JP2007250411A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007250411A
JP2007250411A JP2006074119A JP2006074119A JP2007250411A JP 2007250411 A JP2007250411 A JP 2007250411A JP 2006074119 A JP2006074119 A JP 2006074119A JP 2006074119 A JP2006074119 A JP 2006074119A JP 2007250411 A JP2007250411 A JP 2007250411A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
water
layer
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074119A
Other languages
Japanese (ja)
Other versions
JP5057677B2 (en
Inventor
Ayafumi Ueda
純史 上田
Yoji Takami
洋史 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006074119A priority Critical patent/JP5057677B2/en
Publication of JP2007250411A publication Critical patent/JP2007250411A/en
Application granted granted Critical
Publication of JP5057677B2 publication Critical patent/JP5057677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell in which its water content is controlled and its power generation efficiency is improved, and total efficiency of a fuel cell system is thereby improved. <P>SOLUTION: The fuel cell is provided with: a base material layer 18, 26 having a porosity and conductivity, and also having different water repelling properties depending on its positions; fine hole layers 16, 24 which contain a first member having a porosity and conductivity and a conductive second member made of particles, and have a higher density than the base material layer and catalyst layers 14, 22 containing a catalyst having a catalyst action. In another case, the fuel cell is provided with first diffusion layers 18, 26, second diffusion layers to control a capillary attraction, and catalyst layers 14, 22 containing a catalyst having a catalyst function. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池に関し、具体的には、燃料電池内の水分量を制御できる燃料電池に関する。   The present invention relates to a fuel cell, and more specifically to a fuel cell capable of controlling the amount of water in the fuel cell.

ITやバイオなどの新技術が世界規模で展開される時代となったが、そうした状況にあっても、エネルギ産業は最大級の基幹産業であることに変わりはない。最近では、地球温暖化防止をはじめとする環境意識の浸透に伴い、いわゆる新エネルギに対する期待が高まっている。新エネルギは、環境性に加え、電力需要家に近接して分散型で生産できるため、送電損失面と電力供給のセキュリティ面でもメリットがある。また、新エネルギの開発が新たな周辺産業を創出する副次的効果も期待できる。新エネルギに対する取り組みは、約30年前の石油危機を契機として本格化し、現在では、太陽光発電などの再生可能エネルギ、廃棄物発電などのリサイクルエネルギ、燃料電池などの高効率エネルギ、およびクリーンエネルギカーを代表とする新分野エネルギなどのエネルギが、それぞれ実用化に向けた開発の段階にある。   Although it has become an era when new technologies such as IT and biotechnology are deployed on a global scale, the energy industry is still one of the largest core industries. Recently, expectations for so-called new energy are increasing with the spread of environmental awareness including prevention of global warming. In addition to environmental properties, new energy can be produced in a distributed manner in close proximity to power consumers, so there are advantages in terms of transmission loss and power supply security. In addition, the development of new energy can be expected to have a secondary effect of creating new peripheral industries. New energy initiatives began in earnest with the oil crisis about 30 years ago, and now, renewable energy such as solar power generation, recycling energy such as waste power generation, high-efficiency energy such as fuel cells, and clean energy Energy such as new field energy represented by cars is in the stage of development for practical application.

そうした中でも、燃料電池は業界でもっとも注目されるエネルギのひとつである。燃料電池は、天然ガスやメタノールなどと水蒸気を反応させて作った水素と、大気中の酸素を化学反応させて電気と熱を同時に生成するもので、発電による副産物が水だけであり、低出力域でも高効率で、しかも発電が天候に影響されず安定的である。殊に固体高分子形燃料電池は、住居用をはじめとする定置型、車載用あるいは携帯用などの用途において次世代のひとつの標準電源と目されている。   Among them, fuel cells are one of the most noticeable energies in the industry. A fuel cell is a device that generates electricity and heat simultaneously by chemically reacting hydrogen produced by reacting water vapor with natural gas, methanol, etc., and oxygen in the air. It is highly efficient in the area, and power generation is stable without being affected by the weather. In particular, the polymer electrolyte fuel cell is regarded as one of the next generation standard power supplies in applications such as stationary, in-vehicle use, and portable use.

特許文献1では、この固体高分子形燃料電池において、電極反応により生成される水の量が電極内の反応ガス入口側の部位と出口側の部位とで異なるので、部位によって基材に付与する撥水剤の量を変化させることが開示されている。また、特許文献2では、基材にカーボンブラックや撥水剤を充填することにより、電極内に気体が流通する通路と液体が流通する通路とを設けることが開示されている。
特開平9−283153号公報 特許第3583897号公報
In Patent Document 1, in this polymer electrolyte fuel cell, the amount of water produced by the electrode reaction is different between the reaction gas inlet side portion and the outlet side portion in the electrode, and is thus applied to the substrate depending on the portion. Changing the amount of water repellent is disclosed. Further, Patent Document 2 discloses that a passage through which a gas flows and a passage through which a liquid flows are provided in the electrode by filling the substrate with carbon black or a water repellent.
JP-A-9-283153 Japanese Patent No. 3583897

特許文献1のように基材の撥水性の傾斜をつけたものに、特許文献2のようにカーボンブラックを充填しようとすると、カーボンブラックの充填量が基材の撥水性の影響を受けて、均一に充填させることが困難であった。また、場合によってはカーボンブラックの充填量も反応ガスの入口側の部位と出口側の部位とで変化をもたせ、それぞれの部位に必要な撥水性や気孔率を有する電極(拡散層)を作製しようとしても、カーボンブラックの充填量が撥水性の影響を受けてしまうため、それぞれの部位に必要な撥水性や気孔率を有する電極を作製することが困難であった。   When the carbon black is filled with the water repellency gradient of the base material as in Patent Document 1 as in Patent Document 2, the filling amount of the carbon black is affected by the water repellency of the base material, It was difficult to fill uniformly. In addition, depending on the case, the filling amount of the carbon black may vary depending on the part on the inlet side and the part on the outlet side of the reaction gas, and an electrode (diffusion layer) having the required water repellency and porosity in each part will be prepared. However, since the filling amount of carbon black is affected by water repellency, it is difficult to produce an electrode having water repellency and porosity necessary for each part.

