JP2007256025A - Method and apparatus for detecting dissolved oxygen in underground water - Google Patents

Method and apparatus for detecting dissolved oxygen in underground water Download PDF

Info

Publication number
JP2007256025A
JP2007256025A JP2006079748A JP2006079748A JP2007256025A JP 2007256025 A JP2007256025 A JP 2007256025A JP 2006079748 A JP2006079748 A JP 2006079748A JP 2006079748 A JP2006079748 A JP 2006079748A JP 2007256025 A JP2007256025 A JP 2007256025A
Authority
JP
Japan
Prior art keywords
groundwater
dissolved oxygen
section
water
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079748A
Other languages
Japanese (ja)
Other versions
JP4836123B2 (en
Inventor
Katsu Toida
克 戸井田
Buun Ken Rin
ブーン ケン リン
Mayumi Tanaka
真弓 田中
Toshiaki Oe
俊昭 大江
Makoto Nishigaki
誠 西垣
Takehiko Suzuki
健彦 鈴木
Kokichi Sato
光吉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Toshiba Corp
Tokai University
Original Assignee
Kajima Corp
Toshiba Corp
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Toshiba Corp, Tokai University filed Critical Kajima Corp
Priority to JP2006079748A priority Critical patent/JP4836123B2/en
Publication of JP2007256025A publication Critical patent/JP2007256025A/en
Application granted granted Critical
Publication of JP4836123B2 publication Critical patent/JP4836123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and rapidly detecting dissolved oxygen at the origin position of underground water, and a dissolved oxygen detector. <P>SOLUTION: The hole inner section 9 partitioned by a pair of packers 6 and 7, at least one of which has an optical sensor 10 attached thereto, is formed at the depth 4 of the underground water 2 in a boring hole 3. After it is detected that the hole inner section 9 is replaced with the underground water 2 at the depth 4 by a detector 14, an emission reagent 17 emitting light upon the reaction with oxygen is charged in the hole inner section 9 by a charging device 13. The output of the optical sensor 10 is input to a detector 12 and the dissolved oxygen in the underground water 2 at the depth 4 is detected by the detector 12. Preferably, the emission reagent 17 comprises a mixture of luciferin, luciferase, magnesium ions and ATP or a solution prepared by dissolving the mixture in deoxidized water. For example, a feed-in means for feeding the emission reagent 17 in the section 9 from the ground by a non-oxygen gas can be added to the charging device 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は地下水の溶存酸素検出方法及び装置に関し、とくに地下水が存在している原位置で当該地下水の溶存酸素を検出する方法及び装置に関する。   The present invention relates to a method and apparatus for detecting dissolved oxygen in groundwater, and more particularly, to a method and apparatus for detecting dissolved oxygen in the groundwater in its original position.

地下水は溶存酸素の有無により酸化状態(酸化雰囲気)と還元状態(還元雰囲気)とに大別される。地下水の酸化・還元状態は放射性元素(核分裂生成物)の溶解速度に影響するので、例えば高レベル放射性廃棄物の地層処分場を構築する場合に地下水の溶存酸素及びその変化の調査が必要となる(非特許文献1の第3章参照)。また、地下水の酸化・還元状態は地下の微生物の活動にも大きな影響を与えるので、地下構造物の微生物耐性や地盤汚染の微生物浄化等を検討する際に地下水の溶存酸素の調査が必要となる。例えば酸化状態では硫黄酸化細菌等の好気性微生物による鉄鋼腐食が問題となり、嫌気状態では硫酸還元菌等の嫌気性微生物による鉄鋼腐食が問題となる。また好気状態では油等の汚染物質の好気的分解が期待できるのに対し、嫌気状態ではそのような分解は期待できないことがある。   Groundwater is roughly classified into an oxidized state (oxidizing atmosphere) and a reduced state (reducing atmosphere) depending on the presence or absence of dissolved oxygen. Since the oxidation / reduction state of groundwater affects the dissolution rate of radioactive elements (fission products), for example, when constructing a geological disposal site for high-level radioactive waste, it is necessary to investigate dissolved oxygen and its changes in groundwater (See Chapter 3 of Non-Patent Document 1). In addition, the groundwater oxidation / reduction state has a great influence on the activity of underground microorganisms, so it is necessary to investigate the dissolved oxygen in the groundwater when considering the microbial resistance of underground structures and the microbial purification of ground contamination. . For example, in an oxidized state, steel corrosion due to aerobic microorganisms such as sulfur-oxidizing bacteria becomes a problem, and in an anaerobic state, steel corrosion due to anaerobic microorganisms such as sulfate-reducing bacteria becomes a problem. In addition, while aerobic conditions can be expected to aerobically decompose oil and other contaminants, in anaerobic conditions such decomposition may not be expected.

従来、地下水の酸化・還元状態を調査する場合は、地盤・岩盤(以下、纏めて岩盤という)に掘削したボーリング孔を介して所要深度の地下水を採水して分析する方法が一般的である。但し、地下水の長期に亘る状態を検討するためには地下水が存在する原位置における溶存酸素を把握する必要があり、ボーリング時の掘削水や他の深度の地下水と混合させずに原位置での圧力を保持したまま大気と接触しない状態(以下、被圧不活性状態ということがある)で採水する必要がある。   Conventionally, when investigating the oxidation / reduction state of groundwater, it is common to collect groundwater at the required depth and analyze it through a borehole drilled in the ground / rock (hereinafter collectively referred to as “rock”). . However, in order to examine the long-term state of groundwater, it is necessary to grasp the dissolved oxygen at the site where the groundwater exists, and it is not necessary to mix it with the drilling water during drilling or other depths of groundwater. It is necessary to collect water in a state where it is not in contact with the atmosphere while maintaining the pressure (hereinafter sometimes referred to as a pressurized inactive state).

地下水を被圧不活性状態で採水する技術として、特許文献1及び2は、試錐孔(ボーリング孔)内に遮水パッカーで区切った採水区間を形成し、採水区間の地下水を継続的に地上へ採水(サンプリング採水)して分析することにより採水区間が完全に当該区間深度の地下水(以下、区間地下水ということがある)に置換されたことを判断し、置換が確認された時点で採水区間の地下水を採水カプセル(容器)に閉じ込めて採水する地下水採水装置を開示する。また特許文献3は、地上へのサンプリング採水に代えて、孔内システムで採水区間の地下水を分析して区間地下水への置換を確認する大深度孔内採水装置を開示する。   As techniques for collecting groundwater in a non-pressurized and inert state, Patent Documents 1 and 2 form a water sampling section separated by a water-blocking packer in a borehole (boring hole) and continuously collect groundwater in the water sampling section. It was determined that the sampling section was completely replaced with groundwater at the depth of the section (hereinafter sometimes referred to as section groundwater), and the replacement was confirmed. A groundwater sampling apparatus that collects groundwater in a sampling section in a sampling capsule (container) at that time. Moreover, it replaces with the sampling water sampling to the ground, and patent document 3 discloses the deep-hole water sampling apparatus which analyzes the ground water of a water sampling area with a hole system, and confirms substitution to a section ground water.

図7は特許文献3の採水装置の一例を示す。同図の採水装置は、採水区間を形成するダブルパッカー30a、30bとそれに取り付けたサンプラー(採水器)33及び孔内ポンプ34とを有し、サンプラー33内に水質センサ38や水圧計39等からなる孔内システム40と内部パッカー41とを設けている。採水時にボーリング孔内にサンプラー33、孔内ポンプ34と共にパッカー30a、30bを吊り下げ、パッカー30a、30bを拡張して採水区間を形成すると共に内部パッカー41を拡張する。全てのパッカー30a、30b、41が効いていれば採水区間の湧水圧によりサンプラー33内の水圧が上昇するので、水圧計39によりパッカーの効き具合を確認する。次いで内部パッカー41を収縮し、ポンプ34により採水区間内の溜まり水を採水ロッド31、逆止弁43、水通路42、サンプラー33及び排水口45経由で区間外へ排水する。このとき、サンプラー33内の孔内システム40で水圧、水質(電気伝導度(EC)、水温、pH等)及び水量を計測し、計測値を観測用ケーブル44経由で地表のデータ観測機器35及び記録機器36へ伝送する。   FIG. 7 shows an example of the water sampling device of Patent Document 3. The water sampling apparatus in the figure has double packers 30a and 30b forming a water sampling section, a sampler (sampler) 33 and a bore pump 34 attached thereto, and a water quality sensor 38 and a water pressure gauge are provided in the sampler 33. An in-hole system 40 including 39 and an internal packer 41 are provided. During sampling, the packers 30a and 30b are suspended together with the sampler 33 and the bore pump 34 in the borehole, and the packers 30a and 30b are expanded to form a sampling section and the internal packer 41 is expanded. If all the packers 30a, 30b, and 41 are effective, the water pressure in the sampler 33 is increased by the spring pressure in the water sampling section, and the effectiveness of the packer is confirmed by the water pressure gauge 39. Next, the internal packer 41 is contracted, and the accumulated water in the water sampling section is drained to the outside of the section via the water sampling rod 31, the check valve 43, the water passage 42, the sampler 33, and the drain port 45 by the pump 34. At this time, the water pressure, water quality (electrical conductivity (EC), water temperature, pH, etc.) and water volume are measured by the borehole system 40 in the sampler 33, and the measured values are measured via the observation cable 44 and the surface data observation device 35 and Transmit to the recording device 36.

