JP2007250364A - Internal charging device and charging method of secondary battery - Google Patents

Internal charging device and charging method of secondary battery Download PDF

Info

Publication number
JP2007250364A
JP2007250364A JP2006072475A JP2006072475A JP2007250364A JP 2007250364 A JP2007250364 A JP 2007250364A JP 2006072475 A JP2006072475 A JP 2006072475A JP 2006072475 A JP2006072475 A JP 2006072475A JP 2007250364 A JP2007250364 A JP 2007250364A
Authority
JP
Japan
Prior art keywords
secondary battery
charging
battery
voltage
allowable value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006072475A
Other languages
Japanese (ja)
Inventor
Satoshi Saito
聡 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006072475A priority Critical patent/JP2007250364A/en
Publication of JP2007250364A publication Critical patent/JP2007250364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal charging technology which charges secondary batteries well in balance without making a device complicated. <P>SOLUTION: In a step S1, a voltage V1 and a voltage V2 of a battery 1 and a battery 2 are measured and a magnitude correlation between the two voltages are discriminated. As shown in a step S2, the voltage V1 of the battery 1 and the voltage V2 of the battery 2 are measured to be compared with each other. In the case of V1>V2 (YES), since it is estimated that a charged amperehour of the battery 2 is smaller than a charged amperehour of the battery 1, a user proceeds to a step S3, and the battery 2 having the smaller charged amperehour is charged. A process of the step S3 is repeated until a formula V1-V2<Δ is satisfied in a step S4, where Δ is a value near zero in a degree that V1 and V2 can be equated with each other. When the formula V1-V2<Δ is satisfied (YES) in the step S4, the user proceeds to a step S5, and the battery 1 and the battery 2 are connected in series to be charged. When the charging is finished, the process is completed (step S6). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池の内部充電技術に関し、特に、ニッケル水素電池などの市販の二次電池を2本以上直列使用する機器における内部充電技術に関する。   The present invention relates to an internal charging technique for a secondary battery, and more particularly, to an internal charging technique in a device that uses two or more commercially available secondary batteries such as nickel metal hydride batteries in series.

従来、ニッケル水素電池などの市販形(単3、単4型)の二次電池を2本以上直列に使用する機器においては、内部充電をすることができなかった。図9は、一般的な2本の二次電池を充電する充電セットの位置構成例を示す図である。図9(A)に示すように、電池Aと電池Bとを直列接続し電圧Vで充電するためには、例えば、電池A、Bがともに空であるなど同じ充電量であることが前提となる。すなわち、図9(B)に示す充電器において、電池A用の充電回路(1)と電池B用の充電回路(2)との2つの充電回路を用意し、両方の電池をそれぞれ独立に充電する必要があった。或いは、一度電池を取り出し、専用の充電器により各電池を別々に充電していた。   Conventionally, internal charging has not been possible in devices using two or more commercially available (AA, AAA) secondary batteries such as nickel metal hydride batteries in series. FIG. 9 is a diagram illustrating a position configuration example of a charging set for charging two general secondary batteries. As shown in FIG. 9A, in order to connect the battery A and the battery B in series and charge them with the voltage V, for example, it is assumed that the batteries A and B have the same charge amount, for example, both are empty. Become. That is, in the charger shown in FIG. 9B, two charging circuits, a charging circuit (1) for battery A and a charging circuit (2) for battery B, are prepared, and both batteries are charged independently. There was a need to do. Alternatively, the batteries were once taken out and each battery was charged separately with a dedicated charger.

下記、特許文献1に記載の技術では、直列的な充電状態から並列的な充電状態へと切換えて複数の二次電池を充電している。
特開平7−282853号公報
In the technique described in Patent Document 1 below, a plurality of secondary batteries are charged by switching from a serial charging state to a parallel charging state.
Japanese Patent Laid-Open No. 7-282853

従来の技術では、専用電池と異なり市販形の二次電池を使用するため、充電量の異なる電池の組み合わせが生じ、これにより、その電池を同時に直列で充電した場合に、初期の充電量が異なるケースが多く、同時には満充電とならずに必ず片方が満充電となった後に、他方の電池が遅れて満充電となってしまう。従って、先に充電完了となる電池は過充電となり、異常発熱での発熱や過充電による片方の電池のみ劣化が生じるなどの問題があった。   In the conventional technology, since a secondary battery of a commercial type is used unlike a dedicated battery, a combination of batteries having different charge amounts is generated, so that when the batteries are charged in series at the same time, the initial charge amount is different. There are many cases, and at the same time, the battery is not fully charged and one battery is always fully charged, and then the other battery is fully charged with a delay. Therefore, the battery that has been completely charged first becomes overcharged, and there is a problem that heat generation due to abnormal heat generation or deterioration of only one battery due to overcharge occurs.

