JP2007254733A - Process for producing hydrogenated polymer - Google Patents

Process for producing hydrogenated polymer Download PDF

Info

Publication number
JP2007254733A
JP2007254733A JP2007043747A JP2007043747A JP2007254733A JP 2007254733 A JP2007254733 A JP 2007254733A JP 2007043747 A JP2007043747 A JP 2007043747A JP 2007043747 A JP2007043747 A JP 2007043747A JP 2007254733 A JP2007254733 A JP 2007254733A
Authority
JP
Japan
Prior art keywords
hydrogenation
palladium
catalyst
meth
hydrogenated polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043747A
Other languages
Japanese (ja)
Other versions
JP5145728B2 (en
Inventor
Yuichi Sugano
菅野  裕一
Yasuhiro Kushida
泰宏 櫛田
Tatsuya Yamauchi
達也 山内
Hideyuki Sato
英之 佐藤
Yoshikazu Shima
義和 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2007043747A priority Critical patent/JP5145728B2/en
Publication of JP2007254733A publication Critical patent/JP2007254733A/en
Application granted granted Critical
Publication of JP5145728B2 publication Critical patent/JP5145728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a highly transparent hydrogenated polymer including a step of hydrogenating aromatic rings of an aromatic vinyl compound-(meth) acrylate copolymer, the hydrogenated polymer is stably and rapidly produced for a long period of time or repeatedly. <P>SOLUTION: The invention relates to the process for producing the hydrogenated polymer comprising hydrogenation of the copolymer having a ratio, A/B from 0.25 to 4.0 (A is a molar number of constitutional units derived from the (meth)acrylate monomer, and B is a molar number of constitutional units derived from the aromatic vinyl monomer) in a solvent in the presence of a catalyst which is composed of zirconium oxide supporting palladium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は芳香族ビニル化合物と(メタ)アクリレートとの共重合体を、酸化ジルコニウムを主成分とする担体と該担体に担持されたパラジウムからなる触媒の存在下で、芳香環を水素化する工程を含む水素化ポリマーの製造方法に関する。該方法で得られた水素化ポリマーは、高透明性、低複屈折、高耐熱性、高表面硬度、低吸水、低比重、高転写性、優れた離型性を示す。特に、光学材料に要求される特性に優れているので、光学レンズ、光導光板、光拡散板、光ディスク基板材料、前面パネル等の広範な用途に用いることができる。   The present invention relates to a process for hydrogenating an aromatic ring in the presence of a copolymer of an aromatic vinyl compound and (meth) acrylate in the presence of a support mainly composed of zirconium oxide and a palladium supported on the support. The present invention relates to a method for producing a hydrogenated polymer containing The hydrogenated polymer obtained by this method exhibits high transparency, low birefringence, high heat resistance, high surface hardness, low water absorption, low specific gravity, high transferability, and excellent releasability. In particular, since it has excellent characteristics required for optical materials, it can be used in a wide range of applications such as optical lenses, light guide plates, light diffusion plates, optical disk substrate materials, and front panels.

近年、アクリル樹脂、メタクリル樹脂、スチレン系樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂をはじめとする非晶性プラスチックは様々な用途で用いられており、特にその光学的特徴を生かして、光学レンズ、光ディスク基盤等の光学材料としての需要が多い。この種の光学材料においては高い透明性のみならず、高耐熱性、低吸水性、高機械物性等のバランスに優れた高度な性能が要求されている。   In recent years, amorphous plastics such as acrylic resin, methacrylic resin, styrene resin, polycarbonate resin, and cyclic polyolefin resin have been used in various applications. There is much demand as optical materials such as. This type of optical material is required to have not only high transparency but also high performance with excellent balance of high heat resistance, low water absorption, and high mechanical properties.

従来用いられてきた材料はこれらの要件を全て備えているわけではなく、解決すべき問題点をそれぞれ有している。例えば、ポリスチレンは力学的に脆い、複屈折が大きい、透明性が劣るという欠点がある。ポリカーボネートは耐熱性に優れるが、これも複屈折が大きく、透明性もポリスチレンとほぼ同等である。ポリメタクリル酸メチルは、透明性は高いが吸水率が極めて高いため寸法安定性に乏しく耐熱性が低いことが問題である。ポリスチレンの芳香環を水素化して得られたポリビニルシクロヘキサンは透明性に優れるが、機械強度が弱い、耐熱安定性に乏しい、他材料との接着性にも乏しいという問題がある(特許文献1、特許文献2、特許文献3)。密着性を改良させる方法として、ポリスチレンの芳香環水添物、共役ジエン−スチレン共重合体の二重結合及び芳香環を水素化したポリマー、飽和炭化水素樹脂を混合する例があるが(特許文献4)操作が煩雑である。また、スチレンのようなビニル芳香族化合物と無水マレイン酸のような不飽和2塩基酸を共重合したのち、芳香環の30%以上を水素化すると、ポリスチレンに比べ透明性及び複屈折が改良されることが開示されているが(特許文献5)、アクリル系の樹脂に比べ、光学特性が劣ることは否めない。   Conventionally used materials do not have all of these requirements but have respective problems to be solved. For example, polystyrene has the disadvantages that it is mechanically brittle, has a large birefringence, and has poor transparency. Polycarbonate is excellent in heat resistance, but it also has a large birefringence and transparency is almost the same as that of polystyrene. Polymethyl methacrylate has high transparency but has a very high water absorption rate. Therefore, polymethyl methacrylate has a problem of poor dimensional stability and low heat resistance. Polyvinylcyclohexane obtained by hydrogenating an aromatic ring of polystyrene is excellent in transparency, but has problems of low mechanical strength, poor heat stability, and poor adhesion to other materials (Patent Document 1, Patent) Literature 2, Patent Literature 3). As a method for improving adhesion, there is an example of mixing a hydrogenated aromatic ring of polystyrene, a polymer in which a double bond of a conjugated diene-styrene copolymer and an aromatic ring are hydrogenated, and a saturated hydrocarbon resin (Patent Literature). 4) The operation is complicated. In addition, after copolymerizing a vinyl aromatic compound such as styrene and an unsaturated dibasic acid such as maleic anhydride, hydrogenation of 30% or more of the aromatic ring improves transparency and birefringence compared to polystyrene. However, it cannot be denied that the optical properties are inferior to those of acrylic resins.

また、メタクリル酸メチル(以下、MMAと称する)とスチレンとの共重合体(以下、MS樹脂と称する)は高透明性を有し、かつ、寸法安定性、剛性、比重等のバランスに優れた樹脂であるが、複屈折が大きいという問題がある。該MS樹脂の芳香環を水素化した樹脂(以下、MSHと称する)、特に、MMAの共重合率が50%以上のMSHは、MS樹脂と比べ、複屈折が大幅に改善され、透明性、耐熱性、機械物性のバランスに優れている。   Further, a copolymer of methyl methacrylate (hereinafter referred to as MMA) and styrene (hereinafter referred to as MS resin) has high transparency and excellent balance of dimensional stability, rigidity, specific gravity and the like. Although it is a resin, there is a problem that the birefringence is large. Resins obtained by hydrogenating the aromatic ring of the MS resin (hereinafter referred to as MSH), in particular, MSH having a MMA copolymerization rate of 50% or more has a significantly improved birefringence compared with the MS resin, transparency, Excellent balance between heat resistance and mechanical properties.

芳香族ポリマーの芳香環の水素化は既に知られているが(特許文献6)、透明性を高くするには芳香環の水素化率を上げる必要があり、芳香環の水素化率がほぼ100%でないと高透明性の樹脂が得られないとされてきた。これは、芳香環の水素化率が低い場合、ブロック体を形成し全光線透過率が低下するためである。   Hydrogenation of an aromatic ring of an aromatic polymer is already known (Patent Document 6). However, in order to increase transparency, it is necessary to increase the hydrogenation rate of the aromatic ring, and the hydrogenation rate of the aromatic ring is approximately 100. If it is not%, it has been said that a highly transparent resin cannot be obtained. This is because, when the hydrogenation rate of the aromatic ring is low, a block body is formed and the total light transmittance is lowered.

反応基質との分離を容易にするためには固体触媒を用いることが好ましく、Pd、Pt、Rh、Ru、Re、Niなどの金属を活性炭、アルミナ、シリカ、珪藻土などの担体に担持してなる固体触媒が主に用いられる。芳香族ポリマーのみならず共役ジエン重合体などのポリマーの水素化に関する例は多く知られているが、高分子量であることから反応しにくく、高い水素化率や高い反応速度を得ることが難しい。また、触媒を繰り返し使用すると活性低下が起こりやすいことも知られている。触媒活性が低下すると、水素化率が低下し、樹脂の透明性が損なわれる。触媒活性を改善するため、担体の種類、細孔構造および粒径が検討されている。例えば、粒径が100μm未満のシリカ担体上にパラジウムを担持した触媒を用いて芳香環の水素化率が70%程度の水添ポリスチレンを得ている例や(特許文献2)、孔径が600Åを超える大きな細孔を有するシリカ担体にPtとRhを担持した触媒を用いて水添ポリスチレンを得た例がある(特許文献7)。同様に孔体積の95%以上が孔径450Åの細孔である多孔質担体にVIII族金属を担持し、その金属表面積が担体表面積の75%以内である触媒を用い、芳香環の水素化率を低めにし、エチレン系不飽和結合を高い水素化率で水素化している例もある(特許文献8)。   In order to facilitate separation from the reaction substrate, it is preferable to use a solid catalyst, and a metal such as Pd, Pt, Rh, Ru, Re, Ni is supported on a support such as activated carbon, alumina, silica, diatomaceous earth. A solid catalyst is mainly used. Many examples relating to hydrogenation of polymers such as conjugated diene polymers as well as aromatic polymers are known, but they are difficult to react due to their high molecular weight, and it is difficult to obtain a high hydrogenation rate and high reaction rate. It is also known that the activity tends to decrease when the catalyst is used repeatedly. When the catalytic activity decreases, the hydrogenation rate decreases and the transparency of the resin is impaired. In order to improve the catalytic activity, the type of support, pore structure and particle size have been studied. For example, hydrogenated polystyrene having a hydrogenation rate of an aromatic ring of about 70% using a catalyst in which palladium is supported on a silica support having a particle size of less than 100 μm (Patent Document 2), or having a pore size of 600 mm. There is an example in which hydrogenated polystyrene is obtained using a catalyst in which Pt and Rh are supported on a silica support having a large pore exceeding (Patent Document 7). Similarly, using a catalyst in which a group VIII metal is supported on a porous support whose pore volume is 95% or more and having a pore diameter of 450 mm, and the metal surface area is within 75% of the support surface area, the hydrogenation rate of the aromatic ring is increased. There is also an example in which the ethylenically unsaturated bond is hydrogenated at a high hydrogenation rate (Patent Document 8).

