる
請求項5に記載の測定チップ。
In the first region, the substrate is covered with a metal film having an optimum thickness for causing surface plasmon resonance when light having the predetermined wavelength and incident angle is incident.
In the second region, the base is not covered with a metal film, or is coated with a metal film having a thickness different from that of the metal film formed in the first region. The measurement chip according to claim 5, wherein the two regions are covered with a fixed film having a uniform thickness.
前記所定の波長および入射角の光を入射したときに表面プラズモン共鳴を生じさせるのに最適な厚さの金属膜で基体が被覆されてなるとともに、
前記第1領域においては前記金属膜の表面に固定化膜が形成され、
前記第2領域においては、前記金属膜の表面は固定化膜で被覆されていない
請求項5に記載の測定チップ。
The substrate is coated with a metal film having an optimum thickness for generating surface plasmon resonance when light of the predetermined wavelength and incident angle is incident,
In the first region, an immobilization film is formed on the surface of the metal film,
The measurement chip according to claim 5, wherein the surface of the metal film is not covered with an immobilization film in the second region.
JP2006081391A 2006-03-23 2006-03-23 Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor Withdrawn JP2007256103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081391A JP2007256103A (en) 2006-03-23 2006-03-23 Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081391A JP2007256103A (en) 2006-03-23 2006-03-23 Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor

Publications (1)

Publication Number Publication Date
JP2007256103A true JP2007256103A (en) 2007-10-04

Family

ID=38630500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081391A Withdrawn JP2007256103A (en) 2006-03-23 2006-03-23 Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor

Country Status (1)

Country Link
JP (1) JP2007256103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115623A (en) * 2007-11-06 2009-05-28 Sharp Corp Surface plasmon sensor
WO2015186684A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Method for manufacturing detection chip
KR101749623B1 (en) 2016-10-24 2017-06-21 가천대학교 산학협력단 Multi-channel optical sensing apparatus using surface plasmon resonance induced fluorescence signal enhancement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115623A (en) * 2007-11-06 2009-05-28 Sharp Corp Surface plasmon sensor
WO2015186684A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Method for manufacturing detection chip
JPWO2015186684A1 (en) * 2014-06-02 2017-04-20 コニカミノルタ株式会社 Detection chip manufacturing method
KR101749623B1 (en) 2016-10-24 2017-06-21 가천대학교 산학협력단 Multi-channel optical sensing apparatus using surface plasmon resonance induced fluorescence signal enhancement

Similar Documents

Publication Publication Date Title
JP3579321B2 (en) Two-dimensional imaging surface plasmon resonance measurement apparatus and measurement method
FI76432B (en) FARING REQUIREMENTS FOR THE CONSTITUTION OF THE ELEMENT I LOESNING MED EN LJUSLEDARE.
US8045141B2 (en) Detecting element, detecting device and detecting method
US8290314B2 (en) Optical waveguide mode sensor having pores
US20120295357A1 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
JP2010525334A (en) Methods of using biosensors to detect small molecules that bind directly to an immobilized target
JP4463610B2 (en) Surface plasmon resonance sensor device
KR20050084016A (en) Method for generating electromagnetic field distributions
JP2007218900A (en) Element for detecting target substance
US20030113231A1 (en) Differential spr sensor and measuring method using it
JP2002357543A (en) Analyzing element and method for analyzing sample using the same
JP2003121349A (en) Surface plasmon resonance sensor chip as well as method and apparatus for analysing sample by using the same
JP2009058514A (en) Device for determining concentration of substance present in solution, using ellipsometry
US20050250198A1 (en) Biochemical measuring chip and measuring apparatus
US7846396B2 (en) Sample holder for surface plasmon resonance measuring instruments
JP2007256103A (en) Film thickness measuring method for fixing film for measuring chip, and measurement chip therefor
JP4921213B2 (en) Detection element, detection element device, and detection method
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
JP4219689B2 (en) Imaging apparatus and method
JP2015111063A (en) Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
JP5831230B2 (en) Surface plasmon enhanced fluorescence measurement device
JP7177913B2 (en) High-sensitivity biosensor chip, measurement system, and measurement method using high-extinction-coefficient marker and dielectric substrate
JP2004245638A (en) Measuring apparatus
JP2002357542A (en) Analyzing element and method for analyzing sample using the same
JP2005221274A (en) Measuring method and measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090605