また、上記特許文献1に記載の方法では、直列的な充電状態から並列的な充電状態へと切換えて複数の二次電池を充電する必要があるため、装置自体が複雑になるという問題があった。   Further, the method described in Patent Document 1 has a problem that the device itself becomes complicated because it is necessary to charge a plurality of secondary batteries by switching from a serial charging state to a parallel charging state. It was.

本発明は、装置を複雑にすることなく、バランス良く2次電池を充電可能な内部充電技術を提供することを目的とする。   An object of this invention is to provide the internal charging technique which can charge a secondary battery with sufficient balance, without complicating an apparatus.

本発明の一観点によれば、第1の2次電池と第2の2次電池とのぞれぞれの電圧差を測定する第1ステップと、前記電圧差がある許容値よりも大きい場合に、電圧の小さい方の2次電池を充電する第2ステップと、前記電圧差が前記許容値よりも小さくなるまで前記第1のステップと前記第2のステップとを繰り返すステップと、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電するステップと、を有することを特徴とする2次電池の充電方法が提供される。   According to one aspect of the present invention, a first step of measuring a voltage difference between each of the first secondary battery and the second secondary battery, and the voltage difference is greater than a certain allowable value In addition, a second step of charging the secondary battery having a smaller voltage, a step of repeating the first step and the second step until the voltage difference becomes smaller than the allowable value, and the voltage difference Charging the secondary battery, comprising: charging the first secondary battery and the second secondary battery in series when the battery becomes smaller than the allowable value. A method is provided.

また、第1の2次電池と第2の2次電池とのぞれぞれの電圧差を測定する第1ステップと、前記電圧差がある許容値よりも大きい場合に、電圧の大きい方の2次電池を放電させる第2ステップと、前記電圧差が前記許容値よりも小さくなるまで前記第1のステップと前記第2のステップとを繰り返すステップと、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電するステップと、を有することを特徴とする2次電池の充電方法が提供される。   Further, a first step of measuring a voltage difference between the first secondary battery and the second secondary battery, and when the voltage difference is larger than a certain allowable value, A second step of discharging the secondary battery, a step of repeating the first step and the second step until the voltage difference becomes smaller than the allowable value, and the voltage difference being smaller than the allowable value. In this case, there is provided a method of charging a secondary battery, comprising: charging the first secondary battery and the second secondary battery by connecting them in series.

前記許容値は、前記第1の2次電池と前記第2の2次電池との充電量が略同一と見なせる範囲内の値であることが好ましい。   The allowable value is preferably a value within a range where the charge amounts of the first secondary battery and the second secondary battery can be regarded as substantially the same.

本発明の他の観点によれば、複数本の2次電池を充電可能な充電装置であって、前記複数本の2次電池を独立に又は直列接続で充放電可能に収容する電池収容部と、充電器と、該充電器による充電を独立に充電する構成と直列接続で充電する構成とに切換える制御を行なう制御部と、前記2次電池のそれぞれの電圧を検出する電圧検出部と、前記電池収容部と前記充電器とを接続する端子部と、を備えた充電制御回路と、を有する充電装置が提供される。   According to another aspect of the present invention, there is provided a charging device capable of charging a plurality of secondary batteries, wherein the plurality of secondary batteries are stored in a chargeable / dischargeable manner independently or in a series connection. A charger, a control unit that performs control to switch between a configuration that charges the charger independently and a configuration that charges in series connection, a voltage detection unit that detects a voltage of each of the secondary batteries, There is provided a charging device having a charging control circuit including a battery housing portion and a terminal portion for connecting the charger.

前記制御部は、前記第1の2次電池と前記第2の2次電池とのぞれぞれの電圧差がある許容値よりも大きい場合に、電圧の小さい方の2次電池を前記電圧差が前記許容値よりも小さくなるまで繰り返し充電し、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電する制御を行なうことが好ましい。   When the voltage difference between each of the first secondary battery and the second secondary battery is larger than a certain allowable value, the control unit selects the secondary battery having a smaller voltage as the voltage. Charging is repeated until the difference becomes smaller than the allowable value, and when the voltage difference becomes smaller than the allowable value, the first secondary battery and the second secondary battery are connected in series. It is preferable to perform charging control.