孔径100〜1000Åの孔容積が総孔容積の70〜25%であるシリカやアルミナにVIII族金属を担持した触媒を用いると、分子量の低下なくポリスチレンの芳香環が完全に水素化されること(特許文献9)、VIII亜族の金属を孔径100〜1000Åである孔の容積が総孔容積の15%未満であるシリカまたはアルミナ担体に担持させて得た、低分子量化合物用の市販の通常の水素化触媒を、エーテル基含有炭化水素の存在下で使用すると、分子量の低下を伴わずにポリスチレンの芳香環を完全に水素化することができること(特許文献10)が開示されている。酸化チタンや酸化ジルコニウムなどのIVa族元素の酸化物に金属を担持した触媒はNBRなどの共役ジエン系ポリマーの水素化反応に再使用しても高い活性を示すことが開示されている(特許文献11)。しかし、共役ジエン系ポリマーの水素化反応に関して記載されているのみで、芳香環の水素化への言及はない。孔径100〜100000nmである孔の容積が総孔容積の50〜100%である担体上にアルカリ金属やアルカリ土類金属を添加した後、白金族金属をその90%以上が表層部(担体径の1/10以内)に存在するように担持した触媒を用いると、芳香族―共役ジエン共重合体の不飽和結合(芳香環も含む)を効率よく水素化でき、金属成分の溶出も抑制できることが記載されている(特許文献12)。   When a catalyst in which a group VIII metal is supported on silica or alumina having a pore volume of 100 to 1000 mm and having a pore volume of 70 to 25% of the total pore volume is used, the aromatic ring of polystyrene is completely hydrogenated without lowering the molecular weight ( Patent Document 9), a commercially available ordinary compound for low molecular weight compounds obtained by supporting a metal of group VIII on a silica or alumina support having a pore size of 100 to 1000 mm and a pore volume of less than 15% of the total pore volume. It has been disclosed that when a hydrogenation catalyst is used in the presence of an ether group-containing hydrocarbon, the aromatic ring of polystyrene can be completely hydrogenated without decreasing the molecular weight (Patent Document 10). It is disclosed that a catalyst in which a metal is supported on an oxide of a group IVa element such as titanium oxide or zirconium oxide exhibits high activity even when reused in a hydrogenation reaction of a conjugated diene polymer such as NBR (Patent Document). 11). However, it only describes the hydrogenation reaction of conjugated diene polymers, and there is no mention of hydrogenation of aromatic rings. After adding an alkali metal or an alkaline earth metal on a carrier having a pore diameter of 100 to 100,000 nm and a volume of 50 to 100% of the total pore volume, 90% or more of the platinum group metal has a surface layer portion (of the carrier diameter). If the catalyst supported so as to exist within 1/10) is used, the unsaturated bond (including aromatic ring) of the aromatic-conjugated diene copolymer can be efficiently hydrogenated and the elution of metal components can be suppressed. (Patent Document 12).

また、活性アルミナによって重合反応液から触媒毒を除去した後に水素化することにより触媒活性が改善されること(特許文献13)、また、固定層での反応線速度を改善して生産性を上げること(特許文献14)が報告されている。   Further, catalytic activity is improved by removing the catalyst poison from the polymerization reaction solution with activated alumina and then hydrogenating (Patent Document 13), and the reaction linear velocity in the fixed bed is improved to increase productivity. (Patent Document 14) has been reported.

高分子反応であるため芳香環の水素化反応には溶媒の寄与も大きい。これまで一般的に炭化水素、アルコール、エーテル、エステルなど多くの反応溶媒が用いられている(特許文献15)。炭化水素やアルコールは樹脂に対する溶解性が低い。エーテル類、例えば、1,4−ジオキサンは発火点が低く、高温の脱揮押出操作を施す際にはトルエンなど他の溶媒に置換しなくはならない、また、テトラヒドロフランは開環反応が起こりやすく不安定という問題がある。エステルは安全でかつ比較的安定であり、速やかに反応が進行するものの、水素化率によっては反応溶液ならびに固形樹脂が白濁化し、透明度が低下するという問題がある。そこでエステルにアルコールを添加することにより安全、安定的かつ速やかに透明度の高い水素化された芳香族系ポリマーを得る方法が開示されている。しかし、2種類の溶媒を併用することになりその分離操作が煩雑になる。また、エーテル溶媒にアルコールや水を添加することにより低水素化率でも高透明性を達成する方法が開示されているが(特許文献16)、適用できる芳香族系ポリマーが限定されているため、適用できない場合が多い。   Since it is a polymer reaction, the solvent contributes greatly to the hydrogenation reaction of the aromatic ring. So far, many reaction solvents such as hydrocarbons, alcohols, ethers and esters have been generally used (Patent Document 15). Hydrocarbons and alcohols have low solubility in resins. Ethers such as 1,4-dioxane have a low ignition point and must be replaced with other solvents such as toluene when performing high temperature devolatilization extrusion. Tetrahydrofuran is susceptible to ring-opening reactions. There is a problem of stability. Esters are safe and relatively stable, and the reaction proceeds rapidly. However, depending on the hydrogenation rate, there is a problem that the reaction solution and the solid resin become cloudy and the transparency is lowered. Therefore, a method for obtaining a hydrogenated aromatic polymer having a high degree of transparency in a safe, stable and rapid manner by adding an alcohol to the ester is disclosed. However, two kinds of solvents are used in combination, and the separation operation becomes complicated. Moreover, although a method for achieving high transparency even at a low hydrogenation rate by adding alcohol or water to an ether solvent is disclosed (Patent Document 16), since applicable aromatic polymers are limited, Often not applicable.

上記のように高い光学特性を有する芳香環水素化芳香族系ポリマーを得るには困難な問題が多くある。特に、芳香族ビニル化合物と(メタ)アクリレートとの共重合体の芳香環を水素化したポリマーは、高透明性、低複屈折、高耐熱性、高表面硬度、低吸水、低比重などの優れた特性を有しているが、そのような水素化ポリマーを長期間または繰り返し安定的に、かつ、速やかに得るために有用な方法は今のところ得られていない。
特開2003−138078号公報 特許第3094555号公報 特開2004−149549号公報 特許第2725402号公報 特公平7−94496号公報 独国特許出願公開第1131885号明細書 特表平11−504959号公報 特許第3200057号公報 特表2002−521509号公報 特表2002−521508号公報 特開平1−213306号公報 特開2000−95815号公報 特表2003−529646号公報 特開2002−249515号公報 特表2001−527095号公報 特許第2890748号公報
As described above, there are many difficult problems in obtaining an aromatic ring hydrogenated aromatic polymer having high optical properties. In particular, polymers obtained by hydrogenating the aromatic ring of a copolymer of an aromatic vinyl compound and (meth) acrylate are excellent in high transparency, low birefringence, high heat resistance, high surface hardness, low water absorption, low specific gravity, etc. However, a useful method for obtaining such a hydrogenated polymer for a long period of time or repeatedly stably and rapidly has not been obtained so far.
JP 2003-138078 A Japanese Patent No. 3094555 JP 2004-149549 A Japanese Patent No. 2725402 Japanese Patent Publication No. 7-94496 German Patent Application No. 1131885 Japanese National Patent Publication No. 11-504959 Japanese Patent No. 3200057 JP 2002-521509 A Special table 2002-521508 gazette JP-A-1-213306 JP 2000-95815 A Special table 2003-529646 gazette JP 2002-249515 A JP-T-2001-527095 Japanese Patent No. 2890748

本発明は、長期間または繰り返し安定的に、かつ、速やかに芳香族ビニル化合物−(メタ)アクリレート共重合体から透明度の高い芳香環水素化ポリマーを製造する方法を提供する。   The present invention provides a method for producing a highly transparent aromatic ring hydrogenated polymer from an aromatic vinyl compound- (meth) acrylate copolymer quickly and stably over a long period of time or repeatedly.

本発明者らは、鋭意検討を重ねた結果、芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリレートモノマー由来の構成単位(Aモル)のモル比(A/B)が特定範囲である芳香族ビニル化合物−(メタ)アクリレート共重合体を、酸化ジルコニウムにパラジウムを担持した触媒の存在下で水素化すると、透明度の高い芳香環水素化ポリマーが安定的かつ速やかに得られることを見出し、本発明に至った。   As a result of intensive studies, the inventors have determined that the molar ratio (A / B) of the structural unit (A mole) derived from the (meth) acrylate monomer to the structural unit (B mole) derived from the aromatic vinyl monomer is within a specific range. When the aromatic vinyl compound- (meth) acrylate copolymer is hydrogenated in the presence of a catalyst in which palladium is supported on zirconium oxide, a highly transparent aromatic ring hydrogenated polymer can be obtained stably and rapidly. The headline, the present invention has been reached.

すなわち本発明は、A/B(Aは(メタ)アクリレートモノマー由来の構成単位のモル数およびBは芳香族ビニルモノマー由来の構成単位のモル数)が0.25〜4.0である芳香族ビニル化合物−(メタ)アクリレート共重合体中の芳香環を、溶媒中、パラジウムが酸化ジルコニウム上に担持された触媒の存在下で水素化する工程を含む水素化ポリマーの製造方法に関する。
本発明はさらに、該製造方法によって得られる水素化ポリマーに関する。
本発明はさらに、該水素化ポリマーを含む光学組成物に関する。
That is, the present invention provides an aromatic having A / B (A is the number of moles of a structural unit derived from a (meth) acrylate monomer and B is the number of moles of a structural unit derived from an aromatic vinyl monomer) is 0.25 to 4.0. The present invention relates to a method for producing a hydrogenated polymer comprising a step of hydrogenating an aromatic ring in a vinyl compound- (meth) acrylate copolymer in a solvent in the presence of a catalyst in which palladium is supported on zirconium oxide.
The present invention further relates to a hydrogenated polymer obtained by the production method.
The invention further relates to an optical composition comprising the hydrogenated polymer.

本発明の製造方法によると、芳香族ビニル化合物と(メタ)アクリレートとの共重合体の芳香環を、長期間安定的に水素化することができ、これにより得られる水素化された芳香族ビニル化合物と(メタ)アクリレートとの共重合体ポリマーは、高透明性、低複屈折、高耐熱性、高表面硬度、低吸水、低比重、高転写性、優れた離型性を示す。特に光学材料として優れた特性を有しており、光学レンズ、光導光板、光拡散板、光ディスク基板材料、前面パネル等の広範な用途に用いることができる。   According to the production method of the present invention, the aromatic ring of a copolymer of an aromatic vinyl compound and (meth) acrylate can be stably hydrogenated for a long period of time, and the hydrogenated aromatic vinyl obtained thereby The copolymer polymer of the compound and (meth) acrylate exhibits high transparency, low birefringence, high heat resistance, high surface hardness, low water absorption, low specific gravity, high transferability, and excellent releasability. In particular, it has excellent characteristics as an optical material, and can be used for a wide range of applications such as optical lenses, light guide plates, light diffusion plates, optical disk substrate materials, front panels and the like.

以下、本発明を詳細に説明する。本発明で用いる芳香族ビニル化合物とは、具体的にはスチレン、α―メチルスチレン、p−ヒドロキシスチレン、アルコキシスチレン、クロロスチレンなどの芳香族ビニル化合物が挙げられるが、スチレンが好ましい。   Hereinafter, the present invention will be described in detail. Specific examples of the aromatic vinyl compound used in the present invention include aromatic vinyl compounds such as styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, and chlorostyrene, with styrene being preferred.

本発明で用いる(メタ)アクリレートとは、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸アルキル;(メタ)アクリル酸(2−ヒドロキシメチル)、(メタ)アクリル酸(2−ヒドロキシプロピル)、(メタ)アクリル酸(2−ヒドロキシ−2−メチルプロピル)などの(メタ)アクリル酸ヒドロキシアルキル;(メタ)アクリル酸(2−メトキシエチル)、(メタ)アクリル酸(2−エトキシエチル)などの(メタ)アクリル酸アルコキシアルキル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルなどの芳香環を有する(メタ)アクリル酸エステル;および2−(メタ)アクロイルオキシエチルホスホリルコリンなどのリン脂質類似官能基を有する(メタ)アクリル酸エステルなどを挙げることができるが、物性面のバランスから、メタクリル酸アルキルを単独で用いるか、またはメタクリル酸アルキルとアクリル酸アルキルを併用することが好ましい。併用する場合、メタクリル酸アルキル80〜100モル%およびアクリル酸アルキル0〜20モル%を用いることが好ましい。メタクリル酸アルキルとしてはメタクリル酸メチルが特に好ましく、アクリル酸アルキルとしてはアクリル酸メチルまたはアクリル酸エチルが特に好ましい。
なお、本明細書においては、「アクリル酸」と「メタクリル酸」を総称して(メタ)アクリル酸といい、「アクリレート」と「メタクリレート」を総称して(メタ)アクリレートという。
The (meth) acrylate used in the present invention specifically includes methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, (Meth) acrylic acid cyclohexyl, (meth) acrylic acid alkyl such as isobornyl alkyl; (meth) acrylic acid (2-hydroxymethyl), (meth) acrylic acid (2-hydroxypropyl), (meth) acrylic Hydroxyalkyl (meth) acrylates such as acid (2-hydroxy-2-methylpropyl); (meth) acrylic such as (meth) acrylic acid (2-methoxyethyl), (meth) acrylic acid (2-ethoxyethyl) Acid alkoxyalkyl; aromatic rings such as benzyl (meth) acrylate and phenyl (meth) acrylate (Meth) acrylic acid ester having a phospholipid-like functional group such as 2- (meth) acryloyloxyethyl phosphorylcholine and the like, and methacrylic acid from the balance of physical properties. It is preferable to use alkyl alone or to use alkyl methacrylate and alkyl acrylate together. When using together, it is preferable to use 80-100 mol% of alkyl methacrylate and 0-20 mol% of alkyl acrylate. As the alkyl methacrylate, methyl methacrylate is particularly preferable, and as the alkyl acrylate, methyl acrylate or ethyl acrylate is particularly preferable.
In this specification, “acrylic acid” and “methacrylic acid” are collectively referred to as (meth) acrylic acid, and “acrylate” and “methacrylate” are collectively referred to as (meth) acrylate.

上記の芳香族ビニル化合物と(メタ)アクリレートの重合は公知の方法で行うことができるが、工業的にはラジカル重合による方法が簡便でよい。ラジカル重合は塊状重合法、溶液重合法、乳化重合法、懸濁重合法など公知の方法を適宜選択することができる。例えば塊状重合法や溶液重合法では、モノマー、連鎖移動剤、重合開始剤を含むモノマー組成物を完全混合槽に連続的にフィードしながら100〜180℃で連続重合する。溶液重合法ではトルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノールやイソプロパノールなどのアルコール系溶媒などをモノマー組成物と共にフィードする。重合後の反応液は重合槽から抜き出して、脱揮押出機や減圧脱揮槽に導入し、揮発分を除去して共重合体を得ることができる。   Polymerization of the aromatic vinyl compound and (meth) acrylate can be carried out by a known method, but industrially, a method by radical polymerization may be simple. For the radical polymerization, a known method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method or a suspension polymerization method can be appropriately selected. For example, in the bulk polymerization method and the solution polymerization method, continuous polymerization is performed at 100 to 180 ° C. while continuously feeding a monomer composition containing a monomer, a chain transfer agent, and a polymerization initiator to a complete mixing tank. In the solution polymerization method, hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, methanol and isopropanol, etc. An alcohol solvent or the like is fed together with the monomer composition. The reaction liquid after the polymerization can be taken out from the polymerization tank and introduced into a devolatilization extruder or a vacuum devolatilization tank to remove the volatile matter to obtain a copolymer.

本発明で使用する芳香族ビニル化合物−(メタ)アクリレート共重合体の構成単位組成は、仕込んだモノマーの組成とは必ずしも一致せず、重合反応によって実際に共重合体に取り込まれる各モノマーの量は重合率、モノマーの反応性などによって変化する。共重合体の構成単位組成は、重合率が100%であれば仕込みモノマー組成と一致するが、実際には50〜80%の重合率で製造する場合が多く、反応性の高いモノマーほど共重合体に取り込まれ易いため、モノマーの仕込み組成と共重合体の構成単位の組成にズレが生じるので、仕込みモノマーの組成を適宜調整する必要がある。   The constitutional unit composition of the aromatic vinyl compound- (meth) acrylate copolymer used in the present invention does not necessarily match the composition of the charged monomer, and the amount of each monomer actually incorporated into the copolymer by the polymerization reaction. Varies depending on the polymerization rate and the reactivity of the monomer. The constitutional unit composition of the copolymer is the same as the charged monomer composition when the polymerization rate is 100%, but in practice, it is often produced at a polymerization rate of 50 to 80%. Since it is easily incorporated into the coalescence, a deviation occurs between the charged composition of the monomer and the compositional unit of the copolymer. Therefore, it is necessary to appropriately adjust the charged monomer composition.

芳香族ビニル化合物−(メタ)アクリレート共重合体において、芳香族ビニル化合物モノマー由来の構成単位(Bモル)に対する(メタ)アクリレートモノマー由来の構成単位(Aモル)のモル比(A/B)は0.25〜4.0であり、好ましくは0.4〜4.0である。0.25未満であると機械強度が劣り、実用性に耐えない場合がある。4.0を超えると水素化される芳香環が少ないため、水素化によるガラス転移温度の上昇などの性能向上効果が不足する場合がある。   In the aromatic vinyl compound- (meth) acrylate copolymer, the molar ratio (A / B) of the structural unit (A mole) derived from the (meth) acrylate monomer to the structural unit (B mole) derived from the aromatic vinyl compound monomer is It is 0.25 to 4.0, preferably 0.4 to 4.0. If it is less than 0.25, the mechanical strength is inferior and may not be practical. When 4.0 is exceeded, since there are few aromatic rings hydrogenated, performance improvement effects, such as a raise of the glass transition temperature by hydrogenation, may be insufficient.

芳香族ビニル化合物−(メタ)アクリレート共重合体の重量平均分子量は、10,000〜1,000,000が好ましく、50,000〜700,000がより好ましく、100,000〜500,000がさらに好ましい。10,000未満または1,000,000を超える共重合体も本発明の方法によって水素化することができるが、10,000未満では機械強度などの面で実用性に耐えない場合があり、1,000,000を超えると粘度などの面から取扱いが困難である場合がある。重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により、THFを溶媒として用い、標準ポリスチレンで検量して求めた。   The weight average molecular weight of the aromatic vinyl compound- (meth) acrylate copolymer is preferably 10,000 to 1,000,000, more preferably 50,000 to 700,000, and even more preferably 100,000 to 500,000. preferable. Copolymers of less than 10,000 or more than 1,000,000 can also be hydrogenated by the method of the present invention, but less than 10,000 may not be practical in terms of mechanical strength and the like. If it exceeds 1,000,000, handling may be difficult in terms of viscosity and the like. The weight average molecular weight was obtained by gel permeation chromatography (GPC) using THF as a solvent and calibrating with standard polystyrene.

本発明の方法によって得られる水素化ポリマーは、可視光領域の光線を良好に透過するため、外観は透明である。JIS K7105に規定する方法で測定した、3.2mm厚の成形品の全光線透過率が90%以上であることが好ましい。成形品表面の反射による損失が避けられないため、この全光線透過率の上限は屈折率に依存する。光学材料として使用される場合にはさらに高度な透明性が要求されることがあるので、全光線透過率は91%以上であることがより好ましく、92%以上であることがさらに好ましい。このような透明性を得るためには、出発共重合体中の芳香環が均質に水素化されていることが好ましい。   Since the hydrogenated polymer obtained by the method of the present invention transmits light in the visible light region satisfactorily, its appearance is transparent. It is preferable that the total light transmittance of a molded product having a thickness of 3.2 mm measured by a method defined in JIS K7105 is 90% or more. Since the loss due to reflection on the surface of the molded product is inevitable, the upper limit of the total light transmittance depends on the refractive index. When used as an optical material, a higher degree of transparency may be required, so that the total light transmittance is more preferably 91% or more, and further preferably 92% or more. In order to obtain such transparency, it is preferable that the aromatic ring in the starting copolymer is homogeneously hydrogenated.

一般に芳香族ビニル共重合体の芳香環の水素化においては、全ての芳香環を完全に水素化することは困難であり、普通、未水素化の芳香環が残存する。この未水素化の芳香環が、しばしば白濁の原因となる。該原因の一つは水素化された芳香環を含む部位と未水素化の芳香環を含む部位がそれぞれブロックを形成することである。特に芳香環の水素化率が低い場合にブロックを形成しやすくなる。本発明の方法においてブロック形成を抑制するためには、芳香環の水素化率は70%(モル%)以上が好ましく、85%(モル%)以上がより好ましい。一般に、芳香族ビニル共重合体の分子量は分布しており、低分子量芳香族ビニル共重合体の芳香環が優先的に水素化され、高分子量芳香族ビニル共重合体の芳香環が水素化されずに残ることも白濁の原因となる。すなわち、高分子量芳香族ビニル共重合体の芳香環の水素化速度が低分子量芳香族ビニル共重合体のそれよりも大幅に低いと、低分子量芳香族ビニル共重合体の芳香環が優先的に水素化され、得られるポリマーは白濁しやすくなる。しかし、高分子量芳香族ビニル共重合体の芳香環の水素化率を向上させて未水素化芳香環を減少させ、得られるポリマー全体の相溶性を上げるとドメインがなくなり、高い透明性を示すことが知られている。分子量に起因する芳香環の水素化速度の相違による白濁の防止には、一般に溶剤や触媒が大きく影響する。   In general, in the hydrogenation of the aromatic ring of the aromatic vinyl copolymer, it is difficult to completely hydrogenate all aromatic rings, and usually an unhydrogenated aromatic ring remains. This unhydrogenated aromatic ring often causes cloudiness. One of the causes is that a site containing a hydrogenated aromatic ring and a site containing an unhydrogenated aromatic ring each form a block. In particular, when the hydrogenation rate of the aromatic ring is low, a block is easily formed. In order to suppress block formation in the method of the present invention, the hydrogenation rate of the aromatic ring is preferably 70% (mol%) or more, more preferably 85% (mol%) or more. Generally, the molecular weight of the aromatic vinyl copolymer is distributed, the aromatic ring of the low molecular weight aromatic vinyl copolymer is preferentially hydrogenated, and the aromatic ring of the high molecular weight aromatic vinyl copolymer is hydrogenated. It can cause cloudiness to remain. That is, if the hydrogenation rate of the aromatic ring of the high molecular weight aromatic vinyl copolymer is significantly lower than that of the low molecular weight aromatic vinyl copolymer, the aromatic ring of the low molecular weight aromatic vinyl copolymer is preferentially Hydrogenated, the resulting polymer tends to become cloudy. However, if the hydrogenation rate of the aromatic ring of the high molecular weight aromatic vinyl copolymer is improved to reduce the unhydrogenated aromatic ring and the compatibility of the whole polymer is increased, the domain disappears and high transparency is exhibited. It has been known. In general, a solvent or a catalyst greatly affects the prevention of white turbidity due to the difference in hydrogenation rate of the aromatic ring due to the molecular weight.

本発明における水素化反応に用いる触媒としては、水素化速度が高くなり、原料共重合体の分子量を低下させることがなく、また、水素化条件下で溶媒自身の反応を誘発しない触媒を選定する。具体的には、担持することにより高い金属表面積を得ることができるので、パラジウム(Pd)を担体に担持した固体触媒が好適である。   As the catalyst used in the hydrogenation reaction in the present invention, a catalyst that increases the hydrogenation rate, does not decrease the molecular weight of the raw material copolymer, and does not induce the reaction of the solvent itself under the hydrogenation conditions is selected. . Specifically, since a high metal surface area can be obtained by supporting it, a solid catalyst in which palladium (Pd) is supported on a carrier is suitable.

一般に、触媒担体としては、活性炭、アルミナ(Al)、シリカ(SiO)、シリカ−アルミナ(SiO−Al)、珪藻土、酸化チタン、酸化ジルコニウムなどが用いられる。しかしながら、活性炭やアルミナなどの担体を使用した場合、芳香環の水素化が均質に進行しにくく、しばしば透明性が不十分になる。この問題は酸化ジルコニウム担体を用いることにより解決されることが明らかになった。すなわち、酸化ジルコニウム担体にパラジウムを担持した触媒の存在下で水素化すると、芳香環の水素化速度が高く、また、水素化が均質に進行し、高透明性を有する水素化ポリマーが得られることが見出された。また、芳香族ビニル化合物−(メタ)アクリレート共重合体の分子量の違いによる芳香環の水素化速度の差が少なく、予期された以上に水素化が均質に進行することが分かった。 In general, activated carbon, alumina (Al 2 O 3 ), silica (SiO 2 ), silica-alumina (SiO 2 -Al 2 O 3 ), diatomaceous earth, titanium oxide, zirconium oxide, or the like is used as the catalyst carrier. However, when a support such as activated carbon or alumina is used, the hydrogenation of the aromatic ring is difficult to proceed uniformly, and the transparency is often insufficient. It has become clear that this problem can be solved by using a zirconium oxide support. That is, when hydrogenation is carried out in the presence of a catalyst in which palladium is supported on a zirconium oxide support, the hydrogenation rate of the aromatic ring is high, and the hydrogenation proceeds homogeneously to obtain a hydrogenated polymer having high transparency. Was found. Further, it was found that the difference in the hydrogenation rate of the aromatic ring due to the difference in the molecular weight of the aromatic vinyl compound- (meth) acrylate copolymer was small, and the hydrogenation proceeded more uniformly than expected.

反応の途中で水素化が均質に進行しなかったとしても、最終的に水素化率がほぼ100%に到達した場合にはドメインがなくなるため高透明性の水素化ポリマーが得られる。しかし、触媒を長期間および繰り返し使用する場合、ほぼ100%の水素化率を達成することは不可能である。酸化ジルコニウムにパラジウムを担持した触媒の存在下で水素化すると水素化が均質に進行するので、水素化率が例えば90モル%未満であっても全光線透過率が90%以上である高透明性水素化ポリマーを確実に得ることができ、工業生産上極めて有利である。   Even if the hydrogenation does not proceed homogeneously during the reaction, when the hydrogenation rate finally reaches almost 100%, the domain disappears and a highly transparent hydrogenated polymer can be obtained. However, when the catalyst is used for a long time and repeatedly, it is impossible to achieve a hydrogenation rate of almost 100%. Since hydrogenation proceeds homogeneously when hydrogenated in the presence of a catalyst in which palladium is supported on zirconium oxide, the total light transmittance is 90% or higher even when the hydrogenation rate is less than 90 mol%, for example. A hydrogenated polymer can be obtained reliably, which is extremely advantageous for industrial production.

水素化進行の均質さは、生成物中の未水素化芳香環を含むポリマーの分子量分布を測定することにより評価することができる。すなわち、未水素化芳香環を含むポリマーの重量平均分子量(Mw2)と、水素化する前の共重合体の重量平均分子量(Mw1)をゲルパーミエーションクロマトグラフィーを用いて測定し、比較することにより評価することができる。仮に、低分子量芳香族ビニル共重合体の芳香環が優先的に水素化された場合、未水素化芳香環を含むポリマーの分子量分布は水素化前の分子量分布より高分子量側に大きくシフトする。すなわち、未水素化芳香環を含むポリマーの重量平均分子量が大きくなり、Mw2/Mw1が著しく大きくなる。一方、低分子量芳香族ビニル共重合体と高分子量芳香族ビニル共重合体がほぼ均等に芳香環水素化されると、未水素化芳香環を含むポリマーの分子量分布は水素化前の分子量分布とほぼ同一か高分子量側へのシフトの程度が少なく、Mw2/Mw1は小さくなる。酸化ジルコニウムにパラジウムを担持した触媒を用いた場合、Mw2/Mw1は1.5以下であり、水素化が均質に進行していることを示す。Mw2/Mw1が2以上の場合は、低分子量芳香族ビニル共重合体の芳香環が優先的に水素化されたことを示し、樹脂が白濁する可能性がある。   The homogeneity of the hydrogenation progress can be evaluated by measuring the molecular weight distribution of the polymer containing unhydrogenated aromatic rings in the product. That is, by measuring and comparing the weight average molecular weight (Mw2) of the polymer containing an unhydrogenated aromatic ring and the weight average molecular weight (Mw1) of the copolymer before hydrogenation using gel permeation chromatography. Can be evaluated. If the aromatic ring of the low molecular weight aromatic vinyl copolymer is preferentially hydrogenated, the molecular weight distribution of the polymer containing the unhydrogenated aromatic ring is greatly shifted to the high molecular weight side from the molecular weight distribution before hydrogenation. That is, the weight average molecular weight of the polymer containing an unhydrogenated aromatic ring is increased, and Mw2 / Mw1 is significantly increased. On the other hand, when the low molecular weight aromatic vinyl copolymer and the high molecular weight aromatic vinyl copolymer are almost uniformly aromatic ring hydrogenated, the molecular weight distribution of the polymer containing unhydrogenated aromatic rings is the molecular weight distribution before hydrogenation. Mw2 / Mw1 is small because the degree of shift to almost the same or higher molecular weight is small. When a catalyst in which palladium is supported on zirconium oxide is used, Mw2 / Mw1 is 1.5 or less, indicating that the hydrogenation proceeds homogeneously. When Mw2 / Mw1 is 2 or more, it indicates that the aromatic ring of the low molecular weight aromatic vinyl copolymer has been preferentially hydrogenated, and the resin may become cloudy.

また、該酸化ジルコニウムにパラジウムを担持した触媒は再利用した場合にも活性の低下が非常に少なく、使用初期と同様に水素化が均質に進行するので、長期間または繰り返し安定的に高透明性を有するポリマーを得ることが可能となる。   In addition, the catalyst in which palladium is supported on zirconium oxide has a very low decrease in activity even when it is reused, and hydrogenation proceeds homogeneously in the same manner as in the initial use. It is possible to obtain a polymer having

パラジウム金属の担持量は、酸化ジルコニウム担体に対して0.01〜50重量%が好ましく、より好ましくは0.05〜20重量%、さらに好ましくは0.1〜10重量%である。高価な貴金属であるパラジウムの使用量はなるべく少ないことが経済上好ましいが、酸化ジルコニウム担体に用いた場合、高分散にパラジウムを担持することが可能であり、パラジウムの単位重量当たりの水素化速度を非常に大きくすることができるので、パラジウムの担持量を0.1〜0.5重量%程度にした場合でも十分な水素化速度が得られる。パラジウムの分散度は、一酸化炭素のパルス吸着法など既知の方法で測定することができ、高ければ高いほど好ましい。   The supported amount of palladium metal is preferably 0.01 to 50% by weight, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight with respect to the zirconium oxide support. Although it is economically preferable that the amount of palladium, which is an expensive precious metal, be used as little as possible, when used as a zirconium oxide support, palladium can be supported in a highly dispersed state, and the hydrogenation rate per unit weight of palladium can be increased. Since it can be made very large, even when the supported amount of palladium is about 0.1 to 0.5% by weight, a sufficient hydrogenation rate can be obtained. The degree of dispersion of palladium can be measured by a known method such as a carbon monoxide pulse adsorption method. The higher the degree of dispersion, the better.

