JP2007255362A - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP2007255362A
JP2007255362A JP2006082731A JP2006082731A JP2007255362A JP 2007255362 A JP2007255362 A JP 2007255362A JP 2006082731 A JP2006082731 A JP 2006082731A JP 2006082731 A JP2006082731 A JP 2006082731A JP 2007255362 A JP2007255362 A JP 2007255362A
Authority
JP
Japan
Prior art keywords
pressure
temperature
command
guard value
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082731A
Other languages
Japanese (ja)
Other versions
JP4501882B2 (en
Inventor
Satoshi Sugata
聡 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006082731A priority Critical patent/JP4501882B2/en
Publication of JP2007255362A publication Critical patent/JP2007255362A/en
Application granted granted Critical
Publication of JP4501882B2 publication Critical patent/JP4501882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain pressure control performance in low temperature areas and protect a system. <P>SOLUTION: In this fuel injection device for an internal combustion engine, the pressure of an accumulated fuel detected by a pressure sensor 7 is so controlled as to match an instruction pressure. An instruction pressure guard value is set based on the temperature of the pressure sensor 7. When the instruction pressure is equal to or more than the instruction pressure guard value, the instruction pressure is reduced to the instruction pressure guard value or below. The instruction pressure guard value when the temperature of the pressure sensor 7 is low is set lower than the instruction pressure guard value when the temperature of the pressure sensor 7 is high. By this, the pressure control performance can be maintained by reducing the effect of pressure deviation on the pressure sensor 7 in low temperature areas. Even when the output of the pressure sensor 7 is smaller than the actually accumulated fuel pressure in the low temperature areas, the system can be surely protected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄圧器内の蓄圧燃料圧力が指令圧に一致するように蓄圧燃料圧力を制御する内燃機関用燃料噴射装置に関するものである。   The present invention relates to a fuel injection device for an internal combustion engine that controls an accumulated fuel pressure so that the accumulated fuel pressure in the accumulator matches a command pressure.

従来の内燃機関用燃料噴射装置は、蓄圧器内の蓄圧燃料圧力を圧力センサにて検出し、内燃機関の運転状態に基づいて蓄圧燃料圧力の指令圧を算出し、蓄圧燃料圧力が指令圧に一致するように蓄圧燃料圧力の制御を行っている(例えば、特許文献1参照)。   A conventional fuel injection device for an internal combustion engine detects an accumulated fuel pressure in an accumulator with a pressure sensor, calculates a command pressure of the accumulated fuel pressure based on an operating state of the internal combustion engine, and the accumulated fuel pressure becomes the command pressure. The accumulated fuel pressure is controlled so as to match (see, for example, Patent Document 1).

そして、近年は排ガス規制の強化に伴い、これを実現するための一つの手段として蓄圧燃料圧力の高圧化(例えば、200MPa以上)が検討されている。この高圧化に対応するために、蓄圧器や圧力センサ等の耐圧性能は向上されつつある。
特許第3058227号公報
In recent years, with the tightening of exhaust gas regulations, increasing the pressure of accumulated pressure fuel (for example, 200 MPa or more) has been studied as one means for realizing this. In order to cope with this increase in pressure, pressure resistance performance of an accumulator, a pressure sensor and the like is being improved.
Japanese Patent No. 3058227

しかしながら、図7、図8に示すように、一般的な圧力センサは低温側および高圧側になるほど圧力偏差(ばらつき)が大きくなるという特性を有している。したがって、圧力偏差が特に大きくなる低温で高圧の領域では圧力制御性が悪化する。   However, as shown in FIGS. 7 and 8, a general pressure sensor has a characteristic that the pressure deviation (variation) increases as the temperature becomes lower and the pressure becomes higher. Therefore, the pressure controllability deteriorates in a low temperature and high pressure region where the pressure deviation is particularly large.

また、圧力センサの出力が実蓄圧燃料圧力よりも小さめに出力される場合には、特に低温で高圧の領域ではシステム(蓄圧器・圧力センサ等)に過度な圧力が加わり、システムを保護できない虞がある。   Also, if the output of the pressure sensor is smaller than the actual accumulated fuel pressure, excessive pressure may be applied to the system (accumulator, pressure sensor, etc.), especially in the low temperature and high pressure region, and the system may not be protected. There is.

