JP2007252068A - Rotary electric machine for vehicle - Google Patents

Rotary electric machine for vehicle Download PDF

Info

Publication number
JP2007252068A
JP2007252068A JP2006070822A JP2006070822A JP2007252068A JP 2007252068 A JP2007252068 A JP 2007252068A JP 2006070822 A JP2006070822 A JP 2006070822A JP 2006070822 A JP2006070822 A JP 2006070822A JP 2007252068 A JP2007252068 A JP 2007252068A
Authority
JP
Japan
Prior art keywords
inverter
resistance
stator winding
battery
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070822A
Other languages
Japanese (ja)
Other versions
JP4623587B2 (en
Inventor
Haruyuki Yonetani
晴之 米谷
Nobuhiko Fujita
暢彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006070822A priority Critical patent/JP4623587B2/en
Publication of JP2007252068A publication Critical patent/JP2007252068A/en
Application granted granted Critical
Publication of JP4623587B2 publication Critical patent/JP4623587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an increased output by optimizing a structure of stator winding from a resistance value of the stator winding, in order to solve a problem that output torque cannot be increased when performing power running (idling stop or engine assistance) because a rotary electric machine for an axle of a car or the like is powered by a battery. <P>SOLUTION: When battery internal resistance is put as R<SB>b</SB>, resistance between the battery and an inverter as R<SB>dc</SB>, inverter forward resistance as R<SB>inv</SB>, resistance between the inverter and the stator winding as R<SB>ac</SB>, the resistance value R<SB>st</SB>of the stator winding is expressed as R<SB>st</SB>=Kä2/3(R<SB>b</SB>+R<SB>dc</SB>)+(R<SB>inv</SB>+R<SB>ac</SB>)} but 0.6≤K≤1.7. To satisfy this value, short-form wave energization is performed for a 180-degree section by the inverter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車等の車輌用回転電機に関するものであり、特に車輌エンジンに連結されて、電動機として駆動する時は、エンジンにトルクを伝達し、始動やアイドリングストップ時にエンジンを駆動し、発電機として駆動する時は、エンジンのトルクを受けて回転駆動される電動、発電機に係るものである。   The present invention relates to a rotating electrical machine for a vehicle such as an automobile, and in particular, when connected to a vehicle engine and driven as an electric motor, torque is transmitted to the engine, and the engine is driven at start-up and idling stop. Is driven by an electric motor / generator that is rotationally driven in response to engine torque.

車輌用回転電機は、車載バッテリを電源として用いられるが、車輌用のバッテリの端子電圧は従来から14V以下であることが多く、このバッテリを用いて力行(アイドリングストップやエンジンアシスト)を行うときに、電圧が小さいため出力トルクが大きくできないという問題点がある。このため前記問題を解消するための一方法として電圧制御を行わず、最大電圧を利用できる電圧位相のみを制御する180°あるいは120°矩形波通電方式、あるいはこのコンバインド方式が提案されている(例えば、特許文献1)。   A vehicular rotating electrical machine uses an in-vehicle battery as a power source, but the terminal voltage of the vehicular battery is conventionally 14 V or less, and when performing power running (idling stop or engine assist) using this battery, There is a problem that the output torque cannot be increased because the voltage is small. For this reason, a 180 ° or 120 ° rectangular wave energization method that controls only the voltage phase in which the maximum voltage can be used, or this combined method is proposed as a method for solving the above problem (for example, Patent Document 1).

特開2004−320861号公報Japanese Patent Laid-Open No. 2004-320661

しかしながら前記特許文献1には、電機子巻線電流値を制御することが示されているにすぎず、最近の乗用車等に要求されているアイドリングストップ時やエンジンアシスト時のより一層の高トルク高出力化に対して考慮されていない。   However, Patent Document 1 only shows that the armature winding current value is controlled, and a higher torque and higher torque at the time of idling stop and engine assist required for recent passenger cars and the like. Not considered for output.

一般に、固定子巻線の巻数を多くした場合、同一電流では速度0(アイドリングストップ時)におけるトルクは向上できる。しかし巻数が多いために巻線抵抗も大となり通電電流は減少する。高速域(エンジンアシスト時)においては、回転子の界磁巻線に電流を流すことにより発生する磁束と、固定子巻線の磁束の合計×回転数+抵抗ドロップが電源電圧となるよう制御する必要があり、このときの最適な配分を設定する必要がある。   In general, when the number of turns of the stator winding is increased, the torque at speed 0 (when idling is stopped) can be improved with the same current. However, since the number of turns is large, the winding resistance becomes large and the conduction current decreases. In the high-speed range (during engine assist), control is performed so that the total of the magnetic flux generated by passing a current through the rotor field winding and the magnetic flux of the stator winding × the number of rotations + resistance drop becomes the power supply voltage. It is necessary to set an optimal distribution at this time.

この発明は前記のような課題を解決するためになされたものであり、速度0(アイドリングストップ時)におけるトルクを向上させるとともに、高速域(エンジンアシスト時)の出力を向上させるものである。   The present invention has been made to solve the above-described problems, and is intended to improve the torque at a speed of 0 (when idling is stopped) and improve the output in a high speed range (when the engine is assisted).

この発明に係る車輌用回転電機は、エンジンに連結されバッテリと、インバータとこのインバータに接続され固定子巻線を有する固定子と、回転子とを備え、
バッテリの内部抵抗をR
バッテリとインバータ間の接続回路抵抗をRdc
インバータの順方向抵抗をRinv
インバータと固定子巻線間の接続回路抵抗をRac
とするとき、
固定子巻線の抵抗値Rst
st=K{2/3(R+Rdc)+(Rinv+Rac)}
但し、0.6≦K≦1.7
で表される値を満足するようインバータ制御により、電気角で180度区間の矩形波通電を行うものである。
A rotating electrical machine for a vehicle according to the present invention includes a battery connected to an engine, an inverter, a stator connected to the inverter and having a stator winding, and a rotor.
R b , the internal resistance of the battery
The connection circuit resistance between the battery and the inverter is R dc ,
R inv , the forward resistance of the inverter,
R ac , the connection circuit resistance between the inverter and stator winding
And when
The resistance value Rst of the stator winding is Rst = K {2/3 ( Rb + Rdc ) + ( Rinv + Rac )}
However, 0.6 ≦ K ≦ 1.7
In the inverter control, rectangular wave energization is performed in an electrical angle range of 180 degrees so as to satisfy the value represented by:

この発明に係る車輌用回転電機は、バッテリの内部抵抗をR、バッテリとインバータ間の接続回路抵抗をRdc、インバータの順方向抵抗をRinv、インバータと固定子巻線間の接続回路抵抗をRacとするとき、
固定子巻線の抵抗値Rstが
st=K{2/3(R+Rdc)+(Rinv+Rac)}
但し、0.6≦K≦1.7
で表される値を満足するようインバータ制御で電気角で180度区間の矩形波通電を行うので、最適な抵抗値(巻数)を設定することができ、搭載するバッテリ電源においてアイドリングストップ時の起動トルクを最大化することができるという効果がある。
In the vehicular rotating electrical machine according to the present invention, the internal resistance of the battery is R b , the connection circuit resistance between the battery and the inverter is R dc , the forward resistance of the inverter is R inv , and the connection circuit resistance between the inverter and the stator winding Is R ac ,
Resistance Rst of the stator windings R st = K {2/3 (R b + R dc) + (R inv + R ac)}
However, 0.6 ≦ K ≦ 1.7
In order to satisfy the value expressed by the following equation, a rectangular wave of 180 degrees in electrical angle is controlled by inverter control, so the optimum resistance value (number of turns) can be set, and start-up when idling stops in the installed battery power supply There is an effect that the torque can be maximized.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1はこの実施の形態1による回転電機の通電系統回路図を示す。回転電機1は電動機あるいは電動、発電機のいずれかであってもよい。この回転電機1は車載バッテリ2からインバータ3を介して通電される。ここで、
b0;バッテリ電圧、
;バッテリ内部抵抗、
dc;バッテリ、インバータ間接続回路抵抗(DCライン抵抗)、
inv;インバータ順方向抵抗、
ac;インバータ、固定子巻線間接続回路抵抗(ACライン抵抗)、
st;固定子巻線抵抗
である。
図1では回転電機1の固定子巻線はY結線を示しているが、Δ結線の場合は図2のように等価Y結線として考えるものとする。
図中インバータ3として点線で囲まれた部分は、180°区間通電する駆動方式の場合、各相(図では3相)で上アームか下アームのいずれかがONされており、他方はOFFされているため、図中Vdcで示した位置より左側(AC回路)では、どの運転状態においても2相が並列回路をなしている。よって、速度0におけるDCライン電流Idc0は、次式(1)で表される。

Figure 2007252068
120°区間通電する駆動方式の場合、3相のうち1相の上アームと下アームが両方OFFであり、残りの2相では上アームか下アームの一方がONとなるため、同様に速度0におけるDCライン電流Idc0は、次式(2)で表される。
Figure 2007252068
固定子巻線のターン数をNとすれば、巻数を増やすと巻線の断面積が小さくなり、巻線の全長が長くなることから、巻線抵抗Rstは次式(3)で表される。
Figure 2007252068
速度0におけるトルクTはアンペアターンに比例すると考えられるため、180°区間通電する駆動方式の場合は次の式(4)で表される。
Figure 2007252068
120°区間通電する駆動方式の場合には式(5)で表される。
Figure 2007252068
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram of a power distribution system for a rotating electrical machine according to the first embodiment. The rotating electrical machine 1 may be an electric motor or an electric motor or a generator. The rotating electrical machine 1 is energized from an in-vehicle battery 2 via an inverter 3. here,
V b0 ; battery voltage,
R b ; battery internal resistance,
R dc ; battery, connection circuit resistance between inverters (DC line resistance),
R inv ; inverter forward resistance,
R ac ; inverter, stator winding connection circuit resistance (AC line resistance),
R st ; Stator winding resistance.
In FIG. 1, the stator winding of the rotating electrical machine 1 shows a Y connection, but in the case of a Δ connection, it is considered as an equivalent Y connection as shown in FIG. 2.
In the figure, the portion surrounded by a dotted line as the inverter 3 shows that, in the case of a drive system energized in a 180 ° section, either the upper arm or the lower arm is turned on in each phase (three phases in the figure), and the other is turned off. Therefore , on the left side (AC circuit) from the position indicated by V dc in the figure, the two phases form a parallel circuit in any operating state. Therefore, the DC line current I dc0 at speed 0 is expressed by the following equation (1).
Figure 2007252068
In the case of a drive system that energizes a 120 ° section, both the upper and lower arms of one phase are OFF in the three phases, and either the upper arm or the lower arm is ON in the remaining two phases. The DC line current I dc0 at is expressed by the following equation (2).
Figure 2007252068
If the number of turns of the stator winding is N, increasing the number of turns decreases the cross-sectional area of the winding and increases the total length of the winding. Therefore, the winding resistance Rst is expressed by the following equation (3). The
Figure 2007252068
Since the torque T 0 at the speed 0 is considered to be proportional to the ampere turn, in the case of the drive system in which the 180 ° section is energized, it is expressed by the following formula (4).
Figure 2007252068
In the case of a driving method in which energization is performed in a 120 ° section, it is expressed by Expression (5).
Figure 2007252068

(4)(5)式を最大とする巻数Nの条件は、分母の微分が0となる条件である。よって、180°区間通電する駆動方式の場合は式(6)となる。

Figure 2007252068
120°区間通電する駆動方式の場合には式(7)となる。
Figure 2007252068
(6)(7)式を変形し、(3)式の関係を導入すると次式(8)(9)が得られる。
180°区間通電する駆動方式の場合には
Figure 2007252068
120°区間通電する駆動方式の場合
Figure 2007252068
すなわち、それぞれの通電方式において巻線抵抗Rstが式(8)(9)式を満たすとき、速度0つまりアイドリングストップ時におけるトルクが最大となるということがわかる。
しかし、上記の式(8)(9)は巻数を小数点を含めて自由に選べるときの理論計算値であり、実際には巻数は整数あるいはΔ結線では整数/√3のように、飛び飛びの値となる。よって、次の(10)(11)式に示す係数k180,k120を用いて、巻線抵抗の許容範囲を決定する。
180°区間通電する駆動方式の場合
Figure 2007252068
120°区間通電する駆動方式の場合
Figure 2007252068
(10)(11)式を(3)式に代入して整理すると巻数Nについて次式(12)(13)を得る。
180°区間通電する駆動方式の場合
Figure 2007252068
120°区間通電する駆動方式の場合
Figure 2007252068
ここで、
Figure 2007252068
である。 (4) The condition of the number of turns N that maximizes the expression (5) is a condition that the derivative of the denominator becomes zero. Therefore, in the case of a drive method in which energization is performed in a 180 ° section, Equation (6) is obtained.
Figure 2007252068
In the case of a driving method in which energization is performed in a 120 ° section, Equation (7) is obtained.
Figure 2007252068
(6) When the formula (7) is modified and the relationship of the formula (3) is introduced, the following formulas (8) and (9) are obtained.
In the case of a drive system that energizes a 180 ° section
Figure 2007252068
In the case of a drive system that energizes 120 ° section
Figure 2007252068
That is, it can be seen that, when the winding resistance Rst satisfies the equations (8) and (9) in each energization method, the torque at the speed 0, that is, at the idling stop becomes maximum.
However, the above formulas (8) and (9) are theoretically calculated values when the number of turns can be freely selected including the decimal point. Actually, the number of turns is an integer or a jump value such as integer / √3 in Δ connection. It becomes. Therefore, the allowable range of the winding resistance is determined using the coefficients k 180 and k 120 shown in the following equations (10) and (11).
In the case of a drive system that energizes a 180 ° section
Figure 2007252068
In the case of a drive system that energizes 120 ° section
Figure 2007252068
Substituting the formulas (10) and (11) into the formula (3) and rearranging, the following formulas (12) and (13) are obtained for the number of turns N.
In the case of a drive system that energizes a 180 ° section
Figure 2007252068
In the case of a drive system that energizes 120 ° section
Figure 2007252068
here,
Figure 2007252068
It is.

また、(10)(11)式を(1)(2)式に代入すると次式(15)(16)を得る。
180°区間通電する駆動方式の場合

Figure 2007252068
120°区間通電する駆動方式の場合
Figure 2007252068
よって、速度0トルク(アイドリングストップ時トルク)は(4)(5)式に(12)(13)(14)(15)式を代入することにより次式(17)(18)で表される。
180°区間通電する駆動方式の場合
Figure 2007252068
120°区間通電する駆動方式の場合
Figure 2007252068
(17)(18)式を見ると、k180,k120に関しては、独立で速度0トルクを決定していることがわかる。よって、k180=1あるいはk120=1の時の速度0トルクを1と規格化したとき、k180あるいはk120の値による速度0トルクの変化を計算することができる。これを図3に示す。
図3より、速度0トルクが、k値が1のときと比較して3%低下する範囲を設定すると、
0.6≦K≦1.7
が得られる。図4にその一例を示す。 Further, when the expressions (10) and (11) are substituted into the expressions (1) and (2), the following expressions (15) and (16) are obtained.
In the case of a drive system that energizes a 180 ° section
Figure 2007252068
In the case of a drive system that energizes 120 ° section
Figure 2007252068
Therefore, the torque at zero speed (torque at idling stop) is expressed by the following equations (17) and (18) by substituting the equations (12), (13), (14), and (15) into the equations (4) and (5). .
In the case of a drive system that energizes a 180 ° section
Figure 2007252068
In the case of a drive system that energizes 120 ° section
Figure 2007252068
From the equations (17) and (18), it can be seen that k 180 and k 120 independently determine the zero speed torque. Therefore, when the speed 0 torque when k 180 = 1 or k 120 = 1 is normalized to 1, the change in the speed 0 torque according to the value of k 180 or k 120 can be calculated. This is shown in FIG.
From FIG. 3, when setting a range in which the speed 0 torque is reduced by 3% compared to when the k value is 1,
0.6 ≦ K ≦ 1.7
Is obtained. An example is shown in FIG.

実施の形態2.
次に実施の形態2について説明する。
界磁磁束のみにより固定子に発生させる電圧が電源電圧を超えるため、固定子から界磁磁束を打ち消す向きに磁束を発生させる電流を流す必要がある回転速度における出力P(ここでは高速出力と呼ぶ)を増加させる電機子電流の範囲を規定する。
線間電圧V、総磁束φとすると3相2相変換した電機子電流I(=√3Iarms)は次式(19)で表される。

Figure 2007252068
180°区間通電する駆動方式の場合、V=√6/πVdc、Vdc=Vb0−Idc(Rdc+R)、Idc=√6/πIの関係を(19)式に代入すると、次式(20)が得られる。ここで√6/πは矩形波をフーリエ級数展開した基本波実効値である。
Figure 2007252068
よって、
Figure 2007252068
出力Pは、力率1を想定すると次式(22)となる。
Figure 2007252068
ここで、
Figure 2007252068
とおけば、(22)式は次式(24)に変形される。
Figure 2007252068
すなわち、I=√6Vb0/2πA(Iarms=Vb0/2πA)のとき、出力は最大値となり、3V b0/2πAとなる。
(23)式に(10)式を代入すると(25)式となり
Figure 2007252068
高速域の出力が最大となる電流Iarmsは次式(26)で表される。
Figure 2007252068
(26)式/(15)を計算すると
Figure 2007252068
(27)式について、αをパラメータにして製造可能な範囲で変化させて(例えば0.1<α<2.5)k180による影響をプロットすると図5を得る。
図5より、0.6≦k180≦1.7の範囲では、
0.34≦Iarms/Idc0≦0.36
の関係のとき、高速出力(エンジンアシスト時出力)が最も大きくなるといえる。 Embodiment 2. FIG.
Next, a second embodiment will be described.
Since the voltage generated in the stator only by the field magnetic flux exceeds the power supply voltage, the output P o (here, the high-speed output and the high-speed output) is required to flow a current that generates the magnetic flux in the direction to cancel the field magnetic flux from the stator. Specifies the range of armature currents that increase.
Assuming that the line voltage is V and the total magnetic flux is φ, the armature current I (= √3I arms ) converted into three phases and two phases is expressed by the following equation (19).
Figure 2007252068
In the case of a drive system energized in a 180 ° section, if the relationship of V = √6 / πV dc , V dc = V b0 −I dc (R dc + R b ), I dc = √6 / πI is substituted into equation (19) The following formula (20) is obtained. Here, √6 / π is a fundamental wave effective value obtained by expanding a square wave into a Fourier series.
Figure 2007252068
Therefore,
Figure 2007252068
Assuming a power factor of 1, the output Po is given by the following equation (22).
Figure 2007252068
here,
Figure 2007252068
Then, the equation (22) is transformed into the following equation (24).
Figure 2007252068
That is, when I = √6V b0 / 2πA (I arms = V b0 / 2πA), the output becomes the maximum value and becomes 3V 2 b0 / 2π 2 A.
Substituting equation (10) into equation (23) yields equation (25)
Figure 2007252068
The current I arms at which the output in the high speed region is maximized is expressed by the following equation (26).
Figure 2007252068
(26) When calculating equation / (15)
Figure 2007252068
With respect to the equation (27), α is changed as a parameter within a manufacturable range (for example, 0.1 <α <2.5), and the influence due to k 180 is plotted to obtain FIG.
From FIG. 5, in the range of 0.6 ≦ k 180 ≦ 1.7,
0.34 ≦ I arms / I dc0 ≦ 0.36
Therefore, it can be said that the high-speed output (output at the time of engine assist) becomes the largest.

同様に、120°区間通電する駆動方式の場合、V=3/√2πVdc、Vdc=Vb0−Idc(Rdc+R)、Idc=√6/πIの関係を(19)式に代入すると、次式(28)が得られる。

Figure 2007252068
よって、
Figure 2007252068
出力Pは、力率1を想定すると次式(30)となる。
Figure 2007252068
ここで、
Figure 2007252068
とおけば、(30)式は次式(32)に変形される。
Figure 2007252068
すなわち、I=3Vb0/2√2πA(Iarms=√3Vb0/2√2πA)のとき、出力は最大値となり、9V b0/8πAとなる。
(31)式に(11)式を代入すると(33)式が得られ
Figure 2007252068
となり、高速域の出力が最大となる電流Iarmsは次式(34)で表される。
Figure 2007252068
(34)式/(16)式を計算すると(35)式となる。
Figure 2007252068
(35)式について、αをパラメータにして(例えば製造可能な範囲として0.1<α<2.5)k120による影響をプロットすると図6を得る。
図6より、0.6≦k120≦1.7の範囲では、
0.375≦Iarms/Idc0≦0.39
の関係のとき、高速出力が最も大きくなるといえる。 Similarly, in the case of a driving method in which energization is performed in a 120 ° section, the relationship of V = 3 / √2πV dc , V dc = V b0 −I dc (R dc + R b ), and I dc = √6 / πI is expressed by equation (19). Substituting into, the following equation (28) is obtained.
Figure 2007252068
Therefore,
Figure 2007252068
Assuming a power factor of 1, the output Po is given by the following equation (30).
Figure 2007252068
here,
Figure 2007252068
Then, the equation (30) is transformed into the following equation (32).
Figure 2007252068
That is, when I = 3V b0 / 2√2πA (I arms = √3V b0 / 2√2πA), the output becomes a maximum value, a 9V 2 b0 / 8π 2 A.
Substituting equation (11) into equation (31) yields equation (33).
Figure 2007252068
Thus, the current I arms at which the output in the high speed region is maximized is expressed by the following equation (34).
Figure 2007252068
When formula (34) / (16) is calculated, formula (35) is obtained.
Figure 2007252068
In the equation (35), when α is a parameter (for example, 0.1 <α <2.5 as a manufacturable range) and the effect of k 120 is plotted, FIG. 6 is obtained.
From FIG. 6, in the range of 0.6 ≦ k 120 ≦ 1.7,
0.375 ≦ I arms / I dc0 ≦ 0.39
In this relation, it can be said that the high-speed output is the largest.

実施の形態3.
次に実施の形態3について説明する。
エンジンのトルクの温度変化は図7のようになっており、オイルの粘性の温度変化などが要因で低温ほどエンジンをかけるのに必要なトルクは大きくなる。それに対して、電動機も低温の方が固定子巻線などの抵抗が下がるために電流が増え、トルクは大きくなる。ただし、バッテリの内部抵抗は低温ほど大きくなるので組み合わせ次第で逆に低温のほうが電流が小さくなってトルクが低下する場合もある。要求されるトルク、すなわちエンジン始動に必要なトルクに対して、電動機のトルクをなるべく大きくとりたい場合に、最も低い温度でトルクが最大となる巻線仕様を選定することで、エンジンの始動を少しでも早くすることが可能となる。
この実施の形態3では、一般温暖地向エンジン仕様用の回転電機としては周囲温度40℃〜80℃として、また寒冷地向仕様の最も低い温度としては−60℃〜−20℃とする固定子巻線抵抗値を選定することで、その温度におけるエンジンの出力持性を向上させることが出来る。
Embodiment 3 FIG.
Next, a third embodiment will be described.
The temperature change of the engine torque is as shown in FIG. 7, and the torque required to start the engine increases as the temperature decreases due to the temperature change of the viscosity of the oil. On the other hand, when the electric motor is also at a low temperature, the resistance of the stator windings and the like decreases, so that the current increases and the torque increases. However, since the internal resistance of the battery increases as the temperature decreases, the current may decrease and the torque may decrease depending on the combination. If you want to make the motor torque as large as possible compared to the required torque, that is, the torque required for starting the engine, select a winding specification that maximizes the torque at the lowest temperature. But it can be done quickly.
In this third embodiment, the stator is set to an ambient temperature of 40 ° C. to 80 ° C. as a rotating electric machine for general warm region engine specifications, and −60 ° C. to −20 ° C. as the lowest temperature of cold region specifications. By selecting the winding resistance value, it is possible to improve the output power of the engine at that temperature.

実施の形態4.
次に実施の形態4について説明する。
低温では始動しないシステムの場合は低温でのトルクは不要となるため、使用範囲内でもっとも高温となるところで仕様を決定することで、アイドルストップ後のエンジン再始動やアシストに対して要求トルクをなるべく上回る特性を出すことができる。回転電機の温度が上昇すると巻線抵抗が増加し、銅損が増加することから、温度が最も高いときに出力が最も低下する。この温度条件が最悪の状況で最大出力を得るには、上記の設定巻線抵抗を回転電機の最大温度140℃〜180℃で満足する必要がある。
このようにこの実施の形態4でも、周囲温度に合わせた固定子巻線抵抗値を選定するので、その温度における出力持性が向上する。
Embodiment 4 FIG.
Next, a fourth embodiment will be described.
In the case of a system that does not start at low temperatures, torque at low temperatures is unnecessary, so by determining the specifications at the highest temperature within the operating range, the required torque for engine restart and assist after idle stop is as much as possible Superior characteristics can be achieved. When the temperature of the rotating electrical machine rises, the winding resistance increases and the copper loss increases. Therefore, the output decreases most when the temperature is the highest. In order to obtain the maximum output under the worst condition of this temperature condition, it is necessary to satisfy the set winding resistance at the maximum temperature of 140 ° C. to 180 ° C. of the rotating electrical machine.
As described above, also in the fourth embodiment, since the stator winding resistance value matching the ambient temperature is selected, the output durability at that temperature is improved.

この発明の実施の形態1〜4は、車輌用エンジンに連続された発動機、電動・発電機等の回転電機に利用可能である。   Embodiments 1 to 4 of the present invention can be used for a rotating electric machine such as a motor, an electric motor / generator, etc. that are connected to a vehicle engine.

この発明の実施の形態1〜4の回転電機の通電系統回路を示す図である。It is a figure which shows the electricity supply system circuit of the rotary electric machine of Embodiment 1-4 of this invention. Δ結線を等価Y結線に説明する図である。It is a figure explaining (DELTA) connection to equivalent Y connection. この発明は実施の形態1の速度0トルクとK値の関係を示す図である。The present invention is a diagram showing the relationship between zero-speed torque and K value in the first embodiment. この発明の実施の形態1の速度0トルクとK値との関連を示す1例図である。It is an example figure which shows the relationship between the speed 0 torque and K value of Embodiment 1 of this invention. この発明の実施の形態2による180度区間通電時のK値と電流Iarms/速度Idc0との関係を示す図である。Is a diagram showing the relationship between K value and the current I arms / speed I dc0 at 180-degree section energization according to a second embodiment of the present invention. この発明の実施の形態2による120度区間通電時のK値と電流Iarms/速度零Idc0との関係を示す図である。Is a diagram showing the relationship between K value and the current I arms / zero speed I dc0 at 120-degree section energization according to a second embodiment of the present invention. この発明の実施の形態3によるエンジンのトルクの温度変化を示す図である。It is a figure which shows the temperature change of the torque of the engine by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 回転電機、2 バッテリ、3 インバータ、Vb0 バッテリ電圧、
バッテリ内部抵抗、
dc バッテリ、インバータ間接続回路(DCライン)抵抗、
inv インバータ順方向抵抗、
ac インバータ、固定子巻線間接続回路(ACライン)抵抗、
st 固定子巻線抵抗。
1 rotating electrical machine, 2 battery, 3 inverter, Vb0 battery voltage,
Rb battery internal resistance,
R dc battery, inverter connection circuit (DC line) resistance,
R inv inverter forward resistance,
Rac inverter, stator winding connection circuit (AC line) resistance,
R st stator winding resistance.

Claims (7)

バッテリと、インバータと、このインバータに接続され固定子巻線を有する固定子と、回転子とを備えエンジンに連結された車輌用回転電機において、
前記バッテリの内部抵抗をR
前記バッテリと前記インバータ間の接続回路抵抗をRdc
前記インバータの順方向抵抗をRinv
前記インバータと前記固定子巻線間の接続回路抵抗をRac
とするとき、
前記固定子巻線の抵抗値Rst
st=K{2/3(R+Rdc)+(Rinv+Rac)}
但し、0.6≦K≦1.7
で表される値を満足するよう前記インバータ制御により、電気角で180度区間の矩形波通電を行うことを特徴とする車輌用回転電機。
In a rotating electrical machine for a vehicle including a battery, an inverter, a stator connected to the inverter and having a stator winding, and a rotor and coupled to an engine,
The internal resistance of the battery is R b ,
The connection circuit resistance between the battery and the inverter is R dc ,
R inv , the forward resistance of the inverter,
A connection circuit resistance between the inverter and the stator winding is represented by R ac ,
And when
The resistance value Rst of the stator winding is Rst = K {2/3 ( Rb + Rdc ) + ( Rinv + Rac )}
However, 0.6 ≦ K ≦ 1.7
A rotating electric machine for a vehicle, wherein rectangular wave energization is performed in an electrical angle of 180 degrees by the inverter control so as to satisfy a value represented by:
バッテリと、インバータと、このインバータに接続され固定子巻線を有する固定子と、回転子とを備えエンジンに連結された車輌用回転電機において、
前記バッテリの内部抵抗をR
前記バッテリと前記インバータ間の接続回路抵抗をRdc
前記インバータの順方向抵抗をRinv
前記インバータと前記固定子巻線間の接続回路抵抗をRac
とするとき、
前記固定子巻線の抵抗値Rst
st=K{1/2(R+Rdc)+(Rinv+Rac)}
但し、0.6≦K≦1.7
で表される値を満足するよう前記インバータ制御により、電気角で120度区間の矩形波通電を行うことを特徴とする車輌用回転電機。
In a rotating electrical machine for a vehicle including a battery, an inverter, a stator connected to the inverter and having a stator winding, and a rotor and coupled to an engine,
The internal resistance of the battery is R b ,
The connection circuit resistance between the battery and the inverter is R dc ,
R inv , the forward resistance of the inverter,
A connection circuit resistance between the inverter and the stator winding is represented by R ac ,
And when
The resistance value Rst of the stator winding is Rst = K {1/2 ( Rb + Rdc ) + ( Rinv + Rac )}
However, 0.6 ≦ K ≦ 1.7
A rotating electric machine for a vehicle, wherein rectangular wave energization is performed in a 120-degree section with an electrical angle by the inverter control so as to satisfy a value represented by:
前記車輌用回転電機の回転速度零における前記バッテリと前記インバータ間に流れる電流値をIdc0、前記回転子の界磁巻線の作る界磁磁束を打ち消す方向に、磁束を発生させる電流を流すことを必要とする回転速度における前記固定子巻線電流の実行値をIarmsとしたとき、
0.34≦Iarms/Idc0≦0.36
で表されるIarmsが力率1で通電されることを特徴とする請求項1に記載の車輌用回転電機。
The current value flowing between the battery and the inverter at a rotational speed of the vehicle rotating electrical machine is I dc0 , and a current for generating a magnetic flux is passed in a direction to cancel the field magnetic flux formed by the field winding of the rotor. When the effective value of the stator winding current at a rotation speed that requires
0.34 ≦ I arms / I dc0 ≦ 0.36
2. The rotating electrical machine for a vehicle according to claim 1, wherein I arms represented by:
前記車輌用回転電機の回転速度零における前記バッテリと前記インバータ間に流れる電流値をIdc0、前記回転子の界磁巻線の作る界磁磁束を打ち消す方向に、磁束を発生させる電流を流すことを必要とする回転速度における前記固定子巻線電流の実行値をIarmsとしたとき、
0.375≦Iarms/Idc0≦0.39
で表されるIarmsが力率1で通電されることを特徴とする請求項2に記載の車輌用回転電機。
The current value flowing between the battery and the inverter at a rotational speed of the vehicle rotating electrical machine is I dc0 , and a current for generating a magnetic flux is passed in a direction to cancel the field magnetic flux formed by the field winding of the rotor. When the effective value of the stator winding current at a rotation speed that requires
0.375 ≦ I arms / I dc0 ≦ 0.39
The rotating electrical machine for a vehicle according to claim 2, wherein I arms represented by:
前記固定子巻線抵抗値Rstが、周囲温度40℃〜80℃において満足することを特徴とする請求項1または請求項2のいずれか1項に記載の車輌用回転電機。 3. The vehicular rotating electrical machine according to claim 1, wherein the stator winding resistance value Rst is satisfied at an ambient temperature of 40 ° C. to 80 ° C. 4. 前記固定子巻線抵抗値Rstが、周囲温度−60℃〜−20℃において満足することを特徴とする請求項1または請求項2のいずれか1項に記載の車輌用回転電機。 3. The rotating electrical machine for a vehicle according to claim 1, wherein the stator winding resistance value Rst is satisfied at an ambient temperature of −60 ° C. to −20 ° C. 4. 前記固定子巻線抵抗値Rstが、周囲温度140℃〜180℃において満足することを特徴とする請求項1または請求項2のいずれか1項に記載の車輌用回転電機。 The stator winding resistance value R st is vehicular rotary electric machine according to any one of claims 1 or claim 2, characterized by satisfying at ambient temperature 140 ° C. to 180 ° C..
JP2006070822A 2006-03-15 2006-03-15 Rotating electric machine for vehicles Active JP4623587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070822A JP4623587B2 (en) 2006-03-15 2006-03-15 Rotating electric machine for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070822A JP4623587B2 (en) 2006-03-15 2006-03-15 Rotating electric machine for vehicles

Publications (2)

Publication Number Publication Date
JP2007252068A true JP2007252068A (en) 2007-09-27
JP4623587B2 JP4623587B2 (en) 2011-02-02

Family

ID=38595794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070822A Active JP4623587B2 (en) 2006-03-15 2006-03-15 Rotating electric machine for vehicles

Country Status (1)

Country Link
JP (1) JP4623587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025634A1 (en) * 2018-08-02 2020-02-06 Valeo Equipements Electriques Moteur Rotating electrical machine with adapted electrical resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004320861A (en) * 2003-04-14 2004-11-11 Denso Corp Controller for three-phase motor-generator for vehicle
JP2006006080A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Vehicular rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004320861A (en) * 2003-04-14 2004-11-11 Denso Corp Controller for three-phase motor-generator for vehicle
JP2006006080A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Vehicular rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025634A1 (en) * 2018-08-02 2020-02-06 Valeo Equipements Electriques Moteur Rotating electrical machine with adapted electrical resistance
FR3084789A1 (en) * 2018-08-02 2020-02-07 Valeo Equipements Electriques Moteur ROTATING ELECTRIC MACHINE WITH ADAPTED ELECTRIC RESISTANCE

Also Published As

Publication number Publication date
JP4623587B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
KR100877854B1 (en) an emergency DLC operating method for a hybrid electric vehicle
CN107399318A (en) Motor vehicle driven by mixed power engine primer system and method
CN107404162A (en) Permanent-magnetic electric machine
US8053915B2 (en) On-vehicle rotary electric machine operating on two modes of rectification
JP2007159353A (en) Field winding type synchronous generator motor
JP2011089625A (en) Method and apparatus for controlling oil temperature increase for electric vehicle, and electric vehicle
JP4493639B2 (en) Control device for rotating electrical machine
JP7206721B2 (en) motor generator controller
JP2006060999A (en) Single-phase induction motor
KR20060019523A (en) Method of controlling a polyphase reversible rotating electrical machine for heat-engine motor vehicles
JP6441338B2 (en) Method and apparatus for controlling alternator / starter of automobile and corresponding alternator / starter
JP6581063B2 (en) Switched reluctance motor controller
Bruyère et al. Modeling and control of a seven-phase claw-pole integrated starter alternator for micro-hybrid automotive applications
JP4623587B2 (en) Rotating electric machine for vehicles
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
CN110168925B (en) Control device for power conversion circuit, and rotating electric machine unit
JP2012228017A (en) Controller of generator-motor
JP5225709B2 (en) Switched reluctance motor controller
JP2007300767A (en) Ac generator and motor drive system for vehicle
JP2007189772A (en) Drive control system of motor generator for vehicle
KR102199891B1 (en) Controller for switched reluctance motor
JP2002191195A (en) Motor-generator for vehicle
JP2003083209A (en) Starter generator
WO2015088785A1 (en) Using ac and dc generators with controllers as a regenerative power burn off device
WO2015088776A1 (en) Using ac induction motor as a generator in a utility vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

R150 Certificate of patent or registration of utility model

Ref document number: 4623587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250