前記制御部は、前記第1の2次電池と前記第2の2次電池とのぞれぞれの電圧差がある許容値よりも大きい場合に、電圧の大きい方の2次電池を前記電圧差が前記許容値よりも小さくなるまで繰り返し放電し、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電する制御を行なうものでも良い。   When the voltage difference between each of the first secondary battery and the second secondary battery is larger than a certain allowable value, the control unit determines that the secondary battery having a larger voltage is the voltage. When the discharge is repeated until the difference becomes smaller than the allowable value, and the voltage difference becomes smaller than the allowable value, the first secondary battery and the second secondary battery are connected in series. What controls charging may be used.

本発明によれば、2次電池を1本ずつ充電する必要がなくなるため、内部充電回路が1つで済み、装置の小型化、コストダウンが可能となる。また、2次電池を装着したままで充電が可能なため、専用の充電器を用意する必要がないという利点がある。   According to the present invention, since it is not necessary to charge each secondary battery one by one, only one internal charging circuit is required, and the apparatus can be reduced in size and cost. Further, since charging is possible with the secondary battery mounted, there is an advantage that it is not necessary to prepare a dedicated charger.

さらに、同時に2本の電池を別々に充電する場合には、充電用電流を2つに分けていたが、本発明では、電流を直列充電とするため充電電流を約半分にすることが可能となる。
これは対象電池が2本の場合であり、また 当初専用充電器で2本同時に充電していた場合に比べ、各電池へ流す充電電流が同じとなることを考えると、充電電流が1/2に出来ることになる(各電池への充電電流が同じということは、充電完了時間が同じということを意味する)。
Furthermore, when two batteries are charged separately at the same time, the charging current is divided into two. However, in the present invention, since the current is connected in series, the charging current can be halved. Become.
This is a case where the number of target batteries is two, and considering that the charging current flowing to each battery is the same as compared with the case where two batteries were initially charged at the same time, the charging current was reduced to 1/2. (The same charging current for each battery means the same charging completion time).

発明者は、2次電池の充電量と電圧とが対応関係にあること、すなわち、2次電池の電圧を測定することによりその時点における充電量を推測することを思いついた。特に、例えば、2本の2次電池の電圧をそれぞれ測定することにより、電圧の大小関係(高低)から、いずれの2次電池の充電量が少なく従ってまず充電しなければならないかを知ることができるとともに、同じ電圧になるまでそれぞれの2次電池を充電しながら、繰り返し2次電池の電圧値を測定していくことにより、最終的には同じ充電量にすることができ、両者の電圧値すなわち充電量が略同じになった時点で、直列に接続して電池の内部充電を行なうことができる。   The inventor has come up with the idea that the charge amount and voltage of the secondary battery are in a correspondence relationship, that is, the charge amount at that time is estimated by measuring the voltage of the secondary battery. In particular, for example, by measuring the voltage of each of the two secondary batteries, it is possible to know which secondary battery has a small amount of charge and therefore needs to be charged first from the magnitude relationship (high or low) of the voltage. In addition, by repeatedly measuring the voltage value of the secondary battery while charging each secondary battery until the same voltage is obtained, the same charge amount can be finally obtained. That is, when the amount of charge becomes substantially the same, the battery can be connected in series to perform internal charging of the battery.

以下、上記観点に基づいて、本発明の実施の形態による内部充電技術について図面を参照しながら説明を行なう。図1は、本実施の形態による内部充電技術の基本原理を示す図である。図2は、充電処理の最も簡単なシーケンス例を示す図である。ここでは、2本の二次電池の充電処理を例にして説明を行なう。   Hereinafter, based on the above viewpoint, an internal charging technique according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the basic principle of the internal charging technique according to this embodiment. FIG. 2 is a diagram illustrating a simplest sequence example of the charging process. Here, a description will be given by taking a charging process of two secondary batteries as an example.