本発明は、上記の課題に鑑みてなされたものであって、電極内の部位によって必要な撥水性および/または気孔率を有する電極を用いることにより、燃料電池(面内)の水分量を制御し、燃料電池の発電効率の向上、延いては燃料電池システムの総合効率を向上させることができる燃料電池を提供することを目的とする。   The present invention has been made in view of the above problems, and controls the amount of water in a fuel cell (in-plane) by using an electrode having a required water repellency and / or porosity depending on a portion in the electrode. An object of the present invention is to provide a fuel cell that can improve the power generation efficiency of the fuel cell, and thus the overall efficiency of the fuel cell system.

本発明は、上記目的を達成するための燃料電池用電極であって、多孔質で導電性を有し、部位によって異なる撥水性を有する基材層と、多孔質で導電性を有する第1の部材と粒子状で導電性を有する第2の部材とを含み、前記基材層より高い密度を有する微孔層と、触媒作用を有する触媒を含む触媒層と、を備えることを特徴とする。また、本発明の燃料電池用電極は、撥水性を制御するための第1の拡散層と、毛細管作用を制御するための第2の拡散層と、触媒作用を有する触媒を含む触媒層と、を備えることを特徴とする。これにより、電極の面内において適切な水分量を保持あるいは排出(制御)することができるので、本発明の燃料電池用電極を用いる燃料電池は、全体の水分量が適切に制御され、アノードからカソードへのプロトンの移動がスムーズに行われ、燃料電池の発電効率が向上する。   The present invention provides an electrode for a fuel cell for achieving the above object, wherein the substrate layer is porous and conductive, and has a water repellency that varies depending on the part, and is porous and conductive. It comprises a member and a particulate second conductive member, and comprises a microporous layer having a density higher than that of the base material layer, and a catalyst layer containing a catalyst having a catalytic action. The electrode for a fuel cell of the present invention includes a first diffusion layer for controlling water repellency, a second diffusion layer for controlling capillary action, a catalyst layer containing a catalyst having a catalytic action, It is characterized by providing. As a result, an appropriate amount of water can be held or discharged (controlled) in the plane of the electrode, so that the fuel cell using the fuel cell electrode of the present invention has an appropriate amount of water controlled from the anode. Protons move smoothly to the cathode, improving the power generation efficiency of the fuel cell.

請求項3記載の発明は、電解質層と、前記電解質層の一方の面に設けられる第1の電極と、前記電解質層の他方の面に設けられる第2の電極と、を備える燃料電池において、前記第1の電極は、請求項1または2記載の燃料電池用電極であることを特徴とする。これにより、燃料電池の面全体で水分量が適切に制御され、アノードからカソードへのプロトンの移動がスムーズに行われ、燃料電池の発電効率が向上する。   An invention according to claim 3 is a fuel cell comprising: an electrolyte layer; a first electrode provided on one surface of the electrolyte layer; and a second electrode provided on the other surface of the electrolyte layer. The first electrode is a fuel cell electrode according to claim 1 or 2. As a result, the amount of water is appropriately controlled over the entire surface of the fuel cell, protons are smoothly transferred from the anode to the cathode, and the power generation efficiency of the fuel cell is improved.

請求項4記載の発明は、燃料電池システムであって、請求項3記載の燃料電池と、前記燃料電池へ水素を供給する水素供給手段と、前記燃料電池へ酸素を供給する酸素供給手段と、を備えることを特徴とする。水素供給手段は、本明細書の発明を実施するための最良の形態では、LPGや都市ガスなどを改質する改質装置で説明するが、これに限らず、燃料電池において必要となるプロトン(H+)の素となる水素分子あるいは水素原子を含む有機物を供給する手段であればよい。また、酸素供給手段も空気を利用するシステムが一般的ではあるが、宇宙用、深海用に酸素ボンベなどによる供給手段であってもよい。いずれの場合も、発電により水が発生するが、本発明により燃料電池の水分量が適切に制御されるため、燃料電池の発電効率が向上し、延いては燃料電池システムの総合効率も向上する。   Invention of Claim 4 is a fuel cell system, Comprising: The fuel cell of Claim 3, The hydrogen supply means which supplies hydrogen to the said fuel cell, The oxygen supply means which supplies oxygen to the said fuel cell, It is characterized by providing. In the best mode for carrying out the invention of the present specification, the hydrogen supply means will be described using a reformer that reforms LPG, city gas, etc., but is not limited to this, and protons ( Any means may be used as long as it supplies a hydrogen molecule or an organic substance containing a hydrogen atom as a source of (H +). The oxygen supply means is generally a system using air, but may be a supply means using an oxygen cylinder or the like for space use or deep sea use. In either case, water is generated by power generation, but the water content of the fuel cell is appropriately controlled by the present invention, so that the power generation efficiency of the fuel cell is improved, and the overall efficiency of the fuel cell system is also improved. .

本発明によれば、燃料電池の発電効率を向上させることができる。   According to the present invention, the power generation efficiency of the fuel cell can be improved.

以下、本発明の燃料電池10について図を用いて詳細に説明する。図1は、本発明に係る燃料電池10を用いた家庭用燃料電池コージェネレーションシステム100のシステム構成図である。家庭用燃料電池コージェネレーションシステム100は、LPGや都市ガスなどの原燃料(炭化水素系燃料)を改質し、水素(燃料)を約80%含有する改質ガスを生成する改質装置と、改質装置から供給される改質ガスと空気中の酸素(酸化剤)とにより発電を行う燃料電池10と、改質装置や燃料電池10などから発生する熱を、お湯(40℃以上の水)というかたちで熱回収して貯湯する貯湯装置と、を備えており、発電機能と給湯機能との両方を有するシステムである。   Hereinafter, the fuel cell 10 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram of a household fuel cell cogeneration system 100 using a fuel cell 10 according to the present invention. The home fuel cell cogeneration system 100 reforms raw fuel (hydrocarbon fuel) such as LPG and city gas, and generates a reformed gas containing about 80% hydrogen (fuel); The fuel cell 10 that generates power by the reformed gas supplied from the reformer and oxygen (oxidant) in the air, and the heat generated from the reformer and the fuel cell 10 are converted into hot water (water at 40 ° C. or higher). ) And a hot water storage device that recovers and stores hot water in the form of a system that has both a power generation function and a hot water supply function.

