JP2007250420A - Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method - Google Patents

Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method Download PDF

Info

Publication number
JP2007250420A
JP2007250420A JP2006074276A JP2006074276A JP2007250420A JP 2007250420 A JP2007250420 A JP 2007250420A JP 2006074276 A JP2006074276 A JP 2006074276A JP 2006074276 A JP2006074276 A JP 2006074276A JP 2007250420 A JP2007250420 A JP 2007250420A
Authority
JP
Japan
Prior art keywords
secondary battery
battery electrode
core
nickel
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074276A
Other languages
Japanese (ja)
Inventor
Tadashi Inoue
正 井上
Hideko Yasuhara
英子 安原
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006074276A priority Critical patent/JP2007250420A/en
Publication of JP2007250420A publication Critical patent/JP2007250420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive core body for a secondary battery electrode in which an excellent adhesiveness between a nickel porous sintered material and a steel plate of a core body is obtained, and also to provide its manufacturing method. <P>SOLUTION: The core body for a secondary battery electrode is composed of: a perforated steel plate; a plating layer formed on the steel plate and composed of a Ni-Fe alloy; and a conductive carbon fiber layer formed on the plating layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ニッケル-カドミウム電池、ニッケル-水素電池などの二次電池に適用される二次電池電極用芯体およびその製造方法に関する。   The present invention relates to a core for a secondary battery electrode applied to a secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery, and a method for manufacturing the same.

従来、ニッケル-カドミウム、ニッケル-水素二次電池においては、大電流を取り出すことを可能とするために、広い比表面積を有する多孔質金属焼結体を用いた電極が使用されている。この焼結体は、ニッケルめっきが施された厚さ80μm以下の穿孔された鋼板(パンチング鋼板)である芯体の上に、ニッケル粉末をプレス、またはスラリー状のニッケル粉末を塗布し、非酸化雰囲気中で1000℃付近の温度にて焼結することにより製造されている。この熱処理により、ニッケルめっきされたパンチング鋼板とニッケル粉の接触部においてニッケルの固相拡散による接合が生じ、ニッケル粉同士が結合し、ネットワークが形成された多孔度を有するニッケル多孔質焼結体が鋼板に接合した二次電池用電極が製造される。   Conventionally, in a nickel-cadmium or nickel-hydrogen secondary battery, an electrode using a porous metal sintered body having a large specific surface area is used in order to allow a large current to be taken out. This sintered body is non-oxidized by pressing nickel powder or applying slurry-like nickel powder onto a core body, which is a punched steel sheet with a thickness of 80 μm or less plated with nickel. Manufactured by sintering at a temperature around 1000 ° C. in an atmosphere. By this heat treatment, a nickel-plated sintered body having a porosity in which a nickel-bonded punched steel sheet and nickel powder are joined by solid phase diffusion of nickel and bonded to each other and a network is formed. An electrode for a secondary battery bonded to a steel plate is manufactured.

しかし、このような固相拡散のみにより多孔質金属焼結体と金属芯体を接合した構造を有する二次電池用電極では、密着性が十分でないため、電極を円筒型電池のケースに巻き込んで組み込むとき、ニッケル多孔質焼結体が芯体である鋼板から剥離・脱落したり、活物質が脱落し、脱落した焼結体や活物質がセパレータを突き破りショートを引き起こすといった問題を生じる。   However, in a secondary battery electrode having a structure in which a porous metal sintered body and a metal core are joined only by solid phase diffusion, the adhesion is not sufficient, so that the electrode is wound around a cylindrical battery case. When assembled, the nickel porous sintered body may be peeled off or dropped from the steel plate as the core body, or the active material may fall off, and the dropped sintered body or active material may break through the separator and cause a short circuit.

そこで、特許文献1には、鋼板表面にNi-Co-P合金層やCo-P層を形成したり、Ni層やNi-P層を形成後さらにCo層やCo-P層などを形成してニッケル多孔質焼結体と鋼板との密着性を向上させる技術が提案されている。
国際公開第WO01/004971号パンフレット
Therefore, in Patent Document 1, a Ni-Co-P alloy layer or a Co-P layer is formed on the surface of a steel sheet, or a Co layer or a Co-P layer is further formed after forming a Ni layer or a Ni-P layer. A technique for improving the adhesion between the nickel porous sintered body and the steel sheet has been proposed.
International Publication No. WO01 / 004971 Pamphlet

しかしながら、特許文献1に記載の技術では、Coという高価な金属を使用する必要があるので著しいコスト増を招くととともに、必ずしも優れたニッケル多孔質焼結体と鋼板との密着性が得られない。   However, in the technique described in Patent Document 1, it is necessary to use an expensive metal called Co, which causes a significant increase in cost and does not necessarily provide excellent adhesion between the porous nickel sintered body and the steel plate. .

本発明は、かかる事情に鑑みてなされたもので、安価で、確実に、優れたニッケル多孔質焼結体と芯体である鋼板との密着性が得られる二次電池電極用芯体およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is inexpensive and surely capable of obtaining excellent adhesion between a nickel porous sintered body and a steel plate as a core, and a core for a secondary battery electrode and its An object is to provide a manufacturing method.

上記の目的は、穿孔された鋼板と、前記鋼板上に形成されたNiまたはNi-Fe合金からなるめっき層と、前記めっき層上に形成された導電性の炭素皮膜と、から構成された二次電池電極用芯体により達成される。   The above-mentioned object is a two-layered structure composed of a perforated steel sheet, a plating layer made of Ni or Ni-Fe alloy formed on the steel sheet, and a conductive carbon film formed on the plating layer. This is achieved by the secondary battery electrode core.

鋼板のC量が、0.05質量%以下であることが好ましい。   The C content of the steel sheet is preferably 0.05% by mass or less.

導電性の炭素皮膜としては、例えばダイヤモンド状炭素の皮膜(ダイヤモンド・ライク・カーボン(DLC)膜:ps3結合を約10%以上有し、その結果、硬さが約10GPa以上の硬質アモルファス炭素膜など)を挙げることができる。   Examples of conductive carbon films include diamond-like carbon films (diamond-like carbon (DLC) films: hard amorphous carbon films with a ps3 bond of about 10% or more, resulting in a hardness of about 10 GPa or more) ).

本発明の二次電池電極用芯体は、例えば、穿孔された鋼板上に、NiまたはNi-Fe合金からなるめっき層を形成後、プラズマCVD法によって導電性の炭素皮膜を形成する方法により製造できる。   The core for a secondary battery electrode of the present invention is manufactured by, for example, a method of forming a conductive carbon film by plasma CVD after forming a plated layer made of Ni or Ni-Fe alloy on a perforated steel sheet it can.

本発明により、安価で、確実に、優れたニッケル多孔質焼結体と芯体である鋼板との密着性が得られる二次電池電極用芯体を製造できるようになった。また、本発明の二次電池電極用芯体を用いることにより、ニッケル-カドミウムやニッケル-水素二次電池の充放電特性も向上できる。   According to the present invention, it is possible to manufacture a core for a secondary battery electrode that is inexpensive and reliably obtains excellent adhesion between a nickel porous sintered body and a steel plate as a core. Moreover, by using the core for secondary battery electrodes of the present invention, the charge / discharge characteristics of nickel-cadmium or nickel-hydrogen secondary batteries can also be improved.

本発明らは、ニッケル多孔質焼結体と芯体である鋼板との密着性向上について検討したところ、NiまたはFe-Ni合金からなるめっき層を有する穿孔された鋼板上に、さらに導電性の炭素皮膜を形成させることが極めて効果的であることを見出した。この原因は、必ずしも明確でないが、炭素皮膜の隙間にニッケル焼結体が入り込み、機械的な接合が強化される、いわゆるアンカー効果によると考えられる。また、炭素皮膜を形成させるだけなので、著しいコスト増を招くこともない。   The present inventors have examined the improvement in adhesion between the nickel porous sintered body and the steel sheet as the core. As a result, a conductive layer is formed on the perforated steel sheet having a plated layer made of Ni or Fe-Ni alloy. It has been found that forming a carbon film is extremely effective. Although this cause is not necessarily clear, it is thought to be due to a so-called anchor effect in which a nickel sintered body enters a gap between carbon films and mechanical bonding is strengthened. Further, since only the carbon film is formed, there is no significant increase in cost.

導電性の炭素皮膜としては、例えば上記のダイヤモンド・ライク・カーボン膜を挙げることができる。このダイヤモンド・ライク・カーボン膜は、マイクロ波をプラズマ発生源に用い、炭化水素雰囲気で、20〜300℃で10〜200分間のプラズマCVDにより形成できる。密着性の観点から、炭素皮膜の厚みは0.1〜2μmとすることが好ましい。   Examples of the conductive carbon film include the diamond-like carbon film described above. The diamond-like carbon film can be formed by plasma CVD at 20 to 300 ° C. for 10 to 200 minutes in a hydrocarbon atmosphere using a microwave as a plasma generation source. From the viewpoint of adhesion, the thickness of the carbon film is preferably 0.1 to 2 μm.

鋼板上にNiまたはNi-Fe合金からなるめっき層を形成するには、通常のめっき条件で行えるが、例えば、250g/リットルの硫酸ニッケル、40g/リットルの塩化ニッケル、25g/リットルからなるpH4〜5で50℃のめっき浴を用い、電流密度15A/dm2でNiめっき層を形成できる。めっき層の厚さは、0.5μm未満では電池内での腐食が問題になり、一方、3μmを超えると密着性が劣化するため、0.5〜3μmとすることが好ましい。なお、Ni-Fe合金めっき層では、Feを50%以下含有することで、得られる炭素皮膜の密着性をより好ましいレベルにすることができる。 To form a plating layer made of Ni or Ni-Fe alloy on a steel plate, it can be performed under normal plating conditions, for example, pH 4 to 250 g / liter nickel sulfate, 40 g / liter nickel chloride, 25 g / liter. A Ni plating layer can be formed at a current density of 15 A / dm 2 using a plating bath at 5 and 50 ° C. If the thickness of the plating layer is less than 0.5 μm, corrosion in the battery becomes a problem. On the other hand, if the thickness exceeds 3 μm, the adhesiveness deteriorates, so 0.5 to 3 μm is preferable. In the Ni—Fe alloy plating layer, the adhesion of the obtained carbon film can be brought to a more preferable level by containing 50% or less of Fe.

本発明の二次電池電極用芯体に用いる鋼板では、NiまたはNi-Fe合金からなるめっき層の密着性を高める上で、C量を0.05質量%以下にすることが好ましい。その他の鋼板成分は特に限定するものではないが、特に、質量%で、C:0.005%以下、Si:0.05%以下、Mn:0.5%以下、P:0.05%以下、N:0.005%以下、sol.Al:0.0001〜0.1%、残部Feおよび不可避的不純物からなる鋼板が好適である。こうした鋼板は、例えば、上記のような成分からなるスラブを、熱間圧延、酸洗後、冷間圧延および焼鈍を1回ないし複数回施すことにより製造できる。   In the steel sheet used for the core for a secondary battery electrode of the present invention, the C content is preferably 0.05% by mass or less in order to improve the adhesion of the plating layer made of Ni or Ni—Fe alloy. Other steel plate components are not particularly limited, but in particular, by mass%, C: 0.005% or less, Si: 0.05% or less, Mn: 0.5% or less, P: 0.05% or less, N: 0.005% or less, sol .Al: A steel plate composed of 0.0001 to 0.1%, the balance Fe and inevitable impurities is suitable. Such a steel sheet can be produced, for example, by subjecting a slab composed of the above components to hot rolling, pickling, cold rolling and annealing once or multiple times.

質量%で、C:0.0030%、Si:0.01%、Mn:0.14%、P:0.01%、S:0.0028%、sol.Al:0.0002%、N:0.0018%を含有し、残部がFeおよび不可避的不純物からなる鋼を鋳造し、得られたスラブを板厚2.0mmに熱間圧延した後、酸洗し、冷間圧延・焼鈍を2回施すことにより、板厚0.08mmの鋼板を得た。   Contains by mass: C: 0.0030%, Si: 0.01%, Mn: 0.14%, P: 0.01%, S: 0.0028%, sol.Al: 0.0002%, N: 0.0018%, the balance being Fe and inevitable The steel made of impurities was cast, and the obtained slab was hot-rolled to a thickness of 2.0 mm, pickled, and cold-rolled and annealed twice to obtain a steel plate having a thickness of 0.08 mm.

焼鈍後の鋼板に、多数の1mm径の孔をパンチングにより形成させた後、厚み3μmのNiめっき層を形成し、上記のダイヤモンド・ライク・カーボン膜を、マイクロ波をプラズマ発生源に用い、炭化水素雰囲気で、100℃で60分間のプラズマCVDにより形成させ、二次電池電極用芯体を製造した。このとき、ダイヤモンド・ライク・カーボン膜の厚みは0.5μmであった。その後、この二次電池電極用芯体に多孔質ニッケル焼結体を形成させ、電極を製造した。比較として、ダイヤモンド・ライク・カーボン膜を形成させないでNiめっき層上に直接多孔質ニッケル焼結体を形成させた電極も製造した。そして、製造した電極を1mmの曲げ径で180度の曲げ加工し、ニッケル焼結体の芯体からの剥離程度を目視評価した。   A number of 1mm diameter holes were formed in the annealed steel plate by punching, then a Ni plating layer with a thickness of 3μm was formed, and the above diamond-like carbon film was carbonized using a microwave as a plasma generation source. A core for a secondary battery electrode was produced by plasma CVD at 100 ° C. for 60 minutes in a hydrogen atmosphere. At this time, the thickness of the diamond-like carbon film was 0.5 μm. Then, the porous nickel sintered compact was formed in this core for secondary battery electrodes, and the electrode was manufactured. As a comparison, an electrode in which a porous nickel sintered body was directly formed on a Ni plating layer without forming a diamond-like carbon film was also produced. The manufactured electrode was bent at a bending diameter of 1 mm and 180 degrees, and the degree of peeling of the nickel sintered body from the core was visually evaluated.

その結果、本発明であるダイヤモンド・ライク・カーボン膜が形成された二次電池電極用芯体では、剥離が全く認められず、密着性に優れていた。一方、比較であるダイヤモンド・ライク・カーボン膜が形成されてない二次電池電極用芯体では、芯体全面に剥離が認められた。   As a result, the core for a secondary battery electrode on which the diamond-like carbon film according to the present invention was formed had no peeling and was excellent in adhesion. On the other hand, in the core for a secondary battery electrode in which the diamond-like carbon film for comparison was not formed, peeling was observed on the entire surface of the core.

Claims (4)

穿孔された鋼板と、前記鋼板上に形成されたNiまたはNi-Fe合金からなるめっき層と、前記めっき層上に形成された導電性の炭素皮膜と、から構成された二次電池電極用芯体。   A core for a secondary battery electrode, comprising: a perforated steel sheet; a plating layer made of Ni or a Ni-Fe alloy formed on the steel sheet; and a conductive carbon film formed on the plating layer. body. 鋼板のC量が、0.05質量%以下である請求項1に記載の二次電池電極用芯体。   2. The core for a secondary battery electrode according to claim 1, wherein the C content of the steel sheet is 0.05% by mass or less. 導電性の炭素皮膜が、ダイヤモンド状炭素の皮膜である請求項1または請求項2に記載の二次電池電極用芯体。   3. The secondary battery electrode core according to claim 1, wherein the conductive carbon film is a diamond-like carbon film. 穿孔された鋼板上に、NiまたはFe-Ni合金からなるめっき層を形成後、プラズマCVD法によって導電性の炭素皮膜を形成する二次電池電極用芯体の製造方法。
+
A method for producing a core for a secondary battery electrode, wherein a conductive carbon film is formed by a plasma CVD method after forming a plated layer made of Ni or a Fe-Ni alloy on a perforated steel sheet.
+
JP2006074276A 2006-03-17 2006-03-17 Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method Pending JP2007250420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074276A JP2007250420A (en) 2006-03-17 2006-03-17 Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074276A JP2007250420A (en) 2006-03-17 2006-03-17 Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007250420A true JP2007250420A (en) 2007-09-27

Family

ID=38594471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074276A Pending JP2007250420A (en) 2006-03-17 2006-03-17 Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007250420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041835A (en) * 2008-11-10 2014-03-06 Equos Research Co Ltd Secondary battery and method for manufacturing the same
JP2015526859A (en) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) Sustainable current collector for lithium batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041835A (en) * 2008-11-10 2014-03-06 Equos Research Co Ltd Secondary battery and method for manufacturing the same
JP2015526859A (en) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) Sustainable current collector for lithium batteries

Similar Documents

Publication Publication Date Title
JP5108976B2 (en) Fuel cell separator
JP5342462B2 (en) Manufacturing method of fuel cell separator
JP6124801B2 (en) Steel foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof
JPWO2014112619A1 (en) Electrolytic copper foil, negative electrode for lithium ion battery, and lithium ion secondary battery
JP6623663B2 (en) Ni-plated steel foil and battery conductive member coated with end face, method for producing Ni-plated steel foil
JP6610098B2 (en) Ni-plated steel foil, battery conductive member, and method for producing Ni-plated steel foil
JP2007250420A (en) Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method
JP2009211840A (en) Method for manufacturing alkaline battery and alkaline battery
JP6394842B1 (en) Foil for negative electrode current collector of secondary battery and method for producing the same
CN113166868B (en) Foil for negative electrode collector of secondary battery
CN110140236A (en) The manufacturing method of cathode lead material and cathode lead material
JP2007250419A (en) Core body for secondary battery electrode with excellent adhesiveness and its manufacturing method
JP3585503B2 (en) Manufacturing method of perforated steel sheet, core for secondary battery electrode plate, secondary battery using the core
JP6806116B2 (en) Foil for negative electrode current collector of secondary battery
JP2012186176A (en) Fuel cell separator
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
US20070092751A1 (en) Plate for housing and/or lids for button cells and process for manufacturing such a plate
JPS61200664A (en) Alkaline battery
JP2002151086A (en) Positive pole base material for air cell, manufacturing method of this positive electrode base material, positive electrode for air cell, and air cell
KR940012696A (en) Alkaline battery metal hydride electrode and method for manufacturing same
JP2009256770A (en) Ultrathin plated layer and method for producing the same
JP2004071319A (en) Workpiece plate for metal separator for fuel cell and metal separator for fuel cell using the same
JPS6119080A (en) Electric contactor forming material
JP2006117990A (en) Multi-layer stainless steel sheet and battery case using the same
JP2006080028A (en) Battery case