JP2007256038A - Surface analyzer - Google Patents

Surface analyzer Download PDF

Info

Publication number
JP2007256038A
JP2007256038A JP2006080000A JP2006080000A JP2007256038A JP 2007256038 A JP2007256038 A JP 2007256038A JP 2006080000 A JP2006080000 A JP 2006080000A JP 2006080000 A JP2006080000 A JP 2006080000A JP 2007256038 A JP2007256038 A JP 2007256038A
Authority
JP
Japan
Prior art keywords
sample
ray
electron beam
light
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080000A
Other languages
Japanese (ja)
Inventor
Toyohiko Tazawa
豊彦 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2006080000A priority Critical patent/JP2007256038A/en
Publication of JP2007256038A publication Critical patent/JP2007256038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface analyzer capable of suppressing position fluctuation of an irradiation electron beam, and performing image observation with high resolution and high magnification and analysis with high position accuracy. <P>SOLUTION: An electric field caused by electrification on a condenser element is shielded by placing a metal grid having a grounding potential between a sample and the condenser element, and position fluctuation of the irradiation electron beam is suppressed. By stopping deposition of a metal thin film on the condenser element, absorption of a soft X-ray by the metal thin film is prevented, to thereby improve detection sensitivity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電子線、イオンビーム又はX線等の1次ビームを試料に照射し、試料から発生した電子線、X線、光等により試料の表面近傍に存在する元素を同定すると共に、結合状態などの化学状態の解析を行う蛍光X線分析装置、X線マイクロアナライザ、走査電子顕微鏡でのカソードルミネッセンス等のX線及び/若しくは光の分光を利用した表面分析装置に関するものである。   The present invention irradiates a sample with a primary beam such as an electron beam, an ion beam, or an X-ray, identifies an element existing in the vicinity of the surface of the sample by an electron beam, X-ray, light, etc. generated from the sample, and binds the sample. The present invention relates to a surface analysis apparatus using X-ray and / or light spectroscopy such as cathodoluminescence in a scanning electron microscope.

試料表面の組成や化学状態等を分析する装置としてX線分析装置がある。
このようなX線分析装置では、試料表面に細く絞った電子を照射し、試料表面層から発生したX線を集光素子により集束して半導体X線分析器や回折格子等を用いた波長分散型X線分光器に導き、ここでエネルギー分光し、分光されたX線を検出器で検出し、エネルギースペクトルを得、スペクトルのピーク値、強度、およびその形などを解析して試料の微小領域(ナノオーダレベル)の組成や化学状態等を分析している。
There is an X-ray analyzer as an apparatus for analyzing the composition, chemical state, etc. of the sample surface.
In such an X-ray analyzer, the sample surface is irradiated with finely focused electrons, and X-rays generated from the sample surface layer are focused by a condensing element, and wavelength dispersion using a semiconductor X-ray analyzer or a diffraction grating is performed. Type X-ray spectrometer, energy spectroscopy is performed here, the detected X-rays are detected by a detector, an energy spectrum is obtained, and the peak value, intensity, and shape of the spectrum are analyzed to analyze a micro area of the sample (Nano-order level) composition and chemical state are analyzed.

従来の、試料表面からの軟X線を検出する超高真空表面分析装置の一例として、その構成を図1、2を用いて説明する。分析室1上面には電子銃4が設置され、試料2に照射する電子線14を発生する。電子銃4の末端には対物レンズ5が設置されてり、電子線14を試料ステージ3上の試料2に合焦する。分析室1の側面には試料2を分析室1に導入するための試料交換室12及び、試料交換室12に導入した被測定試料2をお分析室1に搬送するための試料搬送棒13が設置されている。   As an example of a conventional ultra-high vacuum surface analyzer for detecting soft X-rays from a sample surface, the configuration will be described with reference to FIGS. An electron gun 4 is installed on the upper surface of the analysis chamber 1 to generate an electron beam 14 that irradiates the sample 2. An objective lens 5 is installed at the end of the electron gun 4 to focus the electron beam 14 on the sample 2 on the sample stage 3. On the side of the analysis chamber 1, there are a sample exchange chamber 12 for introducing the sample 2 into the analysis chamber 1 and a sample transport rod 13 for transporting the sample 2 to be measured introduced into the sample exchange chamber 12 to the analysis chamber 1. is set up.