まず、図1(A)に示すように、図の左側の電池(電池1)を電圧V1(電流I1)で例えばΔt1時間(図2)だけ充電する。一方、図1(B)に示すように、図の右側の電池(電池2)を電圧V2(電流I2)で例えばΔt2時間だけ(図2)充電する。尚、図2では、電池1と電池2とを、時間的にシリーズに充電するシーケンスを例にして説明しているが、パラレルに充電しても良い。このような充電を例えば数回にわたって繰り返した後、両者の充電量がほぼ同じと判断されたら電池1と電池2との2本の電池を直列に接続し、例えばΔt時間だけ充電を行なう。このように、2本の充電池を、まず1本ずつ独立した状態である時間まで充電する処理を継続した後、2本の充電池を直列接続し充電を行なう。このようにして充電する場合には、2本の電池をそれぞれ個別に充電する場合する場合と比べて、同じ充電のための電流であれば、本実施の形態の方法による方が短時間ですみ、同じ充電時間にすることを考えれば充電に要する電流を少なくすることができる。   First, as shown in FIG. 1A, the battery (battery 1) on the left side of the figure is charged with voltage V1 (current I1) for, for example, Δt1 time (FIG. 2). On the other hand, as shown in FIG. 1B, the battery (battery 2) on the right side of the figure is charged with voltage V2 (current I2) for, for example, Δt2 time (FIG. 2). In FIG. 2, the sequence in which the battery 1 and the battery 2 are charged in series in terms of time is described as an example, but they may be charged in parallel. After such charging is repeated several times, for example, when it is determined that the charge amounts of both are almost the same, two batteries of the battery 1 and the battery 2 are connected in series, and charging is performed for, for example, Δt time. Thus, after continuing the process which charges two rechargeable batteries first until the time which is an independent state one by one, two rechargeable batteries are connected in series and charged. When charging in this way, the method according to the present embodiment requires a shorter time as long as the currents for charging are the same as compared with the case of charging two batteries individually. Considering the same charging time, the current required for charging can be reduced.

充電時間は各電池へ流れる充電電流により決まるためであり、同じ電流(各電池への)であれば充電時間は等価となる。充電量は電流(A)× 時間(h)の積算量が充電量(Ah)となるため、充電時間は充電電流に比例することになる。但し、この充電電流による充電量の適用は、ニカド電池、ニッケル水素電池に対しては良く当てはまるが、リチウムイオン電池については充電方法が一部異なるので、上記の充電電流×時間の積算量が充電量であるという計算は成り立たない。   This is because the charging time is determined by the charging current flowing to each battery. If the current is the same (to each battery), the charging time is equivalent. Since the amount of charge is the integrated amount of current (A) × time (h), the amount of charge (Ah), the charge time is proportional to the charge current. However, the application of the charging amount by this charging current is well applied to nickel-cadmium batteries and nickel-metal hydride batteries, but the charging method for lithium-ion batteries is partially different, so the above charging current x time integrated amount is charged. The calculation of quantity is not valid.

図3は、上述の処理をまとめた本実施の形態による二次電池の内部充電方法の一処理例を示すフローチャート図である。適宜、図1、図2を参照しながら説明を行なう。まず、ステップS1において、電池1と電池2の電圧V1と電圧V2との大小を測定により判定する。次いで、ステップS2に示すように、電池1の電圧V1と電池2の電圧V2とを測定し、V1とV2とを比較する。V1>V2の場合には(YES)、電池2の方が電池1よりも充電量が少ないと推定できるためステップS3に進み、充電量のより少ない方の電池である電池2の充電を行なう。ステップS4で、V1−V2<ΔになるまでステップS3の処理を繰り返し、V1−V2<Δ(Δは、0に近い値で、V1とV2とがほぼ同じと見なせる程度に小さい、ある許容範囲の値)になると(YES)、ステップS5に進み、電池1と電池2とを直列に接続して充電を行ない、充電が終了すると処理を終了する(ステップS6)。   FIG. 3 is a flowchart showing one processing example of the internal charging method of the secondary battery according to the present embodiment in which the above-described processing is summarized. The description will be made with reference to FIGS. 1 and 2 as appropriate. First, in step S1, the magnitudes of the voltage V1 and the voltage V2 of the battery 1 and the battery 2 are determined by measurement. Next, as shown in step S2, the voltage V1 of the battery 1 and the voltage V2 of the battery 2 are measured, and V1 and V2 are compared. When V1> V2 (YES), it can be estimated that the battery 2 has a smaller charge amount than the battery 1, and thus the process proceeds to step S3, and the battery 2 which is the battery having the smaller charge amount is charged. In step S4, the process of step S3 is repeated until V1−V2 <Δ, and V1−V2 <Δ (Δ is a value close to 0 and small enough to be considered that V1 and V2 are substantially the same. (YES), the process proceeds to step S5, the battery 1 and the battery 2 are connected in series to perform charging, and the process ends when the charging is completed (step S6).

一方、ステップS2において、電池1の電圧V1と電池2の電圧V2とを測定し、V1とV2とを比較した際にV1<V2の場合には(NO)、電池1の方が電池2よりも充電量が少ないと推定できるためステップS7に進み、充電量のより少ない方の電池である電池1の充電を行なう。ステップS8で、V2−V1<ΔになるまでステップS7の処理を繰り返し、V1−V2<Δ(Δは、0に近い値で、V1とV2とがほぼ同じと見なせる程度に小さい、ある許容範囲の値)になると(YES)、ステップS9に進み、電池1と電池2とを直列に接続して充電を行ない、充電が終了すると処理を終了する(ステップS6)。尚、ステップS2による測定結果が最初からV1−V2<Δの場合には、直接、ステップS5又はステップS9に進む。   On the other hand, in step S2, when the voltage V1 of the battery 1 and the voltage V2 of the battery 2 are measured and V1 and V2 are compared, if V1 <V2 (NO), the battery 1 is more than the battery 2 Since it can be estimated that the amount of charge is small, the process proceeds to step S7, and the battery 1, which is the battery with the smaller amount of charge, is charged. In step S8, the process of step S7 is repeated until V2−V1 <Δ, and V1−V2 <Δ (Δ is a value close to 0 and small enough to be considered that V1 and V2 are substantially the same. (YES), the process proceeds to step S9, the battery 1 and the battery 2 are connected in series to perform charging, and when the charging is completed, the process is terminated (step S6). When the measurement result in step S2 is V1-V2 <Δ from the beginning, the process proceeds directly to step S5 or step S9.

このように、電池1と電池2との両方の電圧、すなわち充電量が同じになった時点で初めて直列接続の内部充電を行なうことにより、内部充電において、両方の電池を均等な充電量にすることができる。   Thus, by performing internal connection in series connection for the first time at the time when the voltages of both battery 1 and battery 2, that is, the amount of charge becomes the same, both batteries are made to have an equal amount of charge in internal charging. be able to.

尚、充電による調整を行なう代わりに、充電量が多い電池の方を放電する処理を行なうことで、2本の電池の充電量をほぼ同じに調整する処理を行なうことも可能である。   Instead of performing adjustment by charging, it is also possible to perform the process of adjusting the charge amounts of the two batteries to be approximately the same by performing the process of discharging the battery with the larger charge amount.

次に、内部充電機能を備えた装置の具体的な構成例について説明を行なう。図4は、本実施の形態による二次電池の内部充電装置の一構成例を示す機能ブロック図である。図4に示すように、本実施の形態による内部充電回路Xは、電子機器セット(例えば、デジタルカメラ又はその専用充電キットなど)11と、第1の電池17と第2の電池21とを充電するための配線Lを含む2次電池収容部30と、電子機器セット11に設けられ配線Lに接続される+端子31、−端子35と、例えば充電コントロール回路15によるオンオフ制御されるスイッチSW(1)23、SW(2)25、SW(3)27であって、第1の電池17と第2の電池21とのそれぞれの電池を独立に、又は、直列に、接続して充電することができるように構成できるSWと、を有している。   Next, a specific configuration example of a device having an internal charging function will be described. FIG. 4 is a functional block diagram showing a configuration example of the internal charging device for the secondary battery according to the present embodiment. As shown in FIG. 4, the internal charging circuit X according to the present embodiment charges the electronic device set (for example, a digital camera or a dedicated charging kit thereof) 11, the first battery 17, and the second battery 21. For example, a secondary battery housing 30 including a wiring L, a + terminal 31 and a − terminal 35 provided in the electronic device set 11 and connected to the wiring L, and a switch SW (ON / OFF controlled by the charge control circuit 15, for example) 1) 23, SW (2) 25, SW (3) 27, each of the first battery 17 and the second battery 21 being connected independently or in series for charging. SW that can be configured so that

+端子31と−端子35との間の電圧は例えば電圧計37により検出可能になっている。+端子31と−端子35とを介して、充電時にはセット11側から電池側へ、放電時には電池側からセット11側へ電力が供給される。例えば、充電コントロール回路15は、一般的な充電器15aと、充電器の充電電圧やSWの開閉等を制御する制御部15bと、2次電池のそれぞれの電圧を検出することができる電圧検出手段15cと、を有している。   The voltage between the positive terminal 31 and the negative terminal 35 can be detected by, for example, a voltmeter 37. Electric power is supplied from the set 11 side to the battery side during charging and from the battery side to the set 11 side during discharging via the + terminal 31 and the − terminal 35. For example, the charge control circuit 15 includes a general charger 15a, a control unit 15b that controls the charging voltage of the charger, the opening / closing of the SW, and the like, and voltage detection means that can detect the respective voltages of the secondary battery. 15c.

図5は、放電時の様子を示す図である。図5に示すように、放電時には、SW(1)23がオン(導通)、SW(2)25がオフ(非導通)、SW(3)27がオフ(非導通)であり、これらのSWの状態により、第1の電池17と第2の電池21とから、放電がなされる。   FIG. 5 is a diagram illustrating a state during discharge. As shown in FIG. 5, at the time of discharging, SW (1) 23 is on (conducting), SW (2) 25 is off (non-conducting), and SW (3) 27 is off (non-conducting). In this state, the first battery 17 and the second battery 21 are discharged.

図6は、第1の電池17の充電時の様子を示す図である。図6に示すように、第1の電池17の充電時には、SW(1)23がオフ、SW(2)25がオフ、SW(3)27がオンであり、これらのSWの状態により、第1の電池17のみに、セット11から充電がなされる。   FIG. 6 is a diagram illustrating a state when the first battery 17 is charged. As shown in FIG. 6, when the first battery 17 is charged, SW (1) 23 is off, SW (2) 25 is off, and SW (3) 27 is on. Only one battery 17 is charged from the set 11.

図7は、第2の電池21の充電時の様子を示す図である。図7に示すように、第2の電池21の充電時には、SW(1)23がオフ、SW(2)25がオン、SW(3)27がオフであり、これらのSWの状態により、第2の電池21のみに、セット11から充電がなされる。   FIG. 7 is a diagram illustrating a state when the second battery 21 is charged. As shown in FIG. 7, when the second battery 21 is charged, SW (1) 23 is off, SW (2) 25 is on, and SW (3) 27 is off. Only the second battery 21 is charged from the set 11.

図8は、第1の電池17と第2の電池21との両方の電池を直列にして同時に充電している時の様子を示す図である。図8に示すように、両方の電池17・21の充電時には、SW(1)23がオン、SW(2)25がオフ、SW(3)27がオフであり、これらのSWの状態により、第1の電池17と第2の電池21との両方に、セット11から電池17・21の直列接続に対する充電がなされる。   FIG. 8 is a diagram showing a state in which both the first battery 17 and the second battery 21 are connected in series and are charged simultaneously. As shown in FIG. 8, when both batteries 17 and 21 are charged, SW (1) 23 is on, SW (2) 25 is off, and SW (3) 27 is off. Depending on the state of these SWs, Both the first battery 17 and the second battery 21 are charged from the set 11 to the series connection of the batteries 17 and 21.

以上に説明したように、本実施の形態による内部充電装置を用いると、1つの充電制御回路で2本の二次電池を充電することができるため、装置が簡単になるという利点がある。すなわち、電池を1本ずつ充電することが必要なくなるので、充電回路が1つで制御出来るため、装置の小型化、コストダウンが可能となる。電池を装着したまま、充電が出来るため、特に充電専用器を設ける必要がない。さらに、同時に2本の電池を別々に充電していた場合には充電用電流を2つに分けていたが、その電流を直列充電とするため、充電電流が約半分になるという利点がある。   As described above, when the internal charging device according to the present embodiment is used, there is an advantage that the device can be simplified because two secondary batteries can be charged by one charging control circuit. In other words, since it is not necessary to charge the batteries one by one, it is possible to control with a single charging circuit, which makes it possible to reduce the size and cost of the device. Since charging can be performed with the battery attached, there is no need to provide a dedicated charger. Further, when two batteries are charged separately at the same time, the charging current is divided into two. However, since the current is serially charged, there is an advantage that the charging current is reduced to about half.

尚、本実施の形態では、2本の2次電池を最終的に直列接続して充電を行なう技術について具体的に説明したが、3本以上の場合でも同様の原理で充電を行なうことができる。   In the present embodiment, the technique of charging by finally connecting two secondary batteries in series has been specifically described. However, even in the case of three or more batteries, charging can be performed on the same principle. .

本発明は、内部充電器又はそれを備えた機器に利用可能である。   The present invention can be used for an internal charger or a device including the same.

本発明の一実施の形態による内部充電技術の基本原理を示す図である。It is a figure which shows the basic principle of the internal charging technique by one embodiment of this invention. 充電処理の最も簡単なシーケンス例を示す図である。It is a figure which shows the simplest sequence example of a charging process. 本実施の形態による二次電池の内部充電方法の一処理例を示すフローチャート図である。It is a flowchart figure which shows the example of 1 process of the internal charging method of the secondary battery by this Embodiment. 本実施の形態による二次電池の内部充電装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows the example of 1 structure of the internal charging device of the secondary battery by this Embodiment. 放電時の回路の様子を示す図である。It is a figure which shows the mode of the circuit at the time of discharge. 第1の電池の充電時の様子を示す図である。It is a figure which shows the mode at the time of charge of a 1st battery. 第2の電池の充電時の様子を示す図である。It is a figure which shows the mode at the time of charge of a 2nd battery. 第1の電池と第2の電池との両方の電池を直列にして同時に充電している時の様子を示す図である。It is a figure which shows a mode when charging both the battery of a 1st battery and a 2nd battery in series simultaneously. 一般的な2本の二次電池を充電する充電セットの一構成例を示す図である。It is a figure which shows the example of 1 structure of the charge set which charges two general secondary batteries.

符号の説明Explanation of symbols

L…配線、X…内部充電回路、11…電子機器セット、15…充電コントロール回路、17…第1の電池、21…第2の電池、23…スイッチSW(1)、25…SW(2)、27…SW(3)31…+端子、35…−端子。 L ... wiring, X ... internal charging circuit, 11 ... electronic device set, 15 ... charge control circuit, 17 ... first battery, 21 ... second battery, 23 ... switch SW (1), 25 ... SW (2) 27 ... SW (3) 31 ... + terminal, 35 ...- terminal.

Claims (7)

第1の2次電池と第2の2次電池とのぞれぞれの電圧差を測定する第1ステップと、
前記電圧差がある許容値よりも大きい場合に、電圧の小さい方の2次電池を充電する第2ステップと、
前記電圧差が前記許容値よりも小さくなるまで前記第1のステップと前記第2のステップとを繰り返すステップと、
前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電するステップと
を有することを特徴とする2次電池の充電方法。
A first step of measuring a voltage difference between each of the first secondary battery and the second secondary battery;
A second step of charging a secondary battery having a smaller voltage when the voltage difference is larger than a certain allowable value;
Repeating the first step and the second step until the voltage difference is less than the allowable value;
A secondary battery comprising a step of charging the first secondary battery and the second secondary battery in series when the voltage difference is smaller than the allowable value; Charging method.
第1の2次電池と第2の2次電池とのぞれぞれの電圧差を測定する第1ステップと、
前記電圧差がある許容値よりも大きい場合に、電圧の大きい方の2次電池を放電させる第2ステップと、
前記電圧差が前記許容値よりも小さくなるまで前記第1のステップと前記第2のステップとを繰り返すステップと、
前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電するステップと
を有することを特徴とする2次電池の充電方法。
A first step of measuring a voltage difference between each of the first secondary battery and the second secondary battery;
A second step of discharging the secondary battery having a larger voltage when the voltage difference is larger than a certain allowable value;
Repeating the first step and the second step until the voltage difference is less than the allowable value;
A secondary battery comprising a step of charging the first secondary battery and the second secondary battery in series when the voltage difference is smaller than the allowable value; Charging method.
前記許容値は、前記第1の2次電池と前記第2の2次電池との充電量が略同一と見なせる範囲内の値であることを特徴とする請求項1又は2に記載の2次電池の充電方法。   3. The secondary according to claim 1, wherein the allowable value is a value within a range in which charge amounts of the first secondary battery and the second secondary battery can be regarded as substantially the same. 4. How to charge the battery. 複数本の2次電池を充電可能な充電装置であって、
前記複数本の2次電池を独立に又は直列接続で充放電可能に収容する電池収容部と、
充電器と、
該充電器による充電を独立に充電する構成と直列接続で充電する構成とに切換える制御を行なう制御部と、前記2次電池のそれぞれの電圧を検出する電圧検出部と、前記電池収容部と前記充電器とを接続する端子部と、を備えた充電制御回路と
を有する充電装置。
A charging device capable of charging a plurality of secondary batteries,
A battery housing portion for housing the plurality of secondary batteries independently or in series connection so as to be chargeable / dischargeable;
A charger,
A control unit that performs control to switch between a configuration in which charging by the charger is independently performed and a configuration in which charging is performed in series connection; a voltage detection unit that detects each voltage of the secondary battery; the battery housing unit; A charging device comprising: a terminal unit that connects the charger; and a charging control circuit that includes the charging unit.
前記制御部は、前記第1の2次電池と前記第2の2次電池とのぞれぞれの電圧差がある許容値よりも大きい場合に、電圧の小さい方の2次電池を前記電圧差が前記許容値よりも小さくなるまで繰り返し充電し、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電する制御を行なうことを特徴とする請求項4に記載の2次電池の充電装置。   When the voltage difference between each of the first secondary battery and the second secondary battery is larger than a certain allowable value, the control unit selects the secondary battery having a smaller voltage as the voltage. Charging is repeated until the difference becomes smaller than the allowable value, and when the voltage difference becomes smaller than the allowable value, the first secondary battery and the second secondary battery are connected in series. The charging device for a secondary battery according to claim 4, wherein charging is controlled. 前記制御部は、前記第1の2次電池と前記第2の2次電池とのぞれぞれの電圧差がある許容値よりも大きい場合に、電圧の大きい方の2次電池を前記電圧差が前記許容値よりも小さくなるまで繰り返し放電し、前記電圧差が前記許容値よりも小さくなった場合に、前記第1の2次電池と前記第2の2次電池とを直列接続して充電する制御を行なうことを特徴とする請求項4に記載の2次電池の充電装置。   When the voltage difference between each of the first secondary battery and the second secondary battery is larger than a certain allowable value, the control unit determines that the secondary battery having a larger voltage is the voltage. When the discharge is repeated until the difference becomes smaller than the allowable value, and the voltage difference becomes smaller than the allowable value, the first secondary battery and the second secondary battery are connected in series. The charging device for a secondary battery according to claim 4, wherein charging is controlled. 請求項4から6までのいずれか1項に記載の充電装置を内蔵する電子機器。   The electronic device which incorporates the charging device of any one of Claim 4-6.
JP2006072475A 2006-03-16 2006-03-16 Internal charging device and charging method of secondary battery Pending JP2007250364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072475A JP2007250364A (en) 2006-03-16 2006-03-16 Internal charging device and charging method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072475A JP2007250364A (en) 2006-03-16 2006-03-16 Internal charging device and charging method of secondary battery

Publications (1)

Publication Number Publication Date
JP2007250364A true JP2007250364A (en) 2007-09-27

Family

ID=38594419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072475A Pending JP2007250364A (en) 2006-03-16 2006-03-16 Internal charging device and charging method of secondary battery

Country Status (1)

Country Link
JP (1) JP2007250364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042244A1 (en) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 Vehicle power supply system
JP2014168321A (en) * 2013-02-28 2014-09-11 Mitsumi Electric Co Ltd Charge and discharge control circuit and charge and discharge control method
JP2015070627A (en) * 2013-09-26 2015-04-13 富士重工業株式会社 Vehicular power supply apparatus
US10951048B2 (en) 2016-01-27 2021-03-16 Fdk Corporation Charging circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042244A1 (en) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 Vehicle power supply system
JP2014168321A (en) * 2013-02-28 2014-09-11 Mitsumi Electric Co Ltd Charge and discharge control circuit and charge and discharge control method
JP2015070627A (en) * 2013-09-26 2015-04-13 富士重工業株式会社 Vehicular power supply apparatus
US10951048B2 (en) 2016-01-27 2021-03-16 Fdk Corporation Charging circuit

Similar Documents

Publication Publication Date Title
JP4388094B2 (en) Battery pack protection device and battery pack device
KR101497602B1 (en) Balancing system for battery and Method for balancing of battery using the same
KR101256079B1 (en) Balancing Method and Balancing System of Battery Pack
JP6725201B2 (en) Charge leveling device and power supply system
EP1798839B1 (en) Battery management system and method
EP2418751B1 (en) Battery charger and battery charging method
US7642749B2 (en) Rechargeable battery, and apparatus and method of charging the same
EP3793057B1 (en) Battery control unit and battery system
JP2011083182A (en) Battery management system with energy balance among multiple battery cells
JP2000228832A (en) Control method of charging and discharging
JP2009081981A (en) Charge state optimizing apparatus and battery pack system provided therewith
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
JP2007318950A (en) Cell voltage balancing device for secondary battery
KR101738601B1 (en) Apparatus for estimating battery&#39;s state of health
JP2005328642A (en) Capacity equalization apparatus
JP2002186191A (en) Cell shunt circuit for battery cell
JP2003257501A (en) Secondary battery residual capacity meter
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
JP2008011657A (en) Power supply unit
KR20110117992A (en) Battery charging system and charging method thereof
JP2007250364A (en) Internal charging device and charging method of secondary battery
JP5250727B1 (en) Battery charge method, charge control circuit and power supply system
JP2004119267A (en) Charge and discharge control circuit and rechargeable power unit
JP2023524645A (en) Battery management device and method
JP4519073B2 (en) Charge / discharge control method and control device for battery pack