家庭に敷設されているLPGや都市ガスなどの原燃料は、通常、ガス漏れに対する安全対策として硫化物によって付臭されているが、この硫化物は改質装置内の触媒を劣化させてしまうので、改質装置では、はじめに脱硫器52によって原燃料中の硫化物を除去する。脱硫器52によって脱硫された原燃料は、次に水蒸気と混合され、改質器54によって水蒸気改質され、変成器56に導入される。そして、変成器56によって、水素約80%、二酸化炭素約20%、一酸化炭素1%以下の改質ガスが生成されるが、一酸化炭素の影響を受けやすい低温(100℃以下)で運転される燃料電池10へ改質ガスを供給する本システム100では、さらに改質ガスと酸素とを混合して、CO除去器58によって一酸化炭素を選択的に酸化する。CO除去器58により、改質ガス中の一酸化炭素濃度を10ppm以下にすることができる。   Raw fuels such as LPG and city gas installed in homes are usually odorized by sulfides as a safety measure against gas leakage, but this sulfide degrades the catalyst in the reformer. In the reformer, first, sulfide in the raw fuel is removed by the desulfurizer 52. The raw fuel desulfurized by the desulfurizer 52 is then mixed with steam, steam reformed by the reformer 54, and introduced into the transformer 56. The reformer 56 produces reformed gas of about 80% hydrogen, about 20% carbon dioxide, and 1% or less carbon monoxide, but is operated at a low temperature (100 ° C. or less) that is easily affected by carbon monoxide. In the present system 100 for supplying the reformed gas to the fuel cell 10 to be processed, the reformed gas and oxygen are further mixed, and the carbon monoxide is selectively oxidized by the CO remover 58. The carbon monoxide concentration in the reformed gas can be reduced to 10 ppm or less by the CO remover 58.

改質装置とは、少なくとも改質器54と変成器56とを含み、本システム100のように、家庭に敷設されているガスを原燃料とする場合には脱硫器52を、燃料電池10として固体高分子形燃料電池のような低温タイプの燃料電池10を用いる場合にはCO除去器58を、さらに含むものとする。   The reformer includes at least a reformer 54 and a transformer 56. When the gas laid at home is used as a raw fuel as in the system 100, the desulfurizer 52 is used as the fuel cell 10. In the case of using a low temperature type fuel cell 10 such as a solid polymer fuel cell, a CO remover 58 is further included.

水蒸気改質は吸熱反応であるため、改質器54にはバーナ60が設けられる。改質装置の起動時には、このバーナ60にも原燃料が供給されて改質器54を昇温し、本システム100が安定的に運転できるようになると、バーナ60への原燃料の供給はストップし、燃料電池10から排出される未反応の燃料をバーナ60に供給することで、改質器54へ熱を供給する。バーナ60により改質器54へ熱を供給した後の排気は、まだ大きな熱量をもっているため、この排気は熱交換器HEX01、HEX02にて貯湯タンク62内の水と熱交換される。そして、この水は燃料電池10のカソード14からの排ガスと熱交換(HEX03)し、さらにアノード22からの排ガスとも熱交換(HEX04)して貯湯タンク62に戻る。この熱交換器HEX01、HEX02、HEX03、HEX04を通る水配管64には、熱交換器HEX04を通った後の水(お湯)の温度によって、カソード側加湿タンク66の昇温または冷却に利用できるように、分岐配管68が設けられている。本システム100の起動時など、カソード側加湿タンク66の温度が低いときには、水は熱交換器HEX04を通った後、分岐配管68を通って熱交換器HEX05にてカソード側加湿タンク66に熱を供給してから貯湯タンク62に戻る。   Since steam reforming is an endothermic reaction, the reformer 54 is provided with a burner 60. When starting the reformer, the raw fuel is also supplied to the burner 60 to raise the temperature of the reformer 54. When the system 100 can be stably operated, the supply of the raw fuel to the burner 60 is stopped. Then, by supplying unreacted fuel discharged from the fuel cell 10 to the burner 60, heat is supplied to the reformer 54. Since the exhaust after supplying heat to the reformer 54 by the burner 60 still has a large amount of heat, this exhaust is heat-exchanged with the water in the hot water storage tank 62 by the heat exchangers HEX01 and HEX02. Then, the water exchanges heat (HEX03) with the exhaust gas from the cathode 14 of the fuel cell 10 and further exchanges heat (HEX04) with the exhaust gas from the anode 22 and returns to the hot water storage tank 62. The water pipe 64 passing through the heat exchangers HEX01, HEX02, HEX03, and HEX04 can be used for raising or cooling the cathode-side humidification tank 66 depending on the temperature of water (hot water) after passing through the heat exchanger HEX04. Further, a branch pipe 68 is provided. When the temperature of the cathode-side humidification tank 66 is low, such as when the present system 100 is activated, water passes through the heat exchanger HEX04 and then passes through the branch pipe 68 to heat the cathode-side humidification tank 66 with the heat exchanger HEX05. After supplying, the hot water storage tank 62 is returned.

このカソード側加湿タンク66は、冷却水タンクとしても機能しており、カソード側加湿タンク66内の水は、燃料電池10を冷却してカソード側加湿タンク66に戻る。上記のように、本システム100の起動時など、燃料電池10の温度が低いときには、熱交換器HEX05によって温められた冷却水を燃料電池10へ供給することにより、燃料電池10を温めることもできる。また、冷却水が通る冷却水通路70は、アノード側加湿タンク72に設けられる熱交換器HEX06に接続され、冷却水はカソード側加湿タンク66とアノード側加湿タンク72の温度をほぼ同一にする役割も果たしている。   The cathode side humidification tank 66 also functions as a cooling water tank, and the water in the cathode side humidification tank 66 cools the fuel cell 10 and returns to the cathode side humidification tank 66. As described above, when the temperature of the fuel cell 10 is low, such as when the system 100 is started up, the fuel cell 10 can be warmed by supplying the coolant heated by the heat exchanger HEX05 to the fuel cell 10. . The cooling water passage 70 through which the cooling water passes is connected to a heat exchanger HEX06 provided in the anode-side humidification tank 72, and the cooling water serves to make the temperatures of the cathode-side humidification tank 66 and the anode-side humidification tank 72 substantially the same. Also plays.

改質装置からの改質ガスは、このアノード側加湿タンク72にて、加湿(本システム100の場合はバブリング)されてアノード22へ供給される。アノード22にて発電に寄与しなかった未反応の燃料は、燃料電池10から排出されてバーナ60へ供給される。この燃料電池10は通常70〜80℃の範囲で発電するように運転しており、燃料電池10から排出された排ガスは80℃程度の熱を持っているため、上記のように熱交換器HEX04にて熱交換した後、さらに熱交換器HEX07にて、カソード側加湿タンク66およびアノード側加湿タンク72へ供給される水を昇温した後に、バーナ60へ供給される。   The reformed gas from the reformer is humidified (bubbling in the case of the present system 100) in the anode-side humidification tank 72 and supplied to the anode 22. Unreacted fuel that has not contributed to power generation at the anode 22 is discharged from the fuel cell 10 and supplied to the burner 60. The fuel cell 10 is normally operated to generate power in the range of 70 to 80 ° C., and the exhaust gas discharged from the fuel cell 10 has a heat of about 80 ° C. Therefore, as described above, the heat exchanger HEX04 After the heat exchange at, the temperature of the water supplied to the cathode-side humidification tank 66 and the anode-side humidification tank 72 is further raised by the heat exchanger HEX07 and then supplied to the burner 60.

カソード側加湿タンク66およびアノード側加湿タンク72へ供給される水は、導電率が低く、有機物の混入が少ない清浄な水が望ましいので、上水からの水を水処理装置74にて、逆浸透膜とイオン交換樹脂による水処理を施してから供給される。また、この水処理を施した水は、改質器54の水蒸気改質にも用いられる。上水は貯湯タンク62にも供給されるが、このとき上水は貯湯タンク62の下部から供給される。また、水配管64も貯湯タンク62の下部から温度の低い水を引出し、各熱交換器と熱交換した水を上部へ戻す。   The water supplied to the cathode-side humidification tank 66 and the anode-side humidification tank 72 is preferably clean water having low electrical conductivity and low contamination with organic substances. Supplied after water treatment with membrane and ion exchange resin. The water subjected to this water treatment is also used for steam reforming of the reformer 54. The clean water is also supplied to the hot water storage tank 62. At this time, the clean water is supplied from the lower part of the hot water storage tank 62. The water pipe 64 also draws water having a low temperature from the lower part of the hot water storage tank 62 and returns the water exchanged with each heat exchanger to the upper part.

HEX10は全熱交換器である。カソード14にて発電に寄与しなかった未反応の酸素を含む排ガスは80℃程度の熱と反応によって生成された生成水を含んでいるため、全熱交換器HEX10にてカソード14へ供給される空気へ熱と水分を供給する。カソード14へ供給される空気は、さらにカソード側加湿タンク66にて加湿(本システム100の場合はバブリング)されてからカソード14へ供給され、一方、全熱交換器HEX10にて熱と水分とを供給した排ガスは、さらに熱交換器HEX03にて水と熱交換してから、本システム100の外部へ排出される構成となっている。   HEX10 is a total heat exchanger. Since the exhaust gas containing unreacted oxygen that has not contributed to power generation at the cathode 14 contains heat of about 80 ° C. and produced water generated by the reaction, it is supplied to the cathode 14 by the total heat exchanger HEX10. Supply heat and moisture to the air. The air supplied to the cathode 14 is further humidified (bubbling in the case of the present system 100) in the cathode-side humidification tank 66 and then supplied to the cathode 14, while heat and moisture are supplied to the total heat exchanger HEX10. The supplied exhaust gas is further subjected to heat exchange with water in the heat exchanger HEX03 and then discharged to the outside of the system 100.

図2は本発明に係る燃料電池10の構成を示す構成模式図である。本発明の燃料電池10において、拡散層20、28は、厚さ約110μmのカーボンペーパからなる基材層(第1の拡散層)18、26と、厚さ約100μmのロールカーボンにカーボンブラックを主とする粘性の有るカーボンペーストを塗布した微孔層(第2の拡散層)16、24とで構成されている。カーボンペーパは平板状の比較的硬質な多孔質(不織布)導電性部材であり、ロールカーボンはカーボンペーパ同様に多孔質導電性部材であるが、織布タイプのものと不織布タイプのものがあり、カーボンペーパより柔軟性があって、巻かれた状態で市販される部材である。また、カーボンブラックは、一般的には、アモルファスカーボン(非定形炭素)の微粒子が用いられる。   FIG. 2 is a schematic configuration diagram showing the configuration of the fuel cell 10 according to the present invention. In the fuel cell 10 of the present invention, the diffusion layers 20 and 28 are made of carbon black on base layers (first diffusion layers) 18 and 26 made of carbon paper having a thickness of about 110 μm and roll carbon having a thickness of about 100 μm. It is composed of microporous layers (second diffusion layers) 16 and 24 coated with a carbon paste having a main viscosity. Carbon paper is a flat, relatively hard porous (nonwoven fabric) conductive member, and roll carbon is a porous conductive member similar to carbon paper, but there are woven and non-woven fabric types, It is a member that is more flexible than carbon paper and is commercially available in a rolled state. Carbon black is generally made of fine particles of amorphous carbon (amorphous carbon).

図2に示すように、拡散層20、28は生産性を考慮して、それぞれ共通のカーボンペーパおよびロールカーボンを用い、カーボンペーパを浸漬させる撥水剤分散液やロールカーボンに塗布するカーボンペーストの配合を調整することにより、それぞれの部位に必要な撥水性や気孔率などの調整する。具体的には、カソード側はアノード側より撥水性が低くなるように調整され、また、85%RH以上の高加湿反応ガスが燃料電池10へ供給されるような場合は、反応ガス入口側は反応ガス出口側より撥水性が高く、逆に、低加湿反応ガスが燃料電池10へ供給される場合または内部加湿燃料電池の場合は、反応ガス入口側は反応ガス出口側より撥水性が低くなるように調整される。   As shown in FIG. 2, in consideration of productivity, the diffusion layers 20 and 28 use a common carbon paper and roll carbon, respectively, and a water repellent dispersion in which carbon paper is immersed or a carbon paste applied to roll carbon. By adjusting the blending, water repellency and porosity required for each part are adjusted. Specifically, the cathode side is adjusted to have a lower water repellency than the anode side, and when a highly humidified reaction gas of 85% RH or more is supplied to the fuel cell 10, the reaction gas inlet side is The water repellency is higher than the reaction gas outlet side. Conversely, when the low humidified reaction gas is supplied to the fuel cell 10 or in the case of an internal humidified fuel cell, the water repellency is lower on the reaction gas inlet side than on the reaction gas outlet side. To be adjusted.

しかし、反応ガス入口側と反応ガス出口側とで撥水性が異なるように撥水処理を行った場合、その後に塗布するカーボンペーストを均一に、あるいは、撥水性に依存しないように塗布することが困難になる。そこで、以下のように拡散層20、28を作製することにより、それぞれの部位に必要な撥水性や気孔率(密度)を有する拡散層20、28を提供する。   However, when the water repellency treatment is performed so that the water repellency is different between the reaction gas inlet side and the reaction gas outlet side, the carbon paste to be applied thereafter may be applied uniformly or not depending on the water repellency. It becomes difficult. Therefore, by producing the diffusion layers 20 and 28 as follows, the diffusion layers 20 and 28 having the water repellency and porosity (density) necessary for each part are provided.

カソード側カーボンペーパを、カーボンペーパ:テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)=95:5の重量比となるようなFEP分散液に浸漬する。一方、アノード側カーボンペーパは、カーボンペーパ:FEP=60:40の重量比となるようなFEP分散液に浸漬し、両カーボンペーパを60℃で1時間乾燥させる。次に、カソード側カーボンペーパの長手方向の半分を、カーボンペーパ:FEP=60:40の重量比となるようなFEP分散液に浸漬し、アノード側カーボンペーパの長手方向の半分を、カーボンペーパ:FEP=30:70の重量比となるようなFEP分散液に浸漬する。FEP分散液に2回浸漬し、撥水性が高くなる方を、本実施の形態では反応ガス入口側に配置する。2回目の浸漬後、60℃で1時間乾燥させた後、380℃で15分間の熱処理を行う。これにより、撥水性に傾斜のついたカソード側基材層18とアノード側基材層26を作製することができ、本実施の形態では、生成水の発生量が少ないために乾燥しやすい反応ガス入口側に、基材層18、26の撥水性が高い部位を配置しているので、生成水が固体高分子膜12側に閉じ込められ、この部分の水分量を保持することができる。   The cathode-side carbon paper is immersed in an FEP dispersion liquid having a weight ratio of carbon paper: tetrafluoroethylene-hexafluoropropylene copolymer (FEP) = 95: 5. On the other hand, the anode-side carbon paper is immersed in an FEP dispersion liquid having a weight ratio of carbon paper: FEP = 60: 40, and both carbon papers are dried at 60 ° C. for 1 hour. Next, half of the cathode-side carbon paper in the longitudinal direction is immersed in an FEP dispersion liquid having a weight ratio of carbon paper: FEP = 60: 40, and half of the anode-side carbon paper in the longitudinal direction is carbon paper: Immerse in an FEP dispersion such that the weight ratio of FEP = 30: 70. In the present embodiment, the one that is dipped twice in the FEP dispersion and has high water repellency is disposed on the reaction gas inlet side. After the second immersion, the film is dried at 60 ° C. for 1 hour, and then heat-treated at 380 ° C. for 15 minutes. As a result, the cathode-side base material layer 18 and the anode-side base material layer 26 that are inclined in water repellency can be produced. In this embodiment, the reaction gas that is easy to dry because the amount of generated water is small. Since the site | part with high water repellency of the base material layers 18 and 26 is arrange | positioned at the entrance side, produced | generated water is confined by the solid polymer film 12 side, and the moisture content of this part can be hold | maintained.

次に、カーボンブラック(CABOT社製:Vulcan XC72R)と溶媒としてテルピネオール(キシダ化学社製)と非イオン性界面活性剤のトリトン(キシダ化学社製)とを、重量比がカーボンブラック:テルピネオール:トリトン=20:150:3となるように、万能混合機(DALTON社製)にて常温で60分間、均一になるように混合し、カーボンペーストを作製する。低分子フッ素樹脂(ダイキン社製:ルブロンLDW40E)と高分子フッ素樹脂(デュポン社製:PTFE30J)とを、分散液中に含まれるフッ素樹脂の重量比が低分子フッ素樹脂:高分子フッ素樹脂=20:3となるように混合し、カソード用混合フッ素樹脂を作製する。ハイブリッドミキサ用容器に上記カーボンペーストを投入し、カーボンペーストが10〜12℃になるまで冷却する。冷却したカーボンペーストに上記カソード用混合フッ素樹脂を、重量比がカーボンペースト:カソード用混合フッ素樹脂(分散液中に含まれるフッ素樹脂成分)=65:2となるように投入し、ハイブリッドミキサ(キーエンス社製:EC500)の混合モードにて12〜18分間混合する。混合停止のタイミングはペーストの温度が50〜55℃となるまでとし、混合時間を適宜調整する。ペーストの温度が50〜55℃に達した後、ハイブリッドミキサを混合モードから脱泡モードへ切換え、1〜3分間脱泡を行う。脱泡を終えたペーストを自然冷却してカソード用拡散層ペーストを完成させる。   Next, carbon black (manufactured by CABOT: Vulcan XC72R), terpineol (manufactured by Kishida Chemical Co., Ltd.) as a solvent and triton (manufactured by Kishida Chemical Co., Ltd.) as a solvent, and a weight ratio of carbon black: terpineol: triton = 20: 150: 3 In a universal mixer (manufactured by DALTON), the mixture is mixed uniformly at room temperature for 60 minutes to prepare a carbon paste. The weight ratio of the low molecular fluorine resin (made by Daikin: Lubron LDW40E) and the high molecular fluorine resin (made by DuPont: PTFE30J) to the fluorine resin contained in the dispersion is low molecular fluorine resin: high molecular fluorine resin = 20. : Mix to make 3 to produce a mixed fluororesin for cathode. The carbon paste is put into a hybrid mixer container and cooled until the carbon paste reaches 10 to 12 ° C. The above-mentioned mixed fluororesin for cathode is added to the cooled carbon paste so that the weight ratio is carbon paste: mixed fluororesin for cathode (fluorine resin component contained in the dispersion) = 65: 2, and a hybrid mixer (KEYENCE) Mix for 12 to 18 minutes in EC500) mixing mode. The mixing stop timing is set until the paste temperature reaches 50 to 55 ° C., and the mixing time is adjusted appropriately. After the paste temperature reaches 50 to 55 ° C., the hybrid mixer is switched from the mixing mode to the defoaming mode and defoamed for 1 to 3 minutes. The paste after defoaming is naturally cooled to complete the cathode diffusion layer paste.

ハイブリッドミキサ用容器に上記カーボンペーストと上記低分子フッ素樹脂とを、重量比がカーボンペースト:低分子フッ素樹脂(以下、アノード用フッ素樹脂とする)(分散液中に含まれるフッ素樹脂成分)=13:1となるように投入し、ハイブリッドミキサの混合モードにて15分間混合する。混合した後、ハイブリッドミキサを混合モードから脱泡モードへ切換え、4分間脱泡を行う。脱泡を終えたペーストの上部に上澄み液が溜まった場合はこの上澄み液を廃棄し、ペーストを自然冷却してアノード用拡散層ペーストを完成させる。   The carbon mixer and the low molecular fluororesin are mixed in a hybrid mixer container with a weight ratio of carbon paste: low molecular fluororesin (hereinafter referred to as anode fluororesin) (a fluororesin component contained in the dispersion) = 13. : 1 and mix for 15 minutes in the mixing mode of the hybrid mixer. After mixing, the hybrid mixer is switched from the mixing mode to the defoaming mode and defoamed for 4 minutes. When the supernatant liquid accumulates on the upper part of the paste after defoaming, the supernatant liquid is discarded and the paste is naturally cooled to complete the anode diffusion layer paste.

カソード側ロールカーボンはカソード側基材層18と同寸法に、アノード側ロールカーボンはアノード側基材層26と同寸法になるように、予め裁断しておく。図2に示すように、固体高分子膜12が電極の縁から集中応力を受けて破れたりしないように、全周にわたって縁が重ならないように配置されると共に、カソード側でのプロトン欠による固体高分子膜12の劣化が発生しないように、カソード側とアノード側とではアノード側の方が全周にわたって大きくなるように設計されている。常温まで冷却したカソード側拡散層ペーストをカソード側ロールカーボンの表面に、同様にアノード側拡散層ペーストをアノード側ロールカーボンの表面に塗布し、60℃で1時間乾燥する。この作業をもう1度繰り返し、両ロールカーボンに十分拡散層ペーストを充填する。最後に、360℃2時間熱処理を行うことにより、ロールカーボンの繊維の空隙にカーボンブラックが十分に充填されたカソード側微孔層16とアノード側微孔層24と作製することができる。これにより、微孔層16、24は、空隙にカーボンブラックが充填されているので、基材層18、26より、密度が高く、細い孔が存在する状態となり、毛細管現象がより起こりやすい構成となる。したがって、発電反応により生成した水や、加湿タンク66、72から燃料電池10へ導入され凝縮した水は、この微孔層16、24の毛細管作用により、水蒸気分圧がより低い方へと移動しやすくなる。   The cathode-side roll carbon is cut in advance so as to have the same dimensions as the cathode-side base layer 18 and the anode-side roll carbon has the same dimensions as the anode-side base layer 26. As shown in FIG. 2, the solid polymer film 12 is arranged so that the edges do not overlap over the entire circumference so that the solid polymer film 12 does not break due to concentrated stress from the edge of the electrode, and the solid due to the lack of protons on the cathode side. In order to prevent the polymer film 12 from deteriorating, the cathode side and the anode side are designed so that the anode side becomes larger over the entire circumference. The cathode side diffusion layer paste cooled to room temperature is applied to the surface of the cathode side roll carbon, and similarly, the anode side diffusion layer paste is applied to the surface of the anode side roll carbon, and dried at 60 ° C. for 1 hour. This operation is repeated once more, and both roll carbons are sufficiently filled with the diffusion layer paste. Finally, by performing heat treatment at 360 ° C. for 2 hours, the cathode-side microporous layer 16 and the anode-side microporous layer 24 in which carbon black is sufficiently filled in the voids of the roll carbon fibers can be produced. As a result, since the microporous layers 16 and 24 are filled with carbon black in the gaps, the density is higher than that of the base material layers 18 and 26, and fine pores are present, and the capillary phenomenon is more likely to occur. Become. Therefore, the water generated by the power generation reaction or the water introduced into the fuel cell 10 from the humidification tanks 66 and 72 and condensed is moved to a lower water vapor partial pressure by the capillary action of the microporous layers 16 and 24. It becomes easy.

Pt担持カーボンと電解質溶液(20%Nafion(登録商標)溶液)とをPt担持カーボン:電解質溶液=3:8の割合で混合し、カソード側触媒ペーストを作製する。一方、アノード側触媒ペーストは、Pt−Ru担持カーボンと電解質溶液(20%Nafion(登録商標)溶液)とをPt−Ru担持カーボン:電解質溶液=1:2の割合で混合して作製する。各触媒ペーストは微孔層16、24の、それぞれ拡散層ペーストを塗布した面側の表面に塗布し、触媒層14、22を作製する。そして、燃料電池10は、固体高分子膜(DuPont社製のNafion112)の一方の面にカソード側触媒層14が接触するようにカソード側触媒層14およびカソード側微孔層16を配し、他方の面にアノード側触媒層22が接触するようにアノード側触媒層22およびアノード側微孔層24を配する。これに対し、カソード側微孔層16の外側にカソード側基材層18を、アノード側微孔層24の外側にアノード側基材層26を、反応ガスの出入口に留意して配し、両基材層18、26で挟持した状態でホットプレスする。   Pt-supported carbon and an electrolyte solution (20% Nafion (registered trademark) solution) are mixed at a ratio of Pt-supported carbon: electrolyte solution = 3: 8 to prepare a cathode side catalyst paste. On the other hand, the anode side catalyst paste is prepared by mixing Pt—Ru supported carbon and an electrolyte solution (20% Nafion (registered trademark) solution) in a ratio of Pt—Ru supported carbon: electrolyte solution = 1: 2. Each catalyst paste is applied to the surface of the microporous layers 16 and 24 on the side where the diffusion layer paste is applied, thereby producing catalyst layers 14 and 22. The fuel cell 10 has a cathode-side catalyst layer 14 and a cathode-side microporous layer 16 disposed so that the cathode-side catalyst layer 14 is in contact with one surface of a solid polymer membrane (Nafion 112 manufactured by DuPont). The anode-side catalyst layer 22 and the anode-side microporous layer 24 are arranged so that the anode-side catalyst layer 22 is in contact with this surface. On the other hand, the cathode side substrate layer 18 is disposed outside the cathode side microporous layer 16, and the anode side substrate layer 26 is disposed outside the anode side microporous layer 24 while paying attention to the inlet / outlet of the reaction gas. Hot pressing is performed while sandwiched between the base material layers 18 and 26.

従来の燃料電池では、撥水処理を施したカーボンペーパにカーボンブラックを主とする拡散層ペーストを直接塗布するなどの方法が採られていた。しかし、このような構成では、本発明の燃料電池10のように、カーボンペーパの撥水性が部位によって異なる場合、用いる撥水剤にもよるが、撥水剤の結着性によって拡散層ペーストが多く塗布されてしまったり、撥水性によって拡散層ペーストがあまり塗布されてなかったりしていた。本発明では撥水処理を施していないロールカーボンに拡散層ペーストを塗布するので、拡散層ペーストを均一に塗布することもできるし、また、塗布する回数、部位を調整することにより、拡散層ペーストの塗布量を、基材層18、26の撥水性の影響を受けずに、調整することができる。また、従来の燃料電池の構成では、拡散層ペーストの塗布深さを塗布装置の強弱によって、ある程度制御することはできたが、本発明の構成によれば、拡散層ペーストを十分に充填した微孔層16、24を基材層18、26に積層することによって、拡散層ペーストの塗布深さも均一にすることができる。   In a conventional fuel cell, a method of directly applying a diffusion layer paste mainly composed of carbon black to carbon paper subjected to water repellent treatment has been adopted. However, in such a configuration, when the water repellency of the carbon paper varies depending on the site, as in the fuel cell 10 of the present invention, the diffusion layer paste is formed depending on the binding property of the water repellent, depending on the water repellent used. Many of them were applied, or the diffusion layer paste was not so much applied due to water repellency. In the present invention, since the diffusion layer paste is applied to the roll carbon that has not been subjected to the water repellent treatment, the diffusion layer paste can be applied uniformly, and the diffusion layer paste can be adjusted by adjusting the number of times of application and the site. The coating amount can be adjusted without being affected by the water repellency of the base material layers 18 and 26. Further, in the conventional fuel cell configuration, the coating depth of the diffusion layer paste could be controlled to some extent by the strength of the coating device. However, according to the configuration of the present invention, the diffusion layer paste sufficiently filled with the diffusion layer paste can be controlled. By laminating the pore layers 16 and 24 on the base material layers 18 and 26, the application depth of the diffusion layer paste can be made uniform.

本実施の形態では、原燃料を改質装置にて改質して燃料電池へ供給する家庭用燃料電池コージェネレーションシステムを用いて説明したが、本発明はこれに限らず、純水素を燃料電池へ供給する車載用燃料電池システムでも、有機燃料を改質することなく直接の燃料電池へ供給する携帯機器用のメタノール直接供給形燃料電池システムにでも利用である。   In the present embodiment, the description has been given using the domestic fuel cell cogeneration system in which the raw fuel is reformed by the reformer and supplied to the fuel cell. However, the present invention is not limited to this, and pure hydrogen is used for the fuel cell. It can also be used in an in-vehicle fuel cell system that supplies fuel to a direct methanol fuel cell system for portable equipment that supplies organic fuel directly to the fuel cell without reforming.

本発明に係る燃料電池を用いた家庭用燃料電池コージェネレーションシステムのシステム構成図である。1 is a system configuration diagram of a household fuel cell cogeneration system using a fuel cell according to the present invention. 本発明に係る燃料電池の構成を示す構成模式図である。1 is a schematic configuration diagram showing the configuration of a fuel cell according to the present invention.

符号の説明Explanation of symbols

10 燃料電池
12 固体高分子膜(電解質層)
14 カソード側触媒層
16 カソード側微孔層(第2の拡散層)
18 カソード側基材層(第1の拡散層)
20 カソード側拡散層
22 アノード側触媒層
24 アノード側微孔層(第2の拡散層)
26 アノード側基材層(第1の拡散層)
28 アノード側拡散層
52 脱硫器
54 改質器
56 変成器
58 CO除去器
60 バーナ
62 貯湯タンク
64 水配管
66 カソード側加湿タンク
68 分岐配管
70 冷却水通路
72 アノード側加湿タンク
74 水処理装置
76 冷却水流路
78 給湯配管
100 家庭用燃料電池コージェネレーションシステム
HEX01、HEX02、HEX03、HEX04、HEX05 熱交換器

10 Fuel cell 12 Solid polymer membrane (electrolyte layer)
14 Cathode side catalyst layer 16 Cathode side microporous layer (second diffusion layer)
18 Cathode side base material layer (first diffusion layer)
20 Cathode side diffusion layer 22 Anode side catalyst layer 24 Anode side microporous layer (second diffusion layer)
26 Anode-side base material layer (first diffusion layer)
28 Anode side diffusion layer 52 Desulfurizer 54 Reformer 56 Transformer 58 CO remover 60 Burner 62 Hot water storage tank 64 Water piping 66 Cathode side humidification tank 68 Branch piping 70 Cooling water passage 72 Anode side humidification tank 74 Water treatment device 76 Cooling Water flow path 78 Hot water supply pipe 100 Household fuel cell cogeneration system HEX01, HEX02, HEX03, HEX04, HEX05 Heat exchanger

Claims (4)

多孔質で導電性を有し、部位によって異なる撥水性を有する基材層と、
多孔質で導電性を有する第1の部材と粒子状で導電性を有する第2の部材とを含み、前記基材層より高い密度を有する微孔層と、
触媒作用を有する触媒を含む触媒層と、
を備えることを特徴とする燃料電池用電極。
A base material layer that is porous and conductive and has different water repellency depending on the site;
A microporous layer having a higher density than the base material layer, comprising a porous and conductive first member and a particulate conductive second member;
A catalyst layer containing a catalyst having a catalytic action;
An electrode for a fuel cell comprising:
撥水性を制御するための第1の拡散層と、
毛細管作用を制御するための第2の拡散層と、
触媒作用を有する触媒を含む触媒層と、
を備えることを特徴とする燃料電池用電極。
A first diffusion layer for controlling water repellency;
A second diffusion layer for controlling capillary action;
A catalyst layer containing a catalyst having a catalytic action;
An electrode for a fuel cell comprising:
電解質層と、前記電解質層の一方の面に設けられる第1の電極と、前記電解質層の他方の面に設けられる第2の電極と、を備える燃料電池において、
前記第1の電極は、請求項1または2記載の燃料電池用電極であることを特徴とする燃料電池。
In a fuel cell comprising an electrolyte layer, a first electrode provided on one surface of the electrolyte layer, and a second electrode provided on the other surface of the electrolyte layer,
The fuel cell according to claim 1, wherein the first electrode is a fuel cell electrode according to claim 1.
請求項3記載の燃料電池と、
前記燃料電池へ水素を供給する水素供給手段と、
前記燃料電池へ酸素を供給する酸素供給手段と、
を備えることを特徴とする燃料電池システム。
A fuel cell according to claim 3;
Hydrogen supply means for supplying hydrogen to the fuel cell;
Oxygen supply means for supplying oxygen to the fuel cell;
A fuel cell system comprising:
JP2006074119A 2006-03-17 2006-03-17 Diffusion layer, fuel cell electrode including the diffusion layer, fuel cell including the fuel cell electrode, and fuel cell system including the fuel cell Expired - Fee Related JP5057677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074119A JP5057677B2 (en) 2006-03-17 2006-03-17 Diffusion layer, fuel cell electrode including the diffusion layer, fuel cell including the fuel cell electrode, and fuel cell system including the fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074119A JP5057677B2 (en) 2006-03-17 2006-03-17 Diffusion layer, fuel cell electrode including the diffusion layer, fuel cell including the fuel cell electrode, and fuel cell system including the fuel cell

Publications (2)

Publication Number Publication Date
JP2007250411A true JP2007250411A (en) 2007-09-27
JP5057677B2 JP5057677B2 (en) 2012-10-24

Family

ID=38594462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074119A Expired - Fee Related JP5057677B2 (en) 2006-03-17 2006-03-17 Diffusion layer, fuel cell electrode including the diffusion layer, fuel cell including the fuel cell electrode, and fuel cell system including the fuel cell

Country Status (1)

Country Link
JP (1) JP5057677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249125A (en) * 2010-05-26 2011-12-08 Toshiba Corp Direct methanol fuel cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283153A (en) * 1996-04-09 1997-10-31 Ishikawajima Harima Heavy Ind Co Ltd Solid high molecular electrolyte fuel cell
JP2002141071A (en) * 2000-10-31 2002-05-17 Matsushita Electric Ind Co Ltd Porous electrode for fuel cell and its manufacturing method
JP2002164056A (en) * 2000-11-22 2002-06-07 Aisin Seiki Co Ltd Solid high molecular electrolyte-type fuel cell and electrode and method of manufacturing electrode
JP2002203571A (en) * 2000-10-31 2002-07-19 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell
JP2003331850A (en) * 2002-05-10 2003-11-21 Mitsubishi Electric Corp Electrode and fuel cell using it
JP2004319375A (en) * 2003-04-18 2004-11-11 Toyota Motor Corp Electrode of fuel cell and fuel cell using its electrode
JP2005243295A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Gas diffusion layer, and mea for fuel cell using the same
JP2006019128A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Gas diffusion layer and fuel cell using this
JP2006179315A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Gas diffusion layer and fuel cell using this

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283153A (en) * 1996-04-09 1997-10-31 Ishikawajima Harima Heavy Ind Co Ltd Solid high molecular electrolyte fuel cell
JP2002141071A (en) * 2000-10-31 2002-05-17 Matsushita Electric Ind Co Ltd Porous electrode for fuel cell and its manufacturing method
JP2002203571A (en) * 2000-10-31 2002-07-19 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell
JP2002164056A (en) * 2000-11-22 2002-06-07 Aisin Seiki Co Ltd Solid high molecular electrolyte-type fuel cell and electrode and method of manufacturing electrode
JP2003331850A (en) * 2002-05-10 2003-11-21 Mitsubishi Electric Corp Electrode and fuel cell using it
JP2004319375A (en) * 2003-04-18 2004-11-11 Toyota Motor Corp Electrode of fuel cell and fuel cell using its electrode
JP2005243295A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Gas diffusion layer, and mea for fuel cell using the same
JP2006019128A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Gas diffusion layer and fuel cell using this
JP2006179315A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Gas diffusion layer and fuel cell using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249125A (en) * 2010-05-26 2011-12-08 Toshiba Corp Direct methanol fuel cell
US8278003B2 (en) 2010-05-26 2012-10-02 Kabushiki Kaisha Toshiba Direct methanol fuel cell

Also Published As

Publication number Publication date
JP5057677B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP1826855B1 (en) Fuel cell system and method for starting high temperature polymer electrolyte membrane fuel cell stack
US7883803B2 (en) SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump
KR100800247B1 (en) Fuel Cell
CN100521326C (en) Polymer membrane for fuel cell and method of preparing the same
JP5008368B2 (en) Electrode / membrane assembly, fuel cell having electrode / membrane assembly, and fuel cell system
US9472821B2 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JPWO2011074191A1 (en) POLYMER ELECTROLYTE FUEL CELL, FUEL CELL STACK HAVING THE SAME, FUEL CELL SYSTEM, AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2009140618A (en) Liquid fuel supply type fuel cell
Turco et al. Fuel cells operating and structural features of MCFCs and SOFCs
JP5057677B2 (en) Diffusion layer, fuel cell electrode including the diffusion layer, fuel cell including the fuel cell electrode, and fuel cell system including the fuel cell
JP5401752B2 (en) Fuel cell system
JP4986432B2 (en) Operation method of fuel cell system
JP4610505B2 (en) Fuel cell and fuel cell system
JP2005209362A (en) Fuel cell power generating device
JP2006221970A (en) Operation method of direct methanol fuel cell
JP5153108B2 (en) Fuel cell and fuel cell system using solid polymer membrane
JP2017039636A (en) Hydrogen purification device and hydrogen purification system
KR20130021376A (en) Fuel cell system
JP5094161B2 (en) Fuel cell
Adachi Proton exchange membrane fuel cells: Water permeation through Nafion (R) membranes
JP5094044B2 (en) Fuel cell separator
JP2009081031A (en) Gas diffusion layer, fuel cell, method for manufacturing gas diffusion layer, and method for manufacturing fuel cell
Bautista-Rodríguez et al. Effects on the PEMFC Performance by Combination of Gas Distribution Plates and Gas Diffusion Medias
JP5331905B2 (en) Operation method of fuel cell system
JP4948445B2 (en) Operation method of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5057677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees