JP2007253032A - Gas-liquid contacting apparatus - Google Patents

Gas-liquid contacting apparatus Download PDF

Info

Publication number
JP2007253032A
JP2007253032A JP2006078937A JP2006078937A JP2007253032A JP 2007253032 A JP2007253032 A JP 2007253032A JP 2006078937 A JP2006078937 A JP 2006078937A JP 2006078937 A JP2006078937 A JP 2006078937A JP 2007253032 A JP2007253032 A JP 2007253032A
Authority
JP
Japan
Prior art keywords
gas
absorbing liquid
liquid
nozzle
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006078937A
Other languages
Japanese (ja)
Inventor
Takeshi Yajima
健史 矢嶌
Shoichi Hara
正一 原
Kazuo Uematsu
和夫 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006078937A priority Critical patent/JP2007253032A/en
Publication of JP2007253032A publication Critical patent/JP2007253032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-liquid contacting apparatus enhancing absorption efficiency of sulfur oxides or the like and dedusting efficiency by enlarging gas-liquid contact area of treating object gas with the absorbing liquid while reducing a circulation amount of absorbing liquid thereby reducing the capacity of a circulation pump resulting in reduction in power consumption. <P>SOLUTION: A charged absorbing liquid jetting means 15 which charges the absorbing liquid while letting it flow down and drops the liquid as charged droplets, is disposed above supercooling spray nozzles 14 in a stack-integrated type absorption tower 7'. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被処理ガスと吸収液とを接触させ、被処理ガスの処理を行う気液接触装置に関するものであって、特に、火力発電ボイラから排出される燃焼排ガス中の煤塵を除去する脱塵、並びに前記燃焼排ガス中の硫黄酸化物を除去する脱硫等に適した気液接触装置に関するものである。   The present invention relates to a gas-liquid contact device for bringing a gas to be treated into contact with an absorbing liquid and processing the gas to be treated, and in particular, a degassing method for removing soot and dust in combustion exhaust gas discharged from a thermal power generation boiler. The present invention relates to a gas-liquid contact device suitable for desulfurization and the like for removing dust and sulfur oxides in the combustion exhaust gas.

一般に、例えば、発電出力が千MW(メガワット)クラスの大型の石炭火力発電ボイラから排出される燃焼排ガスは、およそ330万[m3/h](≒917[m3/s])にもなり、このような大容量の燃焼排ガスを無害化するために、脱硝、脱塵、脱硫、ガス・ガスヒータ等の機器を組み合わせた総合排煙処理システムを用いて、浄化した排煙を煙突から大気に放出するようになっている。 In general, for example, the combustion exhaust gas discharged from a large coal-fired power generation boiler with a power generation output of 1000 MW (megawatt) class is about 3.3 million [m 3 / h] (≈ 917 [m 3 / s]). In order to detoxify such a large volume of flue gas, purified exhaust gas is discharged from the chimney to the atmosphere using a comprehensive flue gas treatment system that combines denitration, dedusting, desulfurization, gas and gas heaters, etc. Released.

図6は、従来の大型石炭火力発電ボイラ設備の一例を示すシステム構成図であって、1は石炭等の燃料を燃焼させ蒸気を発生させるボイラ、2はボイラ1から排出される燃焼排ガス中に含まれる窒素酸化物を除去するための脱硝装置、3は脱硝装置2で窒素酸化物が除去された燃焼排ガスとボイラ1へ供給される燃焼用空気等の空気(図示せず)とを熱交換させるためのエアヒータ、4はエアヒータ3を通過して温度降下した燃焼排ガスから更に熱を回収するためのガス・ガスヒータの熱回収器、5はエアヒータ3並びにガス・ガスヒータの熱回収器4で熱回収が行われた燃焼排ガス中に含まれる煤塵を捕集するための湿式電気集塵機、6は湿式電気集塵機5の下流側に設けられた誘引通風機、7は湿式電気集塵機5で煤塵が捕集され誘引通風機6を経て送り込まれる燃焼排ガス中に残存する煤塵並びに該燃焼排ガス中に含まれる硫黄酸化物を除去するための気液接触装置としての吸収塔、8は吸収塔7で煤塵並びに硫黄酸化物が除去された燃焼排ガスからミストを除去するミストセパレータ、9はミストセパレータ8でミストが除去された燃焼排ガスを熱回収器4で回収した熱によって再加熱するためのガス・ガスヒータの再加熱器、10はガス・ガスヒータの再加熱器9の下流側に設けられた脱硫通風機、11はガス・ガスヒータの再加熱器9で再加熱され脱硫通風機10で昇圧された燃焼排ガスを大気中へ放出するための煙突である。   FIG. 6 is a system configuration diagram showing an example of a conventional large-scale coal-fired power generation boiler facility, in which 1 is a boiler that burns fuel such as coal and generates steam, and 2 is a combustion exhaust gas discharged from the boiler 1. A denitration apparatus 3 for removing nitrogen oxides contained in the heat exchanger 3 exchanges heat (not shown) such as combustion air supplied to the boiler 1 with combustion exhaust gas from which nitrogen oxides have been removed by the denitration apparatus 2. An air heater 4 is used to recover heat from the combustion exhaust gas whose temperature has dropped after passing through the air heater 3, and 5 is a heat recovery unit 4 for recovering heat from the air heater 3 and the gas / gas heater heat recovery unit 4. The wet-type electrostatic precipitator for collecting the soot and dust contained in the combustion exhaust gas, wherein 6 is an induction fan provided on the downstream side of the wet-type electrostatic precipitator 5, and 7 is the wet-type electrostatic precipitator 5. Invitation An absorption tower as a gas-liquid contact device for removing the soot remaining in the combustion exhaust gas sent through the machine 6 and the sulfur oxide contained in the combustion exhaust gas, 8 is an absorption tower 7, and soot and sulfur oxide are A mist separator 9 for removing mist from the removed combustion exhaust gas, 9 is a reheater of a gas / gas heater for reheating the combustion exhaust gas from which the mist has been removed by the mist separator 8 by the heat recovered by the heat recovery unit 10, 10 Is a desulfurization ventilator provided on the downstream side of the reheater 9 of the gas / gas heater, and 11 is a reheater 9 of the gas / gas heater, and releases the combustion exhaust gas pressurized by the desulfurization ventilator 10 into the atmosphere. For the chimney.

図6に示される従来の大型石炭火力発電ボイラ設備においては、ボイラ1で石炭等の燃料の燃焼が行われて蒸気が発生され、その際にボイラ1から排出される燃焼排ガスは、脱硝装置2で窒素酸化物が除去され、エアヒータ3において、押込通風機(図示せず)によりボイラ1へ供給される燃焼用空気等の空気と熱交換して温度降下し、ガス・ガスヒータの熱回収器4で更に熱が回収された後、湿式電気集塵機5で煤塵が捕集され、誘引通風機6を経て吸収塔7で残存する煤塵並びに硫黄酸化物が除去され、ミストセパレータ8でミストが除去され、ガス・ガスヒータの再加熱器9において前記熱回収器4で回収した熱によって再加熱され、脱硫通風機10で昇圧され煙突11から大気中へ放出されるようになっている。   In the conventional large coal-fired power generation boiler facility shown in FIG. 6, fuel such as coal is burned in the boiler 1 to generate steam, and the combustion exhaust gas discharged from the boiler 1 at that time is denitration device 2. In the air heater 3, the temperature of the air heater 3 is reduced by exchanging heat with air such as combustion air supplied to the boiler 1 by a forced air blower (not shown), and the heat recovery unit 4 of the gas / gas heater is used. After the heat is further recovered, the soot is collected by the wet electrostatic precipitator 5, the soot and sulfur oxide remaining in the absorption tower 7 are removed via the induction fan 6, and the mist is removed by the mist separator 8. In the reheater 9 of the gas / gas heater, it is reheated by the heat recovered by the heat recovery device 4, is pressurized by the desulfurization ventilator 10, and is discharged from the chimney 11 to the atmosphere.

尚、前記吸収塔7で硫黄酸化物が除去され更にミストセパレータ8てミストが除去されて排出される燃焼排ガスは、通常、およそ50[℃]前後まで温度降下し飽和状態となっており、この脱硫後の燃焼排ガスをそのまま煙突11から大気中へ放出すると、白煙が発生するため、前記熱回収器4と再加熱器9とからなるガス・ガスヒータを用いて前記吸収塔7から排出される燃焼排ガスを再加熱するようになっている。   In addition, the combustion exhaust gas from which the sulfur oxide is removed by the absorption tower 7 and further the mist is removed by the mist separator 8 is discharged to a temperature of about 50 [° C.] and is saturated. If the combustion exhaust gas after desulfurization is discharged from the chimney 11 to the atmosphere as it is, white smoke is generated, and is discharged from the absorption tower 7 using a gas / gas heater comprising the heat recovery device 4 and the reheater 9. The combustion exhaust gas is reheated.

前述の如き従来の大型石炭火力発電ボイラ設備では、高い脱硫・脱塵効率が得られる反面、大型の湿式電気集塵機5や吸収塔7に加え、ガス・ガスヒータの熱回収器4及び再加熱器9等を別々に設ける必要があり、コストアップが避けられない。   In the conventional large coal-fired power generation boiler facilities as described above, high desulfurization / dust removal efficiency can be obtained, but in addition to the large wet electrostatic precipitator 5 and the absorption tower 7, the heat recovery device 4 and reheater 9 of the gas / gas heater are used. Etc. need to be provided separately, and an increase in cost is inevitable.

ところで、百MWクラスの事業用や海外向けの中小型石炭火力発電ボイラ設備の場合、特にコスト面での制約が厳しく、大型石炭火力発電ボイラ設備のように、湿式電気集塵機5やガス・ガスヒータの熱回収器4及び再加熱器9等を設置すると、コストアップにつながることから、これを避けるために、例えば、図7に示される如く、前記湿式電気集塵機5(図6参照)の代わりに乾式電気集塵機5´を設け、吸収塔7(図6参照)を煙突一体型の吸収塔7´とし、ガス・ガスヒータの熱回収器4及び再加熱器9と脱硫通風機10をなくし、これにより、中小型石炭火力発電ボイラ設備を構成することが行われている。   By the way, in the case of 100 MW class business and overseas small and medium-sized coal-fired power generation boiler facilities, the restrictions on cost are particularly severe. If the heat recovery device 4 and the reheater 9 are installed, the cost increases. Therefore, in order to avoid this, for example, as shown in FIG. 7, a dry type is used instead of the wet electric dust collector 5 (see FIG. 6). An electric dust collector 5 ′ is provided, the absorption tower 7 (see FIG. 6) is a chimney-type absorption tower 7 ′, the heat recovery unit 4 of the gas / gas heater, the reheater 9, and the desulfurization ventilator 10 are eliminated. The construction of small and medium-sized coal-fired power generation boiler facilities has been carried out.

ここで、前記煙突一体型の吸収塔7´は、図8に示される如く、底部に吸収液の液溜部12が形成され、上部に脱塵・脱硫用スプレーノズル13と過冷却用スプレーノズル14とが上下複数段(図8の例では脱塵・脱硫用スプレーノズル13が上側に二段、過冷却用スプレーノズル14が下側に一段)配設されており、運転時には、前記煙突一体型の吸収塔7´に導入される燃焼排ガスは、過冷却用スプレーノズル14から噴霧される水によって過冷却されつつ、前記脱塵・脱硫用スプレーノズル13から噴霧される吸収液によって煤塵並びに硫黄酸化物が除去され、大気放出されるようになっている。   Here, as shown in FIG. 8, the chimney-integrated absorption tower 7 ′ has a liquid reservoir 12 for absorbing liquid at the bottom, and a dust / desulfurization spray nozzle 13 and a supercooling spray nozzle at the top. 14 are arranged in a plurality of upper and lower stages (in the example of FIG. 8, the spray nozzle 13 for dedusting / desulfurization is two stages on the upper side and the spray nozzle 14 for supercooling is one stage on the lower side). The combustion exhaust gas introduced into the body-shaped absorption tower 7 ′ is supercooled by water sprayed from the supercooling spray nozzle 14, while dust and sulfur are absorbed by the absorbent sprayed from the dedusting / desulfurization spray nozzle 13. The oxide is removed and released into the atmosphere.

前記吸収液としては、例えば、石灰石粉末を20[%wt]程度含んだスラリー状のものが使用され、前記液溜部12の吸収液は、図示していない循環ポンプの作動により汲み上げられて前記脱塵・脱硫用スプレーノズル13から噴霧され、循環されるようになっている。   As the absorption liquid, for example, a slurry containing about 20 [% wt] of limestone powder is used, and the absorption liquid in the liquid reservoir 12 is pumped up by operation of a circulation pump (not shown). It is sprayed from the spray nozzle 13 for dedusting / desulfurization and circulated.

尚、水をスプレーして燃焼排ガスを過冷却することにより、燃焼排ガス中の水分を凝縮させて微細な煤塵の凝集肥大化を促進し、煤塵の捕集効果を増大させ、湿式電気集塵機をなくし、装置の低価格化を図るものとしては、例えば、特許文献1がある。
特開2002−35545号公報
In addition, by spraying water to supercool the flue gas, the moisture in the flue gas is condensed to promote the coagulation and enlargement of fine dust, increase the dust collection effect, and eliminate the wet electric dust collector. For example, Japanese Patent Application Laid-Open No. H10-228707 discloses a device for reducing the price of the apparatus.
JP 2002-35545 A

しかしながら、前述の如き従来の煙突一体型の吸収塔7´においては、脱塵・脱硫用スプレーノズル13から吸収塔7´内部の全範囲を網羅する量の吸収液を噴霧しなければならないため、吸収液の循環量が増え、循環ポンプ容量を高める必要があった。   However, in the conventional chimney-integrated absorption tower 7 ′ as described above, an amount of absorption liquid covering the entire range inside the absorption tower 7 ′ must be sprayed from the dust / desulfurization spray nozzle 13. It was necessary to increase the circulation pump capacity and increase the circulation pump capacity.

又、前記脱塵・脱硫用スプレーノズル13から噴霧される吸収液の液滴内における物質移動速度は遅く、表面層のごく僅かしか吸収反応に寄与しないため、スプレー量の大半が無駄になっており、循環ポンプの消費電力が嵩むという欠点を有していた。   Further, the mass transfer speed in the droplets of the absorbing liquid sprayed from the dust / desulfurization spray nozzle 13 is slow, and only a very small amount of the surface layer contributes to the absorption reaction, so that most of the spray amount is wasted. In addition, the power consumption of the circulation pump is increased.

更に又、気液接触面積を広げるために液滴を小さくするには、高圧スプレーの場合、スプレー流速を高くする必要があるが、該スプレー流速を高くすると、スプレー圧力損失が増加し、やはり循環ポンプの消費電力の増加につながっていた。   Furthermore, in order to reduce the droplet size in order to expand the gas-liquid contact area, it is necessary to increase the spray flow rate in the case of high-pressure spray. However, if the spray flow rate is increased, the spray pressure loss increases, and the circulation rate is also increased. This led to an increase in power consumption of the pump.

一方、特許文献1に記載されている装置の場合、数十[μm]以下の小さな煤塵の粒子は、重力に対し空気の抵抗力が相対的に大きくなるため、燃焼排ガスの流れに乗ってしまい、落下捕集できなくなる可能性があり、脱塵効率を高めることが困難となっていた。   On the other hand, in the case of the device described in Patent Document 1, small dust particles of several tens of [μm] or less get on the flow of combustion exhaust gas because the resistance force of air is relatively large against gravity. There is a possibility that it will not be able to fall and collect, and it has been difficult to increase the dust removal efficiency.

本発明は、斯かる実情に鑑み、吸収液の循環量を減らして循環ポンプ容量を低下させ、消費電力削減を図りつつ、被処理ガスと吸収液との気液接触面積を広げて、硫黄酸化物等の吸収効率並びに脱塵効率の向上を図り得る気液接触装置を提供しようとするものである。   In view of such circumstances, the present invention reduces the circulation amount of the absorbing liquid to reduce the circulation pump capacity, and reduces power consumption, while expanding the gas-liquid contact area between the gas to be treated and the absorbing liquid, An object of the present invention is to provide a gas-liquid contact device capable of improving the absorption efficiency of objects and dust removal efficiency.

本発明は、被処理ガスと吸収液とを接触させ、被処理ガスの処理を行う気液接触装置であって、
吸収液を流下させつつ帯電させ帯電液滴として滴下させる帯電吸収液噴出手段を備えたことを特徴とする気液接触装置にかかるものである。
The present invention is a gas-liquid contact device for bringing a gas to be treated into contact with an absorbing liquid and processing the gas to be treated,
The present invention relates to a gas-liquid contact device comprising charging absorbing liquid ejecting means for charging an absorbing liquid while flowing down and dropping it as charged droplets.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

帯電吸収液噴出手段から流下させた吸収液は、帯電され帯電液滴として滴下し、被処理ガスに含まれる煤塵の電荷との間に生ずるクーロン力によって、数十[μm]以下の煤塵の粒子も凝集肥大化され、被処理ガスの流れに乗ってしまわずに、落下捕集され、脱塵効率を高めることが可能となる。   Absorbing liquid flowing down from the charging absorbing liquid ejecting means is charged and dropped as charged droplets, and particles of soot and dust of several tens [μm] or less due to Coulomb force generated between the soot and dust contained in the gas to be treated. Also, the flocculation is enlarged and the dust is collected without falling on the flow of the gas to be treated, thereby improving the dust removal efficiency.

又、本発明においては、従来に比べ、吸収液の循環量を減らし、循環ポンプ容量を低く抑えることが可能となる。   Further, in the present invention, it is possible to reduce the circulation amount of the absorbing liquid and to reduce the circulation pump capacity as compared with the conventional case.

一方、前記吸収液の液滴径を小さくして気液接触面積を広げられるため、硫黄酸化物等の吸収反応に液滴の略全量が寄与し、従来のようにスプレー量の大半が無駄になることが避けられ、循環ポンプの消費電力が嵩む心配もなくなる。   On the other hand, since the liquid droplet contact area can be expanded by reducing the droplet diameter of the absorbing liquid, almost the entire amount of droplets contributes to the absorption reaction of sulfur oxides and the like, and most of the spray amount is wasted as before. It is avoided that the power consumption of the circulation pump increases.

又、従来の高圧スプレーの場合のように、スプレー流速を高くしなくても、前記吸収液の液滴径を小さく気液接触面積を広げられるため、圧力損失に伴う循環ポンプの消費電力の増加も回避可能となる。   In addition, as in the case of conventional high-pressure sprays, the droplet diameter of the absorbing liquid can be reduced and the gas-liquid contact area can be expanded without increasing the spray flow rate. Can also be avoided.

前記気液接触装置においては、帯電吸収液噴出手段を、
吸収液を流下させ且つ高電圧が印加される吸収液ノズルと、
該吸収液ノズルから流下される吸収液の周囲を取り囲むよう吸収液ノズル直下に配設される接地電極と
から構成することができる。
In the gas-liquid contact device, the charging absorbing liquid ejecting means is
An absorbent nozzle that allows the absorbent to flow down and a high voltage to be applied;
And a ground electrode disposed directly below the absorbing liquid nozzle so as to surround the absorbing liquid flowing down from the absorbing liquid nozzle.

前記吸収液ノズルは、
水平方向へ延びるよう配設されて吸収液が導入され且つ高電圧が印加されるノズルヘッダと、
該ノズルヘッダの下面側から下方へ向け吸収液を流下させ得るよう突設され且つ前記ノズルヘッダの長手方向へ所要ピッチで複数配設される細管状ノズルと
から構成することができる。
The absorbent nozzle is
A nozzle header that is arranged to extend in the horizontal direction, into which an absorbing liquid is introduced and to which a high voltage is applied;
The nozzle header is configured to project from the lower surface side of the nozzle header so as to be able to flow the absorbing liquid downward, and is provided with a plurality of tubular nozzles arranged at a required pitch in the longitudinal direction of the nozzle header.

又、前記吸収液ノズルは、
水平方向へ延びるよう配設されて吸収液が導入され且つ高電圧が印加されるノズルヘッダと、
該ノズルヘッダの下面側から下方へ向け吸収液を流下させ得るよう穿設され且つ前記ノズルヘッダの長手方向へ所要ピッチで複数配設される細孔と、
該細孔に下方へ突出するよう嵌挿され且つ前記ノズルヘッダ内の吸収液を細孔との隙間から表面に沿って流下させるニードルと
から構成しても良い。
The absorbent nozzle is
A nozzle header that is arranged to extend in the horizontal direction, into which an absorbing liquid is introduced and to which a high voltage is applied;
A plurality of pores that are perforated so that the absorbing liquid can flow downward from the lower surface side of the nozzle header and are arranged at a required pitch in the longitudinal direction of the nozzle header;
You may comprise from the needle inserted so that it may protrude below in this pore, and the flowing-in absorption liquid in the said nozzle header along a surface from the clearance gap between pores.

前記接地電極は、吸収液ノズルから流下される吸収液が通過可能な開口が形成された金属板によって構成することができる。   The ground electrode can be constituted by a metal plate in which an opening through which the absorbing liquid flowing down from the absorbing liquid nozzle can pass is formed.

前記接地電極には放電防止用のコーティングを施すことが望ましい。   The ground electrode is preferably coated with an anti-discharge coating.

本発明の気液接触装置によれば、吸収液の循環量を減らして循環ポンプ容量を低下させ、消費電力削減を図りつつ、被処理ガスと吸収液との気液接触面積を広げて、硫黄酸化物等の吸収効率並びに脱塵効率の向上を図り得るという優れた効果を奏し得る。   According to the gas-liquid contact device of the present invention, the circulation amount of the absorption liquid is reduced to reduce the circulation pump capacity, and the power consumption is reduced while the gas-liquid contact area between the gas to be treated and the absorption liquid is increased. An excellent effect of improving the absorption efficiency of oxides and the like and the dust removal efficiency can be obtained.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図3は本発明を実施する形態の一例であって、図中、図7及び図8と同一の符号を付した部分は同一物を表わしており、煙突一体型の吸収塔7´内における過冷却用スプレーノズル14の上方に、吸収液を流下させつつ帯電させ帯電液滴として滴下させる帯電吸収液噴出手段15を配設したものである。   1 to 3 show an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 7 and 8 denote the same parts, and the chimney-integrated absorption tower 7 '. A charging absorbing liquid ejecting means 15 for charging the absorbing liquid while flowing down and dropping it as charged droplets is disposed above the supercooling spray nozzle 14 inside.

前記帯電吸収液噴出手段15は、図2に示す如く、吸収液を流下させ且つ直流又は交流の高電圧が印加される吸収液ノズル16と、該吸収液ノズル16から流下される吸収液の周囲を取り囲むよう吸収液ノズル16直下に配設される接地電極17とから構成してある。   As shown in FIG. 2, the charging absorbing liquid ejecting means 15 includes an absorbing liquid nozzle 16 that causes the absorbing liquid to flow down and to which a DC or AC high voltage is applied, and the periphery of the absorbing liquid that flows down from the absorbing liquid nozzle 16. And a ground electrode 17 disposed immediately below the absorbing liquid nozzle 16 so as to surround.

本図示例の場合、前記吸収液ノズル16は、吸収液が導入されるノズルヘッダ18を、水平方向へ延びるよう配設して高電圧が印加されるようにすると共に、該ノズルヘッダ18の下面側に、下方へ向け吸収液を流下させるための細管状ノズル19を、前記ノズルヘッダ18の長手方向へ所要ピッチで複数配設されるよう突設してなる構成を有している。   In the case of the illustrated example, the absorbing liquid nozzle 16 is provided with a nozzle header 18 into which the absorbing liquid is introduced so as to extend in the horizontal direction so that a high voltage is applied thereto. On the side, a plurality of narrow tubular nozzles 19 are provided so as to flow downward in the longitudinal direction of the nozzle header 18 so as to allow the absorbent to flow downward.

尚、前記細管状ノズル19から流下させる吸収液の液滴径は、煤塵を捕集するまでの時間内で硫黄酸化物の吸収反応に寄与し、且つ被処理ガスとしての燃焼排ガスの流れに乗って飛散しない最小限のサイズ(およそφ0.1〜5[mm]程度)となるようにすれば良いが、必要となる最適な液滴径が得られるようにするために、前記細管状ノズル19は、ノズルヘッダ18に対してアタッチメント方式とし、異なるノズル径のものを適宜選定できるようにすることが有効である。   The droplet diameter of the absorbing liquid flowing down from the thin tubular nozzle 19 contributes to the absorption reaction of sulfur oxide within the time until dust is collected and rides on the flow of combustion exhaust gas as the gas to be treated. However, in order to obtain the required optimum droplet diameter, the narrow tubular nozzle 19 may be used. It is effective to adopt an attachment system for the nozzle header 18 so that nozzles with different nozzle diameters can be selected as appropriate.

前記接地電極17は、前記吸収液ノズル16を構成する細管状ノズル19から流下される吸収液が通過可能な開口20が形成された金属板21によって構成してある。該金属板21としては、例えば、パンチングメタル等を利用することもできる。又、前記金属板21に形成される開口20は、図2に示されるような円形に限らず、角形やスリット状にすることも可能である。更に又、前記接地電極17には、放電防止用のテフロン(登録商標)等のコーティングを施してある。   The ground electrode 17 is constituted by a metal plate 21 having an opening 20 through which an absorbing liquid flowing down from a thin tubular nozzle 19 constituting the absorbing liquid nozzle 16 can pass. As the metal plate 21, for example, a punching metal or the like can be used. Further, the opening 20 formed in the metal plate 21 is not limited to a circle as shown in FIG. 2, but may be a square or a slit. Further, the ground electrode 17 is coated with Teflon (registered trademark) for preventing discharge.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

帯電吸収液噴出手段15の吸収液ノズル16に高電圧を印加した状態でノズルヘッダ18内の吸収液を細管状ノズル19から流下させると、該細管状ノズル19先端に生ずる液柱側面には、図3に示す如く、等電位線で表されるような電界の中においてマクスウェル応力が働くため、細長く安定した吸収液の液柱が形成されるが、接地電極17通過後に応力が働かなくなったところで不安定が生じ、−(マイナス)の電荷を帯びた微細な液滴が形成される。因みに、例えば、導電率が4[μS/cm]の吸収液に、8[kV/cm]の電界をかけた場合、φ0.5[mm]程度の液滴がおよそ30[個/s]滴下し、この液滴の帯電量は約0.1[C]となる。   When the absorbing liquid in the nozzle header 18 is caused to flow down from the tubular nozzle 19 in a state where a high voltage is applied to the absorbing liquid nozzle 16 of the charging absorbing liquid ejecting means 15, As shown in FIG. 3, Maxwell stress acts in an electric field represented by an equipotential line, so that a long and stable liquid column of the absorbing solution is formed. However, after the ground electrode 17 passes, the stress does not work. Instability occurs, and fine droplets having a minus (-) charge are formed. Incidentally, for example, when an electric field of 8 [kV / cm] is applied to an absorbing liquid having a conductivity of 4 [μS / cm], a droplet of about φ0.5 [mm] is dropped by about 30 [piece / s]. The charge amount of the droplet is about 0.1 [C].

ここで、図4(b)に示す如く、電気集塵機の場合、電極22からのコロナ放電で煤塵を帯電させ、接地集塵板23に引き寄せて捕集する形となるが、同極となる+(プラス)の電荷を帯びているため、煤塵同士の結合は見られず、この結果、煤塵は、
クーロン力<空気抵抗力
となる数十[μm]以下のものは捕集できない。これに対し、図4(a)に示す如く、本図示例における帯電吸収液噴出手段15の場合、−(マイナス)の電荷を帯びた微細な吸収液の液滴とは逆の+(プラス)の電荷を帯びた煤塵は、数十[μm]以下の粒子であっても前記吸収液の液滴に引き寄せられ、該吸収液の液滴を核として凝集肥大化されるため、燃焼排ガスの流れに乗ってしまわずに、落下捕集され、脱塵効率を高めることが可能となる。尚、前記吸収液の液滴を核として凝集肥大化させた煤塵を単に落下捕集するだけでなく、帯電吸収液噴出手段15の接地電極17の下方所要位置に集塵板を更に設け、該集塵板に前記凝集肥大化させた煤塵を吸着させることも可能である。
Here, as shown in FIG. 4B, in the case of an electrostatic precipitator, the dust is charged by corona discharge from the electrode 22 and is attracted to and collected by the ground dust collecting plate 23, but has the same polarity. Because of the positive charge, there is no binding between the dust, and as a result, the dust is
Those with a Coulomb force <several tens of [μm] that have an air resistance cannot be collected. On the other hand, as shown in FIG. 4A, in the case of the charging absorbing liquid ejecting means 15 in the illustrated example, + (plus) opposite to the fine absorbing liquid droplets having a minus (-) charge. The dust having the electric charge of 10 μm is attracted to the droplet of the absorbing liquid even if it is a particle of several tens [μm] or less, and is condensed and enlarged using the droplet of the absorbing liquid as a nucleus. It is possible to increase the dust removal efficiency by falling and collecting without riding on. In addition to collecting and collecting the dust that has been agglomerated and enlarged with the absorbing liquid droplets as nuclei, a dust collecting plate is further provided at a required position below the ground electrode 17 of the charging absorbing liquid ejecting means 15, It is also possible to adsorb the dust that has been agglomerated and enlarged to the dust collecting plate.

又、本図示例の煙突一体型の吸収塔7´においては、例えば、一つの液滴が1[m]落下する間に、およそ0.1[m]の範囲の煤塵を吸着することができ、吸収液の滴下量は数[l/min]程度で済むため、従来のように吸収塔7´内部の全範囲を網羅する量の吸収液を脱塵・脱硫用スプレーノズル13(図8参照)から噴霧するのに比べ、吸収液の循環量を減らし、循環ポンプ容量を低く抑えることが可能となる。   In addition, in the chimney-integrated absorption tower 7 'of the illustrated example, for example, while one droplet falls 1 [m], dust in the range of about 0.1 [m] can be adsorbed. Since the dropping amount of the absorbing liquid is only a few [l / min], the absorbing liquid in an amount covering the entire range inside the absorption tower 7 'is removed from the absorbing nozzle 7' as in the prior art (see FIG. 8). ), The circulation rate of the absorption liquid can be reduced and the circulation pump capacity can be kept low.

更に又、前記細管状ノズル19のノズル径を無理に小さくしなくても、印加する電圧を高くすることで吸収液の液滴径を小さくできるため、細管状ノズル19の詰まりの防止にも役立つこととなる。   Furthermore, since the droplet diameter of the absorbing liquid can be reduced by increasing the applied voltage without forcibly reducing the nozzle diameter of the tubular nozzle 19, it is useful for preventing clogging of the tubular nozzle 19. It will be.

一方、前記吸収液の液滴径を小さくして気液接触面積を広げられるため、硫黄酸化物等の吸収反応に液滴の略全量が寄与し、従来のようにスプレー量の大半が無駄になることが避けられ、循環ポンプの消費電力が嵩む心配もなくなる。   On the other hand, since the liquid droplet contact area can be expanded by reducing the droplet diameter of the absorbing liquid, almost the entire amount of droplets contributes to the absorption reaction of sulfur oxides and the like, and most of the spray amount is wasted as before. It is avoided that the power consumption of the circulation pump increases.

又、従来の高圧スプレーの場合のように、スプレー流速を高くしなくても、前記吸収液の液滴径を小さく気液接触面積を広げられるため、圧力損失に伴う循環ポンプの消費電力の増加も回避可能となる。   In addition, as in the case of conventional high-pressure sprays, the droplet diameter of the absorbing liquid can be reduced and the gas-liquid contact area can be expanded without increasing the spray flow rate. Can also be avoided.

こうして、吸収液の循環量を減らして循環ポンプ容量を低下させ、消費電力削減を図りつつ、被処理ガスとしての燃焼排ガスと吸収液との気液接触面積を広げて、硫黄酸化物等の吸収効率並びに脱塵効率の向上を図り得る。   In this way, while reducing the circulating amount of the absorbing liquid to reduce the circulation pump capacity and reducing power consumption, the gas-liquid contact area between the combustion exhaust gas as the gas to be treated and the absorbing liquid is expanded to absorb sulfur oxides, etc. Efficiency and dust removal efficiency can be improved.

図5は本発明を実施する形態の一例における帯電吸収液噴出手段15の変形例を示すものであって、基本的な構成は図2に示すものと同様であるが、本図示例の特徴とするところは、図5に示す如く、帯電吸収液噴出手段15の吸収液ノズル16を、水平方向へ延びるよう配設されて吸収液が導入され且つ高電圧が印加されるノズルヘッダ18と、該ノズルヘッダ18の下面側から下方へ向け吸収液を流下させ得るよう穿設され且つ前記ノズルヘッダ18の長手方向へ所要ピッチで複数配設される細孔24と、該細孔24に下方へ突出するよう嵌挿され且つ前記ノズルヘッダ18内の吸収液を細孔24との隙間から表面に沿って流下させるニードル25とから構成した点にある。   FIG. 5 shows a modification of the charging absorbing liquid ejecting means 15 in an example of the embodiment of the present invention. The basic configuration is the same as that shown in FIG. As shown in FIG. 5, the absorbing liquid nozzle 16 of the charging absorbing liquid ejecting means 15 is disposed so as to extend in the horizontal direction, the absorbing liquid is introduced, and a high voltage is applied to the nozzle header 18. A plurality of pores 24 which are perforated so as to allow the absorbing liquid to flow downward from the lower surface side of the nozzle header 18 and are arranged at a required pitch in the longitudinal direction of the nozzle header 18, and project downward into the pores 24 The needle 25 is inserted into the nozzle header 18 so as to flow down along the surface from the gap with the pores 24.

図5に示す如く帯電吸収液噴出手段15の吸収液ノズル16を構成しても、図2に示す例の場合と同様の作用効果が得られる。   Even if the absorbing liquid nozzle 16 of the charging absorbing liquid ejecting means 15 is configured as shown in FIG. 5, the same effects as those of the example shown in FIG. 2 can be obtained.

更に、図5に示す例の場合、万一、細孔24に詰まりが生じたときには、前記ニードル25を上下に動かすことにより、該細孔24の詰まりを解消できると共に、前記ニードル25を定期的に上下に動かすことにより、前記細孔24の詰まりを予防する上でも有効となり、安定した運転を継続することが可能となる。   Further, in the case of the example shown in FIG. 5, in the unlikely event that the pore 24 is clogged, the clogging of the pore 24 can be eliminated by moving the needle 25 up and down. By moving it up and down, it is effective in preventing clogging of the pores 24, and stable operation can be continued.

尚、本発明の気液接触装置は、上述の図示例にのみ限定されるものではなく、排煙脱硫装置としての吸収塔に限らず、吸収液に被処理ガスとしての冷媒蒸気を吸収させる吸収式冷凍機の吸収器等にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The gas-liquid contact device of the present invention is not limited to the illustrated example described above, and is not limited to the absorption tower as the flue gas desulfurization device, but also absorbs the refrigerant vapor as the gas to be treated in the absorption liquid. Needless to say, various modifications can be made without departing from the gist of the present invention, such as being applicable to an absorber of a refrigerator.

本発明を実施する形態の一例を示す全体概略図である。1 is an overall schematic diagram illustrating an example of an embodiment for carrying out the present invention. 本発明を実施する形態の一例における帯電吸収液噴出手段を示す構成図であって、(a)は側断面図、(b)は正断面図、(c)は斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the charge absorption liquid ejection means in an example which implements this invention, Comprising: (a) is a sectional side view, (b) is a front sectional view, (c) is a perspective view. 本発明を実施する形態の一例における帯電吸収液噴出手段の滴下部拡大図である。It is a dripping part enlarged view of the charge absorption liquid ejection means in an example which embodies the present invention. 本発明を実施する形態の一例における帯電吸収液噴出手段と一般的な電気集塵機との違いを示す作動原理図であって、(a)は帯電吸収液噴出手段の作動原理図、(b)電気集塵機の作動原理図である。It is an operation principle figure which shows the difference between the electrification absorption liquid ejecting means and the general electric dust collector in an example which carries out the present invention, and (a) is an operation principle figure of electrification absorption liquid ejection means, and (b) electricity It is an operation principle figure of a dust collector. 本発明を実施する形態の一例における帯電吸収液噴出手段の変形例を示す構成図であって、(a)は側断面図、(b)は正断面図、(c)は斜視図である。It is a block diagram which shows the modification of the charge absorption liquid ejection means in an example which implements this invention, Comprising: (a) is a sectional side view, (b) is a front sectional view, (c) is a perspective view. 従来の大型石炭火力発電ボイラ設備の一例を示すシステム構成図である。It is a system block diagram which shows an example of the conventional large sized coal-fired power generation boiler equipment. 従来の中小型石炭火力発電ボイラ設備の一例を示すシステム構成図である。It is a system block diagram which shows an example of the conventional medium and small-sized coal thermal power generation boiler equipment. 従来の中小型石炭火力発電ボイラ設備に用いられる煙突一体型の吸収塔の一例を示す全体概略図である。It is the whole schematic figure which shows an example of the chimney-integrated absorption tower used for the conventional medium and small-sized coal-fired power generation boiler equipment.

符号の説明Explanation of symbols

7´ 吸収塔(気液接触装置)
14 過冷却用スプレーノズル
15 帯電吸収液噴出手段
16 吸収液ノズル
17 接地電極
18 ノズルヘッダ
19 細管状ノズル
20 開口
21 金属板
24 細孔
25 ニードル
7 'Absorption tower (gas-liquid contact device)
14 Supercooling Spray Nozzle 15 Charged Absorbing Liquid Ejecting Means 16 Absorbing Liquid Nozzle 17 Ground Electrode 18 Nozzle Header 19 Narrow Tubular Nozzle 20 Opening 21 Metal Plate 24 Pore 25 Needle

Claims (6)

被処理ガスと吸収液とを接触させ、被処理ガスの処理を行う気液接触装置であって、
吸収液を流下させつつ帯電させ帯電液滴として滴下させる帯電吸収液噴出手段を備えたことを特徴とする気液接触装置。
A gas-liquid contact device for bringing a gas to be treated into contact with an absorbing liquid and processing the gas to be treated,
A gas-liquid contact device comprising charging absorbing liquid ejecting means for charging an absorbing liquid while flowing down and dropping it as charged droplets.
帯電吸収液噴出手段を、
吸収液を流下させ且つ高電圧が印加される吸収液ノズルと、
該吸収液ノズルから流下される吸収液の周囲を取り囲むよう吸収液ノズル直下に配設される接地電極と
から構成した請求項1記載の気液接触装置。
Charge absorbing liquid ejection means,
An absorbent nozzle that allows the absorbent to flow down and a high voltage to be applied;
The gas-liquid contact device according to claim 1, further comprising: a ground electrode disposed immediately below the absorption liquid nozzle so as to surround the absorption liquid flowing down from the absorption liquid nozzle.
吸収液ノズルを、
水平方向へ延びるよう配設されて吸収液が導入され且つ高電圧が印加されるノズルヘッダと、
該ノズルヘッダの下面側から下方へ向け吸収液を流下させ得るよう突設され且つ前記ノズルヘッダの長手方向へ所要ピッチで複数配設される細管状ノズルと
から構成した請求項2記載の気液接触装置。
Absorbing liquid nozzle
A nozzle header that is arranged to extend in the horizontal direction, into which an absorbing liquid is introduced and to which a high voltage is applied;
The gas liquid according to claim 2, comprising a plurality of narrow nozzles protruding so as to allow the absorbing liquid to flow downward from the lower surface side of the nozzle header and disposed at a required pitch in the longitudinal direction of the nozzle header. Contact device.
吸収液ノズルを、
水平方向へ延びるよう配設されて吸収液が導入され且つ高電圧が印加されるノズルヘッダと、
該ノズルヘッダの下面側から下方へ向け吸収液を流下させ得るよう穿設され且つ前記ノズルヘッダの長手方向へ所要ピッチで複数配設される細孔と、
該細孔に下方へ突出するよう嵌挿され且つ前記ノズルヘッダ内の吸収液を細孔との隙間から表面に沿って流下させるニードルと
から構成した請求項2記載の気液接触装置。
Absorbing liquid nozzle
A nozzle header that is arranged to extend in the horizontal direction, into which an absorbing liquid is introduced and to which a high voltage is applied;
A plurality of pores that are perforated so that the absorbing liquid can flow downward from the lower surface side of the nozzle header and are arranged at a required pitch in the longitudinal direction of the nozzle header;
The gas-liquid contact device according to claim 2, further comprising: a needle that is inserted into the pore so as to protrude downward and causes the absorbent in the nozzle header to flow down along the surface from the gap with the pore.
接地電極を、吸収液ノズルから流下される吸収液が通過可能な開口が形成された金属板によって構成した請求項2〜4のうちいずれか一つに記載の気液接触装置。   The gas-liquid contact device according to any one of claims 2 to 4, wherein the ground electrode is configured by a metal plate in which an opening through which the absorbing liquid flowing down from the absorbing liquid nozzle can pass is formed. 接地電極に放電防止用のコーティングを施した請求項5記載の気液接触装置。   The gas-liquid contact device according to claim 5, wherein a coating for preventing discharge is applied to the ground electrode.
JP2006078937A 2006-03-22 2006-03-22 Gas-liquid contacting apparatus Pending JP2007253032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078937A JP2007253032A (en) 2006-03-22 2006-03-22 Gas-liquid contacting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078937A JP2007253032A (en) 2006-03-22 2006-03-22 Gas-liquid contacting apparatus

Publications (1)

Publication Number Publication Date
JP2007253032A true JP2007253032A (en) 2007-10-04

Family

ID=38627799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078937A Pending JP2007253032A (en) 2006-03-22 2006-03-22 Gas-liquid contacting apparatus

Country Status (1)

Country Link
JP (1) JP2007253032A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069463A (en) * 2008-09-22 2010-04-02 Babcock Hitachi Kk Apparatus of treating exhaust gas
KR101391168B1 (en) 2012-11-30 2014-05-02 한국기계연구원 Gas dehydration apparatus using spraying nozzle
CN104162486A (en) * 2013-05-20 2014-11-26 上海三卿环保科技有限公司 Method for synchronously removing sulfur dioxide and fine particles in smoke through electrical charge and mist spray
CN105903332A (en) * 2016-06-23 2016-08-31 山东大学 Semi-dry method desulfurization and denitrification integrated process and device in synergism with charged oxidation
CN106064016A (en) * 2016-08-08 2016-11-02 辽宁信威环保科技有限公司 The ultra-clean dust removal integrated plant of exhuast gas desulfurization denitration
CN106064017A (en) * 2016-08-08 2016-11-02 辽宁信威环保科技有限公司 Oxidoreduction is with journey desulfuring and denitrifying apparatus
CN106178861A (en) * 2016-08-31 2016-12-07 西安西热锅炉环保工程有限公司 A kind of coal-burning power plant's minimum discharge device
CN107174890A (en) * 2017-07-03 2017-09-19 范雨鸽 A kind of adjustable smoke eliminator
CN112426860A (en) * 2020-11-03 2021-03-02 福建龙兰环保科技有限公司 Pulse bag type desulfurization and denitrification dust remover system convenient for deashing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069463A (en) * 2008-09-22 2010-04-02 Babcock Hitachi Kk Apparatus of treating exhaust gas
KR101391168B1 (en) 2012-11-30 2014-05-02 한국기계연구원 Gas dehydration apparatus using spraying nozzle
CN104162486A (en) * 2013-05-20 2014-11-26 上海三卿环保科技有限公司 Method for synchronously removing sulfur dioxide and fine particles in smoke through electrical charge and mist spray
CN105903332A (en) * 2016-06-23 2016-08-31 山东大学 Semi-dry method desulfurization and denitrification integrated process and device in synergism with charged oxidation
CN106064016A (en) * 2016-08-08 2016-11-02 辽宁信威环保科技有限公司 The ultra-clean dust removal integrated plant of exhuast gas desulfurization denitration
CN106064017A (en) * 2016-08-08 2016-11-02 辽宁信威环保科技有限公司 Oxidoreduction is with journey desulfuring and denitrifying apparatus
CN106178861A (en) * 2016-08-31 2016-12-07 西安西热锅炉环保工程有限公司 A kind of coal-burning power plant's minimum discharge device
CN107174890A (en) * 2017-07-03 2017-09-19 范雨鸽 A kind of adjustable smoke eliminator
CN112426860A (en) * 2020-11-03 2021-03-02 福建龙兰环保科技有限公司 Pulse bag type desulfurization and denitrification dust remover system convenient for deashing

Similar Documents

Publication Publication Date Title
JP2007253032A (en) Gas-liquid contacting apparatus
US9700839B2 (en) Air pollution control system and air pollution control method
CN104226479B (en) The high-efficient wet-type electric precipitation purifier and method of a kind of wet-method desulfurized fume
JP3856982B2 (en) Dust removal from desulfurizer outlet gas and water or steam recovery method and equipment
CN102145316A (en) Synergistic spray charging and electrostatic dust collecting method and device
EP2868384B1 (en) Wet electric dust-collecting device and exhaust gas treatment method
CN101716451A (en) Method for removing various pollutants in fume by combining discharge plasmas and absorption
Romero et al. Key technologies for ultra-low emissions from coal-fired power plants
US10610820B2 (en) Flue gas treatment system and method
JP2007245074A (en) Exhausted gas-treating device
JPH0957054A (en) Dust-charging wet desulfurizer
JPH11137954A (en) Treating device for waste gas from heavy oil fired boiler
JP2016131969A5 (en)
JP3923681B2 (en) Exhaust gas dedusting apparatus and method
JP6804233B2 (en) Particle remover
CN110193282A (en) A kind of waste flue gas of boilers processing system and method
CN213492812U (en) Flue gas treatment system
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
CN109482033A (en) A kind of flue gas dehumidifying dust-extraction unit
WO2008038348A1 (en) Treating apparatus for exhaust gas containing sulfuric acid mist and treating method therefor
JP2001289430A (en) Exhaust gas-treating device
JPH09187615A (en) Steam condensation dust collecting device and method therefor
JPH0957040A (en) Dust removing method and device therefor
EP0013299B1 (en) Method and apparatus for treating flue gases
KR102477962B1 (en) Adhesive fine dust reduction system