パラジウムの前駆体としては塩化パラジウム、硝酸パラジウム、酢酸パラジウムなどの公知の塩または錯体を用いることができる。触媒の調製には、塩化パラジウムの塩酸水溶液または塩化ナトリウム水溶液、硝酸パラジウムの水溶液または塩酸水溶液、酢酸パラジウムの塩酸水溶液または有機溶剤溶液を用いることもできるが、特に、酢酸パラジウムのアセトン、アセトニトリル、1,4−ジオキサンなどの有機溶剤溶液を酸化ジルコニウム担体に含浸させ、溶媒を乾燥除去し、焼成(好ましくは200〜800℃)することにより、パラジウムが高度に分散した触媒を得ることができる。   As the precursor of palladium, known salts or complexes such as palladium chloride, palladium nitrate, and palladium acetate can be used. For the preparation of the catalyst, an aqueous solution of hydrochloric acid or sodium chloride in palladium chloride, an aqueous solution or aqueous solution of palladium nitrate, an aqueous hydrochloric acid solution in palladium acetate or an organic solvent solution can be used. A catalyst in which palladium is highly dispersed can be obtained by impregnating a zirconium oxide support with an organic solvent solution such as 1,4-dioxane, drying and removing the solvent, and calcining (preferably 200 to 800 ° C.).

酸化ジルコニウム担体は一般的な方法で得ることができる。例えば、オキシ塩化ジルコニウム、硝酸ジルコニル、硫酸ジルコニルなどを加水分解する方法、または、オキシ塩化ジルコニウム、硝酸ジルコニル、硫酸ジルコニルなどをアンモニアまたは炭酸アンモニウム、水酸化ナトリウム、炭酸ナトリウムなどのアルカリで中和して水酸化ジルコニウムまたは非晶質の酸化ジルコニウム水和物を沈殿させ、該沈殿を焼成することにより酸化ジルコニウムを得ることができる。また、オキシ塩化ジルコニウムまたはジルコニウムアルコキシドの熱分解や四塩化ジルコニウムの気相酸素分解によっても得ることができる。酸化ジルコニウム水和物や水酸化ジルコニウムの焼成温度を適宜選択することによって、含水量、比表面積、細孔径および細孔容積を変化させることができる。比表面積が大きい酸化ジルコニウムを得ることができるので、300〜800℃で焼成することが好ましい。担持パラジウムの分散度や水素化能の向上という観点から、酸化ジルコニウム担体の孔径は20〜3,000Åが好ましく、比表面積は10m/g以上であることが好ましい。 The zirconium oxide support can be obtained by a general method. For example, a method of hydrolyzing zirconium oxychloride, zirconyl nitrate, zirconyl sulfate, etc., or neutralizing zirconium oxychloride, zirconyl nitrate, zirconyl sulfate, etc. with ammonia or an alkali such as ammonium carbonate, sodium hydroxide, sodium carbonate, etc. Zirconium oxide can be obtained by precipitating zirconium hydroxide or amorphous zirconium oxide hydrate and firing the precipitate. It can also be obtained by thermal decomposition of zirconium oxychloride or zirconium alkoxide or gas phase oxygen decomposition of zirconium tetrachloride. By appropriately selecting the firing temperature of zirconium oxide hydrate or zirconium hydroxide, the water content, specific surface area, pore diameter and pore volume can be changed. Since a zirconium oxide with a large specific surface area can be obtained, it is preferable to fire at 300 to 800 ° C. From the viewpoint of improving the degree of dispersion of supported palladium and hydrogenation ability, the pore diameter of the zirconium oxide support is preferably 20 to 3,000 mm, and the specific surface area is preferably 10 m 2 / g or more.

必要に応じて、酸化ジルコニウムを他の担体上に担持し、その後、パラジウムを酸化ジルコニウムに担持してもよい。また、酸化ジルコニウムにパラジウムを担持した触媒を粘土化合物などのバインダー成分と混合、成形してもよい。この場合、触媒成分全体に占める酸化ジルコニウムの含有量が10重量%以上であることが好ましい。   If necessary, zirconium oxide may be supported on another support, and then palladium may be supported on zirconium oxide. Further, a catalyst in which palladium is supported on zirconium oxide may be mixed and molded with a binder component such as a clay compound. In this case, the content of zirconium oxide in the entire catalyst component is preferably 10% by weight or more.

芳香族ビニル化合物−(メタ)アクリレート共重合体の水素化は適当な溶媒中で行う。水素化反応前後の共重合体の溶解性及び水素の溶解性が良好であり、水素化される部位を持たない溶媒が好ましく、かつ、水素化が速やかに進行する溶媒を選択することが好ましい。また、反応後に溶媒を脱揮除去するので、溶媒の発火点が高いことが好ましい。これらの要件を全て満たす溶媒としてカルボン酸エステルが好適である。   Hydrogenation of the aromatic vinyl compound- (meth) acrylate copolymer is carried out in a suitable solvent. It is preferable to select a solvent that has good solubility of the copolymer before and after the hydrogenation reaction and hydrogen solubility, does not have a hydrogenated site, and that allows hydrogenation to proceed rapidly. Further, since the solvent is removed by devolatilization after the reaction, it is preferable that the ignition point of the solvent is high. Carboxylic acid esters are suitable as solvents that satisfy all of these requirements.

該カルボン酸エステルとしては下記一般式(1):
COOR (1)
(式中、Rは炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基、Rは炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基である)
で示される脂肪族カルボン酸エステルが好適である。R及びRとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基が例として挙げられる。エステルとしては、酢酸メチル、酢酸エチル、酢酸‐n‐ブチル、酢酸ペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸‐n‐プロピル、プロピオン酸‐n‐ブチル、n‐酪酸メチル、イソ酪酸メチル、n‐酪酸‐n‐ブチル、n‐吉草酸メチル、n‐ヘキサン酸メチルなどが挙げられるが、特に、酢酸メチル、酢酸エチル、プロピオン酸メチル、イソ酪酸メチル、n―酪酸メチルが好適に用いられる。
As the carboxylic acid ester, the following general formula (1):
R 1 COOR 2 (1)
(Wherein R 1 is an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and R 2 is an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms)
The aliphatic carboxylic acid ester shown by these is suitable. Examples of R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, and a cyclohexyl group. Esters include methyl acetate, ethyl acetate, n-butyl acetate, pentyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, n-butyl propionate, methyl n-butyrate, methyl isobutyrate, Examples include n-butyric acid-n-butyl, n-methyl valerate, n-hexanoic acid methyl, etc., particularly methyl acetate, ethyl acetate, methyl propionate, methyl isobutyrate, and methyl n-butyrate are preferably used. .

水素化反応時の溶液中における芳香族ビニル化合物−(メタ)アクリレート共重合体の濃度は、好ましくは1〜50重量%、より好ましくは3〜30重量%、さらに好ましくは5〜20重量%である。上記範囲内であると、反応速度の低下や溶液粘性の上昇による取扱いの不便さを避けることができ、また、生産性、経済性の面から好ましい。   The concentration of the aromatic vinyl compound- (meth) acrylate copolymer in the solution during the hydrogenation reaction is preferably 1 to 50% by weight, more preferably 3 to 30% by weight, and even more preferably 5 to 20% by weight. is there. Within the above range, inconvenience of handling due to a decrease in reaction rate or an increase in solution viscosity can be avoided, and it is preferable from the viewpoint of productivity and economy.

本発明の水素化は、懸濁床または固定床、バッチ式または連続流通式など公知の反応様式で行うことができる。
懸濁床で反応を行なう場合、担体粒径は0.1〜1,000μmが好ましく、より好ましくは1〜500μm、さらに好ましくは5〜200μmである。粒径が上記範囲内であると、水素化反応後の触媒分離が容易であり、充分な反応速度が得られる。
水素化をバッチ式で行う場合、触媒の使用量は原料共重合体100重量部に対してパラジウムとして0.0005〜10重量部であるのが好ましい。連続流通式で行う場合、単位触媒量あたりの原料共重合体供給量、すなわち空間速度が0.001〜1h−1になるように原料共重合体の溶液を供給する。
The hydrogenation of the present invention can be carried out in a known reaction mode such as a suspension bed or a fixed bed, a batch system or a continuous flow system.
When the reaction is carried out in a suspended bed, the carrier particle size is preferably from 0.1 to 1,000 μm, more preferably from 1 to 500 μm, still more preferably from 5 to 200 μm. When the particle size is within the above range, catalyst separation after the hydrogenation reaction is easy, and a sufficient reaction rate can be obtained.
When hydrogenation is carried out batchwise, the amount of catalyst used is preferably 0.0005 to 10 parts by weight as palladium with respect to 100 parts by weight of the raw material copolymer. When carrying out by a continuous flow type, the raw material copolymer solution is supplied so that the raw material copolymer supply amount per unit catalyst amount, that is, the space velocity is 0.001 to 1 h −1 .

水素化は、60〜250℃、3〜30MPaの水素圧で、3〜15時間行うのが好ましい。反応温度が上記範囲内であると、充分な反応速度が得られ、原料共重合体および水素化共重合体の分解を避けることができる。また、水素圧が上記範囲内であると、充分な反応速度が得られる。   Hydrogenation is preferably performed at 60 to 250 ° C. and a hydrogen pressure of 3 to 30 MPa for 3 to 15 hours. When the reaction temperature is within the above range, a sufficient reaction rate can be obtained, and decomposition of the raw material copolymer and the hydrogenated copolymer can be avoided. Further, when the hydrogen pressure is within the above range, a sufficient reaction rate can be obtained.

水素化反応後は、濾過または遠心分離などの公知の方法で触媒を分離し、回収する。着色、機械物性への影響などを考慮すると、得られた水素化ポリマー中の残留金属濃度は出来るだけ少ないことが好ましい。残留金属濃度は、10ppm以下が好ましく、より好ましくは1ppm以下である。ろ過、遠心分離などの煩雑な操作を省略するためには固定床での水素化が有利である。
触媒を分離した後、水素化ポリマー溶液から溶媒を除去し、水素化ポリマーを精製する。水素化ポリマーの分離には、
(1)水素化ポリマー溶液から溶媒を連続的に除去して濃縮液とし、該濃縮液を溶融状態で押し出し、次いでペレット化する方法、
(2)水素化ポリマー溶液から溶媒を蒸発させて塊状物を得、該塊状物をペレット化する方法、
(3)水素化ポリマー溶液を貧溶媒に加える、または、水素化ポリマー溶液に貧溶媒を加えて水素化ポリマーを沈殿させ、該沈殿をペレット化する方法、
(4)熱水と接触させて塊状物を生成させ、該塊状物をペレット化する方法
などの公知の方法を用いることができる。
After the hydrogenation reaction, the catalyst is separated and recovered by a known method such as filtration or centrifugation. In consideration of coloring, influence on mechanical properties, etc., the residual metal concentration in the obtained hydrogenated polymer is preferably as small as possible. The residual metal concentration is preferably 10 ppm or less, more preferably 1 ppm or less. In order to omit complicated operations such as filtration and centrifugation, hydrogenation in a fixed bed is advantageous.
After separating the catalyst, the solvent is removed from the hydrogenated polymer solution and the hydrogenated polymer is purified. For separation of hydrogenated polymers,
(1) A method in which a solvent is continuously removed from a hydrogenated polymer solution to obtain a concentrated liquid, the concentrated liquid is extruded in a molten state, and then pelletized.
(2) A method of evaporating a solvent from a hydrogenated polymer solution to obtain a lump and pelletizing the lump.
(3) A method in which a hydrogenated polymer solution is added to a poor solvent, or a hydrogenated polymer is precipitated by adding a poor solvent to the hydrogenated polymer solution, and the precipitate is pelletized.
(4) A known method such as a method of producing a lump by contacting with hot water and pelletizing the lump can be used.

本発明の方法によって得られる水素化ポリマーは公知の方法によって光学組成物にすることができる。該水素化ポリマーを含む光学組成物は熱可塑性を有しているため、押し出し成形、射出成形、シート成形体の二次加工成形など種々の熱成形によって精密かつ経済的に光拡散性光学物品を製造することが可能である。光拡散性光学物品の具体的な用途としては、導光板、導光体、ディスプレイ前面パネル、プラスチックレンズ基板、光学フィルター、光学フィルム、照明カバー、照明看板などを挙げることができる。   The hydrogenated polymer obtained by the method of the present invention can be made into an optical composition by a known method. Since the optical composition containing the hydrogenated polymer has thermoplasticity, a light-diffusing optical article can be precisely and economically obtained by various thermoforming methods such as extrusion molding, injection molding, and secondary processing molding of a sheet molded body. It is possible to manufacture. Specific examples of the light diffusing optical article include a light guide plate, a light guide, a display front panel, a plastic lens substrate, an optical filter, an optical film, a lighting cover, and a lighting signboard.

以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not particularly limited to the following examples.

樹脂の評価方法は次の通りである。
(1)芳香環の水素化率
水素化反応前後のUVスペクトル測定における260nmの吸収の減少率で評価した。
(2)重量平均分子量
水素化前の重量平均分子量(Mw1)と水素化後の重量平均分子量(Mw3)をRI検出器を使用し、ゲルパーミエーションクロマトグラフィー(GPC)により求めた。溶媒としてTHFを用い、標準ポリスチレンで検量した。
(3)水素化の均質性
反応生成物中の未水素化芳香環を有するポリマーの重量平均分子量Mw2をUV検出器(260nm)を用いたGPCにより測定した。Mw2/Mw1により水素化の均質性を評価した。この比が1.5以下であると水素化の均質性が良好である。
(4)パラジウム金属の分散度
COパルス吸着法により測定した。CO/Pd=1として算出した。
(5)全光線透過率
水素化ポリマー粉を減圧下、4時間、80℃にて乾燥した後、鏡面加工した金型の中に入れ、東邦プレス製作所の油圧成形機を用いて、210℃、10MPaで圧縮加熱成形し、試験片(3.2mm×30mm×30mmの平板)を作製した。この試験片の全光線透過率を、日本電色工業製色度・濁度測定器COH−300Aを用いて、JIS K7105に準拠し、透過法で測定した。
The evaluation method of resin is as follows.
(1) Hydrogenation rate of aromatic ring It evaluated by the decreasing rate of the absorption of 260 nm in the UV spectrum measurement before and after hydrogenation reaction.
(2) Weight average molecular weight The weight average molecular weight (Mw1) before hydrogenation and the weight average molecular weight (Mw3) after hydrogenation were determined by gel permeation chromatography (GPC) using an RI detector. Using THF as a solvent, calibration was performed using standard polystyrene.
(3) Homogeneity of hydrogenation The weight average molecular weight Mw2 of the polymer having an unhydrogenated aromatic ring in the reaction product was measured by GPC using a UV detector (260 nm). The homogeneity of hydrogenation was evaluated by Mw2 / Mw1. When this ratio is 1.5 or less, the homogeneity of hydrogenation is good.
(4) Dispersion degree of palladium metal Measured by a CO pulse adsorption method. Calculation was made assuming CO / Pd = 1.
(5) Total light transmittance The hydrogenated polymer powder was dried under reduced pressure for 4 hours at 80 ° C., then placed in a mirror-finished mold, and 210 ° C. using a Toho Press hydraulic press. The test piece (3.2 mm × 30 mm × 30 mm flat plate) was produced by compression heating molding at 10 MPa. The total light transmittance of this test piece was measured by a transmission method according to JIS K7105, using a chromaticity / turbidity measuring device COH-300A manufactured by Nippon Denshoku Industries Co., Ltd.

実施例1
(1)触媒調製
酢酸パラジウム0.0527g(0.000235mol)をアセトン30gに溶解した。得られた溶液に乾燥した酸化ジルコニウム担体(第一稀元素社製NNC100)4.975gを加え、40℃で攪拌しながら溶液を含浸させた。60℃で減圧しながらアセトンを留去したのち、120℃で4hr乾燥し、400℃で3時間焼成処理することにより、0.5wt%Pd/ZrO触媒を調製した。パラジウム金属分散度は85%であった。
(2)水素化反応
重量平均分子量(Mw1)170,000のMMA−スチレン共重合体(新日鐵化学社製、MS600(MMA/スチレンモル比=6/4))5gをイソ酪酸メチル(IBM)45gに溶解し、0.25gの0.5%Pd/ZrOと共に200mlオートクレーブに仕込んだ。水素圧9MPa、温度200℃で12時間水素化反応を行なった。濾過により触媒を除去した後、反応液を過剰のメタノール中に滴下し、沈殿したポリマーを回収した。このポリマーの最終的な水素化率は99.1%であった。加熱成形品の全光線透過率は92%であった。反応の途中に反応液を抜き出し水素化率と未水素化芳香環を含む共重合体の重量平均分子量(Mw2)を測定した。水素化の経時変化を表1に示した。いずれの反応液も透明であり、水素化が均質に進行していた。
また、ろ過しながら反応液を抜き出したところ、パラジウムの溶出は見られなかった(0.01ppm以下)。
その後、原料液を入れ替え、回収した触媒を使用して再度水素化を同様に12h行った。水素化率は99.1%であり、加熱成形品の全光線透過率は92%であった。また、途中抜き出した反応液も透明であった。
Example 1
(1) Catalyst preparation 0.0527 g (0.000235 mol) of palladium acetate was dissolved in 30 g of acetone. To the obtained solution, 4.975 g of a dried zirconium oxide support (NNC 100 manufactured by Daiichi Rare Element Co., Ltd.) was added, and the solution was impregnated with stirring at 40 ° C. Acetone was distilled off under reduced pressure at 60 ° C., followed by drying at 120 ° C. for 4 hours, followed by baking at 400 ° C. for 3 hours to prepare a 0.5 wt% Pd / ZrO 2 catalyst. The palladium metal dispersion was 85%.
(2) Hydrogenation reaction 5 g of MMA-styrene copolymer (manufactured by Nippon Steel Chemical Co., Ltd., MS600 (MMA / styrene molar ratio = 6/4)) having a weight average molecular weight (Mw1) of 170,000 is methyl isobutyrate (IBM). Dissolved in 45 g and charged into a 200 ml autoclave with 0.25 g of 0.5% Pd / ZrO 2 . The hydrogenation reaction was carried out at a hydrogen pressure of 9 MPa and a temperature of 200 ° C. for 12 hours. After removing the catalyst by filtration, the reaction solution was dropped into excess methanol, and the precipitated polymer was recovered. The final hydrogenation rate of this polymer was 99.1%. The total light transmittance of the thermoformed product was 92%. The reaction solution was withdrawn during the reaction, and the hydrogenation rate and the weight average molecular weight (Mw2) of the copolymer containing an unhydrogenated aromatic ring were measured. The time course of hydrogenation is shown in Table 1. All reaction liquids were transparent, and hydrogenation proceeded homogeneously.
Further, when the reaction solution was extracted while filtering, elution of palladium was not observed (0.01 ppm or less).
Thereafter, the raw material liquid was replaced, and hydrogenation was performed again for 12 hours using the recovered catalyst. The hydrogenation rate was 99.1%, and the total light transmittance of the thermoformed product was 92%. In addition, the reaction liquid extracted midway was also transparent.

Figure 2007254733
Figure 2007254733

比較例1
(1)触媒
10wt%Pd/C(NEケムキャット製 PEタイプ)を使用した。このもののパラジウム金属分散度は14%であった。
(2)水素化反応
触媒として10wt%Pd/C(NEケムキャット製 PEタイプ)を0.2g使用した以外は実施例1と同様に水素化反応を行なった。最終的な水素化率は99.1%であり、加熱成形品の全光線透過率は92%であった。しかし、表2に示したように、3時間後および6時間間後に抜き出した反応液は白濁しており、これらの反応液から分離したポリマーの加熱成形品の全光線透過率は90%未満であった。
原料液を入れ替え、実施例1と同様にして再度水素化反応を行ったが、水素化率が85%に低下した。
Comparative Example 1
(1) Catalyst 10 wt% Pd / C (NE Chemcat PE type) was used. This product had a palladium metal dispersion of 14%.
(2) Hydrogenation reaction The hydrogenation reaction was performed in the same manner as in Example 1 except that 0.2 g of 10 wt% Pd / C (PE type manufactured by NE Chemcat) was used as a catalyst. The final hydrogenation rate was 99.1%, and the total light transmittance of the thermoformed product was 92%. However, as shown in Table 2, the reaction liquid extracted after 3 hours and 6 hours was cloudy, and the total light transmittance of the polymer thermoformed product separated from these reaction liquids was less than 90%. there were.
The raw material liquid was replaced, and the hydrogenation reaction was performed again in the same manner as in Example 1, but the hydrogenation rate was reduced to 85%.

Figure 2007254733
Figure 2007254733

比較例2
(1)触媒調製
酢酸パラジウム0.1055g(0.00047mol)をアセトン30gに溶解した。この溶液にαアルミナ4.975gを加え、40℃で攪拌しながら溶液を含浸させた。60℃で減圧しながらアセトンを留去したのち、120℃で4hr乾燥し、400℃で3時間焼成処理することにより、1wt%Pd/Al触媒を調製した。パラジウム金属分散度は20%であった。
(2)水素化反応
触媒として1wt%Pd/Alを0.5g使用し、水素化時間を15時間に変更した以外は実施例1と同様にして水素化反応を行なった。最終的な核水素化率は98.8%であり、加熱成形品の全光線透過率は92%であった。しかし、表3に示したように、4時間後および8時間間後に抜き出した反応液は白濁しており、これらの反応液から分離したポリマーの加熱成形品の全光線透過率は90%未満であった。
原料液を入れ替え、水素化時間を15hに変更した以外は実施例1と同様にして再度水素化反応を行ったが、水素化率は92%に低下した。
Comparative Example 2
(1) Catalyst preparation 0.1055 g (0.00047 mol) of palladium acetate was dissolved in 30 g of acetone. To this solution, 4.975 g of α-alumina was added, and the solution was impregnated with stirring at 40 ° C. Acetone was distilled off under reduced pressure at 60 ° C., followed by drying at 120 ° C. for 4 hours, followed by calcination at 400 ° C. for 3 hours to prepare a 1 wt% Pd / Al 2 O 3 catalyst. The degree of palladium metal dispersion was 20%.
(2) Hydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 1 except that 0.5 g of 1 wt% Pd / Al 2 O 3 was used as a catalyst and the hydrogenation time was changed to 15 hours. The final nuclear hydrogenation rate was 98.8%, and the total light transmittance of the thermoformed product was 92%. However, as shown in Table 3, the reaction liquid extracted after 4 hours and after 8 hours is cloudy, and the total light transmittance of the polymer thermoformed product separated from these reaction liquids is less than 90%. there were.
The hydrogenation reaction was performed again in the same manner as in Example 1 except that the raw material liquid was replaced and the hydrogenation time was changed to 15 h, but the hydrogenation rate was reduced to 92%.

Figure 2007254733
Figure 2007254733

実施例2
触媒の使用量を0.1gに変更した以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は96.5%であり、加熱成形品の全光線透過率は92%であった。また、4,6,9時間後に抜き出した反応液はすべて透明であった。
Example 2
A hydrogenation reaction was performed in the same manner as in Example 1 except that the amount of the catalyst used was changed to 0.1 g, and a polymer was recovered. The hydrogenation rate of this polymer was 96.5%, and the total light transmittance of the thermoformed product was 92%. Moreover, all the reaction liquids extracted after 4, 6 and 9 hours were transparent.

実施例3
反応温度を175℃にした以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は99.0%であり、加熱成形品の全光線透過率は92%であった。また、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 3
A hydrogenation reaction was performed in the same manner as in Example 1 except that the reaction temperature was 175 ° C., and the polymer was recovered. The hydrogenation rate of this polymer was 99.0%, and the total light transmittance of the thermoformed product was 92%. Moreover, all the reaction liquids extracted after 6 hours and 9 hours were transparent.

実施例4
反応圧力7MPaにした以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は96.2%であり、加熱成形品の全光線透過率は92%であった。また、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 4
A hydrogenation reaction was performed in the same manner as in Example 1 except that the reaction pressure was 7 MPa, and the polymer was recovered. The hydrogenation rate of this polymer was 96.2%, and the total light transmittance of the thermoformed product was 92%. Moreover, all the reaction liquids extracted after 6 hours and 9 hours were transparent.

実施例5
(1)触媒調製
酢酸パラジウム0.0105g(0.000047mol)をアセトン10gに溶解した。この溶液に乾燥した酸化ジルコニウム担体(第一稀元素社製NNC100)4.975gを加え、40℃で攪拌しながら溶液を含浸させた。60℃で減圧しながらアセトンを留去したのち、120℃で4h乾燥し、400℃で3時間焼成処理することにより、0.1wt%Pd/ZrO触媒を調製した。パラジウム金属分散度は90%に達した。
(2)水素化反応
前記触媒を0.5g使用した以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は96.6%であり、加熱成形品の全光線透過率は92%であった。また、4時間後、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 5
(1) Catalyst preparation 0.0105 g (0.000047 mol) of palladium acetate was dissolved in 10 g of acetone. To this solution was added 4.975 g of a dried zirconium oxide support (NNC 100 manufactured by Daiichi Rare Element Co., Ltd.), and the solution was impregnated with stirring at 40 ° C. Acetone was distilled off under reduced pressure at 60 ° C., dried at 120 ° C. for 4 hours, and calcinated at 400 ° C. for 3 hours to prepare a 0.1 wt% Pd / ZrO 2 catalyst. The palladium metal dispersion reached 90%.
(2) Hydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 1 except that 0.5 g of the catalyst was used, and a polymer was recovered. The hydrogenation rate of this polymer was 96.6%, and the total light transmittance of the thermoformed product was 92%. Moreover, the reaction liquid extracted after 4 hours, 6 hours, and 9 hours was all transparent.

実施例6
(1)触媒調製
塩化パラジウム0.0835g(0.00047mol)及び塩化ナトリウム0.055g(0.00094mol)を水10gに溶解した。この溶液に酸化ジルコニウム担体(第一稀元素社製NNC100)9.95gを加え、攪拌しながら3%ホルマリン水溶液10g(0.0099mol)および1.3%NaOH水溶液10g(0.0033mol)をさらに加え、パラジウムを酸化ジルコニウムに沈着させた。次いで、ろ過し、ろ液が0.1N AgNO水溶液で白濁しなくなるまで水洗を繰り返した後、120℃にて乾燥し、0.5wt%Pd/ZrO触媒を得た。パラジウム金属分散度は25%であった。
(2)水素化反応
前記触媒をを0.5g使用した以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は98.5%であり、加熱成形品の全光線透過率は92%であった。また、4時間後、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 6
(1) Catalyst preparation 0.0835 g (0.00047 mol) of palladium chloride and 0.055 g (0.00094 mol) of sodium chloride were dissolved in 10 g of water. To this solution was added 9.95 g of a zirconium oxide support (NNC 100 manufactured by Daiichi Rare Element Co., Ltd.), and 10 g (0.0099 mol) of 3% formalin aqueous solution and 10 g (0.0033 mol) of 1.3% NaOH aqueous solution were further added with stirring. Palladium was deposited on zirconium oxide. Subsequently, the mixture was filtered and washed repeatedly with water until the filtrate was not clouded with a 0.1N AgNO 3 aqueous solution, and then dried at 120 ° C. to obtain a 0.5 wt% Pd / ZrO 2 catalyst. The degree of palladium metal dispersion was 25%.
(2) Hydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 1 except that 0.5 g of the catalyst was used, and a polymer was recovered. The hydrogenation rate of this polymer was 98.5%, and the total light transmittance of the thermoformed product was 92%. Moreover, the reaction liquid extracted after 4 hours, 6 hours, and 9 hours was all transparent.

実施例7
(1)触媒調製
塩化パラジウム0.0835g(0.00047mol)及び0.1N HCl 9.4cc(0.00094mol)を水10gに溶解した。この溶液に酸化ジルコニウム担体(第一稀元素社製NNC100)9.95gを加え、攪拌しながら3%ホルマリン水溶液10g(0.0099mol)および1.3%NaOH水溶液10g(0.0033mol)をさらに加え、パラジウムを酸化ジルコニウムに沈着させた。次いで、ろ過し、ろ液が0.1N AgNO水溶液で白濁しなくなるまで水洗を繰り返した後、120℃にて乾燥し、0.5wt%Pd/ZrO触媒を得た。パラジウム金属分散度は30%であった。
(2)水素化反応
前記触媒を0.25g用いた以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は97.9%であり、加熱成形品の全光線透過率は92%であった。また、4時間後、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 7
(1) Catalyst preparation 0.0835 g (0.00047 mol) of palladium chloride and 9.4 cc (0.00094 mol) of 0.1N HCl were dissolved in 10 g of water. To this solution was added 9.95 g of a zirconium oxide support (NNC 100 manufactured by Daiichi Rare Element Co., Ltd.), and 10 g (0.0099 mol) of 3% formalin aqueous solution and 10 g (0.0033 mol) of 1.3% NaOH aqueous solution were further added with stirring. Palladium was deposited on zirconium oxide. Subsequently, the mixture was filtered and washed repeatedly with water until the filtrate was not clouded with a 0.1N AgNO 3 aqueous solution, and then dried at 120 ° C. to obtain a 0.5 wt% Pd / ZrO 2 catalyst. The degree of palladium metal dispersion was 30%.
(2) Hydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 1 except that 0.25 g of the catalyst was used, and a polymer was recovered. The hydrogenation rate of this polymer was 97.9%, and the total light transmittance of the thermoformed product was 92%. Moreover, the reaction liquid extracted after 4 hours, 6 hours, and 9 hours was all transparent.

実施例8
(1)触媒調製
塩化パラジウム0.0417g(0.000235mol)及び0.1N HCl 4.7cc(0.00047mol)を水10gに溶解した。この溶液に酸化ジルコニウム担体(第一稀元素社製NNC100)4.975gを加え、40℃で溶液を含浸させた。70℃で減圧しながら水分を留去したのち、120℃で4hr乾燥し、400℃で3時間焼成処理した。その後、10%水素−90%窒素の混合ガスを50cc/minの速度で流通させながら240℃で還元処理を施し、0.5wt%Pd/ZrO触媒を調製した。パラジウム金属分散度は45%であった。
(2)水素化反応
前記触媒を0.25g用いた以外は実施例1と同様にして水素化反応を行ない、ポリマーを回収した。このポリマーの水素化率は99.3%であり、加熱成形品の全光線透過率は92%であった。また、4時間後、6時間後および9時間後に抜き出した反応液はすべて透明であった。
Example 8
(1) Catalyst preparation 0.0417 g (0.000235 mol) of palladium chloride and 4.7 cc (0.00047 mol) of 0.1N HCl were dissolved in 10 g of water. To this solution was added 4.975 g of a zirconium oxide support (NNC100 manufactured by Daiichi Rare Element Co., Ltd.), and the solution was impregnated at 40 ° C. The water was distilled off while reducing the pressure at 70 ° C., followed by drying at 120 ° C. for 4 hours and baking at 400 ° C. for 3 hours. Thereafter, reduction treatment was performed at 240 ° C. while flowing a mixed gas of 10% hydrogen-90% nitrogen at a rate of 50 cc / min to prepare a 0.5 wt% Pd / ZrO 2 catalyst. The palladium metal dispersity was 45%.
(2) Hydrogenation reaction A hydrogenation reaction was carried out in the same manner as in Example 1 except that 0.25 g of the catalyst was used, and a polymer was recovered. The hydrogenation rate of this polymer was 99.3%, and the total light transmittance of the thermoformed product was 92%. Moreover, the reaction liquid extracted after 4 hours, 6 hours, and 9 hours was all transparent.

実施例9
(1)触媒調製
酢酸パラジウム0.527g(0.00235mol)をアセトン300gに溶解した。この溶液に乾燥した酸化ジルコニウム担体(第一稀元素社製NNC100)49.75gを加え、40℃で攪拌しながら溶液を含浸させた。60℃で減圧しながらアセトンを留去したのち、120℃で4hr乾燥し、400℃で3時間焼成処理することにより、0.5wt%Pd/ZrO触媒を調製した。これにバインダーとしてベントナイト2.7gおよび水45gを加え、混練、押出成形後、400℃で焼成した。その後、0.5mm〜1mm径に破砕し、固定床反応用触媒を調製した。
(2)水素化反応
前記固定床反応用触媒10gを1.5mmφのSUS316製管型反応器に充填した後、水素を9MPa、50cc/minで流通させながら、200℃まで昇温した。次に、重量平均分子量170,000のMMA−スチレン共重合体(新日鐵化学社製、MS600(MMA/スチレンモル比=6/4))の5wt%イソ酪酸メチル溶液を10g/hで反応器に供給しながら固定床流通反応を行った。24h後の水素化率は98.8%であり、加熱成形品の全光線透過率は92%であった。水素化反応を1000h継続した後の水素化率は95.0%であり、加熱成形品の全光線透過率は92%であった。
Example 9
(1) Catalyst preparation 0.527 g (0.00235 mol) of palladium acetate was dissolved in 300 g of acetone. To this solution was added 49.75 g of a dried zirconium oxide support (NNC 100 manufactured by Daiichi Rare Element Co., Ltd.), and the solution was impregnated with stirring at 40 ° C. Acetone was distilled off under reduced pressure at 60 ° C., followed by drying at 120 ° C. for 4 hours, followed by baking at 400 ° C. for 3 hours to prepare a 0.5 wt% Pd / ZrO 2 catalyst. To this was added 2.7 g bentonite and 45 g water as a binder, and after kneading and extrusion molding, firing was performed at 400 ° C. Thereafter, the catalyst was crushed to a diameter of 0.5 mm to 1 mm to prepare a fixed bed reaction catalyst.
(2) Hydrogenation reaction After charging 10 g of the fixed bed reaction catalyst in a 1.5 mmφ SUS316 tubular reactor, the temperature was raised to 200 ° C. while flowing hydrogen at 9 MPa and 50 cc / min. Next, a 5 wt% methyl isobutyrate solution of MMA-styrene copolymer having a weight average molecular weight of 170,000 (manufactured by Nippon Steel Chemical Co., Ltd., MS600 (MMA / styrene molar ratio = 6/4)) at 10 g / h is used as a reactor. The fixed bed flow reaction was performed while supplying to the reactor. The hydrogenation rate after 24 hours was 98.8%, and the total light transmittance of the thermoformed product was 92%. The hydrogenation rate after continuing the hydrogenation reaction for 1000 hours was 95.0%, and the total light transmittance of the thermoformed product was 92%.

本発明の製造方法によると、芳香族ビニル化合物−(メタ)アクリレート共重合体の芳香環を、長期間また繰り返し安定的かつ均質に水素化することができる。得られた水素化ポリマーは、高透明性、低複屈折、高耐熱性、高表面硬度、低吸水、低比重、高転写性、優れた離型性を示す。特に光学材料として優れた特性を有しており、光学レンズ、光導光板、光拡散板、光ディスク基板材料、前面パネル等の広範な用途に用いることができるので、本発明の工業的意義は大きい。   According to the production method of the present invention, the aromatic ring of the aromatic vinyl compound- (meth) acrylate copolymer can be stably and uniformly hydrogenated over a long period of time. The obtained hydrogenated polymer exhibits high transparency, low birefringence, high heat resistance, high surface hardness, low water absorption, low specific gravity, high transferability, and excellent releasability. In particular, it has excellent characteristics as an optical material, and can be used for a wide range of applications such as optical lenses, light guide plates, light diffusion plates, optical disk substrate materials, front panels, and the like, and thus the industrial significance of the present invention is great.

Claims (11)

A/B(Aは(メタ)アクリレートモノマー由来の構成単位のモル数、および、Bは芳香族ビニルモノマー由来の構成単位のモル数)が0.25〜4.0である芳香族ビニル化合物−(メタ)アクリレート共重合体中の芳香環を、溶媒中、パラジウムが酸化ジルコニウム上に担持された触媒の存在下で水素化する工程を含む水素化ポリマーの製造方法。   A / B (A is the number of moles of the structural unit derived from the (meth) acrylate monomer, and B is the number of moles of the structural unit derived from the aromatic vinyl monomer) is 0.25 to 4.0. A method for producing a hydrogenated polymer comprising a step of hydrogenating an aromatic ring in a (meth) acrylate copolymer in a solvent in the presence of a catalyst in which palladium is supported on zirconium oxide. 水素化ポリマーのJIS K7105に規定する方法で測定した全光線透過率が90%以上である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the total light transmittance of the hydrogenated polymer measured by a method defined in JIS K7105 is 90% or more. 該共重合体の重量平均分子量が10,000〜1,000,000である請求項1に記載の製造方法。   The production method according to claim 1, wherein the copolymer has a weight average molecular weight of 10,000 to 1,000,000. 該芳香環の水素化率が70%以上である請求項1に記載の製造方法。   The production method according to claim 1, wherein the hydrogenation rate of the aromatic ring is 70% or more. 該(メタ)アクリレートモノマーがメタクリル酸アルキル80〜100モル%およびアクリル酸アルキル0〜20モル%からなり、該芳香族ビニルモノマーがスチレンである請求項1記載の製造方法。   2. The production method according to claim 1, wherein the (meth) acrylate monomer comprises 80 to 100 mol% of alkyl methacrylate and 0 to 20 mol% of alkyl acrylate, and the aromatic vinyl monomer is styrene. 得られた水素化ポリマー中の未水素化芳香環を含むポリマーの重量平均分子量が、水素化前の共重合体の重量平均分子量の1.5倍以下である請求項1に記載の水素化ポリマーの製造方法。   2. The hydrogenated polymer according to claim 1, wherein the weight average molecular weight of the polymer containing an unhydrogenated aromatic ring in the obtained hydrogenated polymer is 1.5 times or less of the weight average molecular weight of the copolymer before hydrogenation. Manufacturing method. 前記触媒のパラジウムの担持量が酸化ジルコニウムに対して0.01〜50重量%である請求項1に記載の製造方法。   The production method according to claim 1, wherein the amount of palladium supported on the catalyst is 0.01 to 50 wt% with respect to zirconium oxide. 前記溶媒がカルボン酸エステルである請求項1に記載の製造方法。   The production method according to claim 1, wherein the solvent is a carboxylic acid ester. パラジウムの前駆体が酢酸パラジウム、塩化パラジウム、または硝酸パラジウムである請求項1に記載の製造方法。   The production method according to claim 1, wherein the precursor of palladium is palladium acetate, palladium chloride, or palladium nitrate. 請求項1に記載の製造方法によって得られる水素化ポリマー。   A hydrogenated polymer obtained by the production method according to claim 1. 請求項10記載の水素化ポリマーを含む光学材料組成物。   An optical material composition comprising the hydrogenated polymer according to claim 10.
JP2007043747A 2006-02-27 2007-02-23 Method for producing hydrogenated polymer Active JP5145728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043747A JP5145728B2 (en) 2006-02-27 2007-02-23 Method for producing hydrogenated polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006051008 2006-02-27
JP2006051008 2006-02-27
JP2007043747A JP5145728B2 (en) 2006-02-27 2007-02-23 Method for producing hydrogenated polymer

Publications (2)

Publication Number Publication Date
JP2007254733A true JP2007254733A (en) 2007-10-04
JP5145728B2 JP5145728B2 (en) 2013-02-20

Family

ID=38629275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043747A Active JP5145728B2 (en) 2006-02-27 2007-02-23 Method for producing hydrogenated polymer

Country Status (1)

Country Link
JP (1) JP5145728B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020096A1 (en) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl /(meth)acrylate copolymers
JPWO2010024217A1 (en) * 2008-08-28 2012-01-26 三菱瓦斯化学株式会社 Thermoplastic resin laminate
WO2013157529A1 (en) * 2012-04-17 2013-10-24 三菱瓦斯化学株式会社 Thermoplastic resin
JP2014077043A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method of manufacturing nucleus hydrogenation polymer with less coloring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132603A (en) * 1987-11-18 1989-05-25 Japan Synthetic Rubber Co Ltd Optical material
JPH0475001A (en) * 1990-07-17 1992-03-10 Hitachi Chem Co Ltd Plastic lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132603A (en) * 1987-11-18 1989-05-25 Japan Synthetic Rubber Co Ltd Optical material
JPH0475001A (en) * 1990-07-17 1992-03-10 Hitachi Chem Co Ltd Plastic lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020096A1 (en) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl /(meth)acrylate copolymers
US8575277B2 (en) 2007-08-06 2013-11-05 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl/(meth)acrylate copolymers
JP5540703B2 (en) * 2007-08-06 2014-07-02 三菱瓦斯化学株式会社 Method for producing nuclear hydrogenated aromatic vinyl compound / (meth) acrylate copolymer
JPWO2010024217A1 (en) * 2008-08-28 2012-01-26 三菱瓦斯化学株式会社 Thermoplastic resin laminate
WO2013157529A1 (en) * 2012-04-17 2013-10-24 三菱瓦斯化学株式会社 Thermoplastic resin
JPWO2013157529A1 (en) * 2012-04-17 2015-12-21 三菱瓦斯化学株式会社 Thermoplastic resin
JP2014077043A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method of manufacturing nucleus hydrogenation polymer with less coloring

Also Published As

Publication number Publication date
JP5145728B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
KR101346528B1 (en) Method of Preparing Hydrogenated Polymer
JP5540703B2 (en) Method for producing nuclear hydrogenated aromatic vinyl compound / (meth) acrylate copolymer
JP5145728B2 (en) Method for producing hydrogenated polymer
JP5109533B2 (en) Aromatic polymer hydrogenation catalyst
JP5023519B2 (en) Method for producing hydrogenated polymer
EP1702934B1 (en) Method of producing hydrogenated polymers
JP6102165B2 (en) Method for producing low-coloration nuclear hydrogenated polymer
KR101968378B1 (en) Thermoplastic resin
JP6787034B2 (en) Thermoplastic copolymer resin
JP2006063127A (en) Transparent thermoplastic resin
JP2014077044A (en) Method of producing nuclear hydrogenated polymer using material containing no sulfur
WO2023199874A1 (en) Method for manufacturing hydrogenated polymer
WO2023199875A1 (en) Method for producing optical material
JP2007246552A (en) Graft-modified norbornene-based resin
JP2006124430A (en) Preparation method of hydrogenated product of aromatic vinyl polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3