電子線14が試料2に照射されると、試料表面2から軟X線15が放出される。分析室1は、低エネルギーの軟X線の測定を行うにあたり、試料表面を極めて清浄かつ、汚染パーテクルの無い状態に保つために図示しない真空ポンプ等によって10−8Pa以下の超高真空に保持されている。 When the sample 2 is irradiated with the electron beam 14, soft X-rays 15 are emitted from the sample surface 2. The analysis chamber 1 is kept at a very high vacuum of 10 −8 Pa or less by a vacuum pump (not shown) or the like in order to keep the sample surface extremely clean and free from contamination particles when measuring low energy soft X-rays. Has been.

また、分析室1の斜め上面にはX線分光器室6が設置されており、図示しない真空ポンプにより10−7乃至10―6Paの高真空に保持されている。X線分光器室6の集光口の軸上にはX線集光素子7、アパーチャ8及びX線分光器10が配置される。 An X-ray spectrometer chamber 6 is installed on the oblique upper surface of the analysis chamber 1, and is maintained at a high vacuum of 10 −7 to 10 −6 Pa by a vacuum pump (not shown). An X-ray condensing element 7, an aperture 8, and an X-ray spectrometer 10 are disposed on the axis of the condensing port of the X-ray spectrometer chamber 6.

ポリキャピラリ等で構成されたX線集光素子7は試料2上で発生したX線15をアパーチャ8近傍に集束する。アパーチャ8はX線集光素子7で集光されたX線束15をX線分光器10の入射条件に応じた大きさにするための円形の微小口またはスリット形状を有する。また、アパーチャ8はX線束のビーム形状を整えるほか、分析室1とX線分光器室6の間の真空圧力差を保つ差動排気アパーチャとして機能する。X線分光器10はX線分光器室6に設置されており、アパーチャ8によってビーム成形されたX線束15をエネルギー分光し、X線検出器11に投影(結像)するための分光器(回折格子等)である。   The X-ray condensing element 7 composed of a polycapillary or the like focuses the X-ray 15 generated on the sample 2 in the vicinity of the aperture 8. The aperture 8 has a circular minute mouth or slit shape for sizing the X-ray bundle 15 collected by the X-ray focusing element 7 in accordance with the incident conditions of the X-ray spectrometer 10. Further, the aperture 8 functions as a differential exhaust aperture for adjusting the beam shape of the X-ray bundle and maintaining a vacuum pressure difference between the analysis chamber 1 and the X-ray spectrometer chamber 6. The X-ray spectrometer 10 is installed in the X-ray spectrometer chamber 6. The X-ray spectrometer 10 performs energy spectroscopy on the X-ray bundle 15 beam-formed by the aperture 8 and projects (images) it on the X-ray detector 11. Diffraction grating, etc.).

以下その動作について説明する。図2に示すように、電子線14が試料2に照射されることにより発生したX線15はX線集光素子7によりアパーチャ8の位置に焦点を結ぶ。このときアパーチャ8の開口部はX線分光器10の角度、サイズ等の入力条件に応じた大きさであるため、X線15の不要な部分は遮断されてX線のビーム形状が整えられる。アパーチャ8によりビーム形成されたX線15は、X線分光器10によりエネルギー分光され、X線検出器11に投影(結像)される。結像されたX線は、X線検出器11により電気信号に変換され、コンピュータに取り込まれ数々の演算処理が行われ、分析が行われる。   The operation will be described below. As shown in FIG. 2, the X-ray 15 generated by irradiating the sample 2 with the electron beam 14 is focused on the position of the aperture 8 by the X-ray condensing element 7. At this time, since the opening of the aperture 8 is sized according to the input conditions such as the angle and size of the X-ray spectrometer 10, unnecessary portions of the X-ray 15 are blocked and the X-ray beam shape is adjusted. The X-ray 15 beam-formed by the aperture 8 is subjected to energy spectroscopy by the X-ray spectrometer 10 and projected (imaged) on the X-ray detector 11. The imaged X-ray is converted into an electrical signal by the X-ray detector 11 and taken into a computer, where various arithmetic processes are performed and analysis is performed.