本発明は上記点に鑑みて、低温領域での圧力制御性の維持およびシステム保護が可能な装置を提供することを目的とする。   An object of this invention is to provide the apparatus which can maintain the pressure controllability in a low temperature area | region and can protect a system in view of the said point.

本発明は、圧力センサ(7)にて検出した蓄圧燃料圧力が指令圧に一致するように蓄圧燃料圧力の制御を行う内燃機関用燃料噴射装置において、圧力センサ(7)の温度に基づいて指令圧ガード値を設定し、指令圧が指令圧ガード値以上である場合には指令圧を指令圧ガード値以下に制限する指令圧制限手段(S104〜S108)を備え、この指令圧制限手段(S104〜S108)は、指令圧ガード値を、圧力センサ(7)の温度が低いときの方が圧力センサ(7)の温度が高いときよりも低くなるように設定することを特徴とする。   The present invention relates to a fuel injection device for an internal combustion engine that controls an accumulated fuel pressure so that an accumulated fuel pressure detected by a pressure sensor (7) matches a command pressure, based on the temperature of the pressure sensor (7). The pressure guard value is set, and when the command pressure is equal to or greater than the command pressure guard value, command pressure limiting means (S104 to S108) for limiting the command pressure to be equal to or less than the command pressure guard value is provided. -S108) are characterized in that the command pressure guard value is set to be lower when the temperature of the pressure sensor (7) is lower than when the temperature of the pressure sensor (7) is high.

このようにすれば、低温領域での圧力センサ(7)の圧力偏差による影響を少なくして圧力制御性を維持することができる。また、低温領域で圧力センサ(7)の出力が実蓄圧燃料圧力よりも小さめに出力される場合でも、確実にシステムを保護することができる。   In this way, it is possible to maintain the pressure controllability by reducing the influence of the pressure deviation of the pressure sensor (7) in the low temperature region. Further, even when the output of the pressure sensor (7) is output smaller than the actual accumulated fuel pressure in the low temperature region, the system can be reliably protected.

この場合、指令圧制限手段(S104〜S108)は、圧力センサ(7)の温度が低くなるのに伴って、指令圧ガード値を低く設定することができる。   In this case, the command pressure limiting means (S104 to S108) can set the command pressure guard value low as the temperature of the pressure sensor (7) decreases.

また、指令圧制限手段(S104〜S108)は、圧力センサ(7)の温度が低くなるのに伴って、指令圧ガード値を連続的に低く設定することができる。   Further, the command pressure limiting means (S104 to S108) can set the command pressure guard value continuously low as the temperature of the pressure sensor (7) decreases.

さらに、指令圧制限手段(S104〜S108)は、圧力センサ(7)の温度が低くなるのに伴って、指令圧ガード値をステップ的に低く設定することができる。   Further, the command pressure limiting means (S104 to S108) can set the command pressure guard value stepwise lower as the temperature of the pressure sensor (7) becomes lower.

さらにまた、指令圧制限手段(S104〜S108)は、圧力センサ(7)の温度がある温度領域にあるときは、圧力センサ(7)の温度が低くなるのに伴って指令圧ガード値を連続的に低く設定し、圧力センサ(7)の温度が他の温度領域にあるときは、指令圧ガード値を一定値に設定することができる。       Furthermore, when the temperature of the pressure sensor (7) is in a certain temperature range, the command pressure limiting means (S104 to S108) continuously outputs the command pressure guard value as the temperature of the pressure sensor (7) decreases. When the temperature of the pressure sensor (7) is in another temperature range, the command pressure guard value can be set to a constant value.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態について説明する。図1は本発明の一実施形態に係る内燃機関用燃料噴射装置の全体構成を示す図である。   An embodiment of the present invention will be described. FIG. 1 is a diagram showing an overall configuration of a fuel injection device for an internal combustion engine according to an embodiment of the present invention.

この燃料噴射装置を備える図示しない内燃機関(より詳細には、ディーゼルエンジン)は、図示しない車両に搭載される。この燃料噴射装置は、高圧燃料が蓄圧される略円筒状の蓄圧器1を備えており、蓄圧器1には、内燃機関の各気筒毎に設けられる複数の燃料噴射弁2が接続され、蓄圧器1内に蓄圧される高圧燃料が各燃料噴射弁2から対応する気筒に噴射されるようになっている。燃料噴射弁2の開弁時期および開弁時間は、図示しない電子制御ユニット(以下、ECUという)によって制御される。   An internal combustion engine (not shown) (more specifically, a diesel engine) provided with this fuel injection device is mounted on a vehicle (not shown). This fuel injection device includes a substantially cylindrical accumulator 1 for accumulating high-pressure fuel, and the accumulator 1 is connected to a plurality of fuel injection valves 2 provided for each cylinder of the internal combustion engine. The high pressure fuel accumulated in the vessel 1 is injected from each fuel injection valve 2 into the corresponding cylinder. The valve opening timing and valve opening time of the fuel injection valve 2 are controlled by an electronic control unit (hereinafter referred to as ECU) (not shown).

ECUは、CPU、ROM、RAM等からなる周知のマイクロコンピュータを備え、マイクロコンピュータに記憶された各種処理を順に実行する。そして、ECUには、後述する外気温センサ10の出力信号、エンジン回転数、図示しないアクセルペダルの踏み込み量等の情報が入力され、ECUは、それらの情報に基づいて、燃料噴射弁2や、後述する圧送量制御弁6、減圧弁9の作動を制御する。   The ECU includes a known microcomputer including a CPU, a ROM, a RAM, and the like, and sequentially executes various processes stored in the microcomputer. Then, the ECU receives information such as an output signal from an outside air temperature sensor 10 described later, an engine speed, and a depression amount of an accelerator pedal (not shown), and the ECU, based on the information, The operation of a pressure feed amount control valve 6 and a pressure reducing valve 9 to be described later is controlled.

燃料ポンプ3から蓄圧器1に高圧燃料が圧送されて、蓄圧器1に高圧燃料が蓄圧されるようになっている。燃料ポンプ3は、公知の構造の可変吐出量高圧ポンプが用いられ、低圧部としての燃料タンク4からフィードポンプ5を経て供給される低圧燃料を高圧に加圧する。また、燃料ポンプ3には、燃料ポンプ3に供給される低圧燃料の量を制御する圧送量制御弁6が設けられている。   High pressure fuel is pumped from the fuel pump 3 to the accumulator 1, and the high pressure fuel is accumulated in the accumulator 1. As the fuel pump 3, a variable discharge high-pressure pump having a known structure is used, and the low-pressure fuel supplied from the fuel tank 4 serving as the low-pressure portion via the feed pump 5 is pressurized to a high pressure. The fuel pump 3 is provided with a pressure feed control valve 6 that controls the amount of low-pressure fuel supplied to the fuel pump 3.

蓄圧器1には、蓄圧器1内の燃料の圧力(以下、蓄圧燃料圧力という)を検出する圧力センサ7が装着されている。そして、ECUは、内燃機関の運転状態に基づいて蓄圧燃料圧力の指令圧を算出し、圧力センサ7で検出した蓄圧燃料圧力が指令圧に一致するように蓄圧燃料圧力の制御を行う。具体的には、圧送量制御弁6を駆動して燃料ポンプ3に供給される低圧燃料の量を制御し、ひいては燃料ポンプ3から蓄圧器1への燃料圧送量を制御する。   The pressure accumulator 1 is equipped with a pressure sensor 7 that detects the pressure of the fuel in the accumulator 1 (hereinafter referred to as a pressure accumulating fuel pressure). Then, the ECU calculates the command pressure of the accumulated fuel pressure based on the operating state of the internal combustion engine, and controls the accumulated fuel pressure so that the accumulated fuel pressure detected by the pressure sensor 7 matches the command pressure. Specifically, the pressure feed amount control valve 6 is driven to control the amount of low-pressure fuel supplied to the fuel pump 3, and thus the fuel pressure feed amount from the fuel pump 3 to the pressure accumulator 1 is controlled.

蓄圧器1は、排出流路を構成するリークパイプ8を介して燃料タンク4に接続されている。また、蓄圧器1における長手方向の一端側には、排出流路を開閉する減圧弁9が装着されている。減圧弁9は、ECUによって内燃機関の運転状態に応じて制御され、開弁時に蓄圧器1内の高圧燃料を排出流路を介して燃料タンク4に戻すことにより、蓄圧燃料圧力を目標値まで低減するものである。   The pressure accumulator 1 is connected to the fuel tank 4 via a leak pipe 8 that constitutes a discharge flow path. Further, a pressure reducing valve 9 that opens and closes the discharge flow path is attached to one end side in the longitudinal direction of the pressure accumulator 1. The pressure reducing valve 9 is controlled by the ECU in accordance with the operating state of the internal combustion engine, and when the valve is opened, the high pressure fuel in the pressure accumulator 1 is returned to the fuel tank 4 through the discharge flow path, whereby the accumulated fuel pressure is reduced to the target value. It is to reduce.

さらに、外気温度を検出する外気温センサ10を備えている。なお、外気温センサ10は、本発明の温度検出手段に相当する。   Further, an outside air temperature sensor 10 for detecting the outside air temperature is provided. The outside air temperature sensor 10 corresponds to the temperature detecting means of the present invention.

次に、蓄圧燃料圧力を指令圧に一致させる蓄圧燃料圧力制御のうち、指令圧の設定方法について説明する。図2は、ECUで実行される蓄圧燃料圧力制御のうちの指令圧設定処理を示す流れ図である。この処理は、キースイッチの操作によりECUに電源が投入されると開始され、電源がオフされるまで例えば所定周期で実行される。   Next, a method for setting the command pressure in the pressure accumulation fuel pressure control for matching the pressure accumulation fuel pressure with the command pressure will be described. FIG. 2 is a flowchart showing a command pressure setting process in the pressure accumulation fuel pressure control executed by the ECU. This process is started when the ECU is turned on by operating the key switch, and is executed at a predetermined cycle, for example, until the power is turned off.

図2に示すように、先ずステップS101では、外気温センサ10で検出した外気温度を読み込む。   As shown in FIG. 2, first, in step S101, the outside air temperature detected by the outside air temperature sensor 10 is read.

次いで、ステップS102では、蓄圧燃料圧力の指令圧PFINを、エンジン回転数と燃料噴射量とに基づいて、ECUのROMに記憶されたマップから求める。蓄圧燃料圧力の指令圧PFINは、エンジン回転数が高くなるのに伴って高くなるとともに、燃料噴射量が多くなるのに伴って高くなる。   Next, in step S102, a command pressure PFIN for the accumulated fuel pressure is obtained from a map stored in the ROM of the ECU based on the engine speed and the fuel injection amount. The command pressure PFIN for the accumulated fuel pressure increases as the engine speed increases, and increases as the fuel injection amount increases.

次いで、ステップS103では、指令圧PFINの上限を制限するための指令圧ガード値PGRDを、エンジン回転数に基づいて、ECUのROMに記憶されたマップから求める。指令圧ガード値PGRDは、エンジン回転数が高くなるのに伴って高くなる。   Next, in step S103, a command pressure guard value PGRD for limiting the upper limit of the command pressure PFIN is obtained from a map stored in the ROM of the ECU based on the engine speed. The command pressure guard value PGRD increases as the engine speed increases.

次いで、ステップS104では、圧力センサ7の温度が低温領域であるか否かを判定する。具体的には、ステップS101で読み込んだ外気温度を圧力センサ7の温度とみなし、外気温度が基準温度以下であれば圧力センサ7の温度が低温領域である(ステップS104:YES)と判定して、ステップS105に進む。因みに、基準温度は、本実施形態では0℃に設定している。   Next, in step S104, it is determined whether or not the temperature of the pressure sensor 7 is in a low temperature region. Specifically, the outside air temperature read in step S101 is regarded as the temperature of the pressure sensor 7, and if the outside air temperature is equal to or lower than the reference temperature, it is determined that the temperature of the pressure sensor 7 is in a low temperature region (step S104: YES). The process proceeds to step S105. Incidentally, the reference temperature is set to 0 ° C. in this embodiment.

ステップS105では、低温領域での指令圧PFINの上限を制限するための低温時指令圧ガード値PLOWを、外気温度に基づいて算出する。この低温時指令圧ガード値PLOWは、外気温度が基準温度(0℃)超のときに採用される指令圧ガード値PGRDよりも低く設定される。   In step S105, a low temperature command pressure guard value PLOW for limiting the upper limit of the command pressure PFIN in the low temperature region is calculated based on the outside air temperature. This low temperature command pressure guard value PLOW is set lower than the command pressure guard value PGRD employed when the outside air temperature exceeds the reference temperature (0 ° C.).

ここで、低温時指令圧ガード値PLOWの設定例を説明する。図3は圧力センサ7の圧力偏差の総和(すなわち図7に示す圧力偏差と図8に示す圧力偏差の和、絶対値)と圧力センサ7の温度との関係を示す図であり、この図3において、線aは実圧力が100MPa時の圧力偏差、線bは実圧力が180MPa時の圧力偏差であり、線cはシステム上許容可能な圧力偏差である。   Here, a setting example of the low temperature command pressure guard value PLOW will be described. FIG. 3 is a diagram showing the relationship between the total pressure deviation of the pressure sensor 7 (that is, the sum of the pressure deviation shown in FIG. 7 and the pressure deviation shown in FIG. 8, the absolute value) and the temperature of the pressure sensor 7. , Line a is a pressure deviation when the actual pressure is 100 MPa, line b is a pressure deviation when the actual pressure is 180 MPa, and line c is a pressure deviation allowable in the system.

そして、圧力センサ7の圧力偏差の総和≦システム上許容可能な圧力偏差、となる圧力を低温時指令圧ガード値PLOWとしており、圧力偏差の総和と圧力センサ7の温度が図3の関係である場合には、低温時指令圧ガード値PLOWは図4のように設定される。詳細には、圧力センサ7の温度が低くなるのに伴って、換言すると外気温度が低くなるのに伴って、低温時指令圧ガード値PLOWが連続的に低くなるように設定される。   The pressure satisfying the sum of the pressure deviations of the pressure sensor 7 ≦ the pressure deviation allowable in the system is the low temperature command pressure guard value PLOW, and the sum of the pressure deviations and the temperature of the pressure sensor 7 are in the relationship of FIG. In this case, the low temperature command pressure guard value PLOW is set as shown in FIG. Specifically, the low temperature command pressure guard value PLOW is set to continuously decrease as the temperature of the pressure sensor 7 decreases, in other words, as the outside air temperature decreases.

次いで、ステップS106では、低温時指令圧ガード値PLOWを指令圧ガード値PGRDの値として設定する。   Next, in step S106, the low temperature command pressure guard value PLOW is set as the value of the command pressure guard value PGRD.

次いで、ステップS107では、指令圧PFINと、ステップS106で設定した指令圧ガード値PGRDとを比較し、指令圧PFINが指令圧ガード値PGRD以上(ステップS107:YES)であればステップS108に進む。   Next, in step S107, the command pressure PFIN is compared with the command pressure guard value PGRD set in step S106. If the command pressure PFIN is equal to or greater than the command pressure guard value PGRD (step S107: YES), the process proceeds to step S108.

ステップS108では、ステップS106で設定した指令圧ガード値PGRDを、指令圧PFINとして設定する。そして、この指令圧設定処理を一旦終了する。なお、ステップS104〜ステップS108は、本発明の指令圧制限手段を構成する。   In step S108, the command pressure guard value PGRD set in step S106 is set as the command pressure PFIN. Then, the command pressure setting process is temporarily ended. Steps S104 to S108 constitute command pressure limiting means of the present invention.

ステップS107でNOと判定された場合、すなわち、指令圧PFINが指令圧ガード値PGRD未満の場合は、指令圧PFINを変更することなく、この指令圧設定処理を一旦終了する。   If NO is determined in step S107, that is, if the command pressure PFIN is less than the command pressure guard value PGRD, the command pressure setting process is temporarily ended without changing the command pressure PFIN.

以上のように、圧力センサ7の温度が低温領域である(ステップS104:YES)と判定された場合には、指令圧PFINのガード値は、圧力センサ7の温度が中・高温領域のときのガード値よりも低く設定される。   As described above, when it is determined that the temperature of the pressure sensor 7 is in the low temperature region (step S104: YES), the guard value of the command pressure PFIN is the value when the temperature of the pressure sensor 7 is in the middle / high temperature region. It is set lower than the guard value.

このようにすれば、低温領域での圧力センサ7の圧力偏差による影響を少なくして蓄圧燃料圧力の制御性を維持することができる。また、低温領域で圧力センサ7の出力が実蓄圧燃料圧力よりも小さめに出力される場合でも、確実にシステムを保護することができる。   In this way, it is possible to reduce the influence of the pressure deviation of the pressure sensor 7 in the low temperature region and maintain the controllability of the accumulated fuel pressure. Further, even when the output of the pressure sensor 7 is output smaller than the actual accumulated fuel pressure in the low temperature region, the system can be reliably protected.

一方、ステップS104でNOと判定された場合、すなわち圧力センサ7の温度が中・高温領域である場合は、ステップS105、106をスキップしてステップS107に進むため、指令圧ガード値PGRDはステップS103で求めたガード値が採用される。   On the other hand, if NO is determined in step S104, that is, if the temperature of the pressure sensor 7 is in the middle / high temperature region, steps S105 and 106 are skipped and the process proceeds to step S107, so the command pressure guard value PGRD is set to step S103. The guard value obtained in the above is adopted.

(他の実施形態)
上記実施形態では、外気温度を圧力センサ7の温度とみなして、圧力センサ7の温度が低温領域であるか否かを外気温度に基づいて判定し、また低温時指令圧ガード値PLOWを外気温度に基づいて算出したが、燃料ポンプ3内の燃料の温度を検出する温度センサを設け、その温度センサで検出した燃料温度を圧力センサ7の温度とみなして、圧力センサ7の温度が低温領域であるか否かをその燃料温度に基づいて判定し、また低温時指令圧ガード値PLOWをその燃料温度に基づいて算出してもよい。
(Other embodiments)
In the above embodiment, the outside air temperature is regarded as the temperature of the pressure sensor 7, and it is determined based on the outside air temperature whether the temperature of the pressure sensor 7 is in the low temperature region, and the low temperature command pressure guard value PLOW is determined as the outside air temperature. The temperature sensor for detecting the temperature of the fuel in the fuel pump 3 is provided, the fuel temperature detected by the temperature sensor is regarded as the temperature of the pressure sensor 7, and the temperature of the pressure sensor 7 is in the low temperature range. It may be determined whether or not there is a low temperature based on the fuel temperature, and the low temperature command pressure guard value PLOW may be calculated based on the fuel temperature.

また、外気温センサ10および燃料ポンプ3内の燃料の温度を検出する温度センサをともに備える場合は、外気温度および燃料温度がともに基準温度以下のときに圧力センサ7の温度が低温領域であると判定するようにしてもよい。   When both the outside air temperature sensor 10 and the temperature sensor for detecting the temperature of the fuel in the fuel pump 3 are provided, the temperature of the pressure sensor 7 is in the low temperature region when the outside air temperature and the fuel temperature are both lower than the reference temperature. You may make it determine.

また、外気温センサ10あるいは燃料ポンプ3内の燃料の温度を検出する温度センサから圧力センサ7の温度を推定し、この推定した温度が基準温度以下のときに圧力センサ7の温度が低温領域であると判定するようにしてもよい。   Further, the temperature of the pressure sensor 7 is estimated from the outside air temperature sensor 10 or a temperature sensor that detects the temperature of the fuel in the fuel pump 3, and when the estimated temperature is equal to or lower than the reference temperature, the temperature of the pressure sensor 7 is low. You may make it determine with there.

また、上記実施形態では、圧力センサ7の温度が低温領域である場合には、圧力センサ7の温度が低くなるのに伴って指令圧PFINのガード値が連続的に低くなるようにしたが、図5に示すように圧力センサ7の温度が低くなるのに伴って指令圧PFINのガード値がステップ的に小さくなるようにしてもよい。   In the above embodiment, when the temperature of the pressure sensor 7 is in the low temperature region, the guard value of the command pressure PFIN is continuously decreased as the temperature of the pressure sensor 7 is decreased. As shown in FIG. 5, the guard value of the command pressure PFIN may be decreased stepwise as the temperature of the pressure sensor 7 decreases.

或いは、図6に示すように、圧力センサ7の温度が一定温度範囲内(本例では0℃〜略−20℃)にあるときは、圧力センサ7の温度が低くなるのに伴って指令圧PFINのガード値を連続的に低くし、さらに温度が低くなる領域(本例では略−20℃以下)では指令圧PFINのガード値を一定値に固定してもよい。   Alternatively, as shown in FIG. 6, when the temperature of the pressure sensor 7 is within a certain temperature range (0 ° C. to approximately −20 ° C. in this example), the command pressure is reduced as the temperature of the pressure sensor 7 decreases. The guard value of the command pressure PFIN may be fixed to a constant value in a region where the guard value of the PFIN is continuously lowered and the temperature is further lowered (approximately −20 ° C. or lower in this example).

さらに、図6の例とは逆に、圧力センサ7の温度が一定温度範囲内にあるときは指令圧PFINのガード値を一定値に固定し、さらに温度が低くなる領域では圧力センサ7の温度が低くなるのに伴って指令圧PFINのガード値を連続的に低くしてもよい。   Further, contrary to the example of FIG. 6, when the temperature of the pressure sensor 7 is within a certain temperature range, the guard value of the command pressure PFIN is fixed to a certain value, and in the region where the temperature becomes lower, the temperature of the pressure sensor 7. As the value decreases, the guard value of the command pressure PFIN may be continuously decreased.

本発明の一実施形態に係る内燃機関用燃料噴射装置の全体構成を示す図である。It is a figure showing the whole fuel injection device for internal-combustion engines concerning one embodiment of the present invention. ECUで実行される指令圧設定処理を示す流れ図である。It is a flowchart which shows the command pressure setting process performed with ECU. 圧力センサの圧力偏差の総和と圧力センサの温度との関係を示す図である。It is a figure which shows the relationship between the sum total of the pressure deviation of a pressure sensor, and the temperature of a pressure sensor. 低温時指令圧ガード値の設定例を示す図である。It is a figure which shows the example of a setting of the command pressure guard value at the time of low temperature. 低温時指令圧ガード値の他の設定例を示す図である。It is a figure which shows the other example of a setting of the command pressure guard value at the time of low temperature. 低温時指令圧ガード値のさらに他の設定例を示す図である。It is a figure which shows the further another example of setting of the command pressure guard value at the time of low temperature. 圧力センサの圧力偏差と圧力センサの温度との関係を示す図である。It is a figure which shows the relationship between the pressure deviation of a pressure sensor, and the temperature of a pressure sensor. 圧力センサの圧力偏差と実圧力との関係を示す図である。It is a figure which shows the relationship between the pressure deviation of a pressure sensor, and an actual pressure.

符号の説明Explanation of symbols

1…蓄圧器、…、7…圧力センサ、10…外気温センサ。   DESCRIPTION OF SYMBOLS 1 ... Accumulator, ..., 7 ... Pressure sensor, 10 ... Outside temperature sensor.

Claims (5)

蓄圧器(1)内の蓄圧燃料圧力を圧力センサ(7)にて検出し、内燃機関の運転状態に基づいて蓄圧燃料圧力の指令圧を算出し、蓄圧燃料圧力が指令圧に一致するように蓄圧燃料圧力の制御を行う内燃機関用燃料噴射装置において、
前記圧力センサ(7)の温度を検出する温度検出手段(10)と、
前記圧力センサ(7)の温度に基づいて指令圧ガード値を設定し、前記指令圧が前記指令圧ガード値以上である場合には前記指令圧を前記指令圧ガード値以下に制限する指令圧制限手段(S104〜S108)とを備え、
この指令圧制限手段(S104〜S108)は、前記指令圧ガード値を、前記圧力センサ(7)の温度が低いときの方が前記圧力センサ(7)の温度が高いときよりも低くなるように設定することを特徴とする内燃機関用燃料噴射装置。
The pressure accumulation fuel pressure in the pressure accumulator (1) is detected by the pressure sensor (7), the command pressure of the pressure accumulation fuel pressure is calculated based on the operating state of the internal combustion engine, and the pressure accumulation fuel pressure matches the command pressure. In a fuel injection device for an internal combustion engine that controls an accumulated fuel pressure,
Temperature detection means (10) for detecting the temperature of the pressure sensor (7);
The command pressure guard value is set based on the temperature of the pressure sensor (7), and the command pressure is limited to the command pressure guard value or less when the command pressure is equal to or greater than the command pressure guard value. Means (S104 to S108),
The command pressure limiting means (S104 to S108) sets the command pressure guard value to be lower when the temperature of the pressure sensor (7) is higher than when the temperature of the pressure sensor (7) is low. A fuel injection device for an internal combustion engine, characterized by being set.
前記指令圧制限手段(S104〜S108)は、前記圧力センサ(7)の温度が低くなるのに伴って、前記指令圧ガード値を低く設定することを特徴とする請求項1に記載の内燃機関用燃料噴射装置。 The internal combustion engine according to claim 1, wherein the command pressure limiting means (S104 to S108) sets the command pressure guard value low as the temperature of the pressure sensor (7) decreases. Fuel injection device. 前記指令圧制限手段(S104〜S108)は、前記圧力センサ(7)の温度が低くなるのに伴って、前記指令圧ガード値を連続的に低く設定することを特徴とする請求項2に記載の内燃機関用燃料噴射装置。 The command pressure limiting means (S104 to S108) sets the command pressure guard value continuously low as the temperature of the pressure sensor (7) decreases. Fuel injection device for internal combustion engine. 前記指令圧制限手段(S104〜S108)は、前記圧力センサ(7)の温度が低くなるのに伴って、前記指令圧ガード値をステップ的に低く設定することを特徴とする請求項2に記載の内燃機関用燃料噴射装置。 The said command pressure limiting means (S104-S108) sets the said command pressure guard value low stepwise as the temperature of the said pressure sensor (7) becomes low. Fuel injection device for internal combustion engine. 前記指令圧制限手段(S104〜S108)は、前記圧力センサ(7)の温度がある温度領域にあるときは、前記圧力センサ(7)の温度が低くなるのに伴って前記指令圧ガード値を連続的に低く設定し、前記圧力センサ(7)の温度が他の温度領域にあるときは、前記指令圧ガード値を一定値に設定することを特徴とする請求項2に記載の内燃機関用燃料噴射装置。 When the temperature of the pressure sensor (7) is in a certain temperature range, the command pressure limiting means (S104 to S108) sets the command pressure guard value as the temperature of the pressure sensor (7) decreases. 3. The internal combustion engine for an internal combustion engine according to claim 2, wherein the command pressure guard value is set to a constant value when the pressure sensor (7) is in a different temperature range. Fuel injection device.
JP2006082731A 2006-03-24 2006-03-24 Fuel injection device for internal combustion engine Expired - Fee Related JP4501882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082731A JP4501882B2 (en) 2006-03-24 2006-03-24 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082731A JP4501882B2 (en) 2006-03-24 2006-03-24 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007255362A true JP2007255362A (en) 2007-10-04
JP4501882B2 JP4501882B2 (en) 2010-07-14

Family

ID=38629841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082731A Expired - Fee Related JP4501882B2 (en) 2006-03-24 2006-03-24 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4501882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247123A (en) * 2010-05-25 2011-12-08 Bosch Corp Device for diagnosis of failure in fuel temperature sensor, and accumulator fuel injection device
JP2013057274A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247123A (en) * 2010-05-25 2011-12-08 Bosch Corp Device for diagnosis of failure in fuel temperature sensor, and accumulator fuel injection device
JP2013057274A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP4501882B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4081819B2 (en) Fuel injection system
US6990963B2 (en) System and method for vaporized fuel processing
US7363916B2 (en) Fuel injection system and method for determining the feed pressure of a fuel pump
JP3612175B2 (en) Fuel pressure control device for in-cylinder injection engine
JP4501882B2 (en) Fuel injection device for internal combustion engine
JP2007303294A (en) Control device for internal combustion engine with supercharger
US20110196596A1 (en) Method and device for preventing water damage in internal combustion engines
US8000886B2 (en) Control device for internal combustion engine
JP4281225B2 (en) Fuel system abnormality detection device for internal combustion engine
JP2008190342A (en) Control device for internal combustion engine
JP4687548B2 (en) Exhaust purification device for internal combustion engine
US9695767B2 (en) Control device and control method for internal combustion engine
JP2019085952A (en) Control device for vehicle
JP6352228B2 (en) Internal combustion engine control method and internal combustion engine control apparatus
JP4484604B2 (en) Engine fuel injection amount control method and engine operating state determination method using the same
JP5181890B2 (en) Control device for internal combustion engine
JP2006322402A (en) Common rail type fuel injection system
JP4020205B2 (en) Internal combustion engine control device
JP4177861B2 (en) Fuel supply device for internal combustion engine
JP2009097364A (en) Fuel supply method for gas engine and gasoline alternative gas fuel injection control device
JP6534892B2 (en) Engine control device
JP5240059B2 (en) Abnormality detector for exhaust gas recirculation system
JP2019052572A (en) Device and system for controlling internal combustion engine
US9745937B2 (en) Control device for internal combustion engine
JP6580412B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4501882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees