JP2007253037A - Catalyst for cleaning exhaust gas and manufacturing method therefor - Google Patents

Catalyst for cleaning exhaust gas and manufacturing method therefor Download PDF

Info

Publication number
JP2007253037A
JP2007253037A JP2006079102A JP2006079102A JP2007253037A JP 2007253037 A JP2007253037 A JP 2007253037A JP 2006079102 A JP2006079102 A JP 2006079102A JP 2006079102 A JP2006079102 A JP 2006079102A JP 2007253037 A JP2007253037 A JP 2007253037A
Authority
JP
Japan
Prior art keywords
particles
coating layer
slurry
noble metal
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006079102A
Other languages
Japanese (ja)
Inventor
Hiroto Kikuchi
博人 菊地
Masaki Nakamura
雅紀 中村
Hironori Wakamatsu
広憲 若松
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006079102A priority Critical patent/JP2007253037A/en
Publication of JP2007253037A publication Critical patent/JP2007253037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas which can be manufactured through a simple process and can keep a high cleaning rate for a long period of time and to provide a manufacturing therefor. <P>SOLUTION: The catalyst 1 for cleaning exhaust gas comprises a noble metal particle 3 for causing a catalytic reaction while being in contact with exhaust gas, a first covering layer 5 for covering the periphery of the noble metal particle 3, a second covering layer 7 for covering the noble metal particle 3 and the first covering layer 5, and a base material on which the noble metal particle 3 is deposited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気ガス浄化用触媒及びその製造方法に関する。 The present invention relates to an exhaust gas purification catalyst and a method for producing the same.

近年、自動車用の排出ガス規制は益々厳しくなる一方であり、排気ガス浄化用触媒には、排ガス中に含まれる有害な成分、例えば、未燃焼炭化水素(HC)や一酸化炭素(CO)の浄化をより高効率で行なうことが要求されている。排ガス浄化触媒は、アルミナ等の基材の表面に貴金属粒子3を担持したものであり、排ガス中に含まれる有害な成分、例えば未燃焼炭化水素(HC)や一酸化炭素(CO)を貴金属粒子で酸化し、無害な成分である水やガスに変換する。そして、一般に、触媒の浄化性能は貴金属粒子の表面積が大きいほど向上するため、貴金属粒子の粒径を小さくすることにより、貴金属粒子の表面積を大きくして表面エネルギーを増大させることが行われている。   In recent years, exhaust gas regulations for automobiles are becoming more and more stringent, and exhaust gas purification catalysts include harmful components contained in exhaust gas, such as unburned hydrocarbons (HC) and carbon monoxide (CO). There is a demand for more efficient purification. The exhaust gas purification catalyst is a catalyst in which noble metal particles 3 are supported on the surface of a substrate such as alumina, and harmful components contained in the exhaust gas, such as unburned hydrocarbon (HC) and carbon monoxide (CO), are precious metal particles. Oxidizes with water and gas, which is harmless. And generally, since the purification performance of the catalyst is improved as the surface area of the noble metal particles is increased, the surface energy is increased by increasing the surface area of the noble metal particles by reducing the particle size of the noble metal particles. .

ここで、排気ガス浄化用触媒の貴金属粒子は、初期段階では数nm以下の超微粒子状態になっている。しかし、高温の酸化雰囲気中に排気ガス浄化用触媒が晒されているうちに、貴金属粒子の表面が酸化され、近傍の貴金属粒子同士が合体して数十nmに粗大化してしまい、貴金属粒子の表面積が低下して有害物質の浄化率が低下するという問題がある。   Here, the noble metal particles of the exhaust gas purifying catalyst are in an ultrafine particle state of several nm or less in the initial stage. However, while the exhaust gas purification catalyst is exposed to a high-temperature oxidizing atmosphere, the surface of the noble metal particles is oxidized, and the noble metal particles in the vicinity coalesce and become coarse to several tens of nanometers. There is a problem in that the surface area decreases and the purification rate of harmful substances decreases.

この貴金属粒子の粗大化による表面積低下を防止すべく、逆ミセル法などのような表面積の大きい貴金属粒子の製法に関する開発が進んでいる。この逆ミセル法とは、まず、有機溶媒中に界面活性剤と触媒活性な成分(例えば、貴金属元素)を含む水溶液とを混合する。その後、有機溶媒中に、貴金属を含む水溶液を含有する逆ミセルが形成されたエマルジョン溶液を調製し、貴金属を沈殿させた後、還元又は不溶化し、逆ミセルの中で微粒化した貴金属を析出させる方法である。   In order to prevent a decrease in the surface area due to the coarsening of the noble metal particles, development relating to a method for producing noble metal particles having a large surface area such as a reverse micelle method has been advanced. In the reverse micelle method, first, an aqueous solution containing a surfactant and a catalytically active component (for example, a noble metal element) is mixed in an organic solvent. Thereafter, an emulsion solution in which reverse micelles containing an aqueous solution containing a noble metal are formed in an organic solvent is prepared, and after precious metal is precipitated, it is reduced or insolubilized to precipitate the precious metal atomized in the reverse micelle. Is the method.

また、特開2000−42411号公報には、エマルジョン溶液調製工程において、逆ミセルの中に酸素吸蔵作用を有する元素を含有させて触媒を製造する方法が開示されている。この逆ミセル法では、エマルジョン溶液中に含まれる逆ミセルの中で、基材に触媒活性な成分を担持した後、逆ミセルを崩壊させて、得られた沈殿物を濾過、乾燥、粉砕、焼成する各工程を経て触媒としている。本製造方法を用いて製造された触媒は、基材に酸素吸蔵作用を有する元素を担持できるだけではなく、基材の最表面及び基材中に形成された孔部表面にも触媒活性な成分を担持するため、触媒の活性を高めることができる。   Japanese Patent Application Laid-Open No. 2000-42411 discloses a method for producing a catalyst by containing an element having an oxygen storage effect in reverse micelles in an emulsion solution preparation step. In this reverse micelle method, after supporting the catalytically active component on the base material in the reverse micelle contained in the emulsion solution, the reverse micelle is disintegrated, and the resulting precipitate is filtered, dried, pulverized, and calcined. Each step is used as a catalyst. The catalyst produced using this production method not only supports an element having an oxygen storage effect on the base material, but also has a catalytically active component on the outermost surface of the base material and the surface of the pores formed in the base material. Since it is supported, the activity of the catalyst can be increased.

特開2000−42411号公報JP 2000-42411 A

しかしながら、前述した逆ミセル法では、逆ミセルが形成されたエマルジョン溶液を噴霧焼成して触媒を製造するため、製造工程が複雑化して製造コストが上昇するという問題があった。   However, in the reverse micelle method described above, a catalyst is manufactured by spray firing the emulsion solution in which the reverse micelle is formed, so that the manufacturing process becomes complicated and the manufacturing cost increases.

そこで、本発明は、製造工程が簡易で、高い浄化率を長期間保持することができる排気ガス浄化用触媒及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas purifying catalyst that has a simple manufacturing process and can maintain a high purification rate for a long period of time, and a method for manufacturing the same.

前記目的を達成するために、本発明に係る排気ガス浄化用触媒は、貴金属粒子と、該貴金属粒子を覆う第1の被覆層と、この第1の被覆層を覆う第2の被覆層とを備えてなる排気ガス浄化用触媒であって、前記第1の被覆層は、Al,Ce,Zr,Mn,Co,Fe,Ni単体又はこれらの酸化物から選択される群のうち、少なくともいずれかからなり、前記第2の被覆層は、アルミナ及びジルコニアの少なくともいずれかであることを特徴とする。   To achieve the above object, an exhaust gas purifying catalyst according to the present invention comprises noble metal particles, a first coating layer covering the noble metal particles, and a second coating layer covering the first coating layer. An exhaust gas purifying catalyst provided, wherein the first coating layer is at least one selected from the group consisting of Al, Ce, Zr, Mn, Co, Fe, Ni alone or an oxide thereof. And the second coating layer is at least one of alumina and zirconia.

また、本発明に係る排気ガス浄化用触媒の製造方法は、ガス中蒸発法を用いて、貴金属粒子を第1の被覆層で覆う工程と、該第1の被覆層を第2の被覆層で覆う工程とを含み、
前記第1の被覆層は、Al,Ce,Zr,Mn,Co,Fe,Ni又はこれらの酸化物から選択される少なくともいずれかからなり、前記第2の被覆層は、アルミナ及びジルコニアの少なくともいずれかからなることを特徴とする。
The method for producing an exhaust gas purifying catalyst according to the present invention includes a step of covering noble metal particles with a first coating layer using an in-gas evaporation method, and the first coating layer with a second coating layer. Covering the process,
The first coating layer is made of at least one selected from Al, Ce, Zr, Mn, Co, Fe, Ni or oxides thereof, and the second coating layer is at least one of alumina and zirconia. It consists of these.

本発明に係る排気ガス浄化用触媒によれば、貴金属粒子の周囲を第1の被覆層によって覆い、さらに、これらの貴金属粒子及び第1の被覆層を第2の被覆層によって覆っているため、基材上における貴金属粒子の移動による凝集化を抑制することができ、貴金属の表面積を大きい状態に保持することができる。   According to the exhaust gas purification catalyst of the present invention, the periphery of the noble metal particles is covered with the first coating layer, and further, the noble metal particles and the first coating layer are covered with the second coating layer, Aggregation due to movement of the noble metal particles on the substrate can be suppressed, and the surface area of the noble metal can be maintained in a large state.

また、本発明に係る排気ガス浄化用触媒の製造方法によれば、貴金属粒子の周囲を第1の被覆層及び第2の被覆層を介して覆った触媒を効率的に製造することができる。従って、長期間使用した後においても、貴金属粒子同士が凝集せずに大きい表面積を保持することができるため、高い浄化性能を保つことができる。   Moreover, according to the method for producing an exhaust gas purifying catalyst according to the present invention, a catalyst in which the periphery of the noble metal particles is covered with the first coating layer and the second coating layer can be efficiently produced. Therefore, even after a long period of use, since a large surface area can be maintained without agglomeration of noble metal particles, high purification performance can be maintained.

以下、本発明の実施形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[触媒]
図1は、本発明に係る排気ガス浄化用触媒の表面の状態を拡大して示す概略図である。
[catalyst]
FIG. 1 is an enlarged schematic view showing the state of the surface of an exhaust gas purifying catalyst according to the present invention.

図1に示すように、本発明に係る排気ガス浄化用触媒1は、排気ガスに接触して有害成分を浄化させる活性金属である貴金属粒子3と、該貴金属粒子3の外周を覆う第1の被覆層5と、該第1の被覆層5及び貴金属粒子3を内包する第2の被覆層7とを備えている。   As shown in FIG. 1, an exhaust gas purifying catalyst 1 according to the present invention includes a noble metal particle 3 that is an active metal that contacts exhaust gas to purify harmful components, and a first covering the outer periphery of the noble metal particle 3. A coating layer 5 and a second coating layer 7 containing the first coating layer 5 and the noble metal particles 3 are provided.

貴金属粒子3の周囲を第1の被覆層5を介して第2の被覆層7で覆うことにより、貴金属粒子3の移動及び凝集を抑制することができると共に、第1の被覆層5及び第2の被覆層7を構成する粒子自体の凝集をも抑制できる。従って、触媒1が排気ガスに晒された後における貴金属粒子3の群からなる貴金属層の表面積が低下することを好適に抑制することができる。   By covering the periphery of the noble metal particles 3 with the second coating layer 7 via the first coating layer 5, the movement and aggregation of the noble metal particles 3 can be suppressed, and the first coating layer 5 and the second coating layer 2 can be prevented. Aggregation of the particles constituting the coating layer 7 can also be suppressed. Therefore, the surface area of the noble metal layer composed of the group of noble metal particles 3 after the catalyst 1 is exposed to the exhaust gas can be suitably suppressed.

[貴金属粒子]
貴金属粒子3は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選択される少なくともいずれかからなることが好ましい。
[Precious metal particles]
The noble metal particles 3 are preferably made of at least one selected from platinum (Pt), palladium (Pd), and rhodium (Rh).

貴金属粒子3の粒子径は、1nm〜5nmが好ましい。粒子径が1nm未満では、第1の被覆層5による貴金属粒子3の移動を抑制する効果が低下してしまい、粒子径が5nmよりも大きいと、複数の貴金属粒子3からなる貴金属層全体の表面積が低下し、触媒1としての性能が低下してしまう。   The particle diameter of the noble metal particles 3 is preferably 1 nm to 5 nm. If the particle diameter is less than 1 nm, the effect of suppressing the movement of the noble metal particles 3 by the first coating layer 5 is reduced. If the particle diameter is larger than 5 nm, the surface area of the entire noble metal layer composed of a plurality of noble metal particles 3 is reduced. Decreases, and the performance as the catalyst 1 decreases.

[第1の被覆層]
前記第1の被覆層5は、Al,Ce,Zr,Mn,Co,Fe,Niの単体又はこれらの酸化物からなる層であり、その平均厚さは、20nm以下であることが好ましい。この平均厚さtは、図1に示すように、貴金属粒子3の外周と、第1の被覆層5を構成する粒子のうち最も外周側に配置されたものの外周との距離を示す。
[First coating layer]
The first coating layer 5 is a layer made of a single substance of Al, Ce, Zr, Mn, Co, Fe, or Ni or an oxide thereof, and the average thickness thereof is preferably 20 nm or less. As shown in FIG. 1, the average thickness t indicates the distance between the outer periphery of the noble metal particles 3 and the outer periphery of the particles constituting the first coating layer 5 arranged on the outermost side.

第1の被覆層5の厚さが20nmより厚い場合は、貴金属粒子3に対して排気ガスが十分に行き渡らないため、ガス拡散が低下し、触媒活性効果が低下する。   When the thickness of the first coating layer 5 is greater than 20 nm, the exhaust gas does not reach the noble metal particles 3 sufficiently, so that the gas diffusion decreases and the catalytic activity effect decreases.

また、貴金属粒子3の近傍に、Ce,Mn,Co,Fe,Ni等を配置できるので、助触媒の効果を得ることもできる。   Moreover, since Ce, Mn, Co, Fe, Ni, etc. can be arrange | positioned in the vicinity of the noble metal particle 3, the effect of a promoter can also be acquired.

なお、第1の被覆層5は、Al等の粒子を複数集合させたクラスターから形成することが好ましい。   The first coating layer 5 is preferably formed from a cluster in which a plurality of particles such as Al are assembled.

[第2の被覆層]
第2の被覆層7は、アルミナとジルコニアのうち、少なくともいずれかからなる粒子によって形成している。この第2の被覆層7は、例えば、貴金属粒子3を第1の被覆層5によって被覆した粉末にアルミナ又はジルコニアを加えてスラリとし、ハニカム担体に塗布及び乾燥させることによって形成することができる。
[Second coating layer]
The second coating layer 7 is formed by particles made of at least one of alumina and zirconia. The second coating layer 7 can be formed, for example, by adding alumina or zirconia to a powder obtained by coating the noble metal particles 3 with the first coating layer 5 to form a slurry, and applying and drying the slurry on a honeycomb carrier.

[基材]
基材は、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)、マグネシア(MgO)、シリカ(SiO)、TiO、シリカアルミナ、酸化バナジウム及び酸化タングステンの群から選択される一又は二以上の元素からなる多孔質酸化物を好適に用いることができる。
[Base material]
The substrate is selected from the group consisting of alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), magnesia (MgO), silica (SiO 2 ), TiO 2 , silica alumina, vanadium oxide and tungsten oxide. A porous oxide composed of one or two or more elements can be suitably used.

[触媒の製造装置]
図2は、真空蒸着装置の概要を示す概略図である。
[Catalyst production equipment]
FIG. 2 is a schematic view showing an outline of a vacuum deposition apparatus.

この真空蒸着装置11は、外気から遮蔽された密閉性を有する真空槽13と、該真空槽13の内部に収容された抵抗加熱ボート(蒸発源)15,17及び冷却手段29とを備えている。   The vacuum deposition apparatus 11 includes a vacuum chamber 13 having a sealing property shielded from the outside air, resistance heating boats (evaporation sources) 15 and 17 and a cooling unit 29 accommodated in the vacuum chamber 13. .

前記真空槽13の下端部には、開閉自在に構成された酸素(O)ガス導入口19及びヘリウム(He)ガス導入口21が設けられている。また、真空槽13の高さ方向中央部には、試料投入口23及び試料回収口25が配設されており、真空槽13の上部には、排気口27が設けられている。 An oxygen (O 2 ) gas introduction port 19 and a helium (He) gas introduction port 21 configured to be openable and closable are provided at the lower end of the vacuum chamber 13. In addition, a sample insertion port 23 and a sample recovery port 25 are provided at the center of the vacuum chamber 13 in the height direction, and an exhaust port 27 is provided at the top of the vacuum chamber 13.

そして、抵抗加熱ボート15,17は、上下に間隔をおいて2つ配置されており、それぞれの抵抗加熱ボート15,17の上面は、湾曲して凹部に形成されている。   And two resistance heating boats 15 and 17 are arrange | positioned at intervals up and down, and the upper surface of each resistance heating boat 15 and 17 is curving and formed in the recessed part.

さらに、冷却手段29は、液体窒素(N)を用いて冷却するものであり、液体窒素導入口31を真空槽13を貫通して上方に延設し、この液体窒素導入口31に冷却板33を接続すると共に、該冷却板33の下部に試料回収皿35を配置している。 Further, the cooling means 29 is cooled by using liquid nitrogen (N 2 ), and the liquid nitrogen inlet 31 extends upward through the vacuum chamber 13, and a cooling plate is connected to the liquid nitrogen inlet 31. 33 is connected, and a sample collection tray 35 is disposed below the cooling plate 33.

[触媒の製造方法]
前記触媒1の製造方法を図3を用いて簡単に説明する。
[Method for producing catalyst]
A method for producing the catalyst 1 will be briefly described with reference to FIG.

まず、ガス中蒸発法によって貴金属粒子3を蒸発させ、この蒸発した貴金属粒子3を核として、別に蒸発させたAl,Ce,Zr,Mn,Co,Fe,Ni等のクラスターを貴金属粒子3の周囲に成長させることにより、貴金属粒子3を第1の被覆層5によって被覆する。なお、前記クラスターを酸化させることにより、第1の被覆層5を酸化物粒子のクラスターとすることが出来る。   First, the noble metal particles 3 are evaporated by an in-gas evaporation method, and the clusters of Al, Ce, Zr, Mn, Co, Fe, Ni, etc., separately evaporated around the noble metal particles 3 around the noble metal particles 3 The noble metal particles 3 are covered with the first coating layer 5 by growing the noble metal particles 3. In addition, the 1st coating layer 5 can be made into the cluster of an oxide particle by oxidizing the said cluster.

例えば、真空蒸着装置11の内部に、貴金属粒子3及び第1の被覆層5となる原料を収容し、真空槽内の圧力を所定値に保持し、前記原料を加熱してガス中蒸発法を用いて蒸発させることにより、貴金属を蒸発させる。また、この貴金属粒子3を核として別に蒸発させて得られるクラスターを貴金属粒子3の周囲に成長させることにより、貴金属粒子3を第1の被覆層5によって被覆する。   For example, the raw material to be used as the noble metal particles 3 and the first coating layer 5 is accommodated in the vacuum deposition apparatus 11, the pressure in the vacuum chamber is maintained at a predetermined value, and the raw material is heated to perform a gas evaporation method Use and evaporate to evaporate the noble metal. Further, the noble metal particles 3 are covered with the first coating layer 5 by growing clusters obtained by separately evaporating the noble metal particles 3 as nuclei around the noble metal particles 3.

次いで、前記第1の被覆層5の周囲に第2の被覆層7を形成する。例えば、貴金属粒子3を第1の被覆層5によって被覆した粉末にアルミナ又はジルコニアを加えてスラリとし、ハニカム担体に塗布及び乾燥させることによって、触媒1を作製する。   Next, a second coating layer 7 is formed around the first coating layer 5. For example, the catalyst 1 is produced by adding alumina or zirconia to a powder obtained by coating the noble metal particles 3 with the first coating layer 5 to form a slurry, and applying and drying to a honeycomb carrier.

次いで、実施例によって本発明の実施形態を更に具体的に説明する。なお、各実施例及び比較例における詳細な内容を表1にまとめて示す。

Figure 2007253037
Next, embodiments of the present invention will be described more specifically by way of examples. The detailed contents of each example and comparative example are summarized in Table 1.
Figure 2007253037

Pt粒子Aの調製(Pt粒子径:1nm、CeO 粒子からなる第1の被覆層の厚さ:2.5nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法(ガス中蒸発法)により、Pt粒子を第1の被覆層で覆ったPt粒子Aを調整した。
Preparation of Pt particles A (Pt particle diameter: 1 nm, thickness of first coating layer made of CeO 2 particles: 2.5 nm)
Using the vacuum vapor deposition apparatus 11 shown in FIG. 2, Pt particles A in which the Pt particles were covered with the first coating layer were prepared by vacuum vapor deposition (gas evaporation method).

具体的には、Pt粒子の粒子径は1nm〜5nmであり、第1の被覆層はCeO粒子からなり、層厚が2.5nmであった。 Specifically, the particle diameter of the Pt particles was 1 nm to 5 nm, the first coating layer was made of CeO 2 particles, and the layer thickness was 2.5 nm.

まず、図2に示す真空槽13内に配置した抵抗加熱ボート(蒸発源)15の上にPt原料を載置し、抵抗加熱ボート(蒸発源)17の上にCe原料を載置した。なお、抵抗加熱ボート15は、抵抗加熱ボート17よりも低い位置に配置している。抵抗加熱ボート15と17の高さ方向(上下方向)の距離をXとした。   First, a Pt material was placed on a resistance heating boat (evaporation source) 15 disposed in the vacuum chamber 13 shown in FIG. 2, and a Ce material was placed on a resistance heating boat (evaporation source) 17. The resistance heating boat 15 is arranged at a position lower than the resistance heating boat 17. The distance in the height direction (vertical direction) of the resistance heating boats 15 and 17 is X.

次に、図示しない真空ポンプにより5.0×10−8Torrにまで真空槽13内を排気した後、真空槽13内に酸素ガスとヘリウムガスとを導入して1Torr付近とした。この時の酸素分圧は40mol%であり、真空ポンプを作動させて一定のガス圧を保ち、液体N導入口31を介して液体窒素を導入し、冷却板33を冷却した。 Next, the inside of the vacuum chamber 13 was evacuated to 5.0 × 10 −8 Torr by a vacuum pump (not shown), and then oxygen gas and helium gas were introduced into the vacuum chamber 13 to make it around 1 Torr. The oxygen partial pressure at this time was 40 mol%, the vacuum pump was operated to maintain a constant gas pressure, liquid nitrogen was introduced through the liquid N 2 inlet 31, and the cooling plate 33 was cooled.

また、抵抗加熱ボート17と冷却板33の高さ方向の距離をYとした。 その後、抵抗加熱ボート15,17でPtとCeとを同時に蒸発させて、真空槽13内に導入した酸素によりCeを酸化した。   The distance in the height direction between the resistance heating boat 17 and the cooling plate 33 is Y. Thereafter, Pt and Ce were evaporated at the same time by the resistance heating boats 15 and 17, and Ce was oxidized by oxygen introduced into the vacuum chamber 13.

抵抗加熱ボート15に載置したPtは先に凝縮し、この凝縮により生成したPt粒子にCeOが被覆された。このCeOが被覆されたPt粒子は冷却板33に付着するので、このPt粒子を掻き落としてPt粒子をCeOで内包したPt粒子Aを得た。 Pt placed on the resistance heating boat 15 was condensed first, and CeO 2 was coated on the Pt particles generated by this condensation. Since the Pt particles coated with CeO 2 adhere to the cooling plate 33, the Pt particles are scraped off to obtain Pt particles A enclosing the Pt particles with CeO 2 .

このPt粒子AをTEMで観察したところ、Pt粒子Aの粒径は1nm程度であり、CeO層の厚さは2.5nm程度であった。このPt粒子AをICP分析したところ、Ptが3.4wt%含有されていた。 When the Pt particles A were observed with a TEM, the particle size of the Pt particles A was about 1 nm, and the thickness of the CeO 2 layer was about 2.5 nm. When this Pt particle A was analyzed by ICP, it was found to contain 3.4 wt% Pt.

Pt粒子Bの調製(Pt粒子径:1nm、CeO 粒子からなる第1の被覆層の厚さ:3.5nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Bを調整した。このPt粒子径は1nmであり、第1の被覆層の厚さを3.5nmとした。
Preparation of Pt particles B (Pt particle diameter: 1 nm, thickness of first coating layer made of CeO 2 particles: 3.5 nm)
The Pt particles B in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method using the vacuum vapor deposition apparatus 11 shown in FIG. The Pt particle diameter was 1 nm, and the thickness of the first coating layer was 3.5 nm.

図2に示す真空槽13内の抵抗加熱ボート(蒸発源)15にPt、抵抗加熱ボート(蒸発源)17にCeを各々セットした。なお、抵抗加熱ボート15は、抵抗加熱ボート17よりも低い位置に配置した。抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離をXとした。   Pt was set in the resistance heating boat (evaporation source) 15 and Ce was set in the resistance heating boat (evaporation source) 17 in the vacuum chamber 13 shown in FIG. The resistance heating boat 15 was arranged at a position lower than the resistance heating boat 17. The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 is X.

次に、図示しない真空ポンプにより5.0×10−8Torrにまで真空槽内を排気した後、真空槽内に酸素ガスとヘリウムガスとを導入して1Torr付近とした。このときの酸素分圧は40mol%であり、真空ポンプを作動させて一定のガス圧を保ち、液体N導入口31を介して液体窒素を導入し、冷却板33を冷却した。 Next, the inside of the vacuum chamber was evacuated to 5.0 × 10 −8 Torr with a vacuum pump (not shown), and then oxygen gas and helium gas were introduced into the vacuum chamber to make it around 1 Torr. The oxygen partial pressure at this time was 40 mol%, the vacuum pump was operated to maintain a constant gas pressure, liquid nitrogen was introduced through the liquid N 2 inlet 31, and the cooling plate 33 was cooled.

抵抗加熱ボート17と冷却板33の高さ方向の距離を1.5Yとした。 その後、抵抗加熱ボート15,17でPtとCeとを同時に蒸発させて、真空槽13内に導入した酸素によりCeを酸化した。   The distance in the height direction between the resistance heating boat 17 and the cooling plate 33 was 1.5Y. Thereafter, Pt and Ce were evaporated at the same time by the resistance heating boats 15 and 17, and Ce was oxidized by oxygen introduced into the vacuum chamber 13.

抵抗加熱ボート15のPtは先に凝縮し、凝縮により生成したPt粒子にCeOが被覆された。CeOが被覆されたPt粒子Bは、冷却板33に付着するので、この粒子を掻き落としてPt粒子Bを得た。 Pt of the resistance heating boat 15 was condensed first, and CeO 2 was coated on the Pt particles generated by the condensation. Since Pt particles B coated with CeO 2 adhere to the cooling plate 33, the particles were scraped off to obtain Pt particles B.

このPt粒子BをTEMで観察したところ、Pt粒子の粒径は1nm程度であり、CeO層の厚さは3.5nm程度であった。このPt粒子BをICP分析したところ、Ptが1.3wt%含有されていた。 When the Pt particles B were observed with a TEM, the particle size of the Pt particles was about 1 nm, and the thickness of the CeO 2 layer was about 3.5 nm. When this Pt particle B was analyzed by ICP, 1.3 wt% of Pt was contained.

Pt粒子Cの調製(Pt粒子径:2nm、CeO 粒子からなる第1の被覆層の厚さ:5nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Cを調整した。このPt粒子径は2nmであり、第1の被覆層を構成するCeOの粒子径を5nmとした。このPt粒子CをICP分析したところ、Ptが3.4wt%含有されていた。
Preparation of Pt particles C (Pt particle diameter: 2 nm, thickness of first coating layer made of CeO 2 particles: 5 nm)
Using the vacuum vapor deposition apparatus 11 shown in FIG. 2, the Pt particles C in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method. The Pt particle diameter was 2 nm, and the particle diameter of CeO 2 constituting the first coating layer was 5 nm. As a result of ICP analysis of the Pt particles C, 3.4 wt% of Pt was contained.

Pt粒子Dの調製(Pt粒子径:2nm、CeO 粒子からなる第1の被覆層の厚さ:7.5nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Dを調整した。このPt粒子径は2nmであり、CeO粒子からなる第1の被覆層の厚さを7.5nmとした。
Preparation of Pt particles D (Pt particle diameter: 2 nm, thickness of first coating layer made of CeO 2 particles: 7.5 nm)
The Pt particles D in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method using the vacuum vapor deposition apparatus 11 shown in FIG. The Pt particle diameter was 2 nm, and the thickness of the first coating layer made of CeO 2 particles was 7.5 nm.

抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離を1.5Xとし、抵抗加熱ボート17と冷却板33の高さ方向の距離を3Yとした。このPt粒子DをTEMで観察したところ、Pt粒子の粒径は2nm程度であり、CeO粒子からなる第1の被覆層の厚さは7.5nm程度であった。このPt粒子DをICP分析したところ、Ptが1.1wt%含有されていた。 The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 was 1.5X, and the distance in the height direction between the resistance heating boat 17 and the cooling plate 33 was 3Y. When the Pt particles D were observed with a TEM, the particle diameter of the Pt particles was about 2 nm, and the thickness of the first coating layer made of CeO 2 particles was about 7.5 nm. As a result of ICP analysis of the Pt particles D, 1.1 wt% of Pt was contained.

Pt粒子Eの調製(Pt粒子径:3nm 、CeO 粒子からなる第1の被覆層の厚さ:10nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Eを調整した。このPt粒子径は3nmであり、CeO粒子からなる第1の被覆層の厚さを10nmとした。
Preparation of Pt particles E (Pt particle diameter: 3 nm, thickness of first coating layer made of CeO 2 particles: 10 nm)
Using the vacuum vapor deposition apparatus 11 shown in FIG. 2, Pt particles E in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method. The Pt particle diameter was 3 nm, and the thickness of the first coating layer made of CeO 2 particles was 10 nm.

抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離を2Xとし、抵抗加熱ボート17と冷却板33の高さ方向の距離を4Yとした。   The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 was 2X, and the distance in the height direction between the resistance heating boat 17 and the cooling plate 33 was 4Y.

このPt粒子EをTEMで観察したところ、Pt粒子の粒径は3nm程度であり、CeO粒子からなる第1の被覆層の厚さは10nm程度であった。このPt粒子EをICP分析したところ、Ptが1.5wt%含有されていた。 When this Pt particle E was observed by TEM, the particle size of the Pt particle was about 3 nm, and the thickness of the first coating layer made of CeO 2 particles was about 10 nm. As a result of ICP analysis of the Pt particles E, 1.5 wt% of Pt was contained.

Pt粒子Fの調製(Pt粒子径:3nm 、CeO 粒子からなる第1の被覆層の厚さ:12.5nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Fを調整した。抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離を2Xとし、抵抗加熱ボート17と冷却板33の高さ方向の距離を5Yとした。
Preparation of Pt particles F (Pt particle diameter: 3 nm, thickness of first coating layer made of CeO 2 particles: 12.5 nm)
Using the vacuum vapor deposition apparatus 11 shown in FIG. 2, Pt particles F in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method. The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 is 2X, and the distance in the height direction between the resistance heating boat 17 and the cooling plate 33 is 5Y.

このPt粒子径は3nmであり、CeO粒子からなる第1の被覆層の厚さを12.5nmとした。 The Pt particle diameter was 3 nm, and the thickness of the first coating layer made of CeO 2 particles was 12.5 nm.

このPt粒子FをICP分析したところ、Ptが0.77wt%含有されていた。   ICP analysis of the Pt particles F revealed that Pt was contained at 0.77 wt%.

Pt粒子Gの調製(Pt粒子径:5nm 、CeO 粒子からなる第1の被覆層の厚さ:15nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Fを調整した。抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離を3Xとし、抵抗加熱ボート17と冷却板33の高さ方向の距離を6Yとした。このPt粒子径は5nmであり、CeO粒子からなる第1の被覆層の厚さを15nmとした。このPt粒子GをICP分析したところ、Ptが1.99wt%含有されていた。
Preparation of Pt particles G (Pt particle diameter: 5 nm, thickness of first coating layer made of CeO 2 particles: 15 nm)
Using the vacuum vapor deposition apparatus 11 shown in FIG. 2, Pt particles F in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method. The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 is 3X, and the distance in the height direction between the resistance heating boat 17 and the cooling plate 33 is 6Y. The Pt particle diameter was 5 nm, and the thickness of the first coating layer made of CeO 2 particles was 15 nm. When this Pt particle G was analyzed by ICP, it contained 1.99 wt% of Pt.

Pt粒子Hの調製(Pt粒子径:5nm 、CeO 粒子からなる第1の被覆層の厚さ:20nm)
図2に示す真空蒸着装置11を用いて、真空蒸着法により、Pt粒子を第1の被覆層で覆ったPt粒子Hを調整した。抵抗加熱ボート15と抵抗加熱ボート17との高さ方向の距離を3Xとし、抵抗加熱ボート17と冷却板33の高さ方向の距離を7Yとした。このPt粒子HをTEMで観察したところ、Pt粒子Hの粒径は5nm程度であり、CeO粒子からなる第1の被覆層の厚さは20nm程度であった。このPt粒子HをICP分析したところ、Ptが0.85wt%含有されていた。
Preparation of Pt particles H (Pt particle diameter: 5 nm, thickness of first coating layer made of CeO 2 particles: 20 nm)
The Pt particles H in which the Pt particles were covered with the first coating layer were prepared by a vacuum vapor deposition method using the vacuum vapor deposition apparatus 11 shown in FIG. The distance in the height direction between the resistance heating boat 15 and the resistance heating boat 17 was 3X, and the distance in the height direction between the resistance heating boat 17 and the cooling plate 33 was 7Y. When the Pt particles H were observed with a TEM, the particle size of the Pt particles H was about 5 nm, and the thickness of the first coating layer made of CeO 2 particles was about 20 nm. As a result of ICP analysis of the Pt particles H, 0.85 wt% Pt was contained.

Pd粒子Iの調製(Pd粒子径:2nm、CeO 粒子からなる第1の被覆層の厚さ:5nm)
図2に示す真空槽内の抵抗加熱ボート(蒸発源)15にPd、抵抗加熱ボート(蒸発源)17にCeを各々セットした。なお、抵抗加熱ボート15は、抵抗加熱ボート17よりも低い位置に配置している。蒸発源15と17の高さ方向の距離をVとした。
Preparation of Pd particles I (Pd particle diameter: 2 nm, thickness of first coating layer made of CeO 2 particles: 5 nm)
Pd was set in the resistance heating boat (evaporation source) 15 and Ce was set in the resistance heating boat (evaporation source) 17 in the vacuum chamber shown in FIG. The resistance heating boat 15 is arranged at a position lower than the resistance heating boat 17. The distance in the height direction between the evaporation sources 15 and 17 was defined as V.

次に、図示しない真空ポンプにより5.0×10−8Torrにまで真空槽内を排気した後、真空槽内に酸素ガスとヘリウムガスとを導入して1Torr付近とした。このときの酸素分圧は40mol%であり、真空ポンプを作動させて一定のガス圧を保ち、液体N導入口31を介して液体窒素を導入し、冷却板33を冷却した。 Next, the inside of the vacuum chamber was evacuated to 5.0 × 10 −8 Torr with a vacuum pump (not shown), and then oxygen gas and helium gas were introduced into the vacuum chamber to make it around 1 Torr. The oxygen partial pressure at this time was 40 mol%, the vacuum pump was operated to maintain a constant gas pressure, liquid nitrogen was introduced through the liquid N 2 inlet 31, and the cooling plate 33 was cooled.

抵抗加熱ボート17と冷却板33の高さ方向の距離をWとした。 その後、抵抗加熱ボート15,17でPdとCeとを同時に蒸発させて、真空槽13内に導入した酸素によりCeを酸化した。   The distance in the height direction between the resistance heating boat 17 and the cooling plate 33 is W. Thereafter, Pd and Ce were evaporated at the same time by the resistance heating boats 15 and 17, and Ce was oxidized by oxygen introduced into the vacuum chamber 13.

抵抗加熱ボート15のPdは先に凝縮し、凝縮により生成したPd粒子にCeO粒子が被覆された。このCeOが被覆されたPd粒子は冷却板33に付着するので、この粒子を掻き落としてPd粒子Iを得た。 Pd of the resistance heating boat 15 was condensed first, and CeO 2 particles were coated on the Pd particles generated by the condensation. Since the Pd particles coated with CeO 2 adhere to the cooling plate 33, the particles were scraped off to obtain Pd particles I.

このPd粒子IをTEMで観察したところ、Pt粒子の粒径は2nm程度であり、CeO層の厚さは5nm程度であった。このPd粒子IをICP分析したところ、Ptが1.94wt%含有されていた。 When this Pd particle I was observed with a TEM, the particle size of the Pt particle was about 2 nm, and the thickness of the CeO 2 layer was about 5 nm. When this Pd particle I was analyzed by ICP, it contained 1.94 wt% of Pt.

Rh粒子Jの調製(Rh粒子径:2nm、ZrO 粒子からなる第1の被覆層の厚さ:5nm)
図2に示す真空槽13内の抵抗加熱ボート(蒸発源)15にRhを載置し、抵抗加熱ボート(蒸発源)17にZrを載置した。なお、抵抗加熱ボート15は、抵抗加熱ボート17よりも低い位置に配置した。また、抵抗加熱ボート15,17の高さ方向の距離をTとした。
Preparation of Rh particles J (Rh particle diameter: 2 nm, thickness of first coating layer made of ZrO 2 particles: 5 nm)
Rh was placed on a resistance heating boat (evaporation source) 15 in the vacuum tank 13 shown in FIG. 2, and Zr was placed on a resistance heating boat (evaporation source) 17. The resistance heating boat 15 was arranged at a position lower than the resistance heating boat 17. The distance in the height direction of the resistance heating boats 15 and 17 was T.

次に、図示しない真空ポンプにより5.0×10−8Torrにまで排気した後、真空槽内に酸素ガスとヘリウムガスとを導入して1Torr付近とした。このときの酸素分圧は40mol%であり、真空ポンプを作動させて一定のガス圧を保ち、液体N導入口31を介して液体窒素を導入し、冷却板33を冷却した。 Next, after evacuating to 5.0 × 10 −8 Torr by a vacuum pump (not shown), oxygen gas and helium gas were introduced into the vacuum chamber to make it around 1 Torr. The oxygen partial pressure at this time was 40 mol%, the vacuum pump was operated to maintain a constant gas pressure, liquid nitrogen was introduced through the liquid N 2 inlet 31, and the cooling plate 33 was cooled.

抵抗加熱ボート17と冷却板33の高さ方向の距離をUとした。 その後、抵抗加熱ボート15,17でRhとZrとを同時に蒸発させて、真空槽内に導入した酸素によりZrを酸化した。   The distance in the height direction between the resistance heating boat 17 and the cooling plate 33 is U. Thereafter, Rh and Zr were simultaneously evaporated by the resistance heating boats 15 and 17, and Zr was oxidized by oxygen introduced into the vacuum chamber.

抵抗加熱ボート15のRhは先に凝縮し、凝縮により生成したRh粒子にZrO粒子が被覆された。ZrOが被覆されたRh粒子は冷却板33に付着するので、この粒子を掻き落としてRh粒子Jを得た。 The Rh of the resistance heating boat 15 was condensed first, and the Rh particles generated by the condensation were coated with ZrO 2 particles. Since the Rh particles coated with ZrO 2 adhere to the cooling plate 33, the particles were scraped off to obtain Rh particles J.

このRh粒子JをTEMで観察したところ、Rh粒子の粒径は2nm程度であり、ZrO層の厚さは5nm程度であった。このRh粒子JをICP分析したところ、Rhが2.17wt%含有されていた。 When the Rh particles J were observed with a TEM, the particle size of the Rh particles was about 2 nm, and the thickness of the ZrO 2 layer was about 5 nm. When this Rh particle J was analyzed by ICP, it contained 2.17 wt% Rh.

[実施例1]
針状ベーマイト249.75g(水分が15wt%含有されたもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Aを30g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Aをアルミナで被覆した粉末aを調製した。粉末aを173.4gとベーマイトアルミナ1.6gとをボールミルに加えた。その後、ボールミルに、水307.5gと10%の硝酸水溶液17.5gとを加えて、粉末aを分散させると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリa)。
[Example 1]
249.75 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker, dispersed in water and peptized with acid, and 30 g of Pt particles A prepared previously were added and dispersed. This slurry was dried and fired to prepare powder a in which Pt particles A were coated with alumina. 173.4 g of powder a and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution were added to the ball mill to disperse the powder a and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry a).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% of rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and 10 wt% were further added. A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリaを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して実施例1の試料とした。得られた実施例1の試料は、Ptを0.587g/L、Rhを0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04L) having a diameter of 36φmm and 400 cells, coated with slurry a at 141 g / L and dried, then coated with slurry R at 59 g / L and dried, and then at 400 ° C. The sample of Example 1 was fired. The obtained sample of Example 1 is a catalyst carrying 0.587 g / L of Pt and 0.236 g / L of Rh.

[実施例2]
針状ベーマイト147.36g(水分が15wt%含有されたもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Bを60g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Bをアルミナで被覆した粉末bを調製した。粉末bを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末bを分散させると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリb)。
[Example 2]
147.36 g of acicular boehmite (containing 15 wt% water) was put in a beaker, dispersed in water and peptized with an acid, and 60 g of the previously prepared Pt particles B were added and dispersed. This slurry was dried and fired to prepare powder b in which Pt particles B were coated with alumina. 173.4 g of powder b and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder b and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry b).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。 Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末を116.55gと、ジルコニア基材を44.45gと、アルミナ基材を11gと、ベーマイトアルミナを3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water was further added. Then, 17.5 g of a 10 wt% nitric acid aqueous solution was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36φmm、400セル6ミルのハニカム担体(容量0.04L)にスラリbを141g/Lコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して実施例2の試料とした。得られた実施例2の試料は、Pt 0.587g/L、Rh0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity 0.04 L) having a diameter of 36 φmm and a capacity of 400 cells is coated with 141 g / L of slurry b, dried, then coated with 59 g / L of slurry R, dried, and then fired at 400 ° C. The sample of Example 2 was obtained. The obtained sample of Example 2 is a catalyst carrying Pt 0.587 g / L and Rh 0.236 g / L, respectively.

[実施例3]
針状ベーマイト249.75g(水分が15wt%含有されたもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Cを30g加えて分散させた。このスラリーを乾燥、焼成してPt内包セリア粒子をアルミナで被覆した粉末cを調製した。粉末cを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10%硝酸水溶液17.5gとを加えて、粉末cを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリc)。
[Example 3]
249.75 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker, dispersed in water and peptized with an acid, and 30 g of the previously prepared Pt particles C were added and dispersed. This slurry was dried and fired to prepare a powder c in which Pt-containing ceria particles were coated with alumina. 173.4 g of powder c and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10% nitric acid aqueous solution were added to the ball mill to disperse the powder c and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry c).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24%複合化してジルコニア基材を調製した。 Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24% of cerium oxide with zirconium oxide.

ロジウム0.6wt%担持粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a rhodium 0.6 wt% supported powder, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and a 10 wt% nitric acid aqueous solution were further added. 17.5 g was added and pulverized to obtain a slurry having an average particle diameter of 3 μm (Slurry R).

直径:36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリcを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して実施例3の試料とした。得られた実施例3の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 φmm and 400 cells is coated with slurry c at 141 g / L and dried, and then coated with slurry R at 59 g / L and dried, and then 400 ° C. The sample of Example 3 was baked. The obtained sample of Example 3 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例4]
針状ベーマイト132.80g(水分が15wt%含有されたもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Dを70g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Dをアルミナで被覆した粉末dを調製した。粉末dを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末dを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリd)。
[Example 4]
When 132.80 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker, dispersed in water and peptized with an acid, 70 g of the previously prepared Pt particles D were added and dispersed. This slurry was dried and fired to prepare powder d in which Pt particles D were coated with alumina. 173.4 g of powder d and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder d and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry d).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% of rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and 10 wt% were further added. A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36mmφ、400セル6ミルのハニカム担体(容量:0.04L)にスラリdを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lにてコーティングして乾燥し、その後、400℃で焼成して実施例4の試料とした。得られた実施例4の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   The honeycomb carrier (capacity: 0.04 L) having a diameter of 36 mmφ and 400 cells is coated with the slurry d at 141 g / L and dried, and then coated with the slurry R at 59 g / L and dried. The sample of Example 4 was obtained by firing at 0 ° C. The obtained sample of Example 4 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例5]
針状ベーマイト150.75g(水分を15wt%含有したもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Eを50g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Eをアルミナで被覆した粉末eを調製した。粉末e173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末eを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリe)。
[Example 5]
When 150.75 g of acicular boehmite (containing 15 wt% of water) was put in a beaker, dispersed in water and peptized with acid, 50 g of the previously prepared Pt particles E were added and dispersed. This slurry was dried and fired to prepare powder e in which Pt particles E were coated with alumina. 173.4 g of powder e and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder e and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry e).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウム0.6wt%担持粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of rhodium 0.6 wt% powder, 44.45 g of zirconia base material, 11 g of alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and a 10 wt% nitric acid aqueous solution were further added. 17.5 g was added and pulverized to obtain a slurry having an average particle diameter of 3 μm (Slurry R).

直径:36mmφ、400セル6ミルのハニカム担体(容量:0.04L)にスラリeを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lにてコーティングして乾燥し、その後、400℃で焼成して実施例5の試料とした。得られた実施例5の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   After coating and drying slurry e at 141 g / L on a honeycomb carrier (capacity: 0.04 L) having a diameter of 36 mmφ, 400 cells and 6 mil, slurry R is coated at 59 g / L and then dried. The sample of Example 5 was fired at 400 ° C. The obtained sample of Example 5 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例6]
針状ベーマイト97.52g(水分が15wt%含有されているもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Fを100g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Fをアルミナで被覆した粉末fを調製した。粉末fを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%の硝酸水溶液17.5gとを加えて、粉末fを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリf)。
[Example 6]
When 97.52 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker, dispersed in water and peptized with an acid, 100 g of the previously prepared Pt particles F were added and dispersed. This slurry was dried and fired to prepare powder f in which Pt particles F were coated with alumina. 173.4 g of powder f and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder f and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry f).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%の硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% of rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and 10 wt% were further added. 17.5 g of an aqueous nitric acid solution was added and pulverized to obtain a slurry having an average particle diameter of 3 μm (slurry R).

直径36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリfを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して実施例6の試料とした。得られた実施例6の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 φmm and 400 cells is coated and dried with 141 g / L of slurry f, dried with 59 g / L of slurry R, and then dried at 400 ° C. The sample of Example 6 was fired. The obtained sample of Example 6 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例7]
針状ベーマイト175.41g(水分が15wt%含有されているもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Gを40g加えて分散させた。このスラリーを乾燥、焼成してPt粒子Gをアルミナで被覆した粉末gを調製した。粉末gを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%の硝酸水溶液17.5gとを加えて、粉末gを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリg)。
[Example 7]
175.41 g of acicular boehmite (containing 15 wt% of water) was put in a beaker, dispersed in water and peptized with acid, and then 40 g of the previously prepared Pt particles G were added and dispersed. This slurry was dried and fired to prepare powder g in which Pt particles G were coated with alumina. 173.4 g of powder g and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder g and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry g).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina, 307.5 g of water and 10% A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36mmφ、400セル6ミルのハニカム担体(容量:0.04L)にスラリgを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lにてコーティングして乾燥し、その後、400℃で焼成して実施例7の試料とした。得られた実施例7の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 mmφ and 400 cells of 6 mil was coated with a slurry g of 141 g / L and dried, and then coated with a slurry R of 59 g / L and dried. The sample of Example 7 was obtained by firing at 0 ° C. The obtained sample of Example 7 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例8]
針状ベーマイト107.90g(水分を15wt%含有したもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt粒子Hを90gを加えて分散させた。このスラリーを乾燥、焼成してPt粒子Hをアルミナで被覆した粉末hを調製した。粉末hを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末hを分散すると共に粉末を粉砕し、平均粒径が3μmのスラリとした(スラリh)。
[Example 8]
107.90 g of acicular boehmite (containing 15 wt% of water) was put in a beaker, dispersed in water and peptized with acid, and 90 g of Pt particles H prepared previously were added and dispersed therein. This slurry was dried and fired to prepare powder h in which Pt particles H were coated with alumina. 173.4 g of powder h and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder h and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry h).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径が3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% of rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and 10 wt% were further added. A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリhを141g/Lコーティングして乾燥した後、スラリRを59g/Lにてコーティングして乾燥し、その後、400℃で焼成して実施例8の試料とした。得られた実施例8の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 φmm and 400 cells and 6 mil was coated with 141 g / L of slurry h and dried, and then coated with slurry R at 59 g / L and dried, and then at 400 ° C. The sample of Example 8 was fired. The obtained sample of Example 8 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例9]
針状ベーマイト206.66g(水分を15wt%含有したもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPd粒子Iを50g加えて分散させた。このスラリーを乾燥、焼成してPd粒子Iをアルミナで被覆した粉末iを調製した。粉末iを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末iを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした(スラリi )。
[Example 9]
When 206.66 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker and dispersed in water and peptized with an acid, 50 g of the previously prepared Pd particles I were added and dispersed. This slurry was dried and fired to prepare powder i in which Pd particles I were coated with alumina. 173.4 g of powder i and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder i and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm (slurry i).

次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24%複合化してジルコニア基材を調製した。   Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24% of cerium oxide with zirconium oxide.

ロジウムを0.6wt%担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of a powder carrying 0.6 wt% rhodium, 44.45 g of a zirconia base material, 11 g of an alumina base material, and 3 g of boehmite alumina, 307.5 g of water and 10% A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリiを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して実施例9の試料とした。得られた実施例9の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。 After coating the slurry i with 141 g / L on a honeycomb carrier (capacity: 0.04 L) having a diameter of 36 φmm and 400 cells and 6 mil, the slurry R was coated with 59 g / L and dried, and then at 400 ° C. The sample of Example 9 was fired. The obtained sample of Example 9 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[実施例10]
アルミナ基材(γアルミナに酸化セリウム9wt%、酸化ジルコニウム9wt%、酸化ランタン6wt%を複合化したもの)にジニトロジアミン白金水溶液を含浸し、乾燥後、400℃で焼成してPtを0.44wt%含有したアルミナ基材を調製した。また、セリア基材(セリアに酸化ジルコニウムを25%複合化したもの)にジニトロジアミン白金水溶液を含浸し、乾燥後、400℃で焼成し、0.375wt%をPt含有したセリア基材を調製した。
[Example 10]
An alumina substrate (composite of γ-alumina with cerium oxide 9wt%, zirconium oxide 9wt%, lanthanum oxide 6wt%) is impregnated with dinitrodiamineplatinum aqueous solution, dried and calcined at 400 ° C to give Pt 0.44wt % Alumina substrate was prepared. Further, a ceria base material (compound containing 25% zirconium oxide in ceria) was impregnated with a dinitrodiamine platinum aqueous solution, dried and fired at 400 ° C. to prepare a ceria base material containing 0.375 wt% Pt. .

Ptを0.44wt%含有したアルミナ基材124.8gと、Ptを0.375wt%含有したセリア基材48.6gと、ベーマイトアルミナ1.6gと、をボールミルに加え、さらに、水307.5gと10wt%硝酸水溶液17.5gとを加えて粉末を粉砕し、平均粒径3μmのスラリとした。(スラリX)
針状ベーマイト153.89g(水分を15wt%含有したもの)をビーカーに入れ、水に分散させて酸で解膠したところに前に調製したRh粒子Jを50g加えて分散させた。このスラリーを乾燥、焼成して、Rh粒子Jをアルミナで被覆した粉末jを調製した。粉末jを116.55gと、実施例1で調製したジルコニア基材44.45g、アルミナ基材11gと、ベーマイトアルミナ3gとを、ボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒子径3μmのスラリーとした。(スラリーS)
直径36φmm、400セル6ミルのハニカム担体(容量:0.04L)にスラリXを141g/Lにてコーティングして乾燥した後、スラリSを59g/Lにてコーティングして乾燥し、その後、400℃で焼成して実施例10の試料とした。得られた実施例10の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。
124.8 g of an alumina base material containing 0.44 wt% of Pt, 48.6 g of a ceria base material containing 0.375 wt% of Pt, and 1.6 g of boehmite alumina are added to a ball mill, and further 307.5 g of water. And 17.5 g of a 10 wt% nitric acid aqueous solution were added, and the powder was pulverized to obtain a slurry having an average particle diameter of 3 μm. (Slurry X)
153.89 g of acicular boehmite (containing 15 wt% of water) was placed in a beaker, dispersed in water and peptized with an acid, and 50 g of the previously prepared Rh particles J were added and dispersed. This slurry was dried and fired to prepare powder j in which Rh particles J were coated with alumina. 116.55 g of powder j, 44.45 g of the zirconia base material prepared in Example 1, 11 g of the alumina base material, and 3 g of boehmite alumina were added to a ball mill, and then 307.5 g of water and 10 wt% nitric acid were added. 17.5 g of an aqueous solution was added and pulverized to obtain a slurry having an average particle diameter of 3 μm. (Slurry S)
A honeycomb carrier (capacity: 0.04L) having a diameter of 36φmm and 400 cells and 6 mils was coated with slurry X at 141 g / L and dried, and then coated with slurry S at 59 g / L and dried, and then 400 The sample of Example 10 was fired at 0 ° C. The obtained sample of Example 10 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[比較例1]
アルミナ基材(γアルミナに酸化セリウムを9wt%、酸化ジルコニウムを9wt%、酸化ランタンを6wt%複合化したもの)にジニトロジアミン白金水溶液を含浸し、乾燥後、400℃で焼成してPtを0.44wt%含有したアルミナ基材を調製した。また、セリア基材(セリアに酸化ジルコニウムを25wt%複合化したもの)にジニトロジアミン白金水溶液を含浸し、乾燥後、400℃で焼成し、0.375wt%をPt含有したセリア基材を調製した。
[Comparative Example 1]
An alumina base material (composite of 9 wt% cerium oxide, 9 wt% zirconium oxide and 6 wt% lanthanum oxide in γ-alumina) is impregnated with an aqueous solution of dinitrodiamine platinum, dried, fired at 400 ° C., and Pt is 0 An alumina substrate containing .44 wt% was prepared. Also, a ceria substrate (composite of ceria with 25 wt% zirconium oxide) was impregnated with a dinitrodiamine platinum aqueous solution, dried, and then fired at 400 ° C. to prepare a ceria substrate containing 0.375 wt% Pt. .

Ptを0.44wt%含有したアルミナ基材124.8gと、Ptを0.375wt%含有したセリア基材48.6gと、ベーマイトアルミナ1.6gと、をボールミルに加え、さらに、水307.5gと10wt%硝酸水溶液17.5gとを加えて粉末を粉砕し、平均粒径3μmのスラリとした。(スラリX)
直径36mmφ、400セル6ミルのハニカム担体(容量:0.04L)にスラリXを141g/Lにてコーティングし、乾燥後、さらに実施例1で調製したスラリRを59g/Lにてコーティングし、乾燥後、400℃で焼成して比較例1の試料とした。比較例1の試料は、Pt:0.587g/L、Rh:0.236g/Lを担持した触媒であり、いわゆる通常の貴金属を含浸した触媒である。
124.8 g of an alumina base material containing 0.44 wt% of Pt, 48.6 g of a ceria base material containing 0.375 wt% of Pt, and 1.6 g of boehmite alumina are added to a ball mill, and further 307.5 g of water. And 17.5 g of a 10 wt% nitric acid aqueous solution were added, and the powder was pulverized to obtain a slurry having an average particle diameter of 3 μm. (Slurry X)
A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 mmφ and 400 cells is coated with slurry X at 141 g / L, dried, and further coated with slurry R prepared in Example 1 at 59 g / L. After drying, the sample of Comparative Example 1 was obtained by firing at 400 ° C. The sample of Comparative Example 1 is a catalyst supporting Pt: 0.587 g / L and Rh: 0.236 g / L, and is a catalyst impregnated with a so-called normal noble metal.

[比較例2]
平均粒子径が40nmのCeOにジニトロジアミンPtを含浸して、乾燥、焼成し、Pt含有量が0.842wt%のPt担持CeO粒子Kを調製した。
[Comparative Example 2]
CeO 2 having an average particle size of 40 nm was impregnated with dinitrodiamine Pt, dried and fired to prepare Pt-supported CeO 2 particles K having a Pt content of 0.842 wt%.

針状ベーマイト105.88g(水分が15wt%含有されているもの)をビーカーに入れ、水に分散させ酸で解膠したところに、前に調製したPt担持CeO2粒子Kを90g加えて分散させた。このスラリーを乾燥、焼成してPt担持セリア粒子Kをアルミナで被覆した粉末kを調製した。粉末kを173.4gとベーマイトアルミナ1.6gと、をボールミルに加えた。その後、ボールミルに、水307.5gと10wt%硝酸水溶液17.5gとを加えて、粉末jを分散すると共に粉末を粉砕し、平均粒径3μmのスラリとした。(スラリk)
次に、ジルコニウムとして3wt%を含むγ−アルミナと、酸化ジルコニウム複合化合物に硝酸ロジウムを含浸し、ロジウム0.6wt%担持粉末を調製した。また、酸化ジルコニウムに酸化セリウムを24wt%複合化してジルコニア基材を調製した。
In a beaker, 105.88 g of acicular boehmite (containing 15 wt% water) was dispersed in water and peptized with acid, and 90 g of Pt-supported CeO2 particles K prepared earlier were added and dispersed. . This slurry was dried and fired to prepare powder k in which Pt-supported ceria particles K were coated with alumina. 173.4 g of powder k and 1.6 g of boehmite alumina were added to a ball mill. Thereafter, 307.5 g of water and 17.5 g of a 10 wt% nitric acid aqueous solution were added to the ball mill to disperse the powder j and pulverize the powder to obtain a slurry having an average particle diameter of 3 μm. (Slurry k)
Next, γ-alumina containing 3 wt% as zirconium and a zirconium oxide composite compound were impregnated with rhodium nitrate to prepare a 0.6 wt% rhodium supported powder. A zirconia base material was prepared by compounding 24 wt% of cerium oxide with zirconium oxide.

ロジウム0.6wt%を担持した粉末116.55gと、ジルコニア基材44.45gと、アルミナ基材11gと、ベーマイトアルミナ3gと、をボールミルに加えた後、さらに、水307.5gと、10wt%硝酸水溶液17.5gとを加えて粉砕し、平均粒径3μmのスラリとした(スラリR)。   After adding 116.55 g of powder carrying 0.6 wt% rhodium, 44.45 g of zirconia base material, 11 g of alumina base material, and 3 g of boehmite alumina to a ball mill, 307.5 g of water and 10 wt% were further added. A nitric acid aqueous solution (17.5 g) was added and pulverized to form a slurry having an average particle diameter of 3 μm (slurry R).

直径36mmφ、400セル6ミルのハニカム担体(容量:0.04L)にスラリーkを141g/Lにてコーティングして乾燥した後、スラリRを59g/Lコーティングして乾燥し、その後、400℃で焼成して比較例2の試料とした。得られた比較例2の試料は、Pt:0.587g/L、Rh:0.236g/Lを各々担持した触媒である。   A honeycomb carrier (capacity: 0.04 L) having a diameter of 36 mmφ and 400 cells and 6 mils was coated with slurry k at 141 g / L and dried, then slurry R was coated with 59 g / L and dried, and then at 400 ° C. The sample of Comparative Example 2 was fired. The obtained sample of Comparative Example 2 is a catalyst carrying Pt: 0.587 g / L and Rh: 0.236 g / L.

[評価]
前記実施例1〜実施例10及び比較例1〜比較例2により調製した触媒を用いて、排気量3500ccのV型エンジンの排気系に、片バンクあたり触媒を各5個ずつ装着した。国内レギュラーガソリンを使用して、触媒入口温度を650℃とし、30時間運転して耐久試験により熱履歴を施した。
[Evaluation]
Using the catalysts prepared in Examples 1 to 10 and Comparative Examples 1 to 2, five catalysts per bank were installed in the exhaust system of a V-type engine with a displacement of 3500 cc. Domestic regular gasoline was used, the catalyst inlet temperature was set to 650 ° C., operation was performed for 30 hours, and a heat history was given by an endurance test.

さらに、耐久試験後の各触媒を模擬排ガス流通装置に組み込み、下記の表2に示す組成の模擬排ガスを模擬排ガス流通装置に流通させて、触媒温度を30℃/分の速度で昇温させながら、NOx、CO、HC(C)の浄化率が50%となる温度(T50)を調べた。前述した表1に、実施例1〜実施例10及び比較例1〜比較例2の各触媒の評価結果を示すと共に、図4に、HC(C)浄化率が50%となる温度の関係を示した。

Figure 2007253037
Further, each catalyst after the endurance test is incorporated into the simulated exhaust gas distribution device, and the simulated exhaust gas having the composition shown in Table 2 below is distributed to the simulated exhaust gas distribution device while raising the catalyst temperature at a rate of 30 ° C./min. The temperature (T50) at which the purification rate of NOx, CO, and HC (C 3 H 6 ) was 50% was examined. Table 1 described above shows the evaluation results of the catalysts of Examples 1 to 10 and Comparative Examples 1 to 2, and FIG. 4 shows the temperature at which the HC (C 3 H 6 ) purification rate becomes 50%. Showed the relationship.
Figure 2007253037

評価結果から、比較例1は、貴金属溶液を使用し通常使用される含浸法を用いてを調製した触媒であるため、初期のPt粒径は非常に小さく分散性が良かったが、耐久後のPt粒子をTEMで観察したところ、Pt粒径が約20nm〜30nmとなりPt粒子が凝集していた。   From the evaluation results, Comparative Example 1 is a catalyst prepared by using a commonly used impregnation method using a noble metal solution, so that the initial Pt particle size was very small and the dispersibility was good. When the Pt particles were observed with a TEM, the Pt particle size was about 20 nm to 30 nm, and the Pt particles were aggregated.

比較例2の触媒は、CeO粒子にPtを含浸担持したものであり、初期のPt粒径は非常に小さく分散性が良かった。又、耐久後の触媒について、Pt粒子をTEMで観察したところ、Pt粒径が約7nm〜10nmと小さかったが、Pt粒子の凝集が確認された。これは、CeOにPtを担持しているため、CeOのアンカー効果により、Ptの凝集は抑制されるがPt粒子の凝集は生じてしまうことによるものと考えられる。 The catalyst of Comparative Example 2 was obtained by impregnating and supporting Pt on CeO 2 particles, and the initial Pt particle size was very small and the dispersibility was good. Moreover, when the Pt particles were observed with a TEM for the catalyst after endurance, the Pt particle diameter was as small as about 7 nm to 10 nm, but aggregation of the Pt particles was confirmed. This is because it carries a Pt to CeO 2, by the anchor effect of CeO 2, aggregation of Pt is being suppressed is thought to be due to occur agglomeration of the Pt particles.

これに対して、実施例1〜実施例10の各触媒では、耐久試験前及び耐久試験後のPt粒子径に大きな変化はなく、各実施例の触媒が熱履歴に対して耐久性に優れているこことが判明した。特に、実施例2、実施例3、実施例4、実施例9の各触媒は、いずれもNOx、CO、HCの浄化率が50%となる温度が低く、触媒活性が高いことが判明した。   On the other hand, in each catalyst of Examples 1 to 10, there was no significant change in the Pt particle diameter before and after the durability test, and the catalyst of each example was excellent in durability against heat history. It turned out to be. In particular, it was found that each of the catalysts of Examples 2, 3, 4, and 9 has a low temperature at which the NOx, CO, and HC purification rates are 50%, and has a high catalytic activity.

本発明の実施形態による排気ガス浄化用触媒を拡大して示す概略図である。It is the schematic which expands and shows the catalyst for exhaust gas purification by embodiment of this invention. 本発明の実施形態による真空蒸着装置の概略を示す断面図である。It is sectional drawing which shows the outline of the vacuum evaporation system by embodiment of this invention. 本図は、本発明の実施形態による排気ガス浄化用触媒の製造工程を示す概略図であり、(a)は貴金属粒子を示し、(b)は貴金属粒子を第1の被覆層で覆った状態を示し、(c)は第1の被覆層を第2の被覆層で覆った状態を示している。FIG. 1 is a schematic view showing a manufacturing process of an exhaust gas purifying catalyst according to an embodiment of the present invention, wherein (a) shows noble metal particles, and (b) shows a state in which the noble metal particles are covered with a first coating layer. (C) has shown the state which covered the 1st coating layer with the 2nd coating layer. 実施例1〜10及び比較例1〜2における各触媒のHC(C)浄化率が50%となる温度を比較したグラフである。Examples 1 to 10 and HC of each catalyst in Comparative Example 1~2 (C 3 H 6) purification ratio is a graph comparing the temperature at which 50%.

符号の説明Explanation of symbols

1…排気ガス浄化用触媒
3…貴金属粒子
5…第1の被覆層
7…第2の被覆層

DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification catalyst 3 ... Noble metal particle 5 ... 1st coating layer 7 ... 2nd coating layer

Claims (6)

貴金属粒子と、該貴金属粒子を覆う第1の被覆層と、この第1の被覆層を覆う第2の被覆層とを備えてなる排気ガス浄化用触媒であって、
前記第1の被覆層は、Al,Ce,Zr,Mn,Co,Fe,Niの単体又はこれらの酸化物から選択される群のうち、少なくともいずれかからなり、
前記第2の被覆層は、アルミナ及びジルコニアの少なくともいずれかからなることを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst comprising noble metal particles, a first coating layer covering the noble metal particles, and a second coating layer covering the first coating layer,
The first coating layer is composed of at least one selected from the group consisting of a single substance of Al, Ce, Zr, Mn, Co, Fe, and Ni, or an oxide thereof.
The exhaust gas purifying catalyst, wherein the second coating layer is made of at least one of alumina and zirconia.
前記貴金属粒子は、白金、パラジウム及びロジウムから選択される少なくともいずれかからなることを特徴とする請求項1に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1, wherein the noble metal particles are made of at least one selected from platinum, palladium, and rhodium. 前記第1の被覆層は、クラスターの集合体から形成されることを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1 or 2, wherein the first coating layer is formed of an aggregate of clusters. 前記貴金属粒子の粒子径は、1〜5nmであることを特徴とする請求項1〜3のいずれか1項に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein a particle diameter of the noble metal particles is 1 to 5 nm. 前記第1の被覆層における平均の厚さは、20nm以下であることを特徴とする請求項1〜4のいずれか1項に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein an average thickness of the first coating layer is 20 nm or less. ガス中蒸発法を用いて、貴金属粒子を第1の被覆層で覆う工程と、
該第1の被覆層を第2の被覆層で覆う工程とを含み、
前記第1の被覆層は、Al,Ce,Zr,Mn,Co,Fe,Ni又はこれらの酸化物から選択される少なくともいずれかからなり、
前記第2の被覆層は、アルミナ及びジルコニアの少なくともいずれかからなることを特徴とする排気ガス浄化用触媒の製造方法。

Covering the noble metal particles with a first coating layer using a gas evaporation method;
Covering the first coating layer with a second coating layer,
The first coating layer is composed of at least one selected from Al, Ce, Zr, Mn, Co, Fe, Ni, or an oxide thereof.
The method for producing an exhaust gas purifying catalyst, wherein the second coating layer is made of at least one of alumina and zirconia.

JP2006079102A 2006-03-22 2006-03-22 Catalyst for cleaning exhaust gas and manufacturing method therefor Pending JP2007253037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079102A JP2007253037A (en) 2006-03-22 2006-03-22 Catalyst for cleaning exhaust gas and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079102A JP2007253037A (en) 2006-03-22 2006-03-22 Catalyst for cleaning exhaust gas and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007253037A true JP2007253037A (en) 2007-10-04

Family

ID=38627804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079102A Pending JP2007253037A (en) 2006-03-22 2006-03-22 Catalyst for cleaning exhaust gas and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007253037A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509933A (en) * 2011-02-23 2014-04-24 エスディーシーマテリアルズ, インコーポレイテッド Wet chemical process for forming stable PtPd diesel oxide
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
JP2014509933A (en) * 2011-02-23 2014-04-24 エスディーシーマテリアルズ, インコーポレイテッド Wet chemical process for forming stable PtPd diesel oxide
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
JP2007253037A (en) Catalyst for cleaning exhaust gas and manufacturing method therefor
JP5727952B2 (en) Exhaust gas purification catalyst and method for producing the same
KR101797252B1 (en) Small engine layered catalyst article and method of making
JP5376261B2 (en) Exhaust gas purification catalyst
US7833930B2 (en) Exhaust gas purifying catalyst and production method thereof
US9861961B2 (en) Catalyst for nitrogen oxide removal
JP7026530B2 (en) Three-way catalyst for exhaust gas purification
CN113260454A (en) Layered three-way conversion (TWC) catalysts and methods of making the same
CN111315480A (en) Niobium oxide doped materials as rhodium supports for three-way catalyst applications
JP2006255610A (en) Catalyst for cleaning exhaust gas and its manufacturing method
WO2018199249A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using same
JP6106197B2 (en) NOx storage reduction type exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP5130632B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2019147090A (en) Three-dimensional catalyst for exhaust gas purification and manufacturing method therefor, and catalyst for integrated structure type exhaust gas purification
JP2007029863A (en) Catalyst for cleaning exhaust gas
JP2014000516A (en) Carrier for supporting catalyst, supported catalyst for exhaust gas purification, and filter for exhaust gas purification
JP2005313012A (en) Exhaust gas clarification catalyst, catalytic active particle and its production method
JP4805031B2 (en) Exhaust gas purification catalyst, its production method and use method
WO2023026775A1 (en) Catalyst structure, fuel reforming method, and fuel reforming system
JP6263991B2 (en) A method for producing a catalyst material, a method for producing a particulate filter with a catalyst using the same, and a method for producing a three-way catalyst for a gasoline engine.
JP2009101327A (en) Catalyst for treating organic acid-containing exhaust gas
JP2000237589A (en) Catalyst for purifying exhaust gas