採水区間内の水質は、排水当初は不安定であるが、排水量が増えるに応じて安定する傾向を示す。孔内システム40の計測値が一定の値に達したことにより、サンプラー33内が区間地下水にすっかり置き替わったことを確認する。その後ポンプ34を停止し、内部パッカー41を拡張してサンプラー33を閉塞することにより採水区間内の地下水をサンプラー33内に被圧不活性状態で蓄える。地下水を蓄えたサンプラー33はパッカー30a、30bを収縮して地表まで引き上げる。地上へサンプリング採水する方法に比し、図7の装置ではサンプリング採水の揚程を短くできるので、ポンプ34の揚水能力による採水深度の制約がなく1,000m程度の大深度でも効率的な採水が可能である。   The water quality in the sampling section is unstable at the beginning of drainage, but tends to stabilize as the amount of drainage increases. When the measured value of the borehole system 40 reaches a certain value, it is confirmed that the inside of the sampler 33 is completely replaced with the section groundwater. Thereafter, the pump 34 is stopped, and the internal packer 41 is expanded to close the sampler 33, whereby the groundwater in the water sampling section is stored in the sampler 33 in a pressurized and inactive state. The sampler 33 storing the groundwater contracts the packers 30a and 30b and pulls them up to the surface. Compared to the method of sampling water sampling on the ground, the sampling water sampling head can be shortened with the equipment shown in Fig. 7, so there is no restriction on the water sampling depth due to the pumping capacity of the pump 34, and efficient sampling is possible even at large depths of about 1,000m. Water is possible.

核燃料サイクル開発機構「わが国における高レベル放射性廃棄物地層処分の技術的信頼性(地層処分研究開発第2次取りまとめ)報告書、分冊1わが国の地質環境」平成11年11月Nuclear Fuel Cycle Development Organization, “Technical reliability of geological disposal of high-level radioactive waste in Japan (Second report on geological disposal research and development) report, Volume 1 Japan's geological environment” November 1999 特開平6−193101号公報JP-A-6-193101 特開平9−025783号公報Japanese Patent Laid-Open No. 9-025783 特開平6−294270号公報JP-A-6-294270 特開2002−010800号公報JP 2002-010800 A

しかし、特許文献1〜3に示す従来の採水装置は、被圧不活性状態での採水を可能とするものの、被圧不活性状態での水質計測を保証するものではない。例えば特許文献3では、採水した地下水を原位置の圧力状態に保持したまま採水ボトルへ移し替えるが(段落0018)、その移し替えや計測の際に地下水が大気と接触するおそれがある。すなわち地下水を地表へ採水して溶存酸素等を検出する方法は、被圧不活性状態で厳密に採水した場合でも、計測時に被圧不活性状態を保持することが難しい問題点がある。   However, although the conventional water sampling apparatus shown in patent documents 1-3 enables water sampling in a pressure inactive state, it does not guarantee water quality measurement in a pressure inactive state. For example, in Patent Document 3, the groundwater sampled is transferred to a water sampling bottle while maintaining the original pressure state (paragraph 0018), but the groundwater may come into contact with the atmosphere during the transfer or measurement. In other words, the method for detecting dissolved oxygen and the like by collecting groundwater to the ground surface has a problem that it is difficult to maintain the pressure-inactive state during measurement even when the water is strictly sampled in the pressure-inactive state.

被圧不活性状態で溶存酸素を計測するため、例えば図7の孔内システム40に溶存酸素計又は酸化還元電位計を含め、地下水の溶存酸素を原位置での検層により検出する方法も考えられる。しかし従来の溶存酸素計又は酸化還元電位計は、電極を用いて溶存酸素量(mg/リットル単位)又は酸化還元電位(mV単位)として溶存酸素を計測するので、電極のメンテナンス(洗浄)が不可欠であり、電極のメンテナンスが不充分であると計測精度が低下する。上述したサンプラー33内の区間地下水への入れ替わりには数日〜1週間程度を要する場合があり、電極を数日間も地下水中に浸漬し続けると計測精度が低下してしまう問題点がある。また、何らかの方法で電極がメンテナンスできたとしても、メンテナンス後のキャリブレーション(校正)に手間がかかる問題点もある。地下水の溶存酸素を被圧不活性状態で簡単に且つ迅速に検出できる技術の開発が望まれている。   In order to measure dissolved oxygen in the inactive state under pressure, for example, a method of detecting dissolved oxygen by in-situ logging by including a dissolved oxygen meter or redox potential meter in the borehole system 40 of FIG. It is done. However, the conventional dissolved oxygen meter or oxidation-reduction potentiometer measures dissolved oxygen as an amount of dissolved oxygen (mg / liter unit) or oxidation-reduction potential (mV unit) using an electrode, so electrode maintenance (cleaning) is essential. If the electrode maintenance is insufficient, the measurement accuracy is lowered. It may take several days to one week to switch to the section groundwater in the sampler 33 described above, and there is a problem that measurement accuracy is lowered if the electrode is kept immersed in the groundwater for several days. Moreover, even if the electrode can be maintained by some method, there is a problem that it takes time to perform calibration after the maintenance. Development of technology that can easily and quickly detect dissolved oxygen in groundwater in a pressure-inactive state is desired.

そこで本発明の目的は、地下水の原位置における溶存酸素を簡単且つ迅速に検出する方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide a method and an apparatus for detecting dissolved oxygen in the groundwater in situ easily and quickly.

本発明者は酸素と反応して発光する発光試薬に注目した。例えば、マグネシウムイオンの存在下で、アデノシン三リン酸(Adenosine Triphosphate,以下、ATPという)及び酸素(O2)と反応して発光するルシフェリン(Luciferin、基質)−ルシフェラーゼ(Luciferase、酵素)発光系が知られている。ルシフェリン・ルシフェラーゼ発光系を利用した試薬(以下、生物発光試薬ということがある)は、従来から特許文献4のように医療・食品等の分野において実験室規模で試料又は細胞中のATPを測定する方法として広く使用されている。しかし、生物発光試薬を用いて水中の溶存酸素を検出する方法は開発されていない。 The inventor paid attention to a luminescent reagent that emits light by reacting with oxygen. For example, in the presence of magnesium ions, adenosine triphosphate (A denosine T ri p hosphate, hereinafter, ATP hereinafter) luciferin emits light by reacting with and oxygen (O 2) (Luciferin, substrate) - luciferase (Luciferase, enzymes ) Luminescent systems are known. A reagent using a luciferin / luciferase luminescence system (hereinafter sometimes referred to as a bioluminescence reagent) conventionally measures ATP in a sample or a cell on a laboratory scale in the fields of medical and food as in Patent Document 4. Widely used as a method. However, a method for detecting dissolved oxygen in water using a bioluminescent reagent has not been developed.

本発明者は、水道水と脱気水道水とを用いて、生物発光試薬により水中の溶存酸素の検出が可能であるか否かを確認する実験を行った。本実験では、次のA粉末及びB粉末からなるホタライト(キッコーマン株式会社製)を用い、A粉末を溶かした水道水(A溶液)とB粉末を溶かした水道水(B溶液)とを調製し、水道水A・B溶液の混合時の発光強度と、水道水A・B溶液を混合した後脱気したA・B溶液の発光強度とを目視で検出した。また、それぞれの混合溶液の温度、電気伝導度、pHを併せて検出した。実験結果を表1に示す。表1の実験結果は、酸素の溶存した水道水では強い発光が検出されるのに対し、脱気した場合は弱い発光しか検出できないことを示す。本発明者は、更なる実験により水道水の脱気の程度に応じて発光強度を例えば5段階のレベルに分けることができ、発光強度に基づき水中の溶存酸素量が検出可能であることを確認できた。
A粉末:ルシフェラーゼ(酵素)
B粉末:ルシフェリン(基質)、ATP,硫酸マグネシウム7水塩、グリシン緩衝剤
The inventor conducted an experiment using tap water and degassed tap water to confirm whether or not dissolved oxygen in water can be detected with a bioluminescent reagent. In this experiment, tapalite (A solution) in which A powder was dissolved and tap water (B solution) in which B powder was dissolved was prepared using the following A powder and B powder (made by Kikkoman Corporation). The luminescence intensity at the time of mixing the tap water A / B solution and the luminescence intensity of the A / B solution deaerated after mixing the tap water A / B solution were visually detected. Moreover, the temperature, electrical conductivity, and pH of each mixed solution were detected together. The experimental results are shown in Table 1. The experimental results in Table 1 show that strong luminescence is detected in tap water in which oxygen is dissolved, whereas only weak luminescence can be detected when degassed. The present inventor confirmed that the emission intensity can be divided into, for example, five levels according to the degree of degassing of tap water by further experiments, and the amount of dissolved oxygen in water can be detected based on the emission intensity. did it.
A powder: Luciferase (enzyme)
B powder: luciferin (substrate), ATP, magnesium sulfate heptahydrate, glycine buffer

Figure 2007256025
Figure 2007256025

また本発明者は、前記ホタライトを発光試薬として使用し、水中の溶存酸素濃度と発光強度との関係を確認する実験を行った。本実験では、水道水150ミリリットルにA粉末を溶かした溶液(A溶液)と、同様にB粉末を溶かした溶液(B溶液)とを調製し、図5に示すスターラー51と溶存酸素計(DOメータ)50と温度計53とを設けた三角フラスコ52にA溶液及びB溶液を投入して攪拌することにより発光させ、1時間55分放置して発光が十分弱まった(安定した)後、混合溶液中に窒素ガスを吹き込んで溶液中の溶存酸素を追い出しながら5〜10分間隔で溶存酸素計50及び温度計53の出力を読み取り、同時に溶液の一部分を空気に接触しないように取り出して分光蛍光光度計(島津製作所製RF-5000)により発光スペクトルと発光強度とを測光した。発光が安定するまで放置した理由は、発光強度の測光中に発光の経時減衰による精度低下を避けるためである。分光蛍光光度計の測光精度は0.5〜1.0Absのとき±0.004Absである。実験結果を表2及び図6に示す。   In addition, the present inventor conducted an experiment to confirm the relationship between the dissolved oxygen concentration in water and the luminescence intensity by using the above-mentioned phorite as a luminescent reagent. In this experiment, a solution in which A powder was dissolved in 150 ml of tap water (A solution) and a solution in which B powder was similarly dissolved (B solution) were prepared, and a stirrer 51 and a dissolved oxygen meter (DO) shown in FIG. Meter) Luminescent by adding and stirring solution A and solution B into Erlenmeyer flask 52 equipped with 50 and thermometer 53, and let stand for 1 hour and 55 minutes. Luminescence was sufficiently weakened (stabilized), and then mixed Nitrogen gas is blown into the solution to drive out dissolved oxygen in the solution, and the output of the dissolved oxygen meter 50 and the thermometer 53 is read at intervals of 5 to 10 minutes. The emission spectrum and emission intensity were measured with a photometer (RF-5000 manufactured by Shimadzu Corporation). The reason for leaving the light emission until it stabilizes is to avoid a decrease in accuracy due to the decay of the light emission over time during the light intensity measurement. The photometric accuracy of the spectrofluorometer is ± 0.004 Abs at 0.5 to 1.0 Abs. The experimental results are shown in Table 2 and FIG.

Figure 2007256025
Figure 2007256025

表2及び図6のNo.1〜6は、水中(混合溶液中)の溶存酸素量の減少と共に発光強度が低下すること、発光後2時間と2時間10分との間(表2のNo.2とNo.3との間)において両者が共に大きく減少していることを示す。また図6は、前記ホタライトの発光極大波長は545nm付近であり、発光極大波長の発光強度が水中の溶存酸素量と対応していることを示す。本実験では発光強度と水中の溶存酸素量との比例関係は確認できなかったが、発光強度と水中の溶存酸素量との間に相関関係があり、発光強度に基づき水中の溶存酸素量が検出できることを確認できた。なお、表2及び図6のNo.7は発光が十分に弱まる前の時点(発光後55分)における発光強度と溶存酸素との計測値を示す。発光試薬はボーリング孔内の原位置で地下水中に直接投入することが可能であり、発光強度は従来技術に属する光センサを用いて検出できる。本発明はこの知見に基づく研究開発の結果、完成に至ったものである。   Nos. 1 to 6 in Table 2 and FIG. 6 indicate that the emission intensity decreases as the amount of dissolved oxygen in water (in the mixed solution) decreases, between 2 hours and 2 hours and 10 minutes after emission (No in Table 2). (Between .2 and No.3), both of them show a significant decrease. Further, FIG. 6 shows that the emission maximum wavelength of the photerite is around 545 nm, and the emission intensity at the emission maximum wavelength corresponds to the amount of dissolved oxygen in water. In this experiment, the proportional relationship between the luminescence intensity and the amount of dissolved oxygen in water could not be confirmed, but there was a correlation between the luminescence intensity and the amount of dissolved oxygen in water, and the amount of dissolved oxygen in water was detected based on the luminescence intensity. I was able to confirm that I could do it. Note that No. 7 in Table 2 and FIG. 6 shows the measured values of the luminescence intensity and dissolved oxygen at a time point before the luminescence was sufficiently weakened (55 minutes after luminescence). The luminescent reagent can be directly introduced into the groundwater at the original position in the borehole, and the luminescence intensity can be detected using a photosensor belonging to the prior art. The present invention has been completed as a result of research and development based on this finding.

図1の実施例を参照するに、本発明による地下水の溶存酸素検出方法は、ボーリング孔3内の地下水深度4(図2参照)に光センサ10付きパッカー対6、7で仕切った区間9を形成し、当該区間9が前記深度4の地下水2で置換されたのち当該区間9へ酸素と反応して発光する発光試薬17を投入し、前記光センサ10の出力により前記深度4の地下水2の溶存酸素を検出してなるものである。   Referring to the embodiment of FIG. 1, the method for detecting dissolved oxygen in groundwater according to the present invention includes a section 9 divided by a pair of packers 6 and 7 with an optical sensor 10 at a groundwater depth 4 (see FIG. 2) in a borehole 3. After the section 9 is replaced with the groundwater 2 at the depth 4, a luminescent reagent 17 that reacts with oxygen to emit light is introduced into the section 9, and the groundwater 2 at the depth 4 is output by the output of the optical sensor 10. It is formed by detecting dissolved oxygen.

また、図1のブロック図を参照するに、本発明による地下水の溶存酸素検出装置は、ボーリング孔3内の地下水深度4(図2参照)に遮水された区間9を形成するパッカー対6、7、パッカー対6、7の少なくとも一方に取り付けた光センサ10、前記区間9が前記深度4の地下水2で置換されたことを検知する検知装置14、前記区間9へ酸素と反応して発光する発光試薬17を投入する投入装置13、及び前記光センサ10の出力により前記深度4の地下水2の溶存酸素を検出する検出装置12を備えてなるものである。   In addition, referring to the block diagram of FIG. 1, the dissolved oxygen detection device for groundwater according to the present invention includes a packer pair 6 that forms a section 9 that is blocked by groundwater depth 4 in the borehole 3 (see FIG. 2), 7, a light sensor 10 attached to at least one of the packer pairs 6 and 7, a detection device 14 for detecting that the section 9 is replaced with the groundwater 2 at the depth 4, and the section 9 emits light in response to oxygen A charging device 13 for charging the luminescent reagent 17 and a detection device 12 for detecting dissolved oxygen in the groundwater 2 at the depth 4 by the output of the optical sensor 10 are provided.

好ましくは発光試薬17を、ルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物、又はその混合物を脱酸素水に溶解した溶液とする。例えば投入装置13に、発光試薬17を地上から前記区間9へ非酸素ガスにより送入する送入手段を含めることができる。   Preferably, the luminescent reagent 17 is a mixture of luciferin, luciferase, magnesium ion and ATP, or a solution obtained by dissolving the mixture in deoxygenated water. For example, the charging device 13 can include a feeding means for feeding the luminescent reagent 17 from the ground to the section 9 by non-oxygen gas.

本発明による地下水の溶存酸素検出方法及び装置は、ボーリング孔内の地下水深度に光センサ付きパッカー対で仕切った区間を形成し、当該区間が前記深度の地下水で置換されたのち当該区間へ酸素と反応して発光する発光試薬を投入し、前記光センサの出力により前記深度の地下水の溶存酸素を検出するので、次の顕著な効果を奏する。   The method and apparatus for detecting dissolved oxygen in groundwater according to the present invention forms a section partitioned by a pair of packers with optical sensors at the depth of groundwater in a borehole, and after the section is replaced with groundwater at the depth, oxygen and A luminescent reagent that emits light in response is introduced, and dissolved oxygen in the groundwater at the depth is detected based on the output of the photosensor.

(イ)地下水を地表へ採水する必要がなく、岩盤中地下水の任意区間深度の溶存酸素を原位置で直接計測することができる。
(ロ)従来の手間のかかる電極のメンテナンスやキャリブレーション等を必要としないので、極めて簡単な操作で地下水の溶存酸素を検出できる。
(ハ)電極を使用しないので、メンテナンスの手間が大幅に省略でき、メンテナンス不足等に起因する検出精度の低下のおそれが小さい。
(ニ)発光試薬の発光を光センサで検出するので、地下水の溶存酸素の迅速な検出が可能である。
(ホ)地下水の水温や塩分濃度、pH等が発光範囲内にあることを条件に、発光試薬投入時の光センサの出力の有無により溶存酸素の有無をデジタル的に判断するシステムの構築に利用できる。
(ヘ)光センサの出力と地下水の水温、電気伝導度及び/又はpH等とを組み合わせることにより、地下水の溶存酸素の定量的計測も期待できる。
(B) It is not necessary to collect groundwater to the ground surface, and dissolved oxygen at an arbitrary depth of groundwater in rock can be directly measured in situ.
(B) Since it does not require conventional troublesome electrode maintenance or calibration, dissolved oxygen in groundwater can be detected by an extremely simple operation.
(C) Since no electrodes are used, the maintenance work can be greatly reduced, and the possibility of a decrease in detection accuracy due to insufficient maintenance is small.
(D) Since the luminescence of the luminescent reagent is detected by an optical sensor, it is possible to quickly detect dissolved oxygen in groundwater.
(E) Used to construct a system that digitally determines the presence or absence of dissolved oxygen based on the presence or absence of an optical sensor output when a luminescent reagent is charged, provided that the groundwater temperature, salinity, pH, etc. are within the luminescence range. it can.
(F) Quantitative measurement of dissolved oxygen in the groundwater can be expected by combining the output of the optical sensor with the groundwater temperature, electrical conductivity, and / or pH.

図1は、ボーリング孔3内に吊り下げた本発明の溶存酸素検出装置の一実施例を示す。図示例の溶存酸素検出装置は、ボーリング孔3内の所要地下水深度4に他の深度から仕切られた孔内区間9を形成するパッカーシステム5と、孔内区間9が区間地下水(所要深度4の地下水)2で置換されたことを検知する検知装置14と、孔内区間9へ発光試薬17を投入する投入装置13とを有する。また、パッカーシステム5に取り付けた光センサ10と、光センサ10の出力により孔内区間9の地下水2の溶存酸素を検出する検出装置12とを有する。   FIG. 1 shows an embodiment of the dissolved oxygen detector of the present invention suspended in a borehole 3. The dissolved oxygen detection device of the illustrated example includes a packer system 5 that forms an in-hole section 9 partitioned from other depths at a required groundwater depth 4 in the borehole 3, and an in-hole section 9 is a section groundwater (with a required depth of 4). A detection device 14 for detecting the replacement with the groundwater 2, and a charging device 13 for charging the luminescent reagent 17 into the in-hole section 9. Moreover, it has the optical sensor 10 attached to the packer system 5, and the detection apparatus 12 which detects the dissolved oxygen of the groundwater 2 of the hole area 9 by the output of the optical sensor 10.

図示例のパッカーシステム5は、一対の上部パッカー6及び下部パッカー7と、パッカー対6、7の拡張・収縮を制御するパッカー制御装置8と、パッカー対6、7を地上から吊り下げるウィンチ19及びワイヤ18等の地上部とにより構成されている。パッカー対6、7の一例は、制御装置8により注入・回収する液体(水等)又は気体(空気等)の圧力により拡張・収縮する遮水パッカー又はメカニカルパッカーである。但し、本発明では孔内区間9の地下水深度4に応じて従来技術に属する適当なパッカーシステム5を用いることができ、パッカーシステム5の構成は図示例に限定されない。   The illustrated packer system 5 includes a pair of upper packer 6 and lower packer 7, a packer control device 8 that controls expansion and contraction of the packer pairs 6, 7, a winch 19 that suspends the packer pairs 6, 7 from the ground, and It is comprised by the ground parts, such as the wire 18. An example of the packer pairs 6 and 7 is a water-impervious packer or a mechanical packer that expands or contracts by the pressure of liquid (water or the like) or gas (air or the like) injected / collected by the control device 8. However, in the present invention, an appropriate packer system 5 belonging to the prior art can be used according to the depth of groundwater 4 in the borehole section 9, and the configuration of the packer system 5 is not limited to the illustrated example.

図示例の検知装置14は、パッカーシステム5に結合された孔内システム20と地上のデータ処理装置23とにより構成されている。孔内システム20は、採水ユニット21と孔内ポンプ22と検層ユニット24とを有する。検層ユニット24には、温度計25、電気伝導度計26、pH計27等が設けられている。例えば図7を参照して上述したように、孔内区間9の地下水2を孔内ポンプ22により水通路等(図示せず)及び採水ユニット21経由で区間9外へ連続的に排水し、採水ユニット21内の水質及び排水量を検層ユニット24で連続的に計測する。検層ユニット24の計測値を信号ケーブル23a経由でデータ処理装置23へ伝送し、データ処理装置23により孔内区間9が区間地下水2で置換されたことを検知する。データ処理装置23の一例は、検層ユニット24で連続的に計測された排水量と計測値とを記録し且つ排水量に応じて計測値が一定の値に達したことを検知するプログラム内蔵のコンピュータである。比較的浅い地下水を調査する場合は、孔内システム20に代えて、特許文献1及び2のように孔内区間9から地上のデータ処理装置23へサンプリング採水する手段(図示せず)を設けてもよい。   The illustrated detection device 14 includes an in-hole system 20 coupled to the packer system 5 and a ground data processing device 23. The borehole system 20 includes a water sampling unit 21, a borehole pump 22, and a logging unit 24. The logging unit 24 is provided with a thermometer 25, an electric conductivity meter 26, a pH meter 27, and the like. For example, as described above with reference to FIG. 7, the groundwater 2 in the borehole section 9 is continuously drained out of the section 9 via the water passage (not shown) and the water sampling unit 21 by the borehole pump 22. The water quality and drainage amount in the water sampling unit 21 are continuously measured by the logging unit 24. The measured value of the logging unit 24 is transmitted to the data processing device 23 via the signal cable 23a, and the data processing device 23 detects that the in-hole section 9 has been replaced with the section groundwater 2. An example of the data processing device 23 is a computer with a built-in program that records the amount of drainage continuously measured by the logging unit 24 and the measured value and detects that the measured value has reached a certain value according to the amount of drainage. is there. When investigating relatively shallow groundwater, instead of the borehole system 20, a means (not shown) for sampling water from the borehole section 9 to the ground data processing device 23 is provided as in Patent Documents 1 and 2. May be.

投入装置13で投入する発光試薬17の一例はルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物であり、例えば上述したA粉末とB粉末との混合物とすることができる。ルシフェリン及びルシフェラーゼとして生物(ホタル等)由来のものを使用できる。この発光試薬17は発光時にATPが消費され発光が減衰するが、発光反応の生成物質に作用してATPを再生するピルベートオルトフォスフェートジキナーゼ(PPDK)やホスホエノールピルビン酸等によるATP再生酵素反応系が知られている(例えば特許文献4参照)。発光試薬17の投入時の発光を長時間持続させるため、本発明の発光試薬17にATP再生酵素反応系の試薬を混合してもよい。   An example of the luminescent reagent 17 to be charged by the charging device 13 is a mixture of luciferin, luciferase, magnesium ion and ATP. For example, the mixture of A powder and B powder described above can be used. As luciferin and luciferase, those derived from organisms (fireflies etc.) can be used. This luminescent reagent 17 consumes ATP during luminescence and attenuates luminescence, but acts on the product of the luminescence reaction to regenerate ATP, and ATP regenerating enzyme such as pyruvate orthophosphate dikinase (PPDK) or phosphoenolpyruvate A reaction system is known (see, for example, Patent Document 4). In order to maintain light emission when the luminescent reagent 17 is charged for a long time, the reagent of the ATP regenerating enzyme reaction system may be mixed with the luminescent reagent 17 of the present invention.

図示例の投入装置13は、投入制御装置15と投入管16とを有する。投入管16は、上部パッカー6を貫通して孔内区間9と地上の投入制御装置15とを連通する。例えば、ルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物の脱酸素水(脱気水等)溶液を投入制御装置15に蓄え、発光試薬(溶液)17の投入量を制御装置15で制御する。投入制御装置15に脱酸素ガスの送入手段を含め、適当量の発光試薬17を非酸素ガスにより孔内区間9へ送入してもよい。   The charging device 13 in the illustrated example includes a charging control device 15 and a charging pipe 16. The input pipe 16 passes through the upper packer 6 and communicates the in-hole section 9 with the input control device 15 on the ground. For example, a deoxygenated water (degassed water, etc.) solution of a mixture of luciferin, luciferase, magnesium ions and ATP is stored in the input control device 15, and the input amount of the luminescent reagent (solution) 17 is controlled by the control device 15. An appropriate amount of the luminescent reagent 17 may be fed into the in-hole section 9 with non-oxygen gas by including a deoxygenating gas feeding means in the charging control device 15.

発光試薬17の投入量は孔内区間9の容量等に応じて適当に選択できるが、例えば孔内区間9の水質に影響を与えない少量の酸素溶存水に発光試薬17を溶解して発光させた上で孔内区間9へ投入し、投入後に発光が消滅することにより孔内区間9の還元状態を検出することも期待できる。また、図示例のように発光試薬17を地上から孔内区間9へ投入する方法に代えて、例えば孔内システム20に発光試薬17を蓄えた注入装置(図示せず)等を含め、地上の投入制御装置15により孔内システム20の注入装置等を制御して発光試薬17を孔内区間9へ投入する方法も考えられる。   The amount of the luminescent reagent 17 can be appropriately selected according to the capacity of the intra-pore section 9, etc. For example, the luminescent reagent 17 is dissolved in a small amount of oxygen-dissolved water that does not affect the water quality of the intra-pore section 9. In addition, it can be expected that the reduced state of the in-hole section 9 is detected by throwing the light into the in-hole section 9 and extinguishing the light emission after the injection. Further, instead of the method of introducing the luminescent reagent 17 from the ground into the in-hole section 9 as in the illustrated example, for example, an injection device (not shown) in which the luminescent reagent 17 is stored in the in-hole system 20, etc. A method of charging the luminescent reagent 17 into the in-hole section 9 by controlling the injection device of the in-hole system 20 by the input control device 15 is also conceivable.

図示例の光センサ10は入力光を例えば電気信号に変換して出力し、検出装置12は光センサ10の出力を信号ケーブル12a経由で受信する。光センサ10の一例は、上部パッカー6の孔内区間9との対向面に取り付けた撮像機又はCCD(Charge Coupled Device)である。必要に応じて、光センサ10を下部パッカー7の孔内区間9との対向面に取り付けてもよい。光センサ10は、直接又はガラス板や透明プラスチック板等を介して孔内区間9に臨ませることができる。   The optical sensor 10 in the illustrated example converts input light into, for example, an electrical signal and outputs it, and the detection device 12 receives the output of the optical sensor 10 via the signal cable 12a. An example of the optical sensor 10 is an image pickup device or a CCD (Charge Coupled Device) attached to a surface facing the in-hole section 9 of the upper packer 6. If necessary, the optical sensor 10 may be attached to the surface of the lower packer 7 facing the in-hole section 9. The optical sensor 10 can face the in-hole section 9 directly or through a glass plate or a transparent plastic plate.

例えば発光試薬17を生物発光試薬とした場合、後述するように地下水2の温度や塩分濃度、pH等が発光範囲内であることを条件に、発光試薬17の投入時に地下水2が発光すれば溶存酸素があり、発光しなければ溶存酸素がないというデジタルな判断システムが成立する。検出装置12の一例は、光センサ10の出力の有無により地下水2の溶存酸素の有無を定性的に検知するプログラム内蔵のコンピュータである。   For example, if the luminescent reagent 17 is a bioluminescent reagent, it will dissolve if the groundwater 2 emits light when the luminescent reagent 17 is charged, provided that the temperature, salinity, pH, etc. of the groundwater 2 are within the luminescent range, as will be described later. A digital judgment system is established that there is oxygen and there is no dissolved oxygen if it does not emit light. An example of the detection device 12 is a computer with a built-in program that qualitatively detects the presence or absence of dissolved oxygen in the groundwater 2 based on the presence or absence of the output of the optical sensor 10.

また上述したように、発光試薬17の投入時の発光強度に基づき地下水2の溶存酸素量を検出することができる。例えば発光試薬17の発光強度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12のメモリに記憶しておけば、検出装置12の内蔵プログラムにより、光センサ10の出力から発光強度を求めて地下水2の溶存酸素量を定量的に検出することができる。例えば発光試薬17を生物発光試薬とした場合、生物発光試薬の発光極大波長は約540〜560nmであること及び極大波長のスペクトル強度(発光強度)は溶存酸素濃度に対応していることが知られている。従って、波長540〜560nmのスペクトル強度に応じた信号を出力する光センサ10を用いることにより、光センサ10の出力から地下水2の溶存酸素量を検出することができる。この場合、光センサ10を分光カメラとし、検出装置12をスペクトル解析装置(分光蛍光光度計)とすることができる。また、発光強度の経時的減衰による検出精度の低下を避けるため、発光試薬17を酸素溶存水に溶解して発光させ且つ発光が安定したのち孔内区間9へ投入してもよい。   As described above, the dissolved oxygen amount in the groundwater 2 can be detected based on the luminescence intensity when the luminescent reagent 17 is introduced. For example, if a relational expression or graph between the luminescence intensity of the luminescence reagent 17 and dissolved oxygen is experimentally obtained and stored in the memory of the detection device 12, the luminescence intensity is calculated from the output of the optical sensor 10 by the built-in program of the detection device 12. Thus, the dissolved oxygen content of the groundwater 2 can be quantitatively detected. For example, when the luminescent reagent 17 is a bioluminescent reagent, the luminescence maximum wavelength of the bioluminescence reagent is about 540 to 560 nm, and the spectral intensity (luminescence intensity) of the maximal wavelength corresponds to the dissolved oxygen concentration. ing. Therefore, the amount of dissolved oxygen in the groundwater 2 can be detected from the output of the optical sensor 10 by using the optical sensor 10 that outputs a signal corresponding to the spectral intensity of wavelengths 540 to 560 nm. In this case, the optical sensor 10 can be a spectroscopic camera, and the detection device 12 can be a spectral analysis device (spectral fluorometer). Further, in order to avoid a decrease in detection accuracy due to the decay of emission intensity over time, the luminescent reagent 17 may be dissolved in oxygen-dissolved water to emit light, and after the emission is stabilized, it may be introduced into the in-hole section 9.

次に、図1及び図2を参照して、図1の溶存酸素検出装置による検出方法を説明する。図2に示すように、岩盤1に穿ったボーリング孔3の地下水2が存在する任意の深度(地下水深度)4に光センサ10付きパッカー対6、7と孔内システム20とを吊り下げ、パッカー対6、7を拡張して孔内区間9を形成する。ボーリング孔3の孔壁を保護するため、ケーシングパイプ等の保孔部材の先端にパッカー対6、7を取り付けてボーリング孔3内に挿入してもよい。その後、孔内区間9の溜まり水を孔内システム20経由で区間9外へ排水しながら検層ユニット24により水質(電気伝導度、水温、pH等)及び水量を計測し、地上のデータ処理装置23により孔内区間9が区間地下水(任意の深度4の地下水)2で置換されたことを確認する。置換が確認された後、投入装置13により発光試薬17を孔内区間9へ投入し、孔内区間9に臨む光センサ10の出力により孔内区間9の地下水2の溶存酸素を検出装置12で検出する。   Next, with reference to FIG.1 and FIG.2, the detection method by the dissolved oxygen detection apparatus of FIG. 1 is demonstrated. As shown in FIG. 2, the packer pairs 6 and 7 with the optical sensor 10 and the borehole system 20 are suspended at an arbitrary depth (groundwater depth) 4 where the groundwater 2 exists in the borehole 3 drilled in the bedrock 1. The pairs 6 and 7 are expanded to form an in-hole section 9. In order to protect the hole wall of the boring hole 3, the packer pair 6, 7 may be attached to the tip of a hole retaining member such as a casing pipe and inserted into the boring hole 3. After that, the water quality (electrical conductivity, water temperature, pH, etc.) and water volume are measured by the logging unit 24 while draining the accumulated water in the hole section 9 to the outside of the section 9 via the hole system 20, and the ground data processing device. 23 confirms that the borehole section 9 has been replaced with the section groundwater (groundwater of arbitrary depth 4) 2. After the replacement is confirmed, the luminescent reagent 17 is introduced into the in-hole section 9 by the input device 13, and the dissolved oxygen in the groundwater 2 in the in-hole section 9 is detected by the detection device 12 by the output of the optical sensor 10 facing the in-hole section 9. To detect.

本発明によれば、地下水2を地表へ採水する必要がなく、原位置において地下水2の溶存酸素を直接検出できる。また、孔内区間9の区間地下水2による置換を確認したのちは発光試薬17を孔内区間9へ投入するだけで足り、従来の手間のかかる電極のメンテナンスやキャリブレーション等の操作を必要としないので、操作が極めて簡単であり、メンテナンス不足等に起因する検出精度の低下のおそれが小さい。しかも、発光試薬17の発光を光センサ10で検出するので、地下水2の溶存酸素の迅速な検出が可能となる。   According to the present invention, it is not necessary to collect the groundwater 2 to the ground surface, and the dissolved oxygen in the groundwater 2 can be directly detected at the original position. Further, after confirming the replacement of the in-hole section 9 with the section groundwater 2, it is only necessary to put the luminescent reagent 17 into the in-hole section 9, and it is not necessary to perform conventional operations such as electrode maintenance and calibration. Therefore, the operation is extremely simple and there is little risk of a decrease in detection accuracy due to insufficient maintenance. In addition, since the light emission of the luminescent reagent 17 is detected by the optical sensor 10, the dissolved oxygen in the groundwater 2 can be quickly detected.

こうして本発明の目的である「地下水の原位置における溶存酸素を簡単且つ迅速に検出する方法及び装置」の提供が達成できる。   Thus, provision of “a method and apparatus for detecting dissolved oxygen in situ in the groundwater simply and quickly”, which is an object of the present invention, can be achieved.

発光試薬17を生物発光試薬とした場合は、地下水2への発光試薬17投入時の発光強度は地下水2の溶存酸素のみにより定まるのではなく、地下水2の他の水質条件、例えば温度、塩分濃度、pH、微量物質等によっても変化し得る。従って本発明において、地下水2の発光の有無により溶存酸素の有無を定性的に検出する場合は、地下水2の温度や塩分濃度、pH等が発光試薬17の発光範囲内にあることを確認することが望ましい。また、地下水2の発光試薬17投入時の発光強度により溶存酸素を定量的に検出する場合は、地下水2の温度や塩分濃度、pH等の発光強度に対する影響を考慮することが望ましい。   When the luminescent reagent 17 is a bioluminescent reagent, the luminescence intensity when the luminescent reagent 17 is introduced into the groundwater 2 is not determined only by the dissolved oxygen in the groundwater 2, but other water quality conditions such as temperature and salinity in the groundwater 2. , PH, trace substances, etc. Therefore, in the present invention, when the presence or absence of dissolved oxygen is qualitatively detected based on the presence or absence of light emission from the groundwater 2, it is confirmed that the temperature, salt concentration, pH, etc. of the groundwater 2 are within the light emission range of the luminescent reagent 17. Is desirable. In addition, when the dissolved oxygen is quantitatively detected based on the luminescence intensity at the time of charging the luminescent reagent 17 in the groundwater 2, it is desirable to consider the influence on the luminescence intensity such as the temperature, salinity, and pH of the groundwater 2.

本発明者は、発光試薬17として前記A粉末及びB粉末からなるホタライトを用い、生物発光試薬の発光強度に対する水中の温度、塩分濃度、及びpHによる影響を確認する実験を行った。先ず、地下水2の温度による影響を確認するため、生物発光試薬のA粉末及びB粉末を水道水(22℃)に溶解して発光させた溶液に氷を投入し、溶液の温度を計測しながら発光強度の変化を観察した。また、前記発光させた溶液を透明容器に入れて80℃で湯煎し、溶液の温度を計測しながら発光強度の変化を観察した。溶液の発光強度は、前記水道水の脱気の程度に応じた5段階の発光強度レベル(表1参照)と比較し、何れのレベルの発光強度に近いかを検出した。この実験結果を表3のNo.3〜5欄に示す。   The present inventor conducted an experiment for confirming the influence of the temperature in water, the salinity concentration, and the pH on the luminescence intensity of the bioluminescence reagent, using the fluorite composed of the A powder and the B powder as the luminescence reagent 17. First, in order to confirm the influence of the temperature of the groundwater 2, while adding ice to a solution obtained by dissolving the A and B powders of the bioluminescent reagent in tap water (22 ° C.) and measuring the temperature of the solution The change in emission intensity was observed. Further, the light-emitting solution was put in a transparent container and boiled at 80 ° C., and the change in light emission intensity was observed while measuring the temperature of the solution. The luminescence intensity of the solution was compared with the luminescence intensity level in five steps according to the degree of degassing of the tap water (see Table 1), and the level of the luminescence intensity was detected. The experimental results are shown in columns No. 3 to No. 5 in Table 3.

Figure 2007256025
Figure 2007256025

表3のNo.3〜5欄に示すように、生物発光試薬が溶解した溶液の発光強度は、温度が22℃から低下すると徐々に弱くなり、温度0℃ではレベル1程度の発光強度となった。また、逆に温度が30℃程度に上昇すると発光強度は容器周囲から徐々に弱いオレンジ色となり、地下深度の1000mの地下水温度に相当する45℃においてレベル1程度となり、51℃以上で完全に発光が観察できなくなった。この実験結果から、地下水2の温度が0〜50℃の範囲内であれば溶存酸素の有無を発光の有無により定性的に検出できることを確認できた。また、水中の温度がこの範囲内にあれば、発光試薬17の発光強度と温度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておくことにより、検層ユニット24の温度計25の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することが期待できる。   As shown in Nos. 3 to 5 in Table 3, the luminescence intensity of the solution in which the bioluminescent reagent is dissolved gradually weakens when the temperature is lowered from 22 ° C., and becomes luminescence intensity of about level 1 at the temperature of 0 ° C. It was. Conversely, when the temperature rises to about 30 ° C, the light emission intensity gradually becomes weak orange from the surroundings of the container, reaches about level 1 at 45 ° C, which corresponds to a groundwater temperature of 1000 m at the underground depth, and completely emits light above 51 ° C. Became unobservable. From this experimental result, it was confirmed that the presence or absence of dissolved oxygen can be detected qualitatively by the presence or absence of luminescence if the temperature of the groundwater 2 is in the range of 0 to 50 ° C. In addition, if the temperature in water is within this range, the logarithmic unit can be obtained by experimentally obtaining a relational expression or graph of the luminescence intensity of the luminescent reagent 17 and the temperature and dissolved oxygen and storing it in the detection device 12. It is expected that the dissolved oxygen in the groundwater 2 can be detected quantitatively by the output of the 24 thermometers 25 and the output of the optical sensor 10.

次に、地下水2の発光強度に対する水中の塩分濃度の影響を確認するため、異なる濃度の塩化ナトリウム(NaCl)溶液に生物発光試薬(A粉末及びB粉末)を溶解し、溶液の電気伝導度と発光強度との関係を観察した。塩化ナトリウム溶液を用いた理由は、海水(Na+濃度:9,000〜10,000ppm、Cl-濃度:18,000〜20,000ppm)の影響を受けた岩盤中地下水2を模擬するためである。また電気伝導度は、塩分濃度の簡易な指標として用いることができる。塩化ナトリウム濃度を0.1g/10ml(Na+濃度:3,900ppm、Cl-濃度:6,100ppm)及び0.5g/10ml(Na+濃度:19,500ppm、Cl-濃度:30,500ppm)としたときの実験結果を、表3のNo.6及び7欄と図4とに示す。図4には、後述するNo.8〜13の溶液における電気伝導度及び発光強度の関係も併せて示す。 Next, in order to confirm the influence of the salt concentration in water on the luminescence intensity of groundwater 2, bioluminescent reagents (A powder and B powder) are dissolved in sodium chloride (NaCl) solutions of different concentrations, and the electric conductivity of the solution The relationship with the emission intensity was observed. The reason for using the sodium chloride solution is to simulate the groundwater 2 in the bedrock affected by seawater (Na + concentration: 9,000 to 10,000 ppm, Cl concentration: 18,000 to 20,000 ppm). The electrical conductivity can be used as a simple indicator of the salinity concentration. The experimental results when the sodium chloride concentration was 0.1 g / 10 ml (Na + concentration: 3,900 ppm, Cl concentration: 6,100 ppm) and 0.5 g / 10 ml (Na + concentration: 19,500 ppm, Cl concentration: 30,500 ppm) , No. 6 and 7 columns in Table 3 and FIG. FIG. 4 also shows the relationship between electric conductivity and light emission intensity in solutions Nos. 8 to 13 described later.

図4のグラフと表3とから、地下水2がpH6.88〜9.92程度であれば電気伝導度の上昇に応じて発光強度が徐々に減衰すること、地下水2が海水以上の塩分濃度(表3のNo.7欄)であってもレベル1程度の発光強度が観察できることが分かる。この実験結果から、地下水2に海水が混入した場合でも溶存酸素の有無を発光の有無により定性的に検出可能であることが確認できた。また、発光試薬17の発光強度と電気伝導度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておけば、検層ユニット24の電気伝導度計26の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することも期待できる。   From the graph of FIG. 4 and Table 3, if the groundwater 2 has a pH of about 6.88 to 9.92, the emission intensity gradually attenuates as the electrical conductivity increases, and the groundwater 2 has a salt concentration higher than seawater (Table 3). It can be seen that the light emission intensity of about level 1 can be observed even in column No. 7). From this experimental result, it was confirmed that the presence or absence of dissolved oxygen can be detected qualitatively by the presence or absence of luminescence even when seawater is mixed into the groundwater 2. Further, if the relational expression or graph of the luminescence intensity, electric conductivity, and dissolved oxygen of the luminescent reagent 17 is experimentally obtained and stored in the detection device 12, the output of the electric conductivity meter 26 of the logging unit 24 It can also be expected to detect the dissolved oxygen in the groundwater 2 quantitatively based on the output of the optical sensor 10.

更に、地下水2の発光強度に対するpHの影響を確認するため、pH緩衝液及び天然鉱水(鹿児島垂水温泉の温泉水、フランスのPerrier)に生物発光試薬(A粉末及びB粉末)を溶解し、溶液のpHと発光強度との関係を観察した。実験結果を表3のNo.8〜12欄と図3とに示す。図3には、前述したNo.6及び7の溶液におけるpH計測値及び発光強度の関係も併せて示す。   Furthermore, in order to confirm the effect of pH on the luminescence intensity of groundwater 2, bioluminescent reagents (A powder and B powder) are dissolved in pH buffer solution and natural mineral water (Kagoshima Tarumi hot spring water, Perrier, France) The relationship between pH and luminescence intensity was observed. The experimental results are shown in No. 8 to 12 columns of Table 3 and FIG. FIG. 3 also shows the relationship between the measured pH value and the luminescence intensity of the solutions No. 6 and No. 7 described above.

図3のグラフと表3とから、地下水2の発光強度は中性で最も強いこと、pH10.02程度のアルカリ性の地下水2でもレベル2程度の発光強度が観察できること、しかし酸性の地下水2では発光が観察できないことが分かる。この実験結果は地下水2中のH+とOH-とに関係しており、酸化還元電位と発光強度との関係を暗に示しているとも考えられる。表3及び図3の実験結果から、地下水2が中性又はpH10.02程度以下のアルカリ性であれば溶存酸素の有無を発光の有無により定性的に検出可能であることが確認できた。また、発光試薬17の発光強度とpHと溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておけば検層ユニット24のpH計27の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することも期待できる。 From the graph in Fig. 3 and Table 3, the luminescence intensity of groundwater 2 is neutral and strongest, and the luminescence intensity of level 2 can be observed even in alkaline groundwater 2 with a pH of about 10.02. Can not be observed. This experimental result is related to H + and OH in the groundwater 2, and it is considered that the relationship between the oxidation-reduction potential and the emission intensity is implied. From the experimental results in Table 3 and FIG. 3, it was confirmed that the presence or absence of dissolved oxygen can be detected qualitatively by the presence or absence of luminescence if the groundwater 2 is neutral or alkaline at a pH of about 10.02 or lower. Further, if the relational expression or graph of the luminescence intensity of the luminescent reagent 17, pH and dissolved oxygen is experimentally determined and stored in the detection device 12, the output of the pH meter 27 of the logging unit 24 and the output of the optical sensor 10 are stored. Thus, it can be expected that the dissolved oxygen in the groundwater 2 is detected quantitatively.

なお、表3のNo.13欄は、200ccの蒸留水にセメント15gを攪拌して1時間放置し、その上澄み溶液(以下、セメント抽出水という)に生物発光試薬(A粉末及びB粉末)を溶解して発光強度を観察した実験結果を示す。同欄に示すようにセメント抽出水は、水温及び電気伝導度が生物発光範囲内にあるもののpHが12.17であり、発光が観察できなかった。従って、例えばボーリング孔3をセメンティングやベントナイトペレット等で保孔する場合は、地下水中に溶出したセメントスラリーやベントナイトペレットが孔内区間9を汚染しないよう注意を要する。   In column No. 13 of Table 3, 15 g of cement is stirred in 200 cc of distilled water and allowed to stand for 1 hour, and the bioluminescent reagent (A powder and B powder) is added to the supernatant solution (hereinafter referred to as cement extraction water). The experimental result which melt | dissolved and observed the emitted light intensity is shown. As shown in the same column, the cement-extracted water had a water temperature and electrical conductivity within the bioluminescence range, but had a pH of 12.17, and no luminescence could be observed. Therefore, for example, when the boring hole 3 is retained by cementing or bentonite pellets, care must be taken so that cement slurry and bentonite pellets eluted in the groundwater do not contaminate the in-hole section 9.

図2は、岩盤1中の地下水2の溶存酸素を多数の地点(ボーリング孔3a〜3d)で検出する本発明の実施例を示す。例えば降水を起源とする堆積岩及び火成岩中の地下水2は、深度に応じて溶存酸素が徐々に減少すると考えられている。本発明の溶存酸素検出方法は、図2のように岩盤1中の複数の原位置(地下水深度4a〜4d)における地下水2の溶存酸素を簡単且つ迅速に検出できるので、岩盤1中の水理地質構造の解析への利用が期待できる。   FIG. 2 shows an embodiment of the present invention in which dissolved oxygen in groundwater 2 in the rock mass 1 is detected at a number of points (boring holes 3a to 3d). For example, groundwater 2 in sedimentary rocks and igneous rocks originating in precipitation is considered to have a gradual decrease in dissolved oxygen depending on the depth. The dissolved oxygen detection method of the present invention can easily and quickly detect dissolved oxygen in the groundwater 2 at a plurality of original positions (groundwater depths 4a to 4d) in the rock 1 as shown in FIG. Expected to be used for analysis of geological structure.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明の他の実施例の説明図である。It is explanatory drawing of the other Example of this invention. 地下水のpHと発光強度との関係を示す実験結果である。It is an experimental result which shows the relationship between pH of groundwater and luminous intensity. 地下水の電気伝導度と発光強度との関係を示す実験結果である。It is an experimental result which shows the relationship between the electrical conductivity of groundwater and emitted light intensity. 水中の溶存酸素濃度と発光強度との関係を確認する実験の説明図である。It is explanatory drawing of experiment which confirms the relationship between the dissolved oxygen concentration in water, and emitted light intensity. 水中の溶存酸素濃度と発光強度との関係を示す実験結果である。It is an experimental result which shows the relationship between the dissolved oxygen concentration in water, and emitted light intensity. 従来の地下水採水装置の一例の説明図である。It is explanatory drawing of an example of the conventional groundwater sampling apparatus.

符号の説明Explanation of symbols

1…岩盤 2…地下水
3…ボーリング孔 4…地下水深度
5…パッカーシステム 6…上部パッカー
7…下部パッカー 8…パッカー制御装置
9…(孔内)区間 10…光センサ
12…検出装置 12a…信号ケーブル
13…投入装置 14…検知装置
15…投入制御装置 16…投入管
17…発光試薬 18…ワイヤ
19…ウィンチ 20…孔内システム
21…採水ユニット 22…孔内ポンプ
23…データ処理装置 23a…信号ケーブル
24…検層ユニット 25…温度計
26…電気伝導度計 27…pH計
30a、30b…パッカー 31…採水ロッド
32…ガスボンベ 33…サンプラー(採水器)
34…孔内ポンプ 35…データ観測機器
36…記録機器 37…内部パッカー
38…水質センサ 39…水圧計
40…孔内システム 41…内部パッカー
42…水通路 43…逆止弁
44…観測用ケーブル 45…排水口
50…溶存酸素計(DOメータ)
51…スターラー 52…三角フラスコ
53…温度計
DESCRIPTION OF SYMBOLS 1 ... Bedrock 2 ... Groundwater 3 ... Boring hole 4 ... Groundwater depth 5 ... Packer system 6 ... Upper packer 7 ... Lower packer 8 ... Packer control device 9 ... (inside hole) Section 10 ... Optical sensor
12 ... Detection device 12a ... Signal cable
13… Inserting device 14… Detecting device
15 ... Input control device 16 ... Input pipe
17 ... Luminescent reagent 18 ... Wire
19 ... Winch 20 ... Hole system
21… Water sampling unit 22… Hole pump
23… Data processor 23a… Signal cable
24 ... Logging unit 25 ... Thermometer
26 ... Electric conductivity meter 27 ... pH meter
30a, 30b ... Packer 31 ... Water sampling rod
32… Gas cylinder 33… Sampler (sampler)
34 ... Pore pump 35 ... Data observation equipment
36 ... Recording equipment 37 ... Internal packer
38 ... Water quality sensor 39 ... Water pressure gauge
40… In-hole system 41… Internal packer
42 ... Water passage 43 ... Check valve
44 ... Observation cable 45 ... Drain port
50 ... dissolved oxygen meter (DO meter)
51 ... Stirrer 52 ... Erlenmeyer flask
53 ... Thermometer

Claims (10)

ボーリング孔内の地下水深度に光センサ付きパッカー対で仕切った区間を形成し、当該区間が前記深度の地下水で置換されたのち当該区間へ酸素と反応して発光する発光試薬を投入し、前記光センサの出力により前記深度の地下水の溶存酸素を検出してなる地下水の溶存酸素検出方法。   A section partitioned by a pair of packers with a light sensor is formed at the groundwater depth in the borehole, and after the section is replaced with groundwater at the depth, a luminescent reagent that reacts with oxygen and emits light is introduced into the section. A method for detecting dissolved oxygen in groundwater by detecting dissolved oxygen in the groundwater at the above-described depth from the output of the sensor. 請求項1の検出方法において、前記パッカーに温度計、電気伝導度計及び/又はpH計を取り付け、前記光センサの出力と温度計、電気伝導度計及び/又はpH計の出力とにより前記地下水の溶存酸素を検出してなる地下水の溶存酸素検出方法。   2. The detection method according to claim 1, wherein a thermometer, an electrical conductivity meter and / or a pH meter are attached to the packer, and the groundwater is determined by the output of the optical sensor and the output of the thermometer, the electrical conductivity meter and / or the pH meter. A method for detecting dissolved oxygen in groundwater by detecting dissolved oxygen in water. 請求項1又は2の検出方法において、前記発光試薬をルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物としてなる地下水の溶存酸素検出方法。   The detection method according to claim 1 or 2, wherein the luminescent reagent is a mixture of luciferin, luciferase, magnesium ions and ATP, and dissolved oxygen is detected in groundwater. 請求項3の検出方法において、前記発光試薬を脱酸素水に溶解した前記混合物の溶液としてなる地下水の溶存酸素検出方法。   The detection method according to claim 3, wherein the dissolved oxygen is detected as a solution of the mixture in which the luminescent reagent is dissolved in deoxygenated water. 請求項1から4の何れかの検出方法において、前記発光試薬を地上から非酸素ガスにより前記区間へ送入してなる地下水の溶存酸素検出方法。   The detection method in any one of Claim 1 to 4 WHEREIN: The dissolved oxygen detection method of the groundwater which sends the said luminescent reagent to the said area by non-oxygen gas from the ground. ボーリング孔内の地下水深度に遮水された区間を形成するパッカー対、前記パッカー対の少なくとも一方に取り付けた光センサ、前記区間が前記深度の地下水で置換されたことを検知する検知装置、前記区間へ酸素と反応して発光する発光試薬を投入する投入装置、及び前記光センサの出力により前記深度の地下水の溶存酸素を検出する検出装置を備えてなる地下水の溶存酸素検出装置。   A packer pair that forms a section blocked by the groundwater depth in the borehole, an optical sensor attached to at least one of the packer pair, a detection device that detects that the section is replaced with groundwater at the depth, and the section A groundwater dissolved oxygen detection device comprising: a charging device for charging a luminescent reagent that emits light by reacting with oxygen; and a detection device for detecting dissolved oxygen in the groundwater at the depth based on the output of the optical sensor. 請求項6の検出装置において、前記パッカー対の少なくとも一方に温度計、電気伝導度計及び/又はpH計を取り付け、前記検出装置により前記光センサの出力と温度計、電気伝導度計及び/又はpH計の出力とから前記地下水の溶存酸素を検出してなる地下水の溶存酸素検出装置。   The detection device according to claim 6, wherein a thermometer, an electric conductivity meter and / or a pH meter are attached to at least one of the packer pair, and the output of the photosensor and the thermometer, the electric conductivity meter and / or the pH meter are detected by the detection device. An apparatus for detecting dissolved oxygen in groundwater by detecting dissolved oxygen from the output of a pH meter. 請求項6又は7の検出装置において、前記発光試薬をルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物としてなる地下水の溶存酸素検出装置。   8. The detection apparatus according to claim 6, wherein the luminescent reagent is a mixture of luciferin, luciferase, magnesium ions and ATP. 請求項8の検出装置において、前記発光試薬を脱酸素水に溶解した前記混合物の溶液としてなる地下水の溶存酸素検出装置。   The detection device according to claim 8, wherein the dissolved oxygen detection device is a solution of the mixture in which the luminescent reagent is dissolved in deoxygenated water. 請求項6から9の何れかの検出装置において、前記投入装置に、発光試薬を地上から前記区間へ非酸素ガスにより送入する送入手段を含めてなる地下水の溶存酸素検出装置。   10. The dissolved oxygen detection device for groundwater according to claim 6, wherein the charging device includes a feeding means for feeding the luminescent reagent from the ground to the section by non-oxygen gas.
JP2006079748A 2006-03-22 2006-03-22 Method and apparatus for detecting dissolved oxygen in groundwater Expired - Fee Related JP4836123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079748A JP4836123B2 (en) 2006-03-22 2006-03-22 Method and apparatus for detecting dissolved oxygen in groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079748A JP4836123B2 (en) 2006-03-22 2006-03-22 Method and apparatus for detecting dissolved oxygen in groundwater

Publications (2)

Publication Number Publication Date
JP2007256025A true JP2007256025A (en) 2007-10-04
JP4836123B2 JP4836123B2 (en) 2011-12-14

Family

ID=38630427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079748A Expired - Fee Related JP4836123B2 (en) 2006-03-22 2006-03-22 Method and apparatus for detecting dissolved oxygen in groundwater

Country Status (1)

Country Link
JP (1) JP4836123B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144285B1 (en) 2011-11-15 2012-05-11 (주)인텔리지오 Multistage water sampler and multistage sampling method
CN102494936A (en) * 2011-12-06 2012-06-13 周永言 Measuring cell device for trace dissolved oxygen water and device for preparing trace dissolved oxygen water
JP2012112668A (en) * 2010-11-19 2012-06-14 Hokoku Eng Kk Ground survey instrument
WO2020239081A1 (en) * 2019-05-30 2020-12-03 中国环境科学研究院 In-situ column experiment simulation system for groundwater well, and simulation method
CN112858613A (en) * 2021-01-20 2021-05-28 北京华科仪科技股份有限公司 Device for calibrating trace dissolved oxygen monitor on line and operation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103995A (en) * 1986-10-20 1988-05-09 Shimizu Constr Co Ltd Method and instrument for measuring in-hole flow velocity
JPH06193101A (en) * 1992-12-25 1994-07-12 Power Reactor & Nuclear Fuel Dev Corp Method and apparatus for sampling ground water
JPH06294270A (en) * 1993-04-09 1994-10-21 Kajima Corp Device for sampling water in hole of great depth
JPH0925783A (en) * 1995-07-10 1997-01-28 Power Reactor & Nuclear Fuel Dev Corp Packer type underground water collecting device and collecting method
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method
JP2002010800A (en) * 2000-04-26 2002-01-15 Kikkoman Corp Measurement of bioluminescence
JP2002146851A (en) * 2000-11-16 2002-05-22 Yoshizawa Giken Keisoku Kk Water sampler
JP2003043028A (en) * 2001-07-31 2003-02-13 Miura Co Ltd Method and apparatus for measuring constituent concentration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103995A (en) * 1986-10-20 1988-05-09 Shimizu Constr Co Ltd Method and instrument for measuring in-hole flow velocity
JPH06193101A (en) * 1992-12-25 1994-07-12 Power Reactor & Nuclear Fuel Dev Corp Method and apparatus for sampling ground water
JPH06294270A (en) * 1993-04-09 1994-10-21 Kajima Corp Device for sampling water in hole of great depth
JPH0925783A (en) * 1995-07-10 1997-01-28 Power Reactor & Nuclear Fuel Dev Corp Packer type underground water collecting device and collecting method
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method
JP2002010800A (en) * 2000-04-26 2002-01-15 Kikkoman Corp Measurement of bioluminescence
JP2002146851A (en) * 2000-11-16 2002-05-22 Yoshizawa Giken Keisoku Kk Water sampler
JP2003043028A (en) * 2001-07-31 2003-02-13 Miura Co Ltd Method and apparatus for measuring constituent concentration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112668A (en) * 2010-11-19 2012-06-14 Hokoku Eng Kk Ground survey instrument
KR101144285B1 (en) 2011-11-15 2012-05-11 (주)인텔리지오 Multistage water sampler and multistage sampling method
CN102494936A (en) * 2011-12-06 2012-06-13 周永言 Measuring cell device for trace dissolved oxygen water and device for preparing trace dissolved oxygen water
WO2020239081A1 (en) * 2019-05-30 2020-12-03 中国环境科学研究院 In-situ column experiment simulation system for groundwater well, and simulation method
CN112858613A (en) * 2021-01-20 2021-05-28 北京华科仪科技股份有限公司 Device for calibrating trace dissolved oxygen monitor on line and operation method thereof
CN112858613B (en) * 2021-01-20 2023-08-22 北京华科仪科技股份有限公司 Device for calibrating trace dissolved oxygen monitor on line and operation method thereof

Also Published As

Publication number Publication date
JP4836123B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Bochet et al. Iron-oxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks
Gascoyne Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba
Viollier et al. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey
Stockdale et al. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence
Sundaram et al. Groundwater sampling and analysis—a field guide
Chapelle et al. Rates of microbial metabolism in deep coastal plain aquifers
JP4836123B2 (en) Method and apparatus for detecting dissolved oxygen in groundwater
Jahnke et al. Advective pore water input of nutrients to the Satilla River Estuary, Georgia, USA
Templeton et al. Accessing the subsurface biosphere within rocks undergoing active low‐temperature serpentinization in the Samail ophiolite (Oman Drilling Project)
Ahonen et al. Hydrogeological characteristics of the Outokumpu deep drill hole
Bleyen et al. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)
Klinkhammer Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS Probe
Adhikari et al. Hydrogen utilization potential in subsurface sediments
Richards et al. Use of lithium tracers to quantify drilling fluid contamination for groundwater monitoring in Southeast Asia
Scalf Manual of ground-water quality sampling procedures
Tang et al. Nitrous oxide production in the Chesapeake Bay
W Brooks et al. Oxygen‐controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer–estuary interface
Žic et al. Nutrient speciation and hydrography in two anchialine caves in Croatia: tools to understand iodine speciation
Lodemann et al. On the origin of saline fluids in the KTB (Continental Deep Drilling Project of Germany)
Drake et al. Investigation of sulphide production in core-drilled boreholes in Äspö Hard Rock Laboratory
Rosdahl et al. Investigation of sulphide in core drilled boreholes KLX06, KAS03 and KAS09 at Laxemar and Aespoe Chemical-, microbiological-and dissolved gas data from groundwater in four borehole sections
Gimeno et al. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark
Avrahamov et al. Characterization and dating of saline groundwater in the Dead Sea area
Biddle et al. Life in the oceanic crust
JP5441105B2 (en) Rock bed looseness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees