JP2007253095A - Defoaming apparatus and applicator - Google Patents

Defoaming apparatus and applicator Download PDF

Info

Publication number
JP2007253095A
JP2007253095A JP2006082672A JP2006082672A JP2007253095A JP 2007253095 A JP2007253095 A JP 2007253095A JP 2006082672 A JP2006082672 A JP 2006082672A JP 2006082672 A JP2006082672 A JP 2006082672A JP 2007253095 A JP2007253095 A JP 2007253095A
Authority
JP
Japan
Prior art keywords
rotating cylinder
liquid
defoaming
opening
liquid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082672A
Other languages
Japanese (ja)
Inventor
Sadaji Kawabe
貞治 川部
Yukihiro Mizudori
由貴廣 水鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006082672A priority Critical patent/JP2007253095A/en
Publication of JP2007253095A publication Critical patent/JP2007253095A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defoaming apparatus which can continuously and efficiently remove fine bubbles from a high-viscosity liquid-form material and is satisfactory in workability of multiproduct production, and to perovide an applicator. <P>SOLUTION: The defoaming apparatus for continuously defoaming the liquid-form material has a reduced pressure vessel equipped with a pressure reducing means connection port and a liquid discharge port, a rotary tube which is a rotatable hollow cylindrical member disposed within the reduced pressure vessel, a driving device which rotates the rotary tube, and a liquid-form material supply pipe which supplies the liquid-form material into the rotary tube. The central axis of rotation of the rotary tube is arranged in a perpendicular direction, and an opening is disposed detachedly to an inner side from an inner side of a cylindrical portion of the rotary tube in at least at the bottom end of the top and bottom ends of the rotary tube, and a member which is a disk-shaped or cylindrical member and has a disk-shaped sectional outer periphery of the surface perpendicular to the rotary central axis of the rotary tube is disposed within the rotary tube. The member is detached from the inner wall surface of the rotary tube, and its radius is greater than the maximum value of the horizontal distance from the rotary central axis up to the opening and is the size at which the member and the inner wall surface of the cylindrical part of the rotary tube has a clearance. The applicator has the device described above. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液状物の脱泡装置および塗布装置に関するものであり、特に、化学、医薬、製紙、印刷、電子材料、油製品などの工業分野や、化粧品、食品、樹脂、塗料、接着剤などの製品の製造過程において、液状物中に混入した気泡を連続的に除去するための脱泡装置、および気泡を除去された液状物の塗布装置に関する。   The present invention relates to a defoaming device and a coating device for liquid materials, and in particular, industrial fields such as chemistry, medicine, papermaking, printing, electronic materials, oil products, cosmetics, foods, resins, paints, adhesives, etc. The present invention relates to a defoaming device for continuously removing bubbles mixed in a liquid substance in the manufacturing process of the product, and a liquid material coating apparatus from which bubbles are removed.

紙、フィルム、その他シート状の物の表面に塗料や塗液を塗布する塗工機ラインにおいて、塗布する塗料や塗液に気泡が混入していると欠陥の原因となる。さらに気泡が混入していると塗工液の塗布量が安定せず、塗工部の厚みが不均一になるばかりか、塗面にピンホールや未塗工箇所など欠陥が発生し不良品の原因となる。   In a coating machine line that applies paint or coating liquid to the surface of paper, film, or other sheet-like material, if bubbles are mixed in the coating or coating liquid to be applied, a defect is caused. In addition, if air bubbles are mixed in, the coating amount of the coating liquid will not be stable, the thickness of the coated part will become uneven, and defects such as pinholes and uncoated parts will occur on the coated surface. Cause.

また、半導体チップ等の電子部品を絶縁し、さらに汚染や破損から保護するために液状樹脂からなる封止材で封止する場合やフォトレジスト液を塗布する場合に気泡が混入すると塗布量が安定しないため、封止剤の充填不良部分やフォトレジスト液の未塗布部分が発生してしまうことがある。さらには封止剤の、表面や内部に気泡が散在するとその強度や耐湿性が低下してしまうことがある。   Insulation of electronic components such as semiconductor chips, and when sealed with a sealing material made of a liquid resin to protect them from contamination and damage, and when applying bubbles, the coating amount is stable. Therefore, a part with poor filling of the sealant or an uncoated part of the photoresist liquid may occur. Furthermore, when bubbles are scattered on the surface or inside of the sealant, the strength and moisture resistance may be lowered.

光学ディスク用の樹脂材料をディスク基盤に塗布する場合に気泡が存在すると、レーザー等での読み取り及び記録時にエラー信号の原因となり正確なデータの読み書きができなくなることがある。   If air bubbles are present when a resin material for an optical disk is applied to the disk substrate, it may cause an error signal during reading and recording with a laser or the like, and accurate data reading and writing may not be possible.

化学、医薬、食品関連の材料では、気泡中のガス成分が品質上問題となることもある。   In chemical, pharmaceutical, and food-related materials, gas components in the bubbles may cause quality problems.

あるいは液状物に気泡が存在すると輸送ポンプや配管の腐食や異常振動の原因となったり、みかけの密度が変化するため梱包工程での不具合を生じさせることがある。   Alternatively, if bubbles exist in the liquid material, it may cause corrosion and abnormal vibration of the transport pump and piping, or may change the apparent density and cause problems in the packing process.

特に高粘度の液状物はいったん気泡が混入すると非常に抜けにくいため、バッチ処理では長時間の処理が必要になるか、連続的であっても大処理量を確保することは困難であることがある。   In particular, high-viscosity liquids are very difficult to escape once bubbles are mixed in, so batch processing may require long-term processing or it may be difficult to ensure a large throughput even if continuous. is there.

その一方で、上述した欠陥を防ぐために、除去の必要がある泡の大きさは近年ますます微細化している傾向にあり、効率よく極めて微細な気泡を除去できる方法が望まれている。   On the other hand, in order to prevent the above-described defects, the size of bubbles that need to be removed tends to be increasingly fine in recent years, and a method capable of efficiently removing extremely fine bubbles is desired.

これらの液状物に含まれる気泡を除去するための従来の装置としては、真空タンク内に液状物を静置するか、またはそのタンク内を撹拌して泡を除去する方法がある。しかし高粘度の液状物や大量の処理には機械を大規模にするか時間を長くかけることが必要で工業的に不利である。   As a conventional apparatus for removing bubbles contained in these liquid materials, there is a method of leaving the liquid material in a vacuum tank or stirring the inside of the tank to remove bubbles. However, it is industrially disadvantageous for high-viscosity liquids and large amounts of processing because it requires a large-scale machine or a long time.

また、真空タンク内の上部に水平面内で回転する回転円盤もしくは短い胴部と底板を有する回転円筒容器もしくはその胴部が多孔板やスリット上の回転円筒容器を配置し、回転円盤または回転円筒容器に液状物を供給する形式の装置がある。しかしこの形式の装置においては液中の気泡の移動の推進力が主に真空に因るものであるので、高粘度の液状物から微細な気泡を脱泡するには時間がかかり、時間当たりの処理量を多くはできない。さらに円盤上で除去されなかった泡が、内壁面に飛散する時に微細化されると脱泡が進まなくなるどころか、気泡の数が増えることになってしまうこともある。   In addition, a rotating disk rotating in a horizontal plane or a rotating cylindrical container having a short body and a bottom plate or a rotating cylindrical container on the perforated plate or slit is disposed on the upper part of the vacuum tank, and the rotating disk or the rotating cylindrical container There is an apparatus of a type that supplies a liquid material to the inside. However, in this type of device, the driving force for the movement of bubbles in the liquid is mainly due to the vacuum, so it takes time to degas fine bubbles from a highly viscous liquid, The amount of processing cannot be increased. Furthermore, if the bubbles that have not been removed on the disk are refined when scattered on the inner wall surface, the number of bubbles may increase rather than defoaming.

特開昭59−305号公報(特許文献1)には、回転する円筒容器中心に上方より液吸引排出管を挿入し容器下部において開口させ排出管の周りから液体を供給し、排出管と円筒容器との間から脱気する連続気泡除去装置が記載されている。   In Japanese Patent Laid-Open No. 59-305 (Patent Document 1), a liquid suction / discharge pipe is inserted from above into the center of a rotating cylindrical container and opened at the bottom of the container to supply liquid from around the discharge pipe. An open cell removal device is described that degassed from between the containers.

この方式では脱泡された液体原料とは別に、気泡を伴った液体原料が排出されるためそれを回収するための装置が必要になり工程が複雑になる。また回転する部分と固定している部分の間に液体原料が充満するので、摩擦により温度が上昇し液体原料の変質などを招く恐れがある。   In this method, since the liquid raw material with bubbles is discharged separately from the defoamed liquid raw material, an apparatus for recovering the liquid raw material is required and the process becomes complicated. In addition, since the liquid raw material is filled between the rotating part and the fixed part, the temperature rises due to friction, and the liquid raw material may be altered.

特開平5−200203号公報(特許文献2)には、減圧された真空槽内で、底面近傍に撹拌羽根を配置した状態で、有底円筒状の容器を回転させ、容器上部から内壁に沿って液状樹脂を供給し、容器と撹拌羽根の相対的な回転により液状樹脂を撹拌しその中の気泡を除去し、脱泡が終了したら、真空層内を加圧状態にし、あらかじめ回転円筒内に、底部近傍まで挿入しておいた送出パイプを通じて、液状樹脂を排出する方法が記載されている。   In Japanese Patent Laid-Open No. 5-200203 (Patent Document 2), a bottomed cylindrical container is rotated along the inner wall from the upper part of the container with a stirring blade disposed in the vicinity of the bottom surface in a decompressed vacuum tank. The liquid resin is supplied, the liquid resin is agitated by relative rotation of the container and the stirring blade to remove bubbles therein, and after defoaming is completed, the inside of the vacuum layer is pressurized and placed in the rotating cylinder in advance. A method of discharging liquid resin through a delivery pipe inserted to the vicinity of the bottom is described.

この方式では、処理時間の経過に伴い容器内に液状樹脂が蓄積されると、撹拌の効率が悪くなるため、脱泡効率も悪くなる。と同時に、微細な泡は撹拌の下降流により表面に到達しえない確率が高まり、脱泡の効率はさらに悪くなる。加えて、真空下での液注入と加圧での液排出を交互に行うバッチサイクルの必要があり生産速度の効率が悪い。   In this method, if the liquid resin is accumulated in the container as the processing time elapses, the efficiency of stirring is deteriorated, and the defoaming efficiency is also deteriorated. At the same time, the probability that fine bubbles cannot reach the surface due to the downward flow of stirring increases, and the efficiency of defoaming becomes worse. In addition, it is necessary to have a batch cycle in which liquid injection under vacuum and liquid discharge under pressure are alternately performed, so that the production rate is inefficient.

特開2000−126508号公報(特許文献3)には真空タンク内で、断面が楕円形の回転盤を回転させ、内部にスラリーを供給し、液状物は遠心力の作用で回転盤の内壁面に沿って薄膜状に広がりながら脱泡される。液状物はさらに半径方向外周側に移動しスラリー溜まりに溜まり、回転盤の作用による運動エネルギーで、下部に挿入された排出管より排出する方法が記載されている。   Japanese Patent Laid-Open No. 2000-126508 (Patent Document 3) discloses that a rotating disk having an elliptical cross section is rotated in a vacuum tank, slurry is supplied to the inside, and the liquid material is an inner wall surface of the rotating disk by the action of centrifugal force. Is defoamed while spreading in a thin film shape along. A method is described in which the liquid material further moves to the outer peripheral side in the radial direction, accumulates in a slurry pool, and is discharged from a discharge pipe inserted in the lower portion by kinetic energy by the action of a rotating disk.

この方式では、遠心力が最も強く作用する半径方向の端部では排出機構が働くため、滞在時間も短く遠心力による十分な脱泡作用は期待できない。よって、きわめて少量の処理量か、もしくは低粘度の液状物での比較的大きな泡の除去には適するが、高粘度液の微細な泡の除去には適さない。また、運転終了後に回転盤内に液が残ってしまうため、液状物の完全除去には回転部分の分解作業が必要となる。これは、近年の多品種生産には作業性が悪く不適である。   In this method, since the discharge mechanism works at the end portion in the radial direction where the centrifugal force acts most strongly, the dwelling time is short and sufficient defoaming action due to the centrifugal force cannot be expected. Therefore, it is suitable for removing relatively large bubbles with a very small amount of processing or a low-viscosity liquid, but is not suitable for removing fine bubbles of a high-viscosity liquid. In addition, since the liquid remains in the rotating disk after the operation is completed, the rotating part needs to be disassembled to completely remove the liquid material. This is not suitable for recent multi-product production because of poor workability.

特開平3−86273号公報(特許文献4)には、塗工シートを製造するシート連続塗布方法において、塗液の循環系内に連続式オリフィス真空脱気装置を設けて塗液を脱泡し、エアーナイフ式の塗布装置で感熱記録紙を製造した記載がある。この方式で高粘度液状物を処理しようとすると、オリフィスでの圧力が大きくなるため、送液のためのポンプや配管材料が耐圧仕様となって高価となるばかりか、気泡が消滅する前にオリフィスからの噴射で微細化され、より除去しにくい微細な泡の数を増やすこともある。   In JP-A-3-86273 (Patent Document 4), in a sheet continuous coating method for producing a coated sheet, a continuous orifice vacuum deaerator is provided in the coating liquid circulation system to degas the coating liquid. There is a description that a thermal recording paper was manufactured with an air knife type coating apparatus. When trying to process a liquid with high viscosity by this method, the pressure at the orifice increases, so the pump and piping materials for liquid delivery become pressure resistant and expensive, and before the bubbles disappear, In some cases, the number of fine bubbles that are refined by spraying from and difficult to remove is increased.

特開平10−286511号公報(特許文献5)には、フィルム上の被塗布物に塗布ローラを用いて塗布する装置において、多孔質体を用いて気泡を吸引したり、ポンプを用いて気泡ごと塗布液を吸引して再度液化したりする装置についての記載がある。この方式では塗布液槽内の表面上の気泡を除去することしかできない。すなわち、高粘度液状物に含まれた気泡を十分に除去することはできない。さらに非常に複雑な機構となっているため、品種切り替えの際には、洗浄作業に著しい負荷が発生する。   In Japanese Patent Laid-Open No. 10-286511 (Patent Document 5), in an apparatus for applying an object to be coated on a film using an application roller, bubbles are sucked using a porous body, or each bubble is detected using a pump. There is a description of an apparatus that sucks a coating liquid and liquefies it again. This method can only remove bubbles on the surface in the coating solution tank. That is, the bubbles contained in the high viscosity liquid cannot be sufficiently removed. Furthermore, since the mechanism is very complicated, a significant load is generated in the cleaning operation when changing the product type.

特開2000−157905号公報(特許文献6)には、ダイコート法にて連続的に塗膜を形成する装置において、塗布液を減圧雰囲気下で撹拌する塗布液貯蔵手段をひとつ以上用いて、脱泡された塗布液を供給する装置の記載がある。この方式では、近年の極めて微細な気泡を除去する場合、さらには、高粘度液状物から微細な気泡を除去するためには、減圧雰囲気下で撹拌する時間が非常に長くなる。減圧下で長時間塗布液を滞在させることは、揮発成分の蒸発を招き、粘度の変化が起こって、塗布液の供給量すなわち塗膜の膜厚が変化したり、品質の変化を招く。これを防ぐためには、かかる塗布液貯蔵手段で小型のものを数多く設置し、供給量を確保することが必要となり、これはコストアップの要因となり、さらには品種切り替え性を著しく悪化させる。
特開昭59−305号公報 特開平5−200203号公報 特開2000−126508号公報 特開平3−86273号公報 特開平10−286511号公報 特開2000−157905号公報
Japanese Patent Laid-Open No. 2000-157905 (Patent Document 6) discloses that an apparatus for continuously forming a coating film by a die coating method uses one or more coating liquid storage means for stirring the coating liquid in a reduced pressure atmosphere. There is a description of an apparatus for supplying a foamed coating solution. In this method, when removing extremely fine bubbles in recent years, and further for removing fine bubbles from a high-viscosity liquid, the time for stirring in a reduced-pressure atmosphere becomes very long. If the coating liquid is allowed to stay for a long time under reduced pressure, the volatile components are evaporated, the viscosity changes, and the supply amount of the coating liquid, that is, the film thickness of the coating film changes or the quality changes. In order to prevent this, it is necessary to install a large number of such coating liquid storage means to secure the supply amount, which causes an increase in cost and further deteriorates the product changeability.
JP 59-305 A JP-A-5-200203 JP 2000-126508 A JP-A-3-86273 Japanese Patent Laid-Open No. 10-286511 JP 2000-157905 A

本発明の目的は、高粘度の液状物であっても微細な泡の除去を連続的に効率よく行うことができ、しかも多品種生産の作業性も良好な脱泡装置および塗布装置を提供することである。   An object of the present invention is to provide a defoaming device and a coating device that can continuously and efficiently remove fine bubbles even in a high-viscosity liquid, and also have good workability for multi-product production. That is.

本発明により、液状物を連続的に脱泡する脱泡装置であって、
減圧手段接続口と液排出口とを備える減圧容器と、
該減圧容器内に設けられた回転可能な中空筒状の部材である回転筒と、
該回転筒を回転させる駆動装置と、
液状物を該回転筒内に供給する液状物供給管を有し、
該回転筒の回転中心軸は鉛直方向に配され、
該回転筒の上下端部のうちの少なくとも下端部に、回転筒胴部分の内壁とは内側に離間して開口部が設けられ、
該回転筒の内部に、円盤状もしくは円筒状の部材であって回転筒の回転中心軸に垂直な面の断面外周が円状の部材が設けられ、
該断面外周が円状の部材は回転筒の内壁面と離間しており、
該断面外周が円状の部材の半径は、該回転筒の回転中心軸から該開口部までの水平方向の距離の最大値より大きく、かつ断面外周が円状の部材と回転筒胴部分の内壁面とが隙間を有する大きさである
ことを特徴とする脱泡装置が提供される。
According to the present invention, a defoaming device for continuously defoaming a liquid material,
A decompression vessel comprising a decompression means connection port and a liquid discharge port;
A rotating cylinder which is a rotatable hollow cylindrical member provided in the decompression vessel;
A driving device for rotating the rotating cylinder;
A liquid supply pipe for supplying a liquid material into the rotating cylinder;
The rotation center axis of the rotating cylinder is arranged in the vertical direction,
At least at the lower end of the upper and lower ends of the rotating cylinder, an opening is provided inwardly spaced from the inner wall of the rotating cylinder body portion,
Inside the rotating cylinder, a disk-shaped or cylindrical member having a circular cross-sectional outer periphery on a surface perpendicular to the rotation center axis of the rotating cylinder is provided.
The member whose outer periphery is circular is separated from the inner wall surface of the rotating cylinder,
The radius of the member whose outer periphery is circular is larger than the maximum value in the horizontal direction from the rotation center axis of the rotating cylinder to the opening, and the inner diameter of the member having the circular outer periphery and the cylindrical part of the rotating cylinder. There is provided a defoaming device characterized in that the wall surface has a gap.

上記脱泡装置において、前記回転筒に回転軸が接続され、前記駆動装置が駆動軸を有し、
該回転軸と駆動軸は駆動力伝達手段を介して接続され、
減圧容器内を減圧状態に維持するための真空シール部が、該駆動軸に設けられ、該回転軸には設けられないことが好ましい。
In the defoaming device, a rotating shaft is connected to the rotating cylinder, and the driving device has a driving shaft,
The rotating shaft and the driving shaft are connected via a driving force transmission means,
It is preferable that a vacuum seal portion for maintaining the inside of the decompression vessel in a decompressed state is provided on the drive shaft and not on the rotation shaft.

上記脱泡装置が、前記回転筒内部に、液状物の共回り促進手段を有することが好ましい。   It is preferable that the defoaming device has a liquid material co-rotation promoting means inside the rotating cylinder.

上記脱泡装置において、前記回転筒の上下端部の両方に開口部が設けられ、
前記液状物供給管が回転筒の下端部の開口部から回転筒内に挿入され、
回転筒の回転中心軸から上端部の開口部までの水平方向の距離の最大値が、回転筒の回転中心軸から下端部の開口部までの水平方向の距離の最大値より大きいことが好ましい。
In the defoaming device, openings are provided on both the upper and lower ends of the rotating cylinder,
The liquid material supply pipe is inserted into the rotary cylinder from the opening at the lower end of the rotary cylinder,
It is preferable that the maximum value of the horizontal distance from the rotation center axis of the rotating cylinder to the opening at the upper end is larger than the maximum value of the horizontal distance from the rotation center axis of the rotating cylinder to the opening at the lower end.

また、本発明により、濾過部と脱泡部と塗布部とを有する液状物の塗布装置であって、脱泡部が上記脱泡装置であることを特徴とする液状物の塗布装置が提供される。   According to the present invention, there is also provided a liquid material applicator having a filtering part, a defoaming part and an application part, wherein the defoaming part is the above defoaming apparatus. The

本発明により、高粘度の液状物であっても微細な泡の除去を連続的に効率よく行うことができ、しかも多品種生産の作業性も良好な脱泡装置および塗布装置が提供される。   According to the present invention, it is possible to provide a defoaming device and a coating device that can continuously and efficiently remove fine bubbles even in the case of a high-viscosity liquid, and also have good workability for multi-product production.

本発明の脱泡装置は、減圧容器を有する。減圧容器は、減圧手段を接続するための減圧手段接続口と、脱泡された液状物を排出するための液排出口とを備える。減圧容器内には、回転可能な回転筒が設けられる。   The defoaming device of the present invention has a vacuum container. The decompression vessel includes a decompression means connection port for connecting the decompression means and a liquid discharge port for discharging the defoamed liquid material. A rotatable cylinder is provided in the decompression vessel.

また、脱泡装置は、回転筒を回転させる駆動装置と、脱泡しようとする液状物を回転筒内に供給する液状物供給管を有する。   In addition, the defoaming device includes a driving device that rotates the rotating cylinder and a liquid supply pipe that supplies the liquid to be defoamed into the rotating cylinder.

回転筒は、中空の筒状である。   The rotating cylinder is a hollow cylinder.

回転筒の胴部の内壁面は、液状物が回転筒内で均一に遠心効果を受ける構造とするために、軸対称回転体の空間を有する形状であることが望ましい。回転筒の外形にはなんら制限はないが、回転筒は軸対称体であることが好ましく、さらには軸対称回転体であることが好ましい。軸対称体あるいは軸対称回転体にすることで脱泡装置の機械設計上簡便な構造にすることが可能で経済上有利である。   It is desirable that the inner wall surface of the body portion of the rotating cylinder has a shape having an axisymmetric rotating body space so that the liquid material receives a centrifugal effect uniformly in the rotating cylinder. There is no limitation on the outer shape of the rotating cylinder, but the rotating cylinder is preferably an axially symmetric body, and more preferably an axially symmetric rotating body. By using an axially symmetric body or an axially symmetric rotating body, it is possible to make a simple structure in terms of mechanical design of the defoaming apparatus, which is economically advantageous.

回転筒にはその両端部に底面が設けられる。なお、本発明においては回転筒の上部であっても便宜上「底面」という。底面の形状に制限はない。平板状の底面であったり、外形および/または内径が漸次減少するコーン状であったり、適宜選択できる。例えば、断面が一定の外径および内径を有する環状である円筒状、すなわち円形直管状の胴部と、胴部の両端に配された、胴部の中心軸に垂直な底面を有する形状を、回転筒が有することができる。   The rotating cylinder is provided with bottom surfaces at both ends thereof. In the present invention, even the upper part of the rotating cylinder is referred to as a “bottom surface” for convenience. There is no restriction on the shape of the bottom surface. A flat bottom surface, a cone shape whose outer shape and / or inner diameter gradually decrease, and the like can be selected as appropriate. For example, a cylindrical shape having an outer diameter and an inner diameter with a constant cross section, that is, a circular straight tubular body, and a shape having a bottom surface disposed at both ends of the body and perpendicular to the central axis of the body, A rotating cylinder can have.

回転筒の回転中心軸は鉛直方向に配される。回転中心軸は回転筒胴部の断面の重心を垂直に貫く線と一致する。すなわち回転筒胴部の断面の重心を垂直に貫く線が鉛直方向になるように配置され、この線を回転中心軸として回転筒が回転可能となる。回転筒胴部の断面は水平方向での断面を指す。   The rotation center axis of the rotating cylinder is arranged in the vertical direction. The center axis of rotation coincides with a line perpendicularly passing through the center of gravity of the section of the rotating cylinder body. That is, the line that passes through the center of gravity of the cross section of the rotary cylinder body vertically is arranged in the vertical direction, and the rotary cylinder can be rotated with this line as the rotation center axis. The cross section of the rotating cylinder body indicates the cross section in the horizontal direction.

回転筒の上下端部のうちの少なくとも下端部に、回転筒胴部分の内壁とは内側に離間して開口部が設けられる。回転筒胴部分は、回転筒の、筒面を持つ胴部を意味する。   At least at the lower end of the upper and lower ends of the rotating cylinder, an opening is provided inwardly spaced from the inner wall of the rotating cylinder body. The rotary cylinder body portion means a cylinder part having a cylindrical surface of the rotary cylinder.

回転筒の内部に、円盤状もしくは円筒状の部材であって回転筒の回転中心軸に垂直な面の断面外周が円状の部材が設けられる。   Inside the rotating cylinder, a disk-shaped or cylindrical member having a circular cross-sectional outer periphery on a plane perpendicular to the rotation center axis of the rotating cylinder is provided.

この断面外周が円状の部材は回転筒の内壁面と離間している。   The member whose outer periphery is circular is separated from the inner wall surface of the rotating cylinder.

断面外周が円状の部材の半径(上記断面形状をなす円の半径)は、回転筒の回転中心軸から開口部までの水平方向の距離の最大値より大きい。つまり、開口部が回転筒の下端のみに設けられる場合は、下端の開口部の回転中心軸から水平方向に最も遠い点を選ぶ。開口部が回転筒の上下端の両方に設けられる場合は、全ての開口部について、開口部の回転中心軸から水平方向に最も遠い点を選ぶ。断面外周が円状の部材の半径が、このように選んだ点と回転中心軸との水平方向の距離より大きいようにする。   The radius of the member having a circular cross-section outer periphery (the radius of the circle having the cross-sectional shape) is larger than the maximum horizontal distance from the rotation center axis of the rotating cylinder to the opening. That is, when the opening is provided only at the lower end of the rotating cylinder, the point farthest in the horizontal direction from the rotation center axis of the opening at the lower end is selected. When the openings are provided on both the upper and lower ends of the rotating cylinder, a point farthest in the horizontal direction from the rotation center axis of the openings is selected for all the openings. The radius of the member having a circular outer periphery is set to be larger than the horizontal distance between the selected point and the rotation center axis.

また、断面外周が円状の部材の半径は、断面外周が円状の部材と回転筒胴部分の内壁面とが隙間を有する大きさである。つまり、断面外周が円状の部材は、回転筒の胴部の内壁面には接しない。   Further, the radius of the member whose outer periphery is circular is such that the member whose circular outer periphery is circular and the inner wall surface of the rotating barrel portion have a gap. That is, the member having a circular cross-sectional outer periphery does not contact the inner wall surface of the barrel portion of the rotating cylinder.

液状物は、断面外周が円状の部材と回転筒の内壁面との間に形成された隙間を通り、開口部を経由して、回転筒の内部から減圧容器内へと排出される。   The liquid material passes through a gap formed between a member having a circular cross-sectional outer periphery and the inner wall surface of the rotating cylinder, and is discharged from the inside of the rotating cylinder into the decompression container via the opening.

以下、本発明の装置の一形態につき図を用いて説明する。ただし、本発明はこれによって限定されるものではなく、本発明の範囲内で種種の変形を行う事が可能である。   Hereinafter, an embodiment of the apparatus of the present invention will be described with reference to the drawings. However, the present invention is not limited to this, and various modifications can be made within the scope of the present invention.

図1に示すように、減圧された容器1内で回転する回転筒3内に、液状物入口5から液状物供給管4を経て液状物が供給される。この液状物は、回転による遠心力を受けて、回転筒の胴部分の内壁3f面で回転中心軸側に液面を有する円管状となる。このとき、回転筒胴部分の内壁面で円管状となった液状物10においては、遠心効果と減圧効果によって気泡が液状物内部からその表面すなわち液面へ移動することが促進され脱泡される。   As shown in FIG. 1, a liquid material is supplied from a liquid material inlet 5 through a liquid material supply pipe 4 into a rotating cylinder 3 that rotates in a decompressed container 1. This liquid material receives a centrifugal force due to rotation, and becomes a circular tube having a liquid surface on the rotation center axis side on the inner wall 3f surface of the body portion of the rotating cylinder. At this time, in the liquid material 10 having a tubular shape on the inner wall surface of the rotating cylinder body portion, the bubbles are promoted to move from the liquid material to the surface thereof, that is, the liquid surface by the centrifugal effect and the pressure reducing effect, and defoamed. .

連続的に除去されるべき気泡のガス分を系外に排出し減圧容器内を一定の減圧状態に維持するために、減圧容器には減圧手段接続口1aを介して減圧手段(不図示)が接続される。減圧手段としては真空ポンプ等の公知の減圧手段を用いることができる。減圧容器内の圧力は−0.01[MPaG(ゲージ圧を示す、以下同様)]〜−0.09[MPaG]の範囲が好ましい。−0.09[MPaG]以上とすることで、減圧容器や減圧手段の選定上、経済的に有利である。−0.01[MPaG]以下とすることで回転筒部から排出された液状物が減圧容器の内壁面に衝突する際の気泡の混入を防ぐことができるので好適である。   In order to discharge the gas component of the bubbles to be continuously removed out of the system and maintain the inside of the decompression vessel at a constant decompression state, the decompression vessel has decompression means (not shown) via the decompression means connection port 1a. Connected. As the decompression means, a known decompression means such as a vacuum pump can be used. The pressure in the decompression vessel is preferably in the range of -0.01 [MPaG (indicating gauge pressure, the same applies hereinafter)] to -0.09 [MPaG]. It is economically advantageous in selecting a decompression container and decompression means by setting it to -0.09 [MPaG] or more. It is preferable to set it to −0.01 [MPaG] or less because it is possible to prevent bubbles from being mixed when the liquid discharged from the rotary cylinder collides with the inner wall surface of the decompression vessel.

回転筒内における液状物の滞在時間を保つために、回転筒の端部の開口部(図1では上部開口部3bおよび下部開口部3a)は回転筒胴部分の内壁と接触する事がないように設けられる。つまり回転筒胴部分の内壁から内側に離間して開口部が設けられる。開口部が回転筒胴部分の内壁と接触しないので、液状物は、回転筒内で或る厚みを有する円管状となることができる。この厚みを確保することで滞在時間を確保することが可能となり、微細な気泡であっても液状物の内部から液面へと移動する時間を確保でき、脱泡が良好に進むので好適である。   In order to maintain the residence time of the liquid substance in the rotating cylinder, the openings (the upper opening 3b and the lower opening 3a in FIG. 1) of the end of the rotating cylinder do not come into contact with the inner wall of the rotating cylinder. Is provided. That is, the opening is provided inwardly spaced from the inner wall of the rotating barrel portion. Since the opening does not come into contact with the inner wall of the rotating cylinder body portion, the liquid material can be a circular tube having a certain thickness in the rotating cylinder. By securing this thickness, it becomes possible to secure the staying time, and even if it is a fine bubble, it is possible to secure the time to move from the inside of the liquid material to the liquid surface, and it is preferable because defoaming proceeds well. .

このような開口部の形状や個数は適宜決めることができる。開口部は、例えば図2、図3あるいは図4に示す構造とすることができる。回転筒の底面に、回転筒の回転中心軸と同心の円状の開口部(ここでは回転筒上端の開口部3bとする)が1つ設けられた場合を図2に示す。開口部3bの最も外側すなわち開口部の外周は、回転筒胴部の内壁3f面より内側にある。図3には、回転筒の底面に複数の同一円状の開口部3bが設けられた場合を示す。各開口部の中心は、回転筒の回転中心軸と同心の円周上に等間隔に、軸対称に配されている。開口部の最も外側は、回転筒胴部の内壁3f面より内側にある。図4に示される形態では、回転筒の底面に、回転筒胴部の内壁3f面の直径より小さい外直径を有する底面部材3gが設けられ、底面部材の胴部によって開口部を形成している。底面部材は一端(図中上端)に底面を有する中空円筒状の部材であり、この底面部材の胴部に穴3jが複数個、底面の胴部の周方向に所定の間隔で設けられる。   The shape and number of such openings can be determined as appropriate. The opening can have a structure shown in FIG. 2, FIG. 3, or FIG. 4, for example. FIG. 2 shows a case where one circular opening (here, the opening 3b at the upper end of the rotating cylinder) is provided on the bottom surface of the rotating cylinder and concentric with the rotation center axis of the rotating cylinder. The outermost side of the opening 3b, that is, the outer periphery of the opening is on the inner side of the inner wall 3f surface of the rotating cylinder body. FIG. 3 shows a case where a plurality of identical circular openings 3b are provided on the bottom surface of the rotating cylinder. The centers of the openings are arranged symmetrically at equal intervals on a circumference concentric with the rotation center axis of the rotating cylinder. The outermost side of the opening is inside the surface of the inner wall 3f of the rotating cylinder body. In the form shown in FIG. 4, a bottom surface member 3g having an outer diameter smaller than the diameter of the inner wall 3f surface of the rotating cylinder body is provided on the bottom surface of the rotating cylinder, and an opening is formed by the body of the bottom surface member. . The bottom surface member is a hollow cylindrical member having a bottom surface at one end (upper end in the figure), and a plurality of holes 3j are provided in the body portion of the bottom surface member at a predetermined interval in the circumferential direction of the body portion of the bottom surface.

開口部が回転筒胴部分の内壁面と接触していないことによって、回転筒内における液状物の滞在時間を確保できる。よって、液状物の粘度や処理量、除去したい気泡の大きさによって、回転筒の回転数を変更することで、液状物の脱泡の運転条件を適宜選定できるので工業的に有利である。開口部が回転筒胴部分の内壁と接触していると、液状物が回転筒内面に供給され内部で円管状にされると同時に速やかに遠心力により回転筒内部から減圧容器内面に向かって飛散してしまう。このとき回転筒胴部の内面での滞在時間が短く、気泡の除去が良好に進まない。さらに液状物がそのまま回転筒から飛散し減圧容器内面に衝突すると、脱泡されていない気泡の微細化を招き、除去しにくい微細な気泡の数を増やすことになる。   Since the opening portion is not in contact with the inner wall surface of the rotating cylinder body portion, the residence time of the liquid material in the rotating cylinder can be secured. Therefore, it is industrially advantageous because the operating conditions for defoaming the liquid material can be selected as appropriate by changing the rotation speed of the rotating cylinder according to the viscosity of the liquid material, the processing amount, and the size of bubbles to be removed. When the opening is in contact with the inner wall of the rotating cylinder body, the liquid material is supplied to the inner surface of the rotating cylinder and is made circular inside, and at the same time, the liquid is quickly scattered from the inner side of the rotating cylinder toward the inner surface of the vacuum vessel by centrifugal force. Resulting in. At this time, the residence time on the inner surface of the rotating cylinder body is short, and the removal of bubbles does not proceed well. Further, when the liquid material is directly scattered from the rotating cylinder and collides with the inner surface of the decompression vessel, the bubbles that have not been defoamed are refined, and the number of fine bubbles that are difficult to remove increases.

液状物が排出される開口部の最外径(半径)の大きさ(開口部の回転中心軸から最も遠い点と回転中心軸との水平方向の距離。図5においてRoutで示される。)と回転筒の内径(半径)すなわち回転筒胴部分の内壁面の半径(R)の関係は、Rout/Rが0.2〜0.8の範囲が好ましい。この比を0.2以上とすることにより、回転筒内に液状物が多く滞在して回転部に負荷がかかり機械強度上コストの上昇を招くことを防止することができる。また、液状物内を気泡が移動するのに時間がかかり効率が悪くなって処理量が低下することを防止することができる。上記比を0.8以下とすることにより、気泡が液状物の内部を移動するに要する時間が短くなって滞在時間の調整も難しくなり、工業的に安定した処理が難しくなることを防止することができる。機械強度上のコストと処理量のバランスにより、Rout/Rは0.3〜0.6の範囲がより好ましい。   The size of the outermost diameter (radius) of the opening through which the liquid material is discharged (the distance in the horizontal direction between the point farthest from the rotation center axis of the opening and the rotation center axis; indicated by Rout in FIG. 5). As for the relationship between the inner diameter (radius) of the rotating cylinder, that is, the radius (R) of the inner wall surface of the rotating cylinder body, Rout / R is preferably in the range of 0.2 to 0.8. By setting this ratio to 0.2 or more, it is possible to prevent a large amount of liquid material from staying in the rotating cylinder, causing a load on the rotating portion and increasing the cost in terms of mechanical strength. Further, it takes time for the bubbles to move in the liquid substance, and it is possible to prevent the efficiency from being deteriorated and the processing amount from being lowered. By controlling the ratio to 0.8 or less, the time required for bubbles to move inside the liquid material is shortened, and it is difficult to adjust the residence time, thereby preventing industrially stable processing from becoming difficult. Can do. Rout / R is more preferably in the range of 0.3 to 0.6 due to a balance between mechanical strength cost and throughput.

また、回転筒の内直径(回転筒胴部分の内壁の直径)Dと、回転筒胴部の内面の長さ(L)については、L/Dが1〜10の範囲が望ましい。なおD=2Rである。L/Dを1以上とすることにより、回転筒内に滞在する液状物が少なくなって処理量が低下することを防止することができる。L/Dを10以下とすることにより、回転部の負荷が大きくなり機械設計上、コストが上昇することを防止することができる。また、L/Dを10以下とすることにより、液状物の滞在量が多くなって品種切り替え時に洗浄性が低下することを防止することができる。L/Dが、3〜7であればより好ましい。   Moreover, about the inner diameter (diameter of the inner wall of a rotating cylinder trunk | drum) D and the length (L) of the inner surface of a rotating cylinder trunk | drum, L / D is the range of 1-10. Note that D = 2R. By setting L / D to 1 or more, it is possible to prevent the amount of liquid staying in the rotating cylinder from decreasing and the processing amount from decreasing. By setting L / D to 10 or less, it is possible to prevent an increase in the load on the rotating part and increase in cost due to mechanical design. Further, by setting L / D to 10 or less, it is possible to prevent the staying amount of the liquid material from increasing and the cleaning performance from being deteriorated at the time of product type switching. More preferably, L / D is 3-7.

開口部は少なくとも回転筒の下部に設ける。回転筒下部に開口部があると運転停止後に回転筒内部に残留した液状物を確実に排出することが容易で、品種切り替え作業が容易になる。回転筒下部に開口部が無いと回転筒内に液状物が残留し、品種切り替えの作業性を著しく悪化させる。   The opening is provided at least in the lower part of the rotating cylinder. If there is an opening in the lower part of the rotating cylinder, it is easy to reliably discharge the liquid material remaining inside the rotating cylinder after the operation is stopped, and the product switching operation is facilitated. If there is no opening at the bottom of the rotating cylinder, liquid material remains in the rotating cylinder, and the operability for changing the product type is significantly deteriorated.

回転筒内に供給された液状物をより良好に脱泡し、回転筒内をショートパスさせること無くピストンフローで流すために、開口部は回転筒の上下端部の両方にそれぞれ設け、一方の開口部から液状物供給管を挿入して液状物を供給し、他方の開口部から液状物を排出させることが好ましい。このとき、図5に示すように供給側の開口部の最外径(半径)の大きさ(Rin)を他方の開口部の最外径の大きさ(Rout)より小さくする事で他方の開口部は排出側となりピストンフローが確実に形成できる(図5では下端の開口部から液状物を供給し、上端の開口部から排出する)。Rout/Rinの比は、回転筒や液状物供給管の設計により適宜設定できる。供給側の開口部から供給された液状物が、排出側の開口部に向かって移動する間に脱泡作用が進み、その進行に合わせて液状物が移動することで、脱泡が進んでいない液状物がショートパスして排出されるのを防ぐ事が可能になる。   In order to defoam the liquid material supplied into the rotating cylinder better and to flow in the piston flow without causing a short pass in the rotating cylinder, openings are provided on both the upper and lower ends of the rotating cylinder, respectively, It is preferable to insert the liquid material supply pipe from the opening to supply the liquid material and to discharge the liquid material from the other opening. At this time, as shown in FIG. 5, the size (Rin) of the outermost diameter (radius) of the opening on the supply side is made smaller than the size (Rout) of the outermost diameter of the other opening. The portion becomes the discharge side, and the piston flow can be reliably formed (in FIG. 5, the liquid material is supplied from the opening at the lower end and discharged from the opening at the upper end). The ratio of Rout / Rin can be appropriately set depending on the design of the rotating cylinder and the liquid material supply pipe. The defoaming action proceeds while the liquid material supplied from the supply-side opening moves toward the discharge-side opening, and the defoaming does not proceed by moving the liquid according to the progress. It is possible to prevent the liquid material from being discharged in a short pass.

さらには回転筒下部の開口部に液状物供給管を挿入して液状物を供給し、上端部の開口部から液状物を排出することがより好ましい。このとき、下部開口部の最外径(半径)の大きさは、上部開口部の最外径(半径)より小さい事でピストンフローを形成できる。回転筒を上部で固定して回転させると回転筒の回転軸の固定と回転筒の回転バランスの維持が容易になるので、機械設計上有利である。さらには回転筒下部をより単純な構造にすることが可能となり品種切り替え時の残液の処理などの作業性が良好となる。よって、液状物供給管は下部開口部から挿入し、上部開口部から液状物を排出させるほうが、機械設計上有利になり工業上好適であり、多品種生産性も向上する。   Further, it is more preferable that a liquid material supply pipe is inserted into the opening at the bottom of the rotating cylinder to supply the liquid material, and the liquid material is discharged from the opening at the upper end. At this time, the piston flow can be formed because the outermost diameter (radius) of the lower opening is smaller than the outermost diameter (radius) of the upper opening. If the rotating cylinder is fixed and rotated at the upper part, it is advantageous in mechanical design because it becomes easy to fix the rotating shaft of the rotating cylinder and maintain the rotational balance of the rotating cylinder. Furthermore, it becomes possible to make the lower part of the rotating cylinder a simpler structure, and the workability such as the treatment of the remaining liquid at the time of product type switching is improved. Therefore, inserting the liquid material supply pipe from the lower opening and discharging the liquid material from the upper opening is advantageous in terms of machine design and is industrially preferable, and also improves the productivity of various products.

回転筒を鉛直方向の回転中心軸で回転させることにより、回転筒胴部の内壁面で効率よく液状物を円管状にすることができる。さらに鉛直方向であれば、停止時も、内部の残留液状物が回転筒下端部の開口部から重力によって排出されるので、多品種の品種切り替え作業にも好適である。開口部が回転筒胴部の内壁面と接触していない状態で、回転筒を傾けた状態や水平な状態で回転させては、停止時に回転筒内部に液状物が残留し、品種切り替えの作業性を著しく低下させる。   By rotating the rotating cylinder around the rotation center axis in the vertical direction, the liquid material can be efficiently formed into a tubular shape on the inner wall surface of the rotating cylinder body. Further, in the vertical direction, even when stopped, the residual liquid material inside is discharged by gravity from the opening at the lower end of the rotating cylinder, which is suitable for a variety of product switching operations. If the rotating cylinder is rotated in a tilted or horizontal state with the opening not in contact with the inner wall surface of the rotating cylinder body, the liquid material remains inside the rotating cylinder when stopped, and the product is switched. Remarkably decreases the performance.

回転筒の内部には、円盤状もしくは円筒状の部材であって回転筒の回転中心軸に垂直な面の断面外周が円状の部材(断面外周が円状の部材)が設けられる。液状物は、断面外周が円状の部材と回転筒の内壁面との間に形成された隙間を通り、開口部を経由して、回転筒の内部から減圧容器内へと排出される。よって断面外周が円状の部材は、良好に脱泡された液状物を回転筒の内部においてピストンフローで排出するために、液状物供給管と開口部(液状物を回転筒から排出させる開口部)の間に設ける事が好ましい。さらには液状物を回転筒から排出させる開口部の近傍に設けることが好ましい。   Inside the rotary cylinder, a disk-shaped or cylindrical member having a circular cross-sectional outer periphery (a member having a circular cross-sectional outer periphery) on a plane perpendicular to the rotation center axis of the rotary cylinder is provided. The liquid material passes through a gap formed between a member having a circular cross-sectional outer periphery and the inner wall surface of the rotating cylinder, and is discharged from the inside of the rotating cylinder into the decompression container via the opening. Therefore, a member having a circular cross-section outer periphery is provided with a liquid material supply pipe and an opening (an opening for discharging the liquid material from the rotating cylinder) in order to discharge a well-defoamed liquid substance by a piston flow inside the rotating cylinder. ) Is preferably provided. Furthermore, it is preferable to provide in the vicinity of the opening for discharging the liquid material from the rotating cylinder.

図6には、断面外周が円状の部材の例として円盤状部材3cを示す。断面外周が円状の部材の外径(半径)(Rb)は、回転筒端部の開口部の回転筒回転中心軸からの最外径(半径)(Rout)より大きく、かつ回転筒胴部の内壁面とは隙間(Th)を有する大きさとする。断面外周が円状の部材によって、回転筒内部の液状物を回転筒開口部から排出する際に、断面外周が円状の部材と回転筒胴部の内壁面との隙間を通過させて排出させることができる。筒胴部の内壁面で円管状化した液状物の内部を、気泡が内壁面部から液面に向かって移動する。よって断面外周が円状の部材と回転筒内壁面の隙間(Th)を通って開口部に送られ排出される液状物は、気泡が除去された部分となる。断面外周が円状の部材が存在しないと、液面に近い液状物が開口部から排出されることになるが、気泡は液面に向かって移動するので、排出される液状物は気泡が多いことになり、脱泡が良好に進まない。   FIG. 6 shows a disk-shaped member 3c as an example of a member having a circular cross-sectional outer periphery. The outer diameter (radius) (Rb) of the member having a circular cross-sectional outer periphery is larger than the outermost diameter (radius) (Rout) of the opening at the end of the rotating cylinder from the rotating cylinder rotation center axis, and the rotating cylinder body The inner wall surface has a size having a gap (Th). When the liquid in the rotating cylinder is discharged from the opening of the rotating cylinder by the member having the circular outer periphery, the liquid is discharged through the gap between the member having the circular outer periphery and the inner wall surface of the rotating cylinder body. be able to. Bubbles move from the inner wall surface toward the liquid surface inside the liquid material formed into a tubular shape by the inner wall surface of the cylinder body. Therefore, the liquid substance which is sent to the opening through the gap (Th) between the member having a circular cross section and the inner wall surface of the rotating cylinder is a portion from which bubbles are removed. If there is no member whose outer periphery is circular, the liquid material close to the liquid level will be discharged from the opening, but since the bubbles move toward the liquid surface, the discharged liquid material has many bubbles. As a result, defoaming does not proceed well.

このとき、Rbと回転筒の内径(半径)Rの比、Rb/Rは0.85〜0.99の範囲が好ましい。Rb/Rを0.85以上とすることにより、気泡を含んだ液が排出部に向かって流れ易くなることを防止し、良好な脱泡を行うことができる。0.99以下とすることにより、断面外周が円状の部材と回転筒内壁面との隙間(Th)が小さくなり液状物が移動するときの抵抗が大きくなり、処理量が低下することを抑制することができる。   At this time, the ratio of Rb to the inner diameter (radius) R of the rotating cylinder, Rb / R, is preferably in the range of 0.85 to 0.99. By setting Rb / R to 0.85 or more, it is possible to prevent the liquid containing bubbles from easily flowing toward the discharge portion, and to perform good defoaming. By setting the ratio to 0.99 or less, the gap (Th) between the member having a circular cross-section outer periphery and the inner wall surface of the rotating cylinder is reduced, the resistance when the liquid material moves is increased, and the throughput is suppressed from being reduced. can do.

液状物供給管4は、回転する回転筒の開口部から、液状物を回転筒内に供給する。液状物が均一性良く回転筒内で円管状化するように液状物を供給できるような液状物供給管の形状および構造を適宜採用することができる。例えば、液状物供給管の先端を回転筒内壁面に近接するように設置することもできる。あるいは図1に示すように、回転筒内に回転筒と一体となって回転する分散板3dを設けて、分散板に液状物が接触するように液状物供給管を設置すると好適である。回転筒内に分散板を設けることで、液状物供給管を回転筒の回転中心軸上に設置する事ができ、液状物は分散板上に供給された後速やかにかつ優れて均一に回転筒内壁面に移動するため、回転体としてバランスに優れ機械の強度設計上優位となり好適である。   The liquid material supply pipe 4 supplies the liquid material into the rotating cylinder from the opening of the rotating rotating cylinder. The shape and structure of the liquid material supply pipe that can supply the liquid material so that the liquid material is circularly formed in the rotating cylinder with good uniformity can be appropriately adopted. For example, the tip of the liquid supply pipe can be installed so as to be close to the inner wall surface of the rotating cylinder. Alternatively, as shown in FIG. 1, it is preferable to provide a dispersion plate 3d that rotates integrally with the rotating cylinder in the rotating cylinder, and to install a liquid material supply pipe so that the liquid material contacts the dispersing plate. By providing the dispersion plate in the rotating cylinder, the liquid material supply pipe can be installed on the rotation center axis of the rotating cylinder, and the liquid material is quickly and excellently and uniformly rotated after being supplied onto the dispersing plate. Since it moves to the inner wall surface, it is excellent in balance as a rotating body and is advantageous in terms of mechanical strength design.

回転筒を回転させるための駆動装置2には、圧縮ガスを用いたタービン方式、ベルト駆動など公知の駆動力伝達手段2cとモーターの組み合わせ、特殊高速モーターを使用する方法などを用いる事ができる。運転範囲を広く設定し、かつより微細な気泡を除去するには、回転筒を2,000G(Gは重力加速度を表す)以上の遠心加速度を達成しうる回転数で回転させ、かつその回転数が可変できる事が好ましい。タービン方式は出力エネルギーが小さいため試験設備規模の処理には適するが工業規模では機械が大型化しコスト、騒音が大きくなる傾向がある。特殊高速モーターを回転筒に直結すると駆動部分の構造は簡単となるが、速度可変式の特殊高速モーターは非常に高価であり保守性も悪い傾向がある。よって、ベルト駆動など公知の駆動力伝達手段と汎用インバーターモーターの組み合わせが好ましい。この方式では、高粘度液から極めて微細な気泡を効率よく除去する条件として、回転筒において2,000G以上の遠心加速度を達成する際にも、機械構造が単純で、工業的に有利で好適である。   The driving device 2 for rotating the rotating cylinder may be a turbine method using compressed gas, a combination of a known driving force transmission means 2c such as a belt drive and a motor, a method using a special high-speed motor, or the like. In order to widen the operating range and remove finer bubbles, the rotating cylinder is rotated at a rotational speed capable of achieving a centrifugal acceleration of 2,000 G or more (G represents gravitational acceleration), and the rotational speed. Is preferably variable. The turbine system is suitable for processing on a test facility scale because of its low output energy, but on an industrial scale, there is a tendency for the machine to become larger and cost and noise to increase. If the special high-speed motor is directly connected to the rotating cylinder, the structure of the drive part becomes simple, but the variable-speed special high-speed motor is very expensive and tends to have poor maintainability. Therefore, a combination of a known driving force transmission means such as a belt drive and a general-purpose inverter motor is preferable. In this method, the mechanical structure is simple, industrially advantageous and suitable for achieving centrifugal acceleration of 2,000 G or more in the rotating cylinder as a condition for efficiently removing extremely fine bubbles from the high-viscosity liquid. is there.

減圧容器内の減圧状態を一定のレベルに維持するために、真空シール部を適宜設けることができる。減圧容器内で回転筒を回転させるため、回転する軸部に対して真空シール部を設ける事ができる。回転筒の回転軸に真空シール部を設けるために、適宜市販の真空シール部品を使用する事ができる。ただし、回転筒での遠心加速度が2,000G以上を達成する回転数の条件で回転筒を回転させる際には、図1のように、駆動装置にベルト伝達駆動方式などの駆動力伝達手段を用い、駆動装置の駆動軸2bと回転筒の回転軸3eとが直結していない構造として、駆動軸部には回転する軸部に対する真空シール部2aを設け、回転軸3eには真空シール部を設けないことが好ましい。このとき回転筒を収容する部分から駆動軸部の真空シール部までを一体的に減圧可能な容器を用いる。微細な気泡を除去しようとしたとき回転筒を高速で回転させる事が有効である。駆動力伝達手段によって駆動軸2bは低速回転、回転筒の回転軸は高速回転とすることにより、駆動装置に汎用の装置を選定する事が可能となり、工業上好適である。さらにこのとき、真空シール部を低速側の駆動装置の駆動軸に設けることで、低コストの汎用の真空シール部品を使用する事ができ、工業的により好適である。   In order to maintain the decompressed state in the decompression container at a certain level, a vacuum seal portion can be provided as appropriate. Since the rotating cylinder is rotated in the decompression vessel, a vacuum seal portion can be provided for the rotating shaft portion. In order to provide the vacuum seal portion on the rotating shaft of the rotary cylinder, a commercially available vacuum seal component can be used as appropriate. However, when the rotating cylinder is rotated under the condition of the number of rotations at which the centrifugal acceleration in the rotating cylinder achieves 2,000 G or more, as shown in FIG. 1, a driving force transmitting means such as a belt transmission driving system is provided in the driving device. As a structure in which the drive shaft 2b of the drive device and the rotary shaft 3e of the rotary cylinder are not directly connected, the drive shaft portion is provided with a vacuum seal portion 2a for the rotating shaft portion, and the rotary shaft 3e is provided with a vacuum seal portion. It is preferable not to provide it. At this time, a container capable of integrally reducing the pressure from the portion accommodating the rotating cylinder to the vacuum seal portion of the drive shaft portion is used. When trying to remove fine bubbles, it is effective to rotate the rotating cylinder at high speed. By making the drive shaft 2b rotate at a low speed and the rotating shaft of the rotating cylinder at a high speed by the driving force transmitting means, a general-purpose device can be selected as the drive device, which is industrially suitable. Further, at this time, by providing the vacuum seal portion on the drive shaft of the drive device on the low speed side, a low-cost general-purpose vacuum seal component can be used, which is industrially more preferable.

回転筒内部に存在する液状物が回転筒の回転数に近い回転数で回転するように、回転筒内部には液状物の共回り促進手段を有する事が好ましい。特に高粘度液や粘度のせん断速度依存性を有する液状物では、回転筒内壁面近傍でスリップが発生しやすく、液状物のほとんどが回転筒の回転数よりも遅く回転する現象が発生し、所定の回転数すなわち遠心力が発生せず、脱泡が効率よく行われないことがある。よって、回転筒の回転に応じて、内部の液状物に回転する力を伝え、回転筒と同じ回転数で回転させることを可能とする、共回り促進手段を設ける事が望ましい。共回り促進手段は、液状物が回転筒と同じ回転数で回転できるような構造であれば、その形状に特に制限はない。共回り促進手段を溶接や接着などで回転筒の内壁面に固定させてもよいし、ばねやねじなどで固定させてもよい。回転筒の内壁面に突起物を設けたり、(撹拌)羽根状のものを固定したりできる。図7は、3枚の羽根を有する共回り促進手段3hをばね3iで固定させた例を示す。   It is preferable to have a liquid material co-rotation promoting means inside the rotating cylinder so that the liquid substance existing inside the rotating cylinder rotates at a rotational speed close to the rotational speed of the rotating cylinder. In particular, in the case of high viscosity liquids and liquids having viscosity dependency on the shear rate, slip is likely to occur near the inner wall surface of the rotating cylinder, and a phenomenon occurs in which most liquid substances rotate slower than the rotational speed of the rotating cylinder. , That is, centrifugal force is not generated, and degassing may not be performed efficiently. Therefore, it is desirable to provide a co-rotation promoting means that transmits a rotating force to the liquid material inside according to the rotation of the rotating cylinder and makes it possible to rotate at the same rotation speed as the rotating cylinder. The shape of the corotation promoting means is not particularly limited as long as the liquid material can be rotated at the same rotational speed as the rotating cylinder. The co-rotation promoting means may be fixed to the inner wall surface of the rotating cylinder by welding or adhesion, or may be fixed by a spring or a screw. A protrusion can be provided on the inner wall surface of the rotating cylinder, or a (stirring) blade-like object can be fixed. FIG. 7 shows an example in which the common rotation promoting means 3h having three blades is fixed by a spring 3i.

本発明の脱泡装置において、各構造部の材質は構造体としての強度が保持できれば特に制限は無く、鉄鋼、ステンレス鋼、アルミ鋼などの非鉄金属及び合金類、ガラスやセラミックなどの無機類、合成樹脂類などを使用する事ができる。また、接液部には耐食処理や耐磨耗処理などのために、熱処理、めっき、コーティング、肉盛、その他特殊処理等の表面処理を施しても良い。機械的安定性とコストの面からステンレス鋼が好適で、さらに必要に応じて表面処理を施すこともできる。   In the defoaming device of the present invention, the material of each structural part is not particularly limited as long as the strength as a structure can be maintained, non-ferrous metals and alloys such as steel, stainless steel, and aluminum steel, inorganics such as glass and ceramic, Synthetic resins can be used. Further, the wetted part may be subjected to surface treatment such as heat treatment, plating, coating, overlaying, and other special treatments for corrosion resistance treatment and wear resistance treatment. Stainless steel is preferred from the standpoint of mechanical stability and cost, and surface treatment can be applied as necessary.

特に液状物に接する表面を研磨するなどして表面粗さを小さくすることは、気泡の付着を防止する上で好ましい。   In particular, it is preferable to reduce the surface roughness by polishing the surface in contact with the liquid material in order to prevent bubbles from adhering.

本発明の脱泡装置によって、水、油、溶剤、高分子単量体、高分子重合体、その他混合物など適宜の種類の液状物を処理することができ、また適宜の粘度の液状物を処理することができる。液状物の粘度に制限はない。特に、100[mPa・s]以上の高粘度液体の脱泡にはより好適に用いることができる。100[mPa・s]未満の粘度であれば、より高い生産性を達成できる。   With the defoaming apparatus of the present invention, it is possible to treat an appropriate kind of liquid material such as water, oil, solvent, polymer monomer, polymer polymer, and other mixtures, and to treat a liquid material having an appropriate viscosity. can do. There is no limitation on the viscosity of the liquid. In particular, it can be used more suitably for defoaming a high viscosity liquid of 100 [mPa · s] or more. If the viscosity is less than 100 [mPa · s], higher productivity can be achieved.

スラリーのように媒体である液状物と比べて比重が大きい固形物が混在している場合は、その固形物が回転筒内に蓄積されるので、蓄積した固形物を適宜除去することで本発明の脱泡装置が適用可能である。   When solids having a specific gravity greater than that of the liquid material as a medium are mixed, such solids are accumulated in the rotating cylinder, and thus the present invention can be achieved by appropriately removing the accumulated solids. The defoaming apparatus can be applied.

本発明の脱泡装置によって除去できる気泡の大きさに制限はない。直径が数百ミクロンから数ミクロンの気泡でも除去できる。特に、高粘度の液状物から直径が10ミクロン以上の気泡を除去することを、工業的に有利に、かつ多品種生産の作業性も良好に、達成できる。   There is no restriction | limiting in the magnitude | size of the bubble which can be removed with the defoaming apparatus of this invention. Even bubbles with a diameter of several hundred microns to several microns can be removed. In particular, it is industrially advantageous to remove bubbles having a diameter of 10 microns or more from a high-viscosity liquid material, and the workability of multi-product production can be achieved well.

本発明の液状物の塗布装置の一実施例を図9に示す。ただし、本発明は図9に制限されるものではなく、本発明の範囲内で種種の変形を行う事が可能である。   One embodiment of the liquid material coating apparatus of the present invention is shown in FIG. However, the present invention is not limited to FIG. 9, and various modifications can be made within the scope of the present invention.

図9に示すように、供給口24から供給された液状物は、送液装置23aにより濾過部20へ送られる。濾過部では液状物中の異物を除去する。濾過部は液状物の性状と除去すべき異物の性状に応じて、その素材や形式および運転条件は適宜に選定できる。除去すべき異物に制限は無い。ろ過素材20aには、天然繊維、合成繊維、金属繊維、無機質などを用いることができ、これらを、平膜状、袋状、プリーツや円盤、円筒状といった成形膜状等に加工して用いる事ができる。除去すべき異物に応じてろ過素材を選定する事ができる。   As shown in FIG. 9, the liquid substance supplied from the supply port 24 is sent to the filtration part 20 by the liquid sending apparatus 23a. The filtering part removes foreign matters in the liquid material. The material, type, and operating conditions of the filtration unit can be appropriately selected according to the properties of the liquid material and the properties of the foreign matter to be removed. There is no restriction on the foreign matter to be removed. For the filtering material 20a, natural fibers, synthetic fibers, metal fibers, inorganic materials, etc. can be used, and these are processed into a molded membrane shape such as a flat membrane shape, a bag shape, a pleat, a disk, or a cylindrical shape. Can do. The filtering material can be selected according to the foreign matter to be removed.

脱泡部21は、濾過部に続いて構成される。濾過部は多大な表面積を有するため、最初に液状物を通液する際に気泡を巻き込みやすい。よって、濾過部の後に脱泡部を構成することは、異物と気泡をより確実に除去できるので好適である。   The defoaming unit 21 is configured subsequent to the filtering unit. Since the filtration part has a great surface area, it is easy to entrain air bubbles when the liquid is first passed. Therefore, it is preferable to configure the defoaming part after the filtration part because foreign substances and bubbles can be removed more reliably.

脱泡部のあとに濾過部を構成すると、濾過部より下流側の気泡の除去およびその存在の管理が困難になる場合があり工業的に有利とは言えない。例えば、製造開始前の放流によって気泡を除去しようとしても、気泡を放流物に同伴させてゼロにするための条件を確定することは容易ではない。さらに濾過部で異物が捕捉されて濾材の交換が必要になると、その交換作業のたびに気泡の混入の懸念が発生する。   If the filtration unit is configured after the defoaming unit, it may be difficult to remove bubbles on the downstream side of the filtration unit and manage the presence thereof, which is not industrially advantageous. For example, even if an attempt is made to remove bubbles by discharge before the start of production, it is not easy to determine the conditions for bringing bubbles to the discharge product to zero. Furthermore, if foreign matter is captured by the filtration unit and the filter medium needs to be replaced, there is a concern that air bubbles may be mixed in each replacement operation.

本発明では、脱泡部に上述した脱泡装置によって遠心脱泡の原理を用いているため、遠心部に液状物を供給する前に濾過部を構成することで、遠心部で異物が滞留することもなくなり、さらに好適である。   In the present invention, since the principle of centrifugal defoaming is used for the defoaming unit in the defoaming unit, foreign matters stay in the centrifugal unit by configuring the filtration unit before supplying the liquid material to the centrifugal unit. This is also preferable.

脱泡部21で脱泡された液状物は、送液装置23bにより塗布部22へ送られる。   The liquid material defoamed by the defoaming unit 21 is sent to the coating unit 22 by the liquid feeding device 23b.

塗布部は、公知の塗布装置を使用する事ができる。被塗工部の形状や、液状物の性状および運転条件によって、適宜に選定できる。被塗工物がフィルムやシート様の形態の場合は、ロールコーターやダイコーター、ナイフコーターやエアコーターなどの方法が知られている。被塗工物にスプレー等によって噴き付ける方法や液溜まり部に被塗工物をディッピングする方法も可能である。被塗工物が光学ディスクなど比較的小さい形状にはスピンコーターなどの方法が知られている。これらの例示のほか、公知の塗布装置から適宜選んで利用することができる。   A well-known coating apparatus can be used for an application part. It can be selected appropriately depending on the shape of the part to be coated, the properties of the liquid and the operating conditions. When the object to be coated is in the form of a film or a sheet, methods such as a roll coater, a die coater, a knife coater, and an air coater are known. A method of spraying the object to be coated with a spray or the like, and a method of dipping the object to be coated in the liquid reservoir are also possible. For a relatively small shape such as an optical disk to be coated, a method such as a spin coater is known. In addition to these examples, it can be appropriately selected from known coating apparatuses.

また、濾過部、脱泡部、塗布部のそれぞれにおいて、圧送タンク式、ポンプ式などの送液装置またはバルブ類を設けることには何ら制限は無く、液状物の性状や運転条件によって、適宜に選定できる。   In addition, there are no restrictions on the provision of liquid feeding devices such as a pressure tank type and a pump type or valves in each of the filtration unit, the defoaming unit, and the coating unit, depending on the properties and operating conditions of the liquid material. Can be selected.

本発明の塗布装置によって、水、油、溶剤、高分子単量体、高分子重合体、その他混合物など適宜の種類の液状物を被塗工物に塗布することができ、また適宜の粘度の液状物を被塗工物に塗布することができる。液状物の粘度に制限はない。特に、100[mPa・s]以上の高粘度液体の塗布にはより好適に用いることができる。100[mPa・s]未満の粘度であれば、より高い生産性を達成できる。   With the coating apparatus of the present invention, an appropriate kind of liquid material such as water, oil, solvent, polymer monomer, polymer polymer, and other mixtures can be applied to the object to be coated, and an appropriate viscosity can be applied. A liquid material can be applied to an object to be coated. There is no limitation on the viscosity of the liquid. In particular, it can be used more suitably for application of a high viscosity liquid of 100 [mPa · s] or more. If the viscosity is less than 100 [mPa · s], higher productivity can be achieved.

スラリーのように媒体である液状物と比べて比重が大きい固形物が混在している場合は、その固形物が濾過部や脱泡部の回転筒内に蓄積されるので、蓄積された固形物を適宜除去することで本発明の塗布装置が適用可能である。   When solids with a large specific gravity are mixed in comparison with liquid materials such as slurry, the solids are accumulated in the rotating cylinder of the filtration unit and defoaming unit. The applicator of the present invention can be applied by removing as appropriate.

このように本発明によれば、液状物は回転筒内で、回転の遠心力により円管状化し、開口部と断面外周が円状の部材とにより、滞在時間を優れて確保した上で、減圧と遠心力の作用で気泡の移動が進んだ液部分を選択的に排出させることができる。さらには共回り促進手段によって、より優れた遠心効果を与えることができる。また、回転筒の底部に開口部があり、回転筒を鉛直方向に設置することで、回転筒内に液状物が残留せず、品種切り替えも容易になる。駆動部は回転筒部の回転軸と直結させない構造により、高回転数での運転が可能になるばかりか、汎用の機械部品が使用できるので工業的にも非常に有利となる。   As described above, according to the present invention, the liquid material is formed into a tubular shape by the centrifugal force of rotation in the rotating cylinder, and the residence time is excellently secured by the opening and the member having a circular cross-sectional outer periphery. And the liquid part where the movement of the bubble progressed by the action of the centrifugal force can be selectively discharged. Furthermore, a superior centrifugal effect can be provided by the co-rotation promoting means. In addition, there is an opening at the bottom of the rotating cylinder, and the rotating cylinder is installed in the vertical direction, so that no liquid material remains in the rotating cylinder and the product switching is facilitated. The structure in which the drive unit is not directly connected to the rotating shaft of the rotating cylinder unit enables not only operation at a high rotation speed, but also general industrial parts can be used, which is very advantageous industrially.

〔実施例1〕
図8に示すように、上部開口部3b、下部開口部3a、円盤状部材3cを有する回転筒3を用意した。このとき、回転筒の内径(半径)R、回転筒の胴部の内面の長さL、液供給部の開口部(下部開口部)の最大外径(半径)Rin、液排出部(上部開口部)の最大外径(半径)Rout、円盤状部材の外径(半径)Rbは次の通りであった。
R:22.2mm、
L:204mm、
Rin:4.75mm、
Rout:12.5mm、
Rb:21mm。
[Example 1]
As shown in FIG. 8, a rotating cylinder 3 having an upper opening 3b, a lower opening 3a, and a disk-like member 3c was prepared. At this time, the inner diameter (radius) R of the rotating cylinder, the length L of the inner surface of the barrel of the rotating cylinder, the maximum outer diameter (radius) Rin of the opening (lower opening) of the liquid supply section, the liquid discharge section (upper opening) Portion) and the outer diameter (radius) Rb of the disk-shaped member were as follows.
R: 22.2 mm
L: 204 mm,
Rin: 4.75 mm,
Rout: 12.5mm,
Rb: 21 mm.

回転筒は、減圧容器1内に設けられ、回転筒の回転軸は、駆動装置2のインバーターモーターを直結することにより駆動した。回転軸に対する真空シール部2aは、減圧容器と回転筒の回転軸の間に設けた。   The rotating cylinder was provided in the decompression vessel 1, and the rotating shaft of the rotating cylinder was driven by directly connecting the inverter motor of the driving device 2. The vacuum seal portion 2a for the rotating shaft was provided between the decompression container and the rotating shaft of the rotating cylinder.

減圧容器に減圧手段接続口1aを設け、この接続口を不図示の真空ポンプと接続し減圧容器内部を減圧できるようにした。   The decompression vessel is provided with a decompression means connection port 1a, and this connection port is connected to a vacuum pump (not shown) so that the interior of the decompression vessel can be decompressed.

液状物供給管は、回転筒下部の開口部3aから回転筒内部に挿入し、減圧容器部に真空シール部4aと共に固定した。   The liquid material supply pipe was inserted into the rotary cylinder through the opening 3a at the lower part of the rotary cylinder, and fixed together with the vacuum seal part 4a to the decompression container part.

回転筒を3,000[rpm]で回転させ、液状物供給管を通じて回転筒内部に粘度100[mPa・s]の水あめを9.8[kg/h]で供給した。減圧容器内の圧力は、−0.09[MPaG]であった。   The rotating cylinder was rotated at 3,000 [rpm], and candy having a viscosity of 100 [mPa · s] was supplied at 9.8 [kg / h] into the rotating cylinder through the liquid supply pipe. The pressure in the vacuum vessel was -0.09 [MPaG].

連続運転中は回転筒の上部開口部から水あめが連続的に排出された。減圧容器内にたまった水あめは液排出口1bから不図示のポンプを用いて連続的に排出し、その水あめを縦横20[mm]深さ2[mm]の凹部を有する金属板に流し込み、デジタル顕微鏡で気泡の様子を確認した。直径が50[μm]を超える気泡は観察できず、良好な脱泡状態であった。   During continuous operation, candy was continuously discharged from the upper opening of the rotating cylinder. The water candy accumulated in the decompression container is continuously discharged from the liquid discharge port 1b using a pump (not shown), and the water candy is poured into a metal plate having recesses of 20 [mm] depth and 2 [mm] depth and width. The state of bubbles was confirmed with a microscope. Bubbles with a diameter exceeding 50 [μm] could not be observed, indicating a good defoamed state.

運転の後、水あめの供給を停止し、水あめの替わりに水を供給ししばらく運転した後に、水の供給、回転筒の回転および真空ポンプを停止させると、回転筒の下端部の開口部から内部の水が減圧容器内に排出された。念のため、回転筒を取り外して内部を観察すると、水あめおよび水の残留はなかった。   After operation, stop supplying the water candy, supply water instead of water candy, operate for a while and then stop the water supply, rotation of the rotating cylinder and the vacuum pump. Of water was discharged into the vacuum vessel. As a precaution, when the rotating cylinder was removed and the inside was observed, there was no candy or water remaining.

〔実施例2〕
液状物供給管を通じて回転筒内部に粘度3,500[mPa・s]の水あめを0.28[kg/h]で供給した以外は、実施例1と同様に運転し、金属板に流し込んだ水あめの気泡の様子をデジタル顕微鏡で観察した。直径が50[μm]を超える気泡は観察できず、良好な脱泡状態であった。
[Example 2]
The candy was run in the same manner as in Example 1 except that the candy having a viscosity of 3,500 [mPa · s] was supplied at 0.28 [kg / h] through the liquid supply pipe into the rotating cylinder. The bubbles were observed with a digital microscope. Bubbles with a diameter exceeding 50 [μm] could not be observed, indicating a good defoamed state.

運転の後、水あめの供給を停止し、水あめの替わりに水を供給ししばらく運転した後に、水の供給、回転筒の回転および真空ポンプを停止させると、回転筒の下端部の開口部から内部の水が減圧容器内に排出された。念のため、回転筒を取り外して内部を観察すると、水あめおよび水の残留はなかった。   After operation, stop supplying the water candy, supply water instead of water candy, operate for a while and then stop the water supply, rotation of the rotating cylinder and the vacuum pump. Of water was discharged into the vacuum vessel. As a precaution, when the rotating cylinder was removed and the inside was observed, there was no candy or water remaining.

〔実施例3〕
実施例1の回転筒を用い、図1に示すように、回転筒は減圧容器1内に設けられ、回転筒の回転軸は、駆動力伝達手段2cであるベルト伝達機構を介して駆動装置2のインバーターモーターにより駆動した。減圧容器と駆動装置2の駆動軸2bとの間に真空シール部2aを設け、回転筒の回転軸3eのまわりには真空シール部を設けなかった。また、回転筒内部に、図7に示す構造の通り、3枚羽根様のもので、回転中心軸から羽根の先端までの距離は21[mm]で、回転中心軸方向の長さは120[mm]、ばねで回転筒の内壁面と固定し、材質がステンレス鋼の共回り促進手段3hを設けた。
Example 3
As shown in FIG. 1, using the rotating cylinder of the first embodiment, the rotating cylinder is provided in the decompression vessel 1, and the rotating shaft of the rotating cylinder is connected to the driving device 2 via a belt transmission mechanism that is a driving force transmitting means 2c. It was driven by an inverter motor. A vacuum seal portion 2a was provided between the decompression vessel and the drive shaft 2b of the drive device 2, and no vacuum seal portion was provided around the rotation shaft 3e of the rotary cylinder. Further, as shown in FIG. 7, the rotary cylinder has a three-blade configuration, the distance from the rotation center axis to the tip of the blade is 21 [mm], and the length in the rotation center axis direction is 120 [ mm], fixed to the inner wall surface of the rotating cylinder with a spring, and provided with a co-rotation promoting means 3h made of stainless steel.

回転筒を10,000[rpm]で回転させ、液状物供給管を通じて回転筒内部に粘度3,500[mPa・s]の水あめを3[kg/h]で供給した。減圧容器内の圧力は−0.09[MPaG]であった。   The rotating cylinder was rotated at 10,000 [rpm], and a candy having a viscosity of 3,500 [mPa · s] was supplied at 3 [kg / h] into the rotating cylinder through the liquid supply pipe. The pressure in the vacuum container was −0.09 [MPaG].

連続運転中は回転筒の上部開口部から水あめが連続的に排出された。減圧容器内にたまった水あめは液排出口1bから不図示のポンプを用いて連続的に排出し、その水あめを縦横20[mm]深さ2[mm]の凹部を有する金属板に流し込み、デジタル顕微鏡で気泡の様子を確認した。直径が30[μm]を超える気泡は観察できず、良好な脱泡状態であった。   During continuous operation, candy was continuously discharged from the upper opening of the rotating cylinder. The water candy accumulated in the decompression container is continuously discharged from the liquid discharge port 1b using a pump (not shown), and the water candy is poured into a metal plate having recesses of 20 [mm] depth and 2 [mm] depth and width. The state of bubbles was confirmed with a microscope. Bubbles having a diameter exceeding 30 [μm] could not be observed, and it was in a good defoamed state.

運転の後、水あめの供給を停止し、水あめの替わりに水を供給ししばらく運転した後に、水の供給、回転筒の回転および真空ポンプを停止させると、回転筒の下端部の開口部から内部の水が減圧容器内に排出された。念のため、回転筒を取り外して内部を観察すると、水あめおよび水の残留はなかった。   After operation, stop supplying the water candy, supply water instead of water candy, operate for a while and then stop the water supply, rotation of the rotating cylinder and the vacuum pump. Of water was discharged into the vacuum vessel. As a precaution, when the rotating cylinder was removed and the inside was observed, there was no candy or water remaining.

〔実施例4〕
図9に示すように、濾過部20に、日本ポール製(プロファイル・スター、AB1A0503J)のフィルターエレメントを用い、脱泡部21には、実施例3で用いた脱泡装置を用い、濾過部を通過した水あめを、脱泡装置に供給し、実施例3と同様に脱泡した。次いで、脱泡装置の減圧容器内にたまった水あめをポンプ(送液装置)23bで連続的に塗布装置22のスピンコーター22bに送液した。スピンコーターに設置されたディスペンサーノズル22aから排出された水あめをスピンコーター上に固定した光ディスク基盤に塗布した。デジタル顕微鏡で光ディスク基盤上の水あめ中の気泡の様子を確認したところ、直径が30[μm]を越える気泡は観察できなかった。念のためにディスペンサーノズル22aから排出された水あめを縦横20[mm]深さ2[mm]の凹部を有する金属板に流し込み、デジタル顕微鏡で気泡の様子を確認した。異物や直径が50[μm]を超える気泡は観察できず、良好な状態であった。運転の後、水あめの供給を停止し、水あめの替わりに水を供給ししばらく運転した後に、水の供給、回転筒の回転および真空ポンプを停止させると、回転筒の下端部の開口部から内部の水が減圧容器内に排出された。念のため、回転筒を取り外して内部を観察すると、水あめおよび水の残留はなかった。
Example 4
As shown in FIG. 9, a filter element made by Nippon Pole (Profile Star, AB1A0503J) is used for the filtration unit 20, and the defoaming unit used in Example 3 is used for the defoaming unit 21. The passed candy was supplied to a defoaming apparatus and defoamed in the same manner as in Example 3. Subsequently, the candy accumulated in the decompression container of the defoaming device was continuously fed to the spin coater 22b of the coating device 22 by the pump (liquid feeding device) 23b. The candy discharged from the dispenser nozzle 22a installed in the spin coater was applied to the optical disk substrate fixed on the spin coater. When the state of bubbles in the candy on the optical disk substrate was confirmed with a digital microscope, bubbles with a diameter exceeding 30 [μm] could not be observed. As a precaution, the candy discharged from the dispenser nozzle 22a was poured into a metal plate having recesses of 20 [mm] depth and 2 [mm] depth and width, and the state of bubbles was confirmed with a digital microscope. Foreign matter and bubbles with a diameter exceeding 50 [μm] were not observed, and were in good condition. After operation, stop supplying the water candy, supply water instead of water candy, operate for a while and then stop the water supply, rotation of the rotating cylinder and the vacuum pump. Of water was discharged into the vacuum vessel. As a precaution, when the rotating cylinder was removed and the inside was observed, there was no candy or water remaining.

〔実施例5〕
実施例3の脱泡装置で、供回り促進手段を取り外した以外は実施例3と同様に脱泡を行った。排出された水あめを縦横20[mm]深さ2[mm]の凹部を有する金属板に流し込み、デジタル顕微鏡で気泡の様子を確認した。直径が100[μm]を超える気泡は観察できず、良好な脱泡状態であった。次いで、水あめの供給量を0.28[kg/h]で運転した。排出された水あめを縦横20[mm]深さ2[mm]の凹部を有する金属板に流し込み、デジタル顕微鏡で気泡の様子を確認した。直径が30[μm]を超える気泡は観察できず、非常に良好な脱泡状態であった。運転の後、水あめの供給を停止し、水あめの替わりに水を供給ししばらく運転した後に、水の供給、回転筒の回転および真空ポンプを停止させると、回転筒の下端部の開口部から内部の水が減圧容器内に排出された。念のため、回転筒を取り外して内部を観察すると、水あめおよび水の残留はなかった。
Example 5
In the defoaming apparatus of Example 3, defoaming was performed in the same manner as in Example 3 except that the rotation promoting means was removed. The discharged candy was poured into a metal plate having recesses of 20 [mm] depth and 2 [mm] depth and width, and the state of bubbles was confirmed with a digital microscope. Bubbles having a diameter exceeding 100 [μm] could not be observed, indicating a good defoamed state. Next, the candy was supplied at a feed rate of 0.28 [kg / h]. The discharged candy was poured into a metal plate having recesses of 20 [mm] depth and 2 [mm] depth and width, and the state of bubbles was confirmed with a digital microscope. Bubbles having a diameter exceeding 30 [μm] could not be observed, and it was in a very good defoamed state. After operation, stop supplying the water candy, supply water instead of water candy, operate for a while and then stop the water supply, rotation of the rotating cylinder and the vacuum pump. Of water was discharged into the vacuum vessel. As a precaution, when the rotating cylinder was removed and the inside was observed, there was no candy or water remaining.

〔比較例1〕
下部に開口部が無く、上部のみに開口部がある回転筒を用い、液状物供給管を上部の開口部から挿入した以外は実施例1と同様の脱泡装置を用い、実施例1と同様にして水あめの脱泡を行った。運転停止後に回転筒内には水あめが残留し、完全に除去するには分解するしかなかった。
[Comparative Example 1]
The same defoaming apparatus as in Example 1 was used except that a rotating cylinder having no opening in the lower part and having an opening only in the upper part was used, and the liquid supply pipe was inserted from the upper opening. The defoaming of the candy was performed. Water candy remained in the rotating cylinder after the operation was stopped, and the only way to remove it completely was to disassemble it.

実施例1、2に記載したとおり、本発明により、品種切り替えの作業性が高く、液状物の良好な脱泡状態を得る事ができた。また、実施例5に記載したとおり、回転筒を駆動力伝達手段を用いて駆動装置と接続し、駆動装置の駆動軸に真空シールを設けることで、より高粘度の液状物を、良好な状態で脱泡処理することができた。また、実施例3記載の通り、共回り促進手段を設けることによって、より高粘度の液状物を良好な状態で脱泡処理しつつ、処理量を高める事ができた。また、いずれの場合も、品種切り替えの作業が簡便であった。   As described in Examples 1 and 2, according to the present invention, it was possible to obtain a good defoamed state of the liquid material because of the high workability of changing the varieties. In addition, as described in Example 5, the rotating cylinder is connected to the driving device using the driving force transmission means, and the vacuum shaft is provided on the driving shaft of the driving device, so that the liquid material with higher viscosity is in a good state. The defoaming treatment was possible. Further, as described in Example 3, by providing the co-rotation promoting means, it was possible to increase the treatment amount while defoaming a higher viscosity liquid in a good state. Moreover, in any case, the work of changing the type was simple.

以上説明したとおり、本発明にかかる脱泡装置によれば、脱泡処理されにくい高粘度の液体に対しても、微細な気泡を除去する事ができる。また、本発明による塗布装置によれば、異物や微細な気泡が除去された液状物を被塗工物に高品質の状態で塗布する事ができる。また、品種切り替え作業が容易であるため、多品種生産には好適である。   As described above, according to the defoaming apparatus of the present invention, fine bubbles can be removed even from a highly viscous liquid that is not easily defoamed. Moreover, according to the coating apparatus by this invention, the liquid substance from which the foreign material and fine bubble were removed can be apply | coated to a to-be-coated article in a high quality state. In addition, since the product change operation is easy, it is suitable for multi-product production.

さらに、汎用の部品で構成できるため、工業的に有利である。   Furthermore, since it can be comprised with a general purpose component, it is industrially advantageous.

本発明の脱泡装置の一形態の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of one form of the defoaming apparatus of this invention. 回転筒端部の開口部の例を示す模式図である。It is a schematic diagram which shows the example of the opening part of a rotating cylinder end part. 回転筒端部の開口部の別の例を示す模式図である。It is a schematic diagram which shows another example of the opening part of a rotating cylinder end part. 回転筒端部の開口部の別の例を示す模式図である。It is a schematic diagram which shows another example of the opening part of a rotating cylinder end part. 開口部の最外径について説明するための模式的断面図である。It is typical sectional drawing for demonstrating the outermost diameter of an opening part. 円盤状部材の外径について説明するための模式的断面図である。It is typical sectional drawing for demonstrating the outer diameter of a disk shaped member. 共回り促進手段の例を示す模式図であり、(a)は側断面図、(b)はZ−Z断面図である。It is a schematic diagram which shows the example of a corotation acceleration | stimulation means, (a) is a sectional side view, (b) is ZZ sectional drawing. 本発明の脱泡装置の一形態の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of one form of the defoaming apparatus of this invention. 本発明の塗布装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the coating device of this invention.

符号の説明Explanation of symbols

1 減圧容器
1a 減圧手段接続口
1b 液排出口
2 駆動装置
2a 駆動軸真空シール部
2b 駆動装置の駆動軸
2c 駆動力伝達手段
3 回転筒
3a 下部開口部
3b 上部開口部
3c 円盤状部材
3d 分散版
3e 回転筒の回転軸
3f 回転筒胴部の内壁面
3g 底面部材
3h 共回り促進手段
3i 共回り促進手段固定ばね
3j 底面部材胴部の穴
4 液状物供給管
4a 液状物供給管真空シール部
5 液状物入口
10 液状物
20 濾過部
20a ろ過素材
21 脱泡部
22 塗布部
22a ディスペンサーノズル
22b スピンコーター
23 送液装置
24 供給口
DESCRIPTION OF SYMBOLS 1 Pressure reduction container 1a Pressure reduction means connection port 1b Liquid discharge port 2 Drive device 2a Drive shaft vacuum seal portion 2b Drive shaft 2c Drive force transmission means 3 Rotating cylinder 3a Lower opening portion 3b Upper opening portion 3c Disk-like member 3d Dispersed plate 3e Rotating shaft of rotating cylinder 3f Inner wall surface 3g of rotating cylinder barrel Bottom member 3h Co-rotation promoting means 3i Co-rotation promoting means fixing spring 3j Hole 4 in bottom member barrel 4 Liquid substance supply pipe 4a Liquid substance supply pipe vacuum seal part 5 Liquid material inlet 10 Liquid material 20 Filtration part 20a Filtration material 21 Defoaming part 22 Application part 22a Dispenser nozzle 22b Spin coater 23 Liquid feeder 24 Supply port

Claims (5)

液状物を連続的に脱泡する脱泡装置であって、
減圧手段接続口と液排出口とを備える減圧容器と、
該減圧容器内に設けられた回転可能な中空筒状の部材である回転筒と、
該回転筒を回転させる駆動装置と、
液状物を該回転筒内に供給する液状物供給管を有し、
該回転筒の回転中心軸は鉛直方向に配され、
該回転筒の上下端部のうちの少なくとも下端部に、回転筒胴部分の内壁とは内側に離間して開口部が設けられ、
該回転筒の内部に、円盤状もしくは円筒状の部材であって回転筒の回転中心軸に垂直な面の断面外周が円状の部材が設けられ、
該断面外周が円状の部材は回転筒の内壁面と離間しており、
該断面外周が円状の部材の半径は、該回転筒の回転中心軸から該開口部までの水平方向の距離の最大値より大きく、かつ断面外周が円状の部材と回転筒胴部分の内壁面とが隙間を有する大きさである
脱泡装置。
A defoaming device for continuously defoaming a liquid material,
A decompression vessel comprising a decompression means connection port and a liquid discharge port;
A rotating cylinder which is a rotatable hollow cylindrical member provided in the decompression vessel;
A driving device for rotating the rotating cylinder;
A liquid supply pipe for supplying a liquid material into the rotating cylinder;
The rotation center axis of the rotating cylinder is arranged in the vertical direction,
At least at the lower end of the upper and lower ends of the rotating cylinder, an opening is provided inwardly spaced from the inner wall of the rotating cylinder body portion,
Inside the rotating cylinder, a disk-shaped or cylindrical member having a circular cross-sectional outer periphery on a surface perpendicular to the rotation center axis of the rotating cylinder is provided.
The member whose outer periphery is circular is separated from the inner wall surface of the rotating cylinder,
The radius of the member whose outer periphery is circular is larger than the maximum value in the horizontal direction from the rotation center axis of the rotating cylinder to the opening, and the inner diameter of the member having the circular outer periphery and the cylindrical part of the rotating cylinder. A defoaming device having a gap between the wall surface and the wall.
前記回転筒に回転軸が接続され、前記駆動装置が駆動軸を有し、
該回転軸と駆動軸は駆動力伝達手段を介して接続され、
減圧容器内を減圧状態に維持するための真空シール部が、該駆動軸に設けられ、該回転軸には設けられない請求項1記載の脱泡装置。
A rotating shaft is connected to the rotating cylinder, and the driving device has a driving shaft,
The rotating shaft and the driving shaft are connected via a driving force transmission means,
The defoaming device according to claim 1, wherein a vacuum seal portion for maintaining the inside of the decompression vessel in a decompressed state is provided on the drive shaft, and is not provided on the rotation shaft.
前記回転筒内部に、液状物の共回り促進手段を有する請求項1または2に記載の脱泡装置。   The defoaming device according to claim 1, further comprising a liquid material co-rotation promoting means inside the rotating cylinder. 前記回転筒の上下端部の両方に開口部が設けられ、
前記液状物供給管が回転筒の下端部の開口部から回転筒内に挿入され、
回転筒の回転中心軸から上端部の開口部までの水平方向の距離の最大値が、回転筒の回転中心軸から下端部の開口部までの水平方向の距離の最大値より大きい請求項1から3のいずれか一項記載の脱泡装置。
Openings are provided on both upper and lower ends of the rotating cylinder,
The liquid material supply pipe is inserted into the rotary cylinder from the opening at the lower end of the rotary cylinder,
The maximum value of the horizontal distance from the rotation center axis of the rotating cylinder to the opening at the upper end is larger than the maximum value of the horizontal distance from the rotation center axis of the rotating cylinder to the opening at the lower end. The defoaming device according to any one of 3.
濾過部と脱泡部と塗布部とを有する液状物の塗布装置であって、脱泡部が、請求項1から4のいずれか一項記載の脱泡装置である液状物の塗布装置。   5. A liquid material application apparatus having a filtration part, a defoaming part, and an application part, wherein the defoaming part is the defoaming apparatus according to claim 1.
JP2006082672A 2006-03-24 2006-03-24 Defoaming apparatus and applicator Pending JP2007253095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082672A JP2007253095A (en) 2006-03-24 2006-03-24 Defoaming apparatus and applicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082672A JP2007253095A (en) 2006-03-24 2006-03-24 Defoaming apparatus and applicator

Publications (1)

Publication Number Publication Date
JP2007253095A true JP2007253095A (en) 2007-10-04

Family

ID=38627859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082672A Pending JP2007253095A (en) 2006-03-24 2006-03-24 Defoaming apparatus and applicator

Country Status (1)

Country Link
JP (1) JP2007253095A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680612A (en) * 2012-05-13 2012-09-19 江苏有能电力自动化有限公司 Novel full-automatic pump type stirring degassing device
JP2014085254A (en) * 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter and liquid control apparatus having the same
CN104148244A (en) * 2014-07-23 2014-11-19 采埃孚富奥底盘技术(长春)有限公司 Device capable of automatically coating surfaces of parts with oil
CN113499597A (en) * 2021-07-17 2021-10-15 海南富山油气化工有限公司 Benzene production device and use method thereof
CN116273730A (en) * 2023-01-30 2023-06-23 南京贝迪新材料科技股份有限公司 Precise coating device and process for ultrathin quantum dot film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680612A (en) * 2012-05-13 2012-09-19 江苏有能电力自动化有限公司 Novel full-automatic pump type stirring degassing device
JP2014085254A (en) * 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter and liquid control apparatus having the same
CN104148244A (en) * 2014-07-23 2014-11-19 采埃孚富奥底盘技术(长春)有限公司 Device capable of automatically coating surfaces of parts with oil
CN113499597A (en) * 2021-07-17 2021-10-15 海南富山油气化工有限公司 Benzene production device and use method thereof
CN116273730A (en) * 2023-01-30 2023-06-23 南京贝迪新材料科技股份有限公司 Precise coating device and process for ultrathin quantum dot film
CN116273730B (en) * 2023-01-30 2023-12-19 南京贝迪新材料科技股份有限公司 Precise coating device and process for ultrathin quantum dot film

Similar Documents

Publication Publication Date Title
AU2006200479B2 (en) Agitation apparatus and method for dry solids addition to fluid
JP5107238B2 (en) Coating material degassing method and apparatus
JP2007253095A (en) Defoaming apparatus and applicator
WO2010134122A1 (en) Deaerator
CA2328367C (en) Method and device for producing solid particles from a liquid medium
JP2009274023A (en) Defoaming method and coating method
JP4763802B2 (en) Method and apparatus for degassing paint
JP2006239593A (en) Emulsification apparatus, emulsifying method and method for producing fine particle
US20220161156A1 (en) Vacuum deaerator
KR20160118130A (en) Coating apparatus and coating method
JP4349922B2 (en) Defoaming equipment
RU2750573C2 (en) Device for extrusion of ceramic suspension
KR101455629B1 (en) One pass type dispersing and emulsifying apparatus
JP4141936B2 (en) Centrifugal deaerator
JPH10109027A (en) Kneader for kneading liquid product
JPH11253702A (en) Deaerating apparatus for liquid and coating apparatus of liquid
JP7361413B2 (en) Vacuum deaerator with atomization device
JP2014226644A (en) Defoaming apparatus
CN219023347U (en) Glue solution continuous centrifugal defoaming device
CN116920466A (en) Vacuum centrifugal defoaming device
CN103263987A (en) Liquid damping mixing jet device
JPH0857270A (en) Membrane filter apparatus
JP7403167B2 (en) vacuum deaerator
JP2011088109A (en) Degassing vessel and coating apparatus
JP2008284419A (en) Centrifugal defoamer