JP2007250542A - Microprocessing method - Google Patents

Microprocessing method Download PDF

Info

Publication number
JP2007250542A
JP2007250542A JP2007062844A JP2007062844A JP2007250542A JP 2007250542 A JP2007250542 A JP 2007250542A JP 2007062844 A JP2007062844 A JP 2007062844A JP 2007062844 A JP2007062844 A JP 2007062844A JP 2007250542 A JP2007250542 A JP 2007250542A
Authority
JP
Japan
Prior art keywords
electron beam
substrate
processing
magnetic field
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062844A
Other languages
Japanese (ja)
Inventor
Masayuki Shimojo
雅幸 下条
Baisaka Sandip
サンディップ・バイサカ
Kazuo Furuya
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007062844A priority Critical patent/JP2007250542A/en
Publication of JP2007250542A publication Critical patent/JP2007250542A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processing method capable of executing formation of a minute hole of 1 nm or a groove 2 nm wide on a surface of a base material without using a multistage process such as masking, and processing by combining them with one another, and a device therefor. <P>SOLUTION: A halogen compound gas is supplied from a halogen compound supply nozzle 1 into a reaction vessel 5 with a substrate 4 stored therein while sucking 6 it with a vacuum pump or the like; the surface of the substrate is irradiated with an electron beam 2 having a high acceleration voltage; the electron beam is narrowed down by applying a magnetic field 3 in the irradiation direction of the electron beam to the substrate; and thus microscopic and precision processing of a nanometer order is executed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この出願の発明は半導体集積回路等の基板に微細なパターンを形成する方法とその装置に関するものである。さらに詳しくは、基板表面に磁場により照射幅が制御された電子線を照射する微細加工方法に関するものである。   The invention of this application relates to a method and apparatus for forming a fine pattern on a substrate such as a semiconductor integrated circuit. More specifically, the present invention relates to a fine processing method for irradiating a substrate surface with an electron beam whose irradiation width is controlled by a magnetic field.

半導体等に微細な加工を行なう方法としては投影露光装置を使用するリソグラフィー技術が一般に採用されている。また、リソグラフィーより、さらに微細な加工を行なう方法として、所望の加工用パターンを形成したマスクに荷電粒子を照射し、荷電粒子が透過した部分に反応ガスを供給することによって反応ガス部分を選択的に微細加工する、いわゆる電子線アシストエッチング方法が知られている(特許文献1および2)。   As a method for finely processing a semiconductor or the like, a lithography technique using a projection exposure apparatus is generally employed. Also, as a method of performing finer processing than lithography, a reactive gas portion is selectively selected by irradiating a mask on which a desired processing pattern is formed with charged particles and supplying a reactive gas to a portion through which the charged particles have permeated. A so-called electron beam assisted etching method, in which fine processing is performed, is known (Patent Documents 1 and 2).

そして、この電子線アシストエッチング方法における反応ガスとしてハロゲン系ガスを使用する電子線アシストエッチング方法も知られている(非特許文献1および2)。
特開平08−222175号公報 特開平06−104218号公報 P.D.Rack,et al.;Appl.Phys.Lett.,82(2003)2326 H.Watanabe,et al.;Jpn.J.Appl.Phys.,30,11B(1991)3190
An electron beam assisted etching method using a halogen-based gas as a reaction gas in this electron beam assisted etching method is also known (Non-Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 08-222175 Japanese Patent Laid-Open No. 06-104218 P. D. Rack, et al. Appl. Phys. Lett. , 82 (2003) 2326 H. Watanabe, et al. Jpn. J. et al. Appl. Phys. , 30, 11B (1991) 3190

従来から行われているエッチング法は一般に分解能が小さく、たとえば、特許文献1および2に開示されている電子線アシストエッチング方法では、せいぜい分解能は50〜100ナノメートル(nm)程度である。しかしながら、近い将来の実現が予想されている超集積半導体電子デバイスでは加工寸法精度が少なくとも10ナノメートル以下のものが必要であるとされている。   The conventional etching method generally has a low resolution. For example, in the electron beam assisted etching methods disclosed in Patent Documents 1 and 2, the resolution is at most about 50 to 100 nanometers (nm). However, a super-integrated semiconductor electronic device that is expected to be realized in the near future is required to have a processing dimensional accuracy of at least 10 nanometers or less.

そこで、この出願の発明はマスク等の多段階のプロセスを使用することなく基材の表面に1ナノメートルの微細な穴あけ、または幅2ナノメートルの溝掘り、さらにはこれらを組み合わせた加工を行なうことができる、新しい微細加工方法とそのための装置を提供することを課題としている。   Accordingly, the invention of this application performs fine drilling of 1 nanometer on the surface of the substrate or grooving of 2 nanometers in width without using a multi-step process such as a mask, or a combination thereof. It is an object of the present invention to provide a new fine processing method and an apparatus therefor that can be used.

この出願の発明の微細加工方法は、基板に対しても前記電子線の照射方向の磁場をかけておくことを特徴とする。 The microfabrication method of the invention of this application is characterized in that a magnetic field in the irradiation direction of the electron beam is applied to the substrate.

上記発明により、基板に1〜10nmの形状の微小加工が可能になる。 According to the above invention, microfabrication with a shape of 1 to 10 nm can be performed on the substrate.

この出願の発明は上記のとおりの特徴を有するものであるが、以下にその実施の形態について詳しく説明する。 The invention of this application has the features as described above, and an embodiment thereof will be described in detail below.

この出願の発明者は、従来からビーム支援堆積膜や電子・イオンビーム分解反応によって形成されるナノドット・ワイヤの特性を調べるとともにパターン加工に応用展開する技術を探求してきたが、この出願の発明は当該技術を探索する過程で得られた知得に基いて完成されたものであって、この技術の成果を半導体集積回路等の基板上に微細なパターンを形成する技術に応用するものである。 The inventor of this application has been investigating the characteristics of nanodots and wires formed by beam-assisted deposition films and electron / ion beam decomposition reactions, and has been exploring techniques that are applied to pattern processing. The present invention has been completed based on knowledge obtained in the process of searching for the technology, and the result of this technology is applied to a technology for forming a fine pattern on a substrate such as a semiconductor integrated circuit.

この出願の発明は密閉された反応容器に磁場を印加するとともに、その中に収められた基材の表面にハロゲンまたはハロゲン化合物の気体を供給しながら、200keV以上に加速された電子線を照射するものである。従来の電子線アシストエッチング法は電子線を十分細く絞ることが困難であるため分解能はせいぜい50〜100ナノメートルオーダー程度に過ぎなかった。ところが、この出願の発明では従来の方法より加速電圧を高くし、さらに基板を磁場中におくという新しい手法を採用することにより電子線を細く絞ることが可能になり、これまで実現不可能であるとされていた基材の表面にナノメートルオーダーの微細で精密な加工を行なうことを可能にするものである。 The invention of this application applies a magnetic field to a sealed reaction vessel and irradiates an electron beam accelerated to 200 keV or more while supplying a halogen or a halogen compound gas to the surface of a substrate housed therein. Is. In the conventional electron beam assisted etching method, since it is difficult to narrow down the electron beam sufficiently, the resolution is only about 50 to 100 nanometers at most. However, the invention of this application makes it possible to narrow the electron beam finely by adopting a new method in which the acceleration voltage is made higher than that of the conventional method and the substrate is placed in a magnetic field. This makes it possible to perform nanometer-order fine and precise processing on the surface of the base material.

さらに、この出願の発明は磁場の強度、磁場の方向および電子線の照射時間を変化することにより加工の部位や加工のサイズが多様なナノメートルオーダーの微細な加工を精密に行なうことが可能になるものである。 Furthermore, the invention of this application makes it possible to precisely perform nanometer-order fine processing with various parts and sizes of processing by changing the magnetic field strength, magnetic field direction, and electron beam irradiation time. It will be.

この出願の発明を図にしたがって説明すると、
1173752500375_0
はハロゲン化合物の気体を供給しながら磁力線(3)により細く絞られた電子線を照射している状態を示した模式図である。
The invention of this application will be described with reference to the drawings.
1173752500375_0
FIG. 5 is a schematic view showing a state in which an electron beam narrowed by a magnetic force line (3) is irradiated while supplying a halogen compound gas.

内部に基材(4)が収められた密閉性の反応容器(5)を0.5〜2テスラ(T)程度の磁場中に設けて真空ポンプ等で吸引(6)しながら、ハロゲン化合物供給ノズル(1)からハロゲン化合物の気体を約1×10−4Pa L/sから1×10−3Pa L/sの流量で少量ずつ供給する。そして、基材(4)の表面に200keV以上の高い加速電圧の電子線(2)を照射する。この電子線(2)は磁場の磁力線(3)によって細く絞られているため直径1〜10ナノメートルの穴をあけることが可能となり、また電子線(2)の照射部位を移動させることによって幅2〜10ナノメートルの溝等も成形することができる。この出願の発明において使用可能な基材としてはハロゲンまたはハロゲン化合物と反応する材料であれば特に限定されないが、特に金属、半導体,炭素などが好適な材料として使用することができる。また、基材上に供給するハロゲンまたはハロゲン化合物としては常温で気体のものが好適であるが、常温で気体でなくても蒸気圧を持つ液体あるいは固体のものが使用できる。この出願の発明で使用できるハロゲン化合物としては、例えば、Cl、XeF、AlCl、SiCl、AuCl、NaAuClなどが好適である。 Supplying a halogen compound while providing a sealed reaction vessel (5) containing a base material (4) in a magnetic field of about 0.5 to 2 Tesla (T) and suctioning (6) with a vacuum pump or the like A gas of a halogen compound is supplied little by little from the nozzle (1) at a flow rate of about 1 × 10 −4 Pa L / s to 1 × 10 −3 Pa L / s. And the electron beam (2) of the high acceleration voltage of 200 keV or more is irradiated to the surface of a base material (4). Since this electron beam (2) is narrowed by the magnetic field lines (3) of the magnetic field, it is possible to make a hole with a diameter of 1 to 10 nanometers, and the width of the electron beam (2) by moving the irradiation site of the electron beam (2) A 2-10 nanometer groove | channel etc. can also be shape | molded. The base material that can be used in the invention of this application is not particularly limited as long as it is a material that reacts with halogen or a halogen compound. In particular, metals, semiconductors, carbon, and the like can be used as suitable materials. The halogen or halogen compound supplied onto the substrate is preferably a gas at normal temperature, but a liquid or solid having a vapor pressure can be used even if it is not gas at normal temperature. As the halogen compound that can be used in the invention of this application, for example, Cl 2 , XeF 2 , AlCl 3 , SiCl 4 , AuCl 3 , NaAuCl 4 and the like are suitable.

このように、この出願の発明はマスク等の多段階のプロセスを使用することなく基材の表面に1ナノメートルの微細な穴あけや幅2ナノメートルの溝掘り、さらには、これらを組み合わせた加工を行なうことができるという優れた特徴を有している。 As described above, the invention of this application is that a 1 nanometer fine hole is drilled or a 2 nanometer wide groove is formed on the surface of a substrate without using a multi-step process such as a mask, and further, a combination of these processes. It has an excellent feature that it can be performed.

そこで、以下に実施例を説明する。もちろん、この出願の発明は以下の実施例に限定されるものではなく、詳細については様々な態様が可能である。 Therefore, examples will be described below. Of course, the invention of this application is not limited to the following examples, and various modes are possible for details.

ステンレス鋼薄膜(4)が収められた密閉された反応容器(5)を0.5〜2テスラ(T)程度の磁場中に置く。この反応容器(5)を室温に保持してNaAuClガス(1)
を1×10−4Pa L/sになるように供給する。ステンレス鋼薄膜(4)の表面に磁場によって照射幅が制御されている200keVの加速電圧の電子線(2)を照射する。
図2は、この方法で作製されたステンレス鋼薄膜(4)の表面に直径約2ナノメートルの穴があけられた状態の透過電子顕微鏡写真である。
The sealed reaction vessel (5) containing the stainless steel thin film (4) is placed in a magnetic field of about 0.5 to 2 Tesla (T). The reaction vessel (5) was kept at room temperature and the NaAuCl 4 gas (1)
To 1 × 10 −4 Pa L / s. The surface of the stainless steel thin film (4) is irradiated with an electron beam (2) having an acceleration voltage of 200 keV whose irradiation width is controlled by a magnetic field.
FIG. 2 is a transmission electron micrograph showing a state in which a hole having a diameter of about 2 nanometers is formed on the surface of the stainless steel thin film (4) produced by this method.

図2からも明らかなように10ナノメートル以下の領域でナノメートルオーダーの微細加工が精密に施されていることが示されている。 As is apparent from FIG. 2, it is shown that fine processing on the order of nanometers is performed precisely in a region of 10 nanometers or less.

この出願の発明によって、ナノメートルオーダーの非常に微細な加工を精密にしかも自在に行なうことが可能になり電子デバイス、電子波干渉素子やマイクロマシン用部材の加工等に貢献することが期待される。 The invention of this application is expected to contribute to the processing of electronic devices, electron wave interference elements, members for micromachines, etc., because it becomes possible to perform extremely fine processing on the order of nanometers precisely and freely.

この出願の発明に使用するための装置の全体を示した模式図である。It is the schematic diagram which showed the whole apparatus for using for invention of this application. この出願の発明により加工されたステンレス鋼に直径約2ナノメートルの穴が2次元に配置された基材の透過電子顕微鏡写真である。It is the transmission electron micrograph of the base material by which the hole about 2 nanometer in diameter was arrange | positioned two-dimensionally in the stainless steel processed by invention of this application.

符号の説明Explanation of symbols

1 ハロゲン化合物供給ノズル
2 電子線
3 磁力線
4 基材
1 Halogen Compound Supply Nozzle 2 Electron Beam 3 Magnetic Field Line 4 Base Material

Claims (1)


基板表面に磁場により照射幅が制御された電子線を照射する微細加工方法であって、前記基板に対しても前記電子線の照射方向の磁場をかけておくことを特徴とする微細加工方法。

A fine processing method for irradiating a surface of a substrate with an electron beam whose irradiation width is controlled by a magnetic field, wherein a magnetic field in the irradiation direction of the electron beam is also applied to the substrate.
JP2007062844A 2007-03-13 2007-03-13 Microprocessing method Pending JP2007250542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062844A JP2007250542A (en) 2007-03-13 2007-03-13 Microprocessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062844A JP2007250542A (en) 2007-03-13 2007-03-13 Microprocessing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004075350A Division JP2005268339A (en) 2004-03-16 2004-03-16 Method and apparatus for applying processing in nano meter order to substrate

Publications (1)

Publication Number Publication Date
JP2007250542A true JP2007250542A (en) 2007-09-27

Family

ID=38594574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062844A Pending JP2007250542A (en) 2007-03-13 2007-03-13 Microprocessing method

Country Status (1)

Country Link
JP (1) JP2007250542A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159960A (en) * 1991-12-09 1993-06-25 Hitachi Ltd Manufacture of magnetized film
JPH0684831A (en) * 1992-09-03 1994-03-25 Nec Corp Formation of silicide
JPH07192685A (en) * 1993-12-01 1995-07-28 Ict Integrated Circuit Testing G Fur Halbleiterprueftechnik Mbh Specimen processing system
JPH08329876A (en) * 1995-05-30 1996-12-13 Hitachi Ltd Method and device for preparing observation specimen
JP2000500265A (en) * 1995-07-25 2000-01-11 エヌエムアイ ナツルヴィッセンサフトリヘス ウント メディジニシェス インスティチュト アン デル ユニヴェルシテート テュービンゲン イン ロイトリンゲン Ion thinning method and apparatus in high resolution transmission electron microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159960A (en) * 1991-12-09 1993-06-25 Hitachi Ltd Manufacture of magnetized film
JPH0684831A (en) * 1992-09-03 1994-03-25 Nec Corp Formation of silicide
JPH07192685A (en) * 1993-12-01 1995-07-28 Ict Integrated Circuit Testing G Fur Halbleiterprueftechnik Mbh Specimen processing system
JPH08329876A (en) * 1995-05-30 1996-12-13 Hitachi Ltd Method and device for preparing observation specimen
JP2000500265A (en) * 1995-07-25 2000-01-11 エヌエムアイ ナツルヴィッセンサフトリヘス ウント メディジニシェス インスティチュト アン デル ユニヴェルシテート テュービンゲン イン ロイトリンゲン Ion thinning method and apparatus in high resolution transmission electron microscope

Similar Documents

Publication Publication Date Title
Baglin Ion beam nanoscale fabrication and lithography—a review
Jesse et al. Directing matter: toward atomic-scale 3D nanofabrication
JP5112181B2 (en) High resolution plasma etching
Walton et al. Electron beam generated plasmas for the processing of graphene
KR102639026B1 (en) Method and apparatus for forming a layer of patterned material
US11377740B2 (en) Nanofabrication using a new class of electron beam induced surface processing techniques
Bishop et al. Deterministic nanopatterning of diamond using electron beams
Hogg et al. Investigating pattern transfer in the small-gap regime using electron-beam stabilized nanoparticle array etch masks
JP2007182349A (en) Method for producing nanotube and quantum dot
Liu et al. Top-down fabrication of nanostructures
JP2007250542A (en) Microprocessing method
Neumann et al. Large scale nanopatterning of graphene
US20110293847A1 (en) Particle-Beam Induced Processing Using Liquid Reactants
JP2005268339A (en) Method and apparatus for applying processing in nano meter order to substrate
EP3875633A1 (en) Method and apparatus for forming a patterned layer of material
JP5594773B2 (en) Selective film formation method, film formation apparatus, and structure
Scotuzzi et al. Pattern transfer into silicon using sub-10 nm masks made by electron beam-induced deposition
Wen et al. Helium Ion‐Assisted Wet Etching of Silicon Carbide with Extremely Low Roughness for High‐Quality Nanofabrication
JP5673329B2 (en) Silicon oxide processing method
Woo et al. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template
Boileau et al. Sub-micro aC: H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition
Rauschenbach et al. Destructive and constructive routes to prepare nanostructures on surfaces by low-energy ion beam sputtering
JP4117380B2 (en) Microstructure manufacturing method and apparatus using catalytic chloride and focused electron beam
Wang et al. Nanostructures and nanodevices special fabrication and characterization
Il’in et al. Development of local catalytic centers positioning technology for carbon nanotubes growth

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208