この様に、荷電粒子線を試料に照射し、そこから発生するX線や光の分光を行う装置では、分光器の前に集光素子(ポリキャピラリレンズ、レンズ、凹面鏡)等)を設置し、試料から発生したX線や光を出来限り多く分光器に取り込み、検出感度の向上を行っている。   In this way, in a device that irradiates a sample with a charged particle beam and separates X-rays or light generated therefrom, a condensing element (polycapillary lens, lens, concave mirror, etc.) is installed in front of the spectrometer. The X-ray and light generated from the sample are taken in as much as possible into the spectrometer to improve the detection sensitivity.

しかしながら、これらの集光素子は、ガラスなどの絶縁物で構成されており、又、その集光率を大きくする為に、出来限り試料近傍に設置される。このことは、試料から発生する2次電子や反射電子が集光素子表面に捕獲され易くなり、時間と共に帯電し、集光素子上での帯電が、新たな電界を発生させることを意味する。この新たな電界は、電子線14に対して、不安定な外乱である偏向場を形成する、その結果、電子線14の照射点が変動し、高分解能、高倍率での像観察、及び高い位置精度での分析が極めて困難となる。   However, these light condensing elements are made of an insulating material such as glass, and are installed as close to the sample as possible in order to increase the light condensing rate. This means that secondary electrons and reflected electrons generated from the sample are easily captured on the surface of the light collecting element and are charged with time, and charging on the light collecting element generates a new electric field. This new electric field forms a deflection field that is an unstable disturbance with respect to the electron beam 14. As a result, the irradiation point of the electron beam 14 fluctuates, and image observation with high resolution and high magnification is achieved. Analysis with positional accuracy becomes extremely difficult.

これらの2次電子や反射電子の帯電による悪影響を防止する為に、集光素子の表面にアルミニウムなどの金属薄膜を蒸着し接地電位とし、照射電子線に悪影響を与えないようにしている。   In order to prevent adverse effects due to charging of these secondary electrons and reflected electrons, a metal thin film such as aluminum is vapor-deposited on the surface of the light condensing element to obtain a ground potential so as not to adversely affect the irradiated electron beam.

特開2004―294168JP 2004-294168 A 特願2004―362886Japanese Patent Application No. 2004-362886

集光素子上に金属薄膜を蒸着し接地電位とすることは、帯電を防ぐ大きな効果をもたらすが、逆にこの金属薄膜による軟X線の吸収が行われ、信号強度の大きな減衰を招き、結果として検出感度の大幅な劣化となる。   Depositing a metal thin film on the light condensing element and setting it to ground potential has a great effect of preventing electrification, but conversely, this metal thin film absorbs soft X-rays, resulting in a large attenuation of the signal intensity. As a result, the detection sensitivity is greatly deteriorated.

請求項1項の発明は、試料を収容する真空に保持された分析室と、1次ビームを前記試料に照射する1次ビーム照射手段と、前記試料から放出されたX線及び/若しくは光を集光する集光手段と、前記集光したX線及び/若しくは光を分光・検出する手段と、を備える表面分析装置であって、前記試料と前記集光手段の間に接地電位の金属グリッドを配置したことを特徴とする表面分析装置である。   According to a first aspect of the present invention, there is provided an analysis chamber for holding a sample in a vacuum, primary beam irradiation means for irradiating the sample with a primary beam, and X-rays and / or light emitted from the sample. A surface analysis apparatus comprising: a condensing means for condensing; and a means for spectroscopic / detecting the condensed X-ray and / or light, wherein a metal grid having a ground potential between the sample and the condensing means Is a surface analysis device characterized in that

請求項2項の発明は、前記1次ビームは荷電粒子線であることを特徴とする請求項1に記載した表面分析装置である。   The invention according to claim 2 is the surface analysis apparatus according to claim 1, wherein the primary beam is a charged particle beam.

請求項3項の発明は、前記金属グリッドは、メッシュ状であって開口率が90%以上であることを特徴とする請求項1又は2に記載した表面分析装置である。   The invention according to claim 3 is the surface analysis apparatus according to claim 1 or 2, wherein the metal grid has a mesh shape and an aperture ratio is 90% or more.

本発明により、接地電位の金属グリッドが、集光素子に捕獲された2次電子や反射電子に起因する電界を遮蔽する為、照射電子線の位置の変動を抑え、高分解能、高倍率での像観察、および高い位置精度での分析が可能となる。   According to the present invention, the ground potential metal grid shields the electric field caused by the secondary electrons and reflected electrons captured by the light collecting element, so that the fluctuation of the position of the irradiated electron beam is suppressed, and the high resolution and high magnification can be achieved. Image observation and analysis with high positional accuracy are possible.

又その結果、集光素子上の金属薄膜の蒸着が不要となる為、金属薄膜による軟X線の吸収がなくなり、検出感度の向上となる。   As a result, it is not necessary to deposit a metal thin film on the condensing element, so soft X-ray absorption by the metal thin film is eliminated, and detection sensitivity is improved.

(実施例1)
以下、本発明の実施例について図3に基ずいて、その構成について説明する。各符号の説明は、前記図1,2と同じである為、説明は省く。図3では特にエネルギーの低い軟X線の検出の場合について示すものであり、図2との違いは、集光素子7と試料2の間の接地電位での金属グリッド16の有無である。
Example 1
Hereinafter, the configuration of the embodiment of the present invention will be described with reference to FIG. Since the description of each symbol is the same as in FIGS. 1 and 2, the description is omitted. FIG. 3 shows the case of detecting soft X-rays with particularly low energy. The difference from FIG. 2 is the presence or absence of the metal grid 16 at the ground potential between the light-collecting element 7 and the sample 2.

図4では、金属グリッド16の一例として、メッシュタイプのグリッドの詳細が示してある。ピッチ1mm、ブリッジ幅0.05mm、開口率として90%以上となっており、開口率を大きくする事でグリッドによる軟X線強度の減衰を極力抑えている。   FIG. 4 shows details of a mesh type grid as an example of the metal grid 16. The pitch is 1 mm, the bridge width is 0.05 mm, and the aperture ratio is 90% or more. By increasing the aperture ratio, the attenuation of the soft X-ray intensity by the grid is suppressed as much as possible.

本発明の動作について以下に説明を行う。図3において、電子線14による照射で、試料2から2次電子、反射電子、X線、光などが発生する、このうち2次電子、反射電子などは図示されていないそれぞれの検出器によりその大部分が捕捉される。しかし、2次電子、反射電子の一部は集光素子7前面の金属グリッド16の空間を通り抜け集光素子上7に帯電し、新たに電界を形成する。   The operation of the present invention will be described below. In FIG. 3, irradiation with the electron beam 14 generates secondary electrons, reflected electrons, X-rays, light, etc. from the sample 2. Of these, secondary electrons, reflected electrons, etc. are detected by respective detectors not shown. Most are captured. However, some of the secondary electrons and reflected electrons pass through the space of the metal grid 16 in front of the light collecting element 7 and are charged on the light collecting element 7 to newly form an electric field.

この電界は、X線、光に何ら悪影響を与えるものではないが、既に述べたように、電子線14に対し、不安定な外乱である偏向場を形成する。しかしながら、金属グリッド16が接地電位である為にこの不安定な偏向場は、集光素子7と金属グリッド16間に閉じ込められ、電子線14の通路までには到達しない。   This electric field does not adversely affect X-rays and light, but as described above, forms a deflection field that is an unstable disturbance to the electron beam 14. However, since the metal grid 16 is at the ground potential, this unstable deflection field is confined between the condensing element 7 and the metal grid 16 and does not reach the path of the electron beam 14.

この結果、集光素子上での帯電が有っても、試料上での照射点が変動せず、高分解能、高倍率での像観察、及び高い位置精度での分析が実現する。そして、従来必要とされていた集光素子の帯電防止を目的とした金属薄膜が不要となり、金属薄膜での軟X線の吸収が無くなり検出感度の向上が可能となる。   As a result, even if there is a charge on the light condensing element, the irradiation point on the sample does not fluctuate, and high resolution, high magnification image observation, and analysis with high positional accuracy are realized. In addition, a metal thin film intended to prevent electrification of the condensing element, which has been conventionally required, is no longer necessary, and soft X-rays are not absorbed by the metal thin film, and detection sensitivity can be improved.

本実施例では電子線照射によるX線検出の場合について一例を示したが、走査電子顕微鏡にカソードルミネッセンス検出器を取り付けて電子線照射によるカソードルミネスッセンスの検出を行う場合も同様な効果を得ることが出来る。   In the present embodiment, an example of the case of X-ray detection by electron beam irradiation has been shown, but the same effect can be obtained when a cathode luminescence detector is attached to a scanning electron microscope to detect cathode luminescence by electron beam irradiation. I can do it.

試料とカソードルミネッセンス光の集光素子であるレンズや凹面鏡の間に同様な接地電位の金属グリッドを設置することにより、集光素子上での2次電子、反射電子の帯電による電界を遮蔽し、電子線の照射点での位置変動抑え、高分解能、高倍率での像観察、及び高い位置精度での分析が実現する。又、その結果、集光素子上の金属薄膜の蒸着が不要となり、集光素子によるカソードルミネッセンス光の吸収が無くなるので、検出感度の向上となる。   By installing a metal grid with a similar ground potential between the sample and the lens or concave mirror that is the condensing element of the cathode luminescence light, the electric field due to charging of secondary electrons and reflected electrons on the condensing element is shielded, Position fluctuation at the electron beam irradiation point is suppressed, image observation with high resolution and high magnification, and analysis with high position accuracy are realized. As a result, it is not necessary to deposit a metal thin film on the light condensing element, and the cathode luminescence light is not absorbed by the light condensing element, so that the detection sensitivity is improved.

従来の超高真空X線分光装置の概要図であるIt is a schematic diagram of the conventional ultrahigh vacuum X-ray spectrometer. 従来の装置の試料、集光素子、X線分光器の配置図であるIt is a layout view of a sample, a condensing element, and an X-ray spectrometer of a conventional apparatus. 本発明による金属グリッドを集光素子と試料の間に取り付けた配置図である。It is the layout which attached the metal grid by this invention between the condensing element and the sample. 本発明でのグリッド構造である。It is a grid structure in the present invention.

符号の説明Explanation of symbols

(同一または類似の動作を行うものには共通の符号を付す。)
1 分析室
2 試料
3 試料ステージ
4 電子銃
5 対物レンズ
6 X線分光器室
7 X線集光素子
8 アパーチャ
9 仕切りバルブ
10 X線分光器
11 X線検出器
12 試料交換室
13 試料搬送棒
14 電子線
15 X線
16 金属グリッド
(Those that perform the same or similar operations are denoted by a common reference.)
DESCRIPTION OF SYMBOLS 1 Analysis chamber 2 Sample 3 Sample stage 4 Electron gun 5 Objective lens 6 X-ray spectrometer chamber 7 X-ray condensing element 8 Aperture 9 Partition valve 10 X-ray spectrometer 11 X-ray detector 12 Sample exchange chamber 13 Sample conveyance rod 14 Electron beam 15 X-ray 16 Metal grid

Claims (3)

試料を収容する真空に保持された分析室と、
前記試料に照射する1次ビーム照射手段と、
前記試料から放出されたX線及び/若しくは光を集光する集光手段と、
前記集光したX線及び/若しくは光を分光・検出する手段と、を備える表面分析装置であって、前記試料と前記集光手段の間に接地電位の金属グリッドを配置したことを特徴とする表面分析装置。
An analysis chamber held in a vacuum containing the sample;
Primary beam irradiation means for irradiating the sample;
Condensing means for condensing X-rays and / or light emitted from the sample;
And a means for spectroscopically detecting and detecting the collected X-ray and / or light, wherein a grounded metal grid is disposed between the sample and the light collecting means. Surface analyzer.
前記1次ビームは荷電粒子線であることを特徴とする請求項1に記載した表面分析装置。   The surface analysis apparatus according to claim 1, wherein the primary beam is a charged particle beam. 前記金属グリッドは、メッシュ状であって開口率が90%以上であることを特徴とする請求項1又は2に記載した表面分析装置。   The surface analysis apparatus according to claim 1, wherein the metal grid has a mesh shape and an aperture ratio of 90% or more.
JP2006080000A 2006-03-23 2006-03-23 Surface analyzer Pending JP2007256038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080000A JP2007256038A (en) 2006-03-23 2006-03-23 Surface analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080000A JP2007256038A (en) 2006-03-23 2006-03-23 Surface analyzer

Publications (1)

Publication Number Publication Date
JP2007256038A true JP2007256038A (en) 2007-10-04

Family

ID=38630440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080000A Pending JP2007256038A (en) 2006-03-23 2006-03-23 Surface analyzer

Country Status (1)

Country Link
JP (1) JP2007256038A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254061A (en) * 1985-03-15 1987-11-05 シユルンベルジエ テクノロジイ コ−ポレ−シヨン Improved type electron-beam test probe for testing integrated circuit
JPH09283071A (en) * 1996-04-11 1997-10-31 Jeol Ltd Electron beam device
JP2001242295A (en) * 2000-03-01 2001-09-07 Jeol Ltd Collimating x-ray spectrometer and collimator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254061A (en) * 1985-03-15 1987-11-05 シユルンベルジエ テクノロジイ コ−ポレ−シヨン Improved type electron-beam test probe for testing integrated circuit
JPH09283071A (en) * 1996-04-11 1997-10-31 Jeol Ltd Electron beam device
JP2001242295A (en) * 2000-03-01 2001-09-07 Jeol Ltd Collimating x-ray spectrometer and collimator

Similar Documents

Publication Publication Date Title
US9934936B2 (en) Charged particle microscope with special aperture plate
JP5925404B2 (en) Electron microscope for inspecting and processing an object having a miniaturized structure, and method for manufacturing the object
US7276694B1 (en) Defect detection using energy spectrometer
JP6162187B2 (en) Method for performing spectroscopy in a transmission charged particle microscope
US8476589B2 (en) Particle beam microscope
US9666405B1 (en) System for imaging a signal charged particle beam, method for imaging a signal charged particle beam, and charged particle beam device
US9453801B2 (en) Photoemission monitoring of EUV mirror and mask surface contamination in actinic EUV systems
US8624186B2 (en) Movable detector for charged particle beam inspection or review
WO2017010529A1 (en) Electrostatic lens, and parallel beam generation device and parallel beam convergence device which use electrostatic lens and collimator
US10446366B1 (en) Imaging technique in scanning transmission charged particle microscopy
CN109411320B (en) Diffraction pattern detection in transmission charged particle microscopy
KR20200011963A (en) Method and apparatus for inspecting a sample
KR20190126721A (en) Eels detection technique in an electron microscope
Wiemann et al. A new nanospectroscopy tool with synchrotron radiation: NanoESCA@ Elettra
Han et al. Quantitative material analysis using secondary electron energy spectromicroscopy
US9741525B1 (en) Charged-particle microscope with astigmatism compensation and energy-selection
US11024483B2 (en) Transmission charged particle microscope with adjustable beam energy spread
US11955310B2 (en) Transmission charged particle microscope with an electron energy loss spectroscopy detector
US20080149830A1 (en) Ameliorating charge trap in inspecting samples using scanning electron microscope
US20130320228A1 (en) Contamination reduction electrode for particle detector
JP2020140961A (en) Multi-Beam Scanning Transmission Charged Particle Microscope
US20120326030A1 (en) Particle Beam Microscope
JP2007172886A (en) Photoemission electron microscope
US9589763B1 (en) Method for detecting signal charged particles in a charged particle beam device, and charged particle beam device
Botton et al. Analytical electron microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823