JP2007254223A - Ozone generating apparatus - Google Patents

Ozone generating apparatus Download PDF

Info

Publication number
JP2007254223A
JP2007254223A JP2006082375A JP2006082375A JP2007254223A JP 2007254223 A JP2007254223 A JP 2007254223A JP 2006082375 A JP2006082375 A JP 2006082375A JP 2006082375 A JP2006082375 A JP 2006082375A JP 2007254223 A JP2007254223 A JP 2007254223A
Authority
JP
Japan
Prior art keywords
electrodes
ozone
pulse
pair
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082375A
Other languages
Japanese (ja)
Inventor
Masaji Tange
正次 丹下
Takeshi Sakuma
健 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006082375A priority Critical patent/JP2007254223A/en
Publication of JP2007254223A publication Critical patent/JP2007254223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone generating apparatus having good ozone generation (power) efficiency, and more specifically to provide an ozone generating apparatus which can reduce the amount of cooling water and is simple in the construction of the power source, and in which a stable operation is possible. <P>SOLUTION: In an ozone generating apparatus which has a plasma generation part provided with a pair of opposing electrodes 2, 2' and solid dielectric layers 3, 3' that are arranged on the opposing surface of at least one of the electrodes of the pair of electrodes 2, 2', and which generates ozone from a raw material gas 6 by supplying the raw material gas 6 that contains oxygen into the space 10 between the pair of electrodes 2, 2', and by using discharge generated by impressing pulsed voltage between the pair of electrodes 2, 2', the ozone generating apparatus uses a gap between the pair of electrodes 2, 2' of not larger than 0.4 mm, a pulse duration of the pulsed voltage of not longer than 10 μsec, and a value of input power/gas flow volume of at least 30 W×min/NL. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は発生効率(電力効率)の良いオゾン発生装置に関するものであり、更に詳しくは冷却水を低減させ、電源の構成が簡単で安定動作が可能なオゾン発生装置に関する。   The present invention relates to an ozone generator having good generation efficiency (power efficiency), and more particularly to an ozone generator that reduces cooling water, has a simple power supply configuration, and is capable of stable operation.

従来から、空間中に生じたプラズマからオゾンを発生させて、漂白処理、滅菌や殺菌等の用途にオゾン発生装置が用いられてきた。また、オゾンを発生させる方法としては、特許文献1及び特許文献2に記載される方法が知られている。   Conventionally, ozone generators have been used for applications such as bleaching, sterilization, and sterilization by generating ozone from plasma generated in a space. As methods for generating ozone, methods described in Patent Document 1 and Patent Document 2 are known.

特許文献1においては、高周波電源を用いた誘電体バリア放電式が記載されている。この方式では、電流の波形がサイン波であり、放電空間および誘電体で消費される電力が多くなる為に発熱量が多い。また、発熱により原料ガスの温度が上昇すると、熱によってオゾンが分解してオゾンの収率が低下してしまう。この発熱によるオゾンの収率の低下を防ぐ目的で、電力密度を下げるために放電面積を大きくする必要が生じ、装置の大型化を招いていた。   In Patent Document 1, a dielectric barrier discharge type using a high-frequency power source is described. In this method, the current waveform is a sine wave, and a large amount of heat is generated because the power consumed in the discharge space and the dielectric increases. Further, when the temperature of the raw material gas rises due to heat generation, ozone is decomposed by heat and the yield of ozone is reduced. In order to prevent a decrease in the yield of ozone due to this heat generation, it is necessary to increase the discharge area in order to reduce the power density, leading to an increase in the size of the apparatus.

また特許文献2においては、電流型インバータ方式を開示している。この方式においては発生電圧の立ち上がり峻度が低いため、オゾン発生効率が低い。また、パルス幅が長い(短くすることができない)ので、オゾン発生効率が低いという問題がある。また更に、インバータ回路に使用する半導体素子の数が多いため、電力損失が大きく電源効率が低いことや、アーク発生時にスイッチング素子が破壊する可能性が高いといった問題も生じていた。
特許第3545257号公報 特許第3971100号公報
Patent Document 2 discloses a current type inverter system. In this method, since the rising steepness of the generated voltage is low, the ozone generation efficiency is low. Further, since the pulse width is long (cannot be shortened), there is a problem that ozone generation efficiency is low. Furthermore, since the number of semiconductor elements used in the inverter circuit is large, there are problems that the power loss is large and the power supply efficiency is low, and that the switching element is likely to be destroyed when an arc occurs.
Japanese Patent No. 3545257 Japanese Patent No. 3971100

本発明は、かかる従来の問題に鑑みてなされたものである。その目的とするところは、発生効率(電力効率)の良いオゾン発生装置を提供することであり、更に詳しくは冷却水を低減させ、電源の構成が簡単で安定動作が可能なオゾン発生装置を提供することにある。   The present invention has been made in view of such conventional problems. The purpose is to provide an ozone generator with good generation efficiency (power efficiency). More specifically, an ozone generator with reduced cooling water, simple power supply configuration and stable operation is provided. There is to do.

上記課題を解決するために鋭意検討した結果、以下のオゾン発生装置が提供される。   As a result of intensive studies to solve the above problems, the following ozone generator is provided.

[1]相対向する一対の電極、および前記一対の電極のうち少なくとも一方の電極の対向面上に設置された固体誘電体層を備えているプラズマ発生部を有し、前記一対の電極間の空間中に、酸素を含んだ原料ガスを供給し、前記一対の電極間にパルス化した電圧を印加することによる放電を用いて原料ガスからオゾンを発生させるオゾン発生装置において、前記電極間のギャップが0.4mm以下、前記パルス電圧のパルス継続時間が10μsec以下、投入電力/ガス流量の値が30W・min/NL以上、であることを特徴とするオゾン発生装置。 [1] A plasma generation unit including a pair of electrodes facing each other and a solid dielectric layer disposed on a facing surface of at least one of the pair of electrodes, and between the pair of electrodes In an ozone generator for generating ozone from a source gas using a discharge generated by supplying a source gas containing oxygen into the space and applying a pulsed voltage between the pair of electrodes, a gap between the electrodes The ozone generator is characterized in that: 0.4 mm or less, pulse duration of the pulse voltage is 10 μsec or less, and input power / gas flow rate is 30 W · min / NL or more.

[2]前記パルス電圧を発生させるためのパルス電源として、誘導蓄積型パルス電源を用いることを特徴とする[1]に記載のオゾン発生装置。 [2] The ozone generator according to [1], wherein an induction accumulation type pulse power source is used as the pulse power source for generating the pulse voltage.

[3]前記パルス電圧を発生させるためのパルス電源のスイッチング素子として、静電誘導型サイリスタ素子を用いることを特徴とする[2]に記載のオゾン発生装置。 [3] The ozone generator according to [2], wherein an electrostatic induction thyristor element is used as a switching element of a pulse power source for generating the pulse voltage.

本発明のオゾン発生装置は、オゾンの発生効率(電力効率)に優れ、オゾン発生時に必要な冷却水量の低減と冷却装置の小型化ができるという効果を奏し、また更に、電源の構成が簡単で、安定動作が可能であるという優れた効果を奏する。   The ozone generator of the present invention is excellent in ozone generation efficiency (power efficiency), has the effect of reducing the amount of cooling water required when ozone is generated and reducing the size of the cooling device, and has a simple power supply configuration. It has an excellent effect that stable operation is possible.

次に、本発明を実施するための実施形態について図面を参照しながら説明するが、本発明は、これらに何ら限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものであることは言うまでもない。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments, and the knowledge of those skilled in the art can be used without departing from the scope of the present invention. It goes without saying that various changes, modifications, and improvements can be added based on the above.

図1は、本発明に係るオゾン発生装置の一実施例(実施例1)の構成を示す模式的説明図である。図1において、1はパルス電源を示しており、パルス電源1によって、上下に相対する2つの金属電極2,2’に電圧が印加される。各金属電極2,2’間には、誘電体3,3’を挟んで空間10があり、この空間10内を原料ガス6が通過する。その際、各電極2,2’に印加された電圧により、空間10内にプラズマが発生する。このプラズマが原料ガス6を反応させることにより、オゾン化されたガス7を発生することができる。このときに金属電極2,2’に印加された電力により発生した熱は、絶縁板4,4’を挟んで備えられた水冷ヒートシンク5,5’により冷却される。   FIG. 1 is a schematic explanatory view showing the configuration of an embodiment (Example 1) of an ozone generator according to the present invention. In FIG. 1, reference numeral 1 denotes a pulse power supply, and a voltage is applied to the two metal electrodes 2 and 2 ′ opposed to each other by the pulse power supply 1. There is a space 10 between the metal electrodes 2 and 2 ′ with the dielectrics 3 and 3 ′ interposed therebetween, and the source gas 6 passes through the space 10. At that time, plasma is generated in the space 10 by the voltage applied to each electrode 2, 2 ′. This plasma reacts with the source gas 6 to generate an ozonized gas 7. At this time, the heat generated by the electric power applied to the metal electrodes 2 and 2 'is cooled by the water-cooled heat sinks 5 and 5' provided with the insulating plates 4 and 4 'interposed therebetween.

本発明のオゾン発生装置に用いられ、図1において誘電体3,3’として示される固体誘電体層は、アルミナ、ジルコニア、コージエライト等の誘電率が10〜20程度のものであれば良く、特にこれらに限定されるものではない。なお、固体誘電体層の厚みは特に限定されないが、例えば、0.2〜3mm程度である。   The solid dielectric layer used in the ozone generator of the present invention and shown as dielectrics 3 and 3 ′ in FIG. 1 may have a dielectric constant of about 10 to 20, such as alumina, zirconia, cordierite, etc. It is not limited to these. The thickness of the solid dielectric layer is not particularly limited, but is about 0.2 to 3 mm, for example.

本発明のオゾン発生装置においては、
(1)上下に相対する2つの金属電極2,2’間のギャップを0.4mm以下、好ましくは0.3mm以下、
(2)印加するパルス電圧のパルス継続時間を10μsec以下、
(3)投入(印加)した電力とガス流量の比である電力/ガス流量の値が30W・min/NL以上、
という3つの条件を満足することを特徴としている。
In the ozone generator of the present invention,
(1) The gap between the two metal electrodes 2 and 2 'facing each other up and down is 0.4 mm or less, preferably 0.3 mm or less,
(2) The pulse duration of the applied pulse voltage is 10 μsec or less,
(3) The value of the power / gas flow rate, which is the ratio between the input (applied) power and the gas flow rate, is 30 W · min / NL or more,
It is characterized by satisfying these three conditions.

このように、本発明では、バリア放電における電極間のギャップ(間隔)を非常に狭くして構成することにより、効率良くオゾンを発生することが出来る。また、パルス継続時間(パルス幅)を狭くしたため、電力損失が低く、発熱が抑えられるから、従来のオゾン発生装置のように電極の面積を大きくする必要がない。このことから、装置を小型にすることができる。   Thus, in the present invention, ozone can be efficiently generated by configuring the gap (interval) between the electrodes in the barrier discharge to be very narrow. In addition, since the pulse duration (pulse width) is narrowed, power loss is low and heat generation is suppressed, so that it is not necessary to increase the electrode area as in the conventional ozone generator. Thus, the device can be reduced in size.

また、本発明のオゾン発生装置のパルス電源としては、誘導蓄積型パルス電源を用いることが好ましい。
SIサイリスタを用いたパルス電源について、図2を用いて説明する。図2の回路図中に示される各記号等はそれぞれ、DC電源13、負荷11、高電圧12、コンデンサ18、ダイオード17、パルストランス8、SIサイリスタ9、FET10とし、SIサイリスタのアノード14、カソード15、ゲート16を意味している。
Moreover, it is preferable to use an induction storage type pulse power supply as a pulse power supply of the ozone generator of the present invention.
A pulse power supply using an SI thyristor will be described with reference to FIG. 2 are a DC power supply 13, a load 11, a high voltage 12, a capacitor 18, a diode 17, a pulse transformer 8, an SI thyristor 9, and an FET 10, and an SI thyristor anode 14 and a cathode, respectively. 15 means the gate 16.

本発明に係るオゾン発生装置のパルス電源において、パルストランス8の誘導成分にエネルギーを蓄積し、放出することで高電圧12を得ることができる。また、図2のように、SIサイリスタ9を用いることで、従来技術と比較した場合に電流耐力を高くすることが出来、俊度の高いパルス波形が得られる。また、SIサイリスタ9自体が壊れにくいことに加えて素子が少なくて済み、回路自体を簡潔に組むことができ、動作の安定度が更に高まる。   In the pulse power source of the ozone generator according to the present invention, the high voltage 12 can be obtained by accumulating and releasing energy in the inductive component of the pulse transformer 8. Further, as shown in FIG. 2, by using the SI thyristor 9, the current resistance can be increased as compared with the prior art, and a pulse waveform with high agility can be obtained. Further, in addition to the fact that the SI thyristor 9 itself is not easily broken, the number of elements is reduced, and the circuit itself can be simply assembled, and the stability of operation is further increased.

次に、実施例を用いてさらに具体的に説明する。
(実施例1)
図1に示す構成のオゾン発生装置を用いた。
1.オゾン発生部
片側表面に銀メタライズ層(金属電極2,2’)を形成したアルミナ製プレート(誘電体3,3’、寸法:90×50×1mm)2枚を用いた。また、図示しないが、放電ギャップ(間隔)を調整するためのスペーサー(寸法:10×50mm)2枚を用いた。スペーサーはテフロン(登録商標)製で、ギャップ(間隔)を調整するため、厚さ0.1/0.2/0.3/0.5/1.0mmの5種類を用意した。
Next, it demonstrates still more concretely using an Example.
(Example 1)
An ozone generator having the configuration shown in FIG. 1 was used.
1. Ozone generating part Two alumina plates (dielectrics 3, 3 ′, dimensions: 90 × 50 × 1 mm) having a silver metallized layer (metal electrodes 2, 2 ′) formed on one surface were used. Although not shown, two spacers (dimensions: 10 × 50 mm) for adjusting the discharge gap (interval) were used. The spacers were made of Teflon (registered trademark), and five types with thicknesses of 0.1 / 0.2 / 0.3 / 0.5 / 1.0 mm were prepared in order to adjust the gap (interval).

一対の金属電極2,2’の両外側には、絶縁板(アルミナ製)4,4’、水冷ヒートシンク5,5’で挟み込む構造とした。
上記のギャップ空間10に密閉構造を施して、外部に原料ガス6を導入、排出するための配管を取り付けた。
A structure in which insulating plates (made of alumina) 4, 4 ′ and water-cooled heat sinks 5, 5 ′ are sandwiched between both outer sides of the pair of metal electrodes 2, 2 ′.
The gap space 10 was sealed, and piping for introducing and discharging the source gas 6 was attached to the outside.

2.原料ガス
高純度酸素ガス(純度:99.999%)を使用した。ガス流量は、1〜5NL/minであり、ガス圧力は0.25MPaとした。
2. Source gas High purity oxygen gas (purity: 99.999%) was used. The gas flow rate was 1 to 5 NL / min, and the gas pressure was 0.25 MPa.

3.放電用電源
放電用のパルス電源1として、図2に示すような誘導蓄積型パルス電源を用いた。この誘電蓄積型パルス電源の主スイッチ素子にはSIサイリスタ素子9を用いた。
3. Discharge Power Supply An inductive accumulation type pulse power supply as shown in FIG. 2 was used as the pulse power supply 1 for discharge. The SI thyristor element 9 is used as the main switch element of this dielectric storage type pulse power supply.

パルス幅は図3に示されるように約1μsecとした。但し、ここで言うパルス幅とは、電圧ピーク値の半値幅で規定するものとする。また、パルス周波数は最大30kHzとした。   The pulse width was about 1 μsec as shown in FIG. However, the pulse width referred to here is defined by the half width of the voltage peak value. The pulse frequency was set to 30 kHz at maximum.

投入電力は最大300W(1パルスエネルギー:10mJ×30kHz)とした。パルス電圧は8kVである。   The maximum input power was 300 W (one pulse energy: 10 mJ × 30 kHz). The pulse voltage is 8 kV.

上記の条件で、排出ガスのオゾン濃度をオゾン濃度計(荏原事業(株)製EG−600)にて測定した。   Under the above conditions, the ozone concentration of the exhaust gas was measured with an ozone concentration meter (EG-600 manufactured by Ebara Corporation).

図4に、(投入電力/ガス流量)に対するオゾン濃度の結果を示す。この結果から、投入電力/ガス流量が大きく、かつ電極間ギャップ(間隔)の狭い条件で、高濃度のオゾンが得られることが判明した。特に、単位ガス流量当りの投入電力30W・min/NL以上、ギャップ間隔0.3mm以下の条件で高濃度オゾンが得られる。投入電力に関しては、400W・min/NL以上であると、発熱量が大きくなるため、これより小さな値であることが好ましい。電極間ギャップ(間隔)が狭い程、投入電力/ガス流量に対しての発生するオゾン濃度が高くなるが、装置の設計上、電極間ギャップ(間隔)の最小値は0.05mmである。   FIG. 4 shows the result of ozone concentration with respect to (input power / gas flow rate). From this result, it was found that high-concentration ozone can be obtained under conditions where the input power / gas flow rate is large and the gap between electrodes is narrow. In particular, high-concentration ozone can be obtained under conditions where the input power per unit gas flow rate is 30 W · min / NL or more and the gap interval is 0.3 mm or less. Regarding the input power, if it is 400 W · min / NL or more, the calorific value becomes large, and therefore, a smaller value is preferable. The narrower the gap (interval) between the electrodes, the higher the generated ozone concentration with respect to the input power / gas flow rate. However, the minimum value of the interelectrode gap (interval) is 0.05 mm in the design of the apparatus.

(実施例2)
実施例1において、電極間ギャップ(間隔)を狭くすることにより高濃度オゾンが得られることが判明したため、電極間ギャップ(間隔)を0.1mmとして、パルス幅を変化させた場合の単位時間当りのオゾン発生量を確認した。
オゾン発生装置のうち、オゾン発生部構造としては、放電ギャップ(間隔)を調整するためのスペーサー2枚として厚さ0.1mmのものを1種類(寸法:10×50×0.1mm)用いたこと以外は、実施例1と同一とした。また、用いた原料ガスの純度、ガス流量、ガス圧力も実施例1と同じとした。
(Example 2)
In Example 1, since it was found that high-concentration ozone can be obtained by narrowing the gap (interval) between the electrodes, the gap (interval) between the electrodes was set to 0.1 mm and the unit time per unit time when the pulse width was changed. The amount of ozone generated was confirmed.
Among the ozone generators, as the ozone generation part structure, one type (dimension: 10 × 50 × 0.1 mm) having a thickness of 0.1 mm was used as two spacers for adjusting the discharge gap (interval). Except this, it was the same as Example 1. The purity, gas flow rate, and gas pressure of the used raw material gas were the same as those in Example 1.

放電用電源としては、実施例1と同様にして、図2に示すような誘導蓄積型パルス電源を用いたが、パルストランス1次側インダクタンスを調整して、パルス幅を1μsec及び10μsecとした。また、図5に回路構成を示すクロージング回路方式のパルス電源を用いて、パルス幅50μsec及び100μsecの条件についてもオゾン発生量の測定を行った。図5のクロージング回路方式パルス電源のスイッチング素子としては、IGBT素子21を用いた。   As the discharge power source, an inductive accumulation type pulse power source as shown in FIG. 2 was used in the same manner as in Example 1, but the pulse transformer primary side inductance was adjusted to set the pulse width to 1 μsec and 10 μsec. Further, the amount of ozone generation was measured under the conditions of pulse widths of 50 μsec and 100 μsec using a closing circuit type pulse power supply whose circuit configuration is shown in FIG. An IGBT element 21 was used as a switching element of the closing circuit type pulse power supply of FIG.

パルス幅は、約1μsec、10μsec、50μsec、100μsecのものを使用した。パルス周波数は最大30kHzとした。
また、投入電力は最大300W(1パルスエネルギー:10mJ×30kHz)であり、パルス電圧は8kVとした。
Pulse widths of about 1 μsec, 10 μsec, 50 μsec, and 100 μsec were used. The maximum pulse frequency was 30 kHz.
The input power was 300 W maximum (1 pulse energy: 10 mJ × 30 kHz), and the pulse voltage was 8 kV.

図6に、投入電力が300W時における「パルス幅に対するオゾン発生量」の結果を示す。この結果から、パルス幅が短い条件でオゾン発生量が多くなることが判明した。特に、パルス幅10μsec以下の条件で高オゾン発生量が得られる。パルス幅が小さい程オゾン発生量が大きくなり好ましいが、回路の設計上、パルス幅の下限としては、およそ0.05μsecである。   FIG. 6 shows a result of “ozone generation amount with respect to pulse width” when the input power is 300 W. From this result, it was found that the amount of ozone generation increased under the condition of a short pulse width. In particular, a high ozone generation amount can be obtained under the condition of a pulse width of 10 μsec or less. The smaller the pulse width, the larger the amount of ozone generated, which is preferable. However, the lower limit of the pulse width is about 0.05 μsec for circuit design.

本発明のオゾン発生装置は、オゾン発生効率(電力効率)が良く、冷却水を低減させることができ、電源の構成が簡単で安定動作が可能であるから、産業上の利用価値が大きいものである。   The ozone generator of the present invention has high ozone generation efficiency (power efficiency), can reduce cooling water, has a simple power supply configuration and can be stably operated, and thus has great industrial utility value. is there.

本発明に係るオゾン発生装置の一実施例(実施例1)の構成を示す模式的説明図である。It is typical explanatory drawing which shows the structure of one Example (Example 1) of the ozone generator which concerns on this invention. 実施例1に用いたパルス電源の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of a pulse power supply used in Example 1. 実施例1におけるパルス波形を示すグラフである。3 is a graph showing a pulse waveform in Example 1. 実施例1におけるオゾン濃度と(投入電力/ガス流量)の関係を示すグラフである。It is a graph which shows the ozone concentration in Example 1, and the relationship of (input electric power / gas flow rate). 実施例2に用いたクロージング方式パルス電源の構成を示す回路図である。It is a circuit diagram which shows the structure of the closing system pulse power supply used for Example 2. FIG. 実施例2のオゾン発生装置におけるパルス幅とオゾン発生量の関係を示すグラフである。It is a graph which shows the relationship between the pulse width in the ozone generator of Example 2, and the amount of ozone generation.

符号の説明Explanation of symbols

1:パルス電源、2,2’:一対の金属電極、3,3’:誘電体、4,4’:絶縁板、5,5’:水冷ヒートシンク、6:原料ガス、7:オゾン化されたガス、8:パルストランス、9:SIサイリスタ、10:FET、11:負荷、12、:高電圧、13:DC電源、14:アノード、15:カソード、16:ゲート、17:ダイオード、18:コンデンサ、19:負荷、20:コンデンサ、21:IGBT、22:高圧電源。 1: pulse power source, 2, 2 ′: a pair of metal electrodes, 3, 3 ′: dielectric, 4, 4 ′: insulating plate, 5, 5 ′: water-cooled heat sink, 6: source gas, 7: ozonized Gas, 8: Pulse transformer, 9: SI thyristor, 10: FET, 11: Load, 12 ,: High voltage, 13: DC power supply, 14: Anode, 15: Cathode, 16: Gate, 17: Diode, 18: Capacitor , 19: load, 20: capacitor, 21: IGBT, 22: high-voltage power supply.

Claims (3)

相対向する一対の電極、および前記一対の電極のうち少なくとも一方の電極の対向面上に設置された固体誘電体層を備えているプラズマ発生部を有し、前記一対の電極間の空間中に、酸素を含んだ原料ガスを供給し、前記一対の電極間にパルス化した電圧を印加することによる放電を用いて原料ガスからオゾンを発生させるオゾン発生装置において、
前記電極間のギャップが0.4mm以下、前記パルス電圧のパルス継続時間が10μsec以下、投入電力/ガス流量の値が30W・min/NL以上、であることを特徴とするオゾン発生装置。
A plasma generation unit including a pair of electrodes facing each other and a solid dielectric layer disposed on a facing surface of at least one of the pair of electrodes, and in a space between the pair of electrodes; In an ozone generator for generating ozone from a source gas using a discharge by supplying a source gas containing oxygen and applying a pulsed voltage between the pair of electrodes,
An ozone generator having a gap between the electrodes of 0.4 mm or less, a pulse duration of the pulse voltage of 10 μsec or less, and a value of input power / gas flow rate of 30 W · min / NL or more.
前記パルス電圧を発生させるためのパルス電源として、誘導蓄積型パルス電源を用いることを特徴とする請求項1に記載のオゾン発生装置。   2. The ozone generator according to claim 1, wherein an induction storage type pulse power source is used as the pulse power source for generating the pulse voltage. 前記パルス電圧を発生させるためのパルス電源のスイッチング素子として、静電誘導型サイリスタ素子を用いることを特徴とする請求項2に記載のオゾン発生装置。   The ozone generator according to claim 2, wherein an electrostatic induction thyristor element is used as a switching element of a pulse power source for generating the pulse voltage.
JP2006082375A 2006-03-24 2006-03-24 Ozone generating apparatus Pending JP2007254223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082375A JP2007254223A (en) 2006-03-24 2006-03-24 Ozone generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082375A JP2007254223A (en) 2006-03-24 2006-03-24 Ozone generating apparatus

Publications (1)

Publication Number Publication Date
JP2007254223A true JP2007254223A (en) 2007-10-04

Family

ID=38628844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082375A Pending JP2007254223A (en) 2006-03-24 2006-03-24 Ozone generating apparatus

Country Status (1)

Country Link
JP (1) JP2007254223A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944694B1 (en) 2009-05-19 2010-02-26 한국기계연구원 Apparatus for generating high density ozone gas dissolved water containing ozone nanobubbles
GB2466664A (en) * 2009-01-06 2010-07-07 Univ Sheffield Plasma micro reactor apparatus, sterilisation unit and analyser
JP2010254524A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Apparatus for generating ozone
JP2011042545A (en) * 2009-08-24 2011-03-03 Toshiba Corp Ozonizer
CN115974003A (en) * 2023-02-16 2023-04-18 王江喜 Double-cooling ozone tube of ozone generator
JP7383087B1 (en) 2022-07-15 2023-11-17 日本特殊陶業株式会社 ozone generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053404A (en) * 1996-08-05 1998-02-24 Meidensha Corp Ozone generator
JP2002151295A (en) * 2000-11-13 2002-05-24 Yaskawa Electric Corp Discharge generating device
JP2002154809A (en) * 2000-09-29 2002-05-28 Smartultoms Co Ltd Ozonizer
JP2003034509A (en) * 2001-07-04 2003-02-07 Korea Inst Of Science & Technology Apparatus for generating ozone
JP2004099400A (en) * 2002-09-11 2004-04-02 Kyocera Corp Electrode member for discharge and ozonizer using the same
JP3545257B2 (en) * 1994-04-28 2004-07-21 三菱電機株式会社 Ozone generator and ozone generation method
JP2005268465A (en) * 2004-03-18 2005-09-29 Ngk Insulators Ltd Joint gate static induction thyristor and high-voltage pulse generator using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545257B2 (en) * 1994-04-28 2004-07-21 三菱電機株式会社 Ozone generator and ozone generation method
JPH1053404A (en) * 1996-08-05 1998-02-24 Meidensha Corp Ozone generator
JP2002154809A (en) * 2000-09-29 2002-05-28 Smartultoms Co Ltd Ozonizer
JP2002151295A (en) * 2000-11-13 2002-05-24 Yaskawa Electric Corp Discharge generating device
JP2003034509A (en) * 2001-07-04 2003-02-07 Korea Inst Of Science & Technology Apparatus for generating ozone
JP2004099400A (en) * 2002-09-11 2004-04-02 Kyocera Corp Electrode member for discharge and ozonizer using the same
JP2005268465A (en) * 2004-03-18 2005-09-29 Ngk Insulators Ltd Joint gate static induction thyristor and high-voltage pulse generator using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466664A (en) * 2009-01-06 2010-07-07 Univ Sheffield Plasma micro reactor apparatus, sterilisation unit and analyser
WO2010079351A2 (en) 2009-01-06 2010-07-15 The University Of Sheffield Plasma microreactor apparatus, sterilisation unit and analyser
WO2010079351A3 (en) * 2009-01-06 2011-03-31 The University Of Sheffield Plasma microreactor apparatus, sterilisation unit and analyser
JP2012514841A (en) * 2009-01-06 2012-06-28 ユニバーシティー オブ シェフィールド Plasma microreactor, sterilization unit and analyzer
US8734727B2 (en) 2009-01-06 2014-05-27 Perlemax Ltd. Plasma microreactor apparatus, sterilisation unit and analyser
GB2466664B (en) * 2009-01-06 2015-04-01 Perlemax Ltd Plasma microreactor apparatus, sterilisation unit and analyser
AU2010204167B2 (en) * 2009-01-06 2016-03-17 Perlemax Ltd Plasma microreactor apparatus, sterilisation unit and analyser
JP2010254524A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Apparatus for generating ozone
KR100944694B1 (en) 2009-05-19 2010-02-26 한국기계연구원 Apparatus for generating high density ozone gas dissolved water containing ozone nanobubbles
JP2011042545A (en) * 2009-08-24 2011-03-03 Toshiba Corp Ozonizer
JP7383087B1 (en) 2022-07-15 2023-11-17 日本特殊陶業株式会社 ozone generator
CN115974003A (en) * 2023-02-16 2023-04-18 王江喜 Double-cooling ozone tube of ozone generator

Similar Documents

Publication Publication Date Title
US9067788B1 (en) Apparatus for highly efficient cold-plasma ozone production
Park et al. Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator
JP2007254223A (en) Ozone generating apparatus
JP5694543B2 (en) Plasma generator, CVD apparatus, and plasma processing particle generator
KR100407447B1 (en) Apparatus for generating ozone in high concentration
CN101128964A (en) Silent discharge type plasma device
JP2016042752A (en) Ozone generator
Amjad et al. Analysis, design, and implementation of multiple parallel ozone chambers for high flow rate
JP2014189455A (en) Electric power supply for an ozone generator and ozone generator
Jin et al. Novel RDD pulse shaping method for high-power high-voltage pulse current power supply in DBD application
Dhakar et al. Simplified high-voltage short-pulse power modulator for DBD plasma application
TWI294257B (en) Low temperature plasma discharging device and the applying method thereof
Amjad et al. Design and implementation of a high‐frequency LC‐based half‐bridge resonant converter for dielectric barrier discharge ozone generator
WO2011108410A1 (en) Silent discharge plasma device and method for generating plasma by silent discharge
KR101337047B1 (en) Atomspheric pressure plasma apparatus
US20240008162A1 (en) Drive circuit for a dielectric barrier discharge device and method of controlling the discharge in a dielectric barrier discharge
CN214653833U (en) Dielectric barrier discharge water treatment device
CN112888130B (en) Low-temperature plasma generating device and method for fruit and vegetable fresh-keeping
Firoozabadi et al. Comparison of distinct discharge modes for ozone production in a novel DBD configuration with three flat electrodes
JPH10324504A (en) Silent-discharge ozonizing method and device therewith
KR102145120B1 (en) Ozone generator
US11866326B2 (en) Apparatus for highly efficient cold-plasma ozone production
JP6896200B1 (en) Ozone generator
KR100392814B1 (en) High Efficiency and High Concentration Ozone Generation System
JP6672447B2 (en) Ozone generator and power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124