JP2007247996A - Electromagnetic accelerator - Google Patents

Electromagnetic accelerator Download PDF

Info

Publication number
JP2007247996A
JP2007247996A JP2006073737A JP2006073737A JP2007247996A JP 2007247996 A JP2007247996 A JP 2007247996A JP 2006073737 A JP2006073737 A JP 2006073737A JP 2006073737 A JP2006073737 A JP 2006073737A JP 2007247996 A JP2007247996 A JP 2007247996A
Authority
JP
Japan
Prior art keywords
conductive
rail
metal armature
metal
conductive rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073737A
Other languages
Japanese (ja)
Other versions
JP4489041B2 (en
Inventor
Yoshiyuki Aso
良之 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006073737A priority Critical patent/JP4489041B2/en
Publication of JP2007247996A publication Critical patent/JP2007247996A/en
Application granted granted Critical
Publication of JP4489041B2 publication Critical patent/JP4489041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve flight characteristics of a missile in regard to an electromagnetic accelerator. <P>SOLUTION: A first conductive rail 11a, a first insulative rail 12a, a second conductive rail 11b, and a second insulative rail 12b are spirally twisted in parallel with each other to form a cylindrical body. A metal armature is put in an inner face space of the cylindrical body, and a large pulse like current is fed from base end sides of the first conductive rail 11a and the second conductive rail 11b by a pulse power supply 1. The metal armature 20 is not only accelerated in extending directions of the conductive rails 11a, 11b, but it is also rotated as it advances on the conductive rails 11a, 11b. By this, the missile flies while rotating after it is launched into space from tips of the conductive rails 11a, 11b, and its flight characteristics become stable. Since the metal armature 20 advances while rotating, a circumferential face of the metal armature evenly receives melting from Joule heat by energization, the symmetric shape of the metal armature is maintained, and the flight characteristics of the missile after launching into space becomes stable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電磁加速装置に関し、さらに詳しくは、空間に射出後の飛翔体の飛翔特性を改善できる電磁加速装置に関する。   The present invention relates to an electromagnetic accelerator, and more particularly to an electromagnetic accelerator capable of improving the flight characteristics of a flying object after being injected into space.

従来、平行直線状の一対の導電性レールの間に金属電機子を挟み、一方の導電性レール−金属電機子−他方の導電性レールと大電流を流し、導電性レールを流れる電流による磁場と金属電機子に流れる電流との間に働くローレンツ力により金属電機子を導電性レールの延びる方向に加速し、導電性レール先端から空間へ飛翔体(金属電機子のみが飛翔体になる場合と金属電機子およびその前に一体化された飛翔体本体とが飛翔体になる場合がある)を射出する電磁加速装置が知られている(特許文献1参照。)。
特開平7−311541号公報
Conventionally, a metal armature is sandwiched between a pair of parallel linear conductive rails, a large current flows between one conductive rail-metal armature-the other conductive rail, and a magnetic field generated by a current flowing through the conductive rail. The metal armature is accelerated in the extending direction of the conductive rail by the Lorentz force acting between the current flowing in the metal armature and the flying object from the tip of the conductive rail to the space (when only the metal armature becomes a flying object and the metal 2. Description of the Related Art There is known an electromagnetic acceleration device that emits an armature and a flying body main body integrated in front of the armature) (see Patent Document 1).
JP-A-7-311541

上記従来の電磁加速装置では、金属電機子を回転させるような力は働かない。このため、導電性レール先端から空間に射出された後の飛翔体は回転せずに飛翔し、その飛翔特性が不安定になる。また、金属電機子の常に同じ部分が導電性レールと接触しているため、通電によるジュール熱で特にその部分が溶損を受け、金属電機子の形状が崩れる。これによっても、空間に射出された後の飛翔体の飛翔特性が不安定になる。
そこで、この発明の目的は、空間に射出後の飛翔体の飛翔特性を改善できる電磁加速装置を提供することにある。
In the conventional electromagnetic accelerator, no force that rotates the metal armature works. For this reason, the flying object after being injected into the space from the front end of the conductive rail flies without rotating, and its flight characteristics become unstable. In addition, since the same part of the metal armature is always in contact with the conductive rail, the part is particularly damaged by Joule heat due to energization, and the shape of the metal armature is destroyed. This also makes the flight characteristics of the flying object after being ejected into space unstable.
Accordingly, an object of the present invention is to provide an electromagnetic accelerator capable of improving the flight characteristics of a flying object after being injected into space.

第1の観点では、この発明は、平行螺旋状の一対の導電性レールと、それら導電性レールの間に挟まれる断面輪郭円状の金属電機子と、前記導電性レールの一端側から給電して一方の導電性レール−金属電機子−他方の導電性レールと大電流を流す電源装置とを具備したことを特徴とする電磁加速装置を提供する。
上記第1の観点による電磁加速装置では、一対の導電性レールが平行螺旋状になっている。このため、導電性レールを流れる電流による磁場および金属電機子に流れる電流は、金属電機子が導電性レールを進むのにしたがって回転する。このため、金属電機子は、導電性レールの延びる方向に加速されるだけでなく、導電性レールを進むのにしたがって回転させられる。よって、導電性レール先端から空間に射出された後の飛翔体は回転しながら飛翔し、その飛翔特性が安定になる。また、導電性レールを流れる電流による磁場の回転よりも少し遅れて金属電機子が回転するため、導電性レールと接触している金属電機子の部分が滑るようにずれてくる。このため、通電によるジュール熱で金属電機子の周面が平均的に溶損を受け、金属電機子の対称形状が維持される。これによっても、空間に射出された後の飛翔体の飛翔特性が安定になる。
In a first aspect, the present invention provides a pair of parallel spiral conductive rails, a metal armature having a circular cross-sectional shape sandwiched between the conductive rails, and power supply from one end side of the conductive rails. The present invention provides an electromagnetic acceleration device comprising: one conductive rail-metal armature-the other conductive rail and a power supply device for passing a large current.
In the electromagnetic accelerator according to the first aspect, the pair of conductive rails have a parallel spiral shape. For this reason, the magnetic field generated by the current flowing through the conductive rail and the current flowing through the metal armature rotate as the metal armature travels through the conductive rail. For this reason, the metal armature is not only accelerated in the direction in which the conductive rail extends, but is also rotated as it travels through the conductive rail. Therefore, the flying object after being injected into the space from the front end of the conductive rail flies while rotating, and the flight characteristics are stabilized. Further, since the metal armature rotates with a slight delay from the rotation of the magnetic field due to the current flowing through the conductive rail, the portion of the metal armature that is in contact with the conductive rail is slipped off. For this reason, the peripheral surface of the metal armature is averagely melted by Joule heat due to energization, and the symmetrical shape of the metal armature is maintained. This also stabilizes the flight characteristics of the flying object after being injected into space.

第2の観点では、この発明は、第1の観点による電磁加速装置において、前記導電性レールを金属繊維でブラシ構造に構成したことを特徴とする電磁加速装置を提供する。
導電性レールを銅の切り出しのように剛体で構成してもよいが、製造工数がかかる。
そこで、上記第2の観点による電磁加速装置では、導電性レールを金属繊維でブラシ構造に構成する。このようにすれば、導電性レールが柔軟性を持つため、まず平行直線状に構成し、次いで捩ることにより平行螺旋状に形成でき、製造工数を低減できる。また、電気的接触も良くなる。
In a second aspect, the present invention provides the electromagnetic accelerator according to the first aspect, wherein the conductive rail is formed of a metal fiber in a brush structure.
Although the conductive rail may be formed of a rigid body such as copper cut out, it takes a number of manufacturing steps.
Therefore, in the electromagnetic accelerator according to the second aspect, the conductive rail is formed of a metal fiber in a brush structure. In this case, since the conductive rail has flexibility, it can be formed in a parallel straight line first and then twisted to form a parallel spiral, thereby reducing the number of manufacturing steps. Also, electrical contact is improved.

第3の観点では、この発明は、前記第1の観点による電磁加速装置において、前記導電性レールを金属布を重ねた構造に構成したことを特徴とする電磁加速装置を提供する。
導電性レールを銅の切り出しのように剛体で構成してもよいが、製造工数がかかる。
そこで、上記第3の観点による電磁加速装置では、導電性レールを金属布を重ねた構造に構成する。このようにすれば、導電性レールが柔軟性を持つため、まず平行直線状に構成し、次いで捩ることにより平行螺旋状に形成でき、製造工数を低減できる。また、電気的接触も良くなる。
In a third aspect, the present invention provides the electromagnetic accelerator according to the first aspect, wherein the conductive rail is configured to have a structure in which metal cloths are stacked.
Although the conductive rail may be formed of a rigid body such as copper cut out, it takes a number of manufacturing steps.
Therefore, in the electromagnetic accelerator according to the third aspect, the conductive rail is configured to have a structure in which metal cloths are stacked. In this case, since the conductive rail has flexibility, it can be formed in a parallel straight line first and then twisted to form a parallel spiral, thereby reducing the number of manufacturing steps. Also, electrical contact is improved.

この発明の電磁加速装置によれば、導電性レール先端から空間に射出された後の飛翔体は回転しながら飛翔するため、飛翔特性が安定になる。また、金属電機子が対称形状に維持されため、これによっても、空間に射出された後の飛翔体の飛翔特性が安定になる。   According to the electromagnetic acceleration device of the present invention, since the flying object after being injected into the space from the tip of the conductive rail flies while rotating, the flight characteristics become stable. Further, since the metal armature is maintained in a symmetrical shape, this also stabilizes the flight characteristics of the flying object after being injected into the space.

以下、図に示す実施の形態によりこの発明をさらに詳細に説明する。なお、これによりこの発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る電磁加速装置100を示す構成説明図である。
この電磁加速装置100は、パルス電源1と、加速筒10と、金属電機子20とを具備している。
FIG. 1 is an explanatory diagram illustrating a configuration of an electromagnetic acceleration device 100 according to the first embodiment.
The electromagnetic acceleration device 100 includes a pulse power source 1, an acceleration cylinder 10, and a metal armature 20.

加速筒10は、約1/4円筒状の第1導電性レール11aと、約1/4円筒状の第1絶縁性レール12aと、約1/4円筒状の第2導電性レール11bと、約1/4円筒状の第2絶縁性レール12bと、円筒状の外筒体13とからなる。
第1導電性レール11aと第1絶縁性レール12aと第2導電性レール11bと第2絶縁性レール12bとは、この順に円周状に並べられて全体として円筒を構成している。
第1導電性レール11aと第2導電性レール11bは、銅の切り出しにより剛体で構成してある。
The acceleration cylinder 10 includes an approximately 1/4 cylindrical first conductive rail 11a, an approximately 1/4 cylindrical first insulating rail 12a, an approximately 1/4 cylindrical second conductive rail 11b, It consists of a second insulating rail 12b having an approximately 1/4 cylindrical shape and a cylindrical outer cylinder 13.
The first conductive rail 11a, the first insulating rail 12a, the second conductive rail 11b, and the second insulating rail 12b are arranged circumferentially in this order to form a cylinder as a whole.
The 1st conductive rail 11a and the 2nd conductive rail 11b are comprised by the rigid body by cutting out copper.

パルス電源1は、第1導電性レール11aと第2導電性レール11bの基端側からパルス状の大電流を給電する。   The pulse power source 1 feeds a pulsed large current from the base end sides of the first conductive rail 11a and the second conductive rail 11b.

金属電機子20は、例えば銅の円柱体である。   The metal armature 20 is, for example, a copper cylinder.

図2は、加速筒10の断面図および展開図である。
断面図は、加速筒10の延びる方向における各位置で輪切りにして基端側から見た図である。
展開図は、加速筒10の基端の断面図に示す切断線αで加速筒10の延びる方向に加速筒10を切断し、開いて加速筒10の内面を示した図である。
第1導電性レール11aと第1絶縁性レール12aと第2導電性レール11bと第2絶縁性レール12bとは平行螺旋状に捩れている。
各断面図中に示す白頭矢印は、導電性レール11a,11bを流れる電流による磁場の向きを示している。加速筒10の基端側から先端側へ進むにつれて導電性レール11a,11bが捩れるのにしたがって磁場が回転する。
このため、金属電機子20が加速筒10の基端側から先端側へ進むにつれて金属電機子20が回転する。
FIG. 2 is a cross-sectional view and a developed view of the acceleration cylinder 10.
The cross-sectional view is a view seen from the base end side in a circular shape at each position in the extending direction of the acceleration cylinder 10.
The developed view is a diagram showing the inner surface of the acceleration cylinder 10 by cutting the acceleration cylinder 10 in the direction in which the acceleration cylinder 10 extends along the cutting line α shown in the cross-sectional view of the base end of the acceleration cylinder 10.
The first conductive rail 11a, the first insulating rail 12a, the second conductive rail 11b, and the second insulating rail 12b are twisted in a parallel spiral shape.
A bald arrow shown in each cross-sectional view indicates the direction of the magnetic field caused by the current flowing through the conductive rails 11a and 11b. As the conductive rails 11a and 11b are twisted, the magnetic field rotates as the acceleration cylinder 10 advances from the proximal end side to the distal end side.
For this reason, the metal armature 20 rotates as the metal armature 20 advances from the proximal end side to the distal end side of the acceleration cylinder 10.

図3に示すように、角速度ωで回転している磁界B内に置かれた半径Rの金属電機子20内に、E=UBなる電場Eが金属電機子20の軸方向に発生する。ここで、Uは磁界に対する金属電機子20の相対速度である。
電場Eによって金属電機子20内には、電流j=UB/ηが流れる。ここで、ηは金属電機子20の抵抗率である。
電流jと回転磁場Bのローレンツ力F=jBによって、金属電機子20を磁界Bの回転方向に回すトルクNが発生する。このトルクNは、金属電機子20(金属電機子20だけが飛翔体となる場合を想定する)の慣性モーメントをIとすると、
N=Iω’ ……(1)
である。
金属電機子20の半径をRとし、長さをWとし、質量密度をρとすると、慣性モーメントIは、
I=(πρWR4)/2 ……(2)
である。
一方、角速度ωは、導電性レール11a,11bの螺旋ピッチをPとし、金属電機子20の速度をVとすれば、
ω=(2πV)/P ……(3)
である。
金属電機子20の速度Vは、金属電機子20の質量をMとし、導電性レール11a,11bのインダクタンス勾配をL’とし、導電性レール11a,11bに流れる電流をJとするとき、
MV’=(L’J2)/2 ……(4)
である。
電流Jを一定とすれば容易に(1)(4)式を解くことが出来る。(2)(3)式を代入すると、角速度ωと速度Vは次の(5)(6)式で与えられる。ここで、磁場が金属電機子20に染み込む深さをλとし、真空の透磁率をμとし、通電後の経過時間をtとする。
ω=(√{2}μ2L’λJ42)/(3π3ηρ242P) ……(5)
V=(L’J2t)/(2πR2Wρ) ……(6)
As shown in FIG. 3, an electric field E of E = UB is generated in the axial direction of the metal armature 20 in the metal armature 20 of radius R placed in the magnetic field B rotating at the angular velocity ω. Here, U is the relative speed of the metal armature 20 with respect to the magnetic field.
The electric field E causes a current j = UB / η to flow in the metal armature 20. Here, η is the resistivity of the metal armature 20.
Due to the current j and the Lorentz force F = jB of the rotating magnetic field B, a torque N that rotates the metal armature 20 in the rotating direction of the magnetic field B is generated. This torque N is defined as I when the moment of inertia of the metal armature 20 (assuming that only the metal armature 20 is a flying object) is I.
N = Iω '(1)
It is.
When the radius of the metal armature 20 is R, the length is W, and the mass density is ρ, the moment of inertia I is
I = (πρWR 4 ) / 2 (2)
It is.
On the other hand, if the angular velocity ω is P and the velocity of the metal armature 20 is V, the spiral pitch of the conductive rails 11a and 11b is V.
ω = (2πV) / P (3)
It is.
The velocity V of the metal armature 20 is defined as follows. When the mass of the metal armature 20 is M, the inductance gradient of the conductive rails 11a and 11b is L ', and the current flowing through the conductive rails 11a and 11b is J.
MV ′ = (L′ J 2 ) / 2 (4)
It is.
If current J is constant, equations (1) and (4) can be easily solved. Substituting the equations (2) and (3), the angular velocity ω and the velocity V are given by the following equations (5) and (6). Here, the depth at which the magnetic field penetrates into the metal armature 20 is λ, the permeability of vacuum is μ, and the elapsed time after energization is t.
ω = (√ {2} μ 2 L′ λJ 4 t 2 ) / (3π 3 ηρ 2 R 4 W 2 P) (5)
V = (L′ J 2 t) / (2πR 2 Wρ) (6)

数値例として、R=20mm、W=40mm、P=1m、金属電機子20を銅としてρ=8.93×103kg/m3、抵抗率η=2.0×10-7Ωm、λ=1mmに仮定し、加速長2mで速度Vが2km/sになるように電流j(=1MA)を決めた場合の角速度ω(毎分あたりの回転速度に換算)と速度Vを、図4に示す。
加速長を2mとすると、角速度ωは毎分あたりの回転速度に換算して40000rpmになる。これは同規模の従来火器(口径40mm)の弾丸の旋回速度30000rpmに匹敵する。
As numerical examples, R = 20 mm, W = 40 mm, P = 1 m, metal armature 20 as copper, ρ = 8.93 × 10 3 kg / m 3 , resistivity η = 2.0 × 10 −7 Ωm, λ = 1 mm, the angular velocity ω (converted to the rotational speed per minute) and the velocity V when the current j (= 1 MA) is determined so that the velocity V is 2 km / s with an acceleration length of 2 m are shown in FIG. Shown in
When the acceleration length is 2 m, the angular velocity ω is 40000 rpm in terms of the rotation speed per minute. This is equivalent to the swirl speed of a conventional firearm of the same scale (caliber 40 mm), 30000 rpm.

実施例1の電磁加速装置100によれば、次の効果が得られる。
{1}加速筒10の軸方向に金属電機子20が加速されるのと同時に軸周りに回転されるため、加速筒10の先端から空間に射出された後の飛翔体は回転しながら飛翔し、その飛翔特性が安定になる。
{2}金属電機子20が加速筒10に沿って進むとき、導電性レール11a,11bの捩れと少しずれて金属電機子20が回転する。このため、金属電機子20への電流の供給位置は金属電機子20の周面を移動し、電流による金属電機子20の表面溶融が一様にならされ、電流溶融による金属電機子20の形状の非対称性を抑制でき、飛翔体の飛翔特性が安定になる。
{3}図2の展開図から判るように、導電性レール11a,11bと絶縁性レール12a,12bが周方向に交互に配置されるだけでなく、加速筒10の軸に沿っても交互に配置されるので、金属(導電性レール11a,11b)と絶縁物(絶縁性レール12a,12b)による加速筒10の内面の強度分布が平均化され、内面の片減りが軽減され、飛翔体の飛翔特性に悪影響を与えない。
{4}加速筒10の内面が円形断面であり、金属電機子20も円形断面の金属体であることから、従来火器の弾の薬きょうを取り除いた銅で覆われた弾の部分をそのまま使用できる。
According to the electromagnetic accelerator 100 of the first embodiment, the following effects can be obtained.
{1} Since the metal armature 20 is accelerated in the axial direction of the acceleration cylinder 10 and simultaneously rotated around the axis, the flying object after being injected into the space from the tip of the acceleration cylinder 10 flies while rotating. , Its flight characteristics become stable.
{2} When the metal armature 20 advances along the acceleration cylinder 10, the metal armature 20 rotates with a slight deviation from the twist of the conductive rails 11a and 11b. For this reason, the supply position of the current to the metal armature 20 moves on the peripheral surface of the metal armature 20, the surface melting of the metal armature 20 by the current is made uniform, and the shape of the metal armature 20 by the current melting Asymmetry can be suppressed, and the flying characteristics of the flying object become stable.
{3} As can be seen from the development of FIG. 2, the conductive rails 11 a and 11 b and the insulating rails 12 a and 12 b are not only alternately arranged in the circumferential direction, but also alternately along the axis of the acceleration cylinder 10. Since it is arranged, the strength distribution of the inner surface of the acceleration cylinder 10 by the metal (conductive rails 11a and 11b) and the insulator (insulating rails 12a and 12b) is averaged, and the reduction of the inner surface is reduced. Does not adversely affect flight characteristics.
{4} Since the inner surface of the accelerating cylinder 10 has a circular cross section and the metal armature 20 is also a metal body having a circular cross section, the portion of the bullet covered with copper from which the shell of a conventional firearm is removed can be used as it is. .

図5に示すように、金属繊維15を袴17で保持してブラシ構造に構成した導電性レール11a,11bを用いてもよい。16は、給電電極である。   As shown in FIG. 5, conductive rails 11 a and 11 b configured to have a brush structure by holding the metal fiber 15 with a flange 17 may be used. Reference numeral 16 denotes a power supply electrode.

図6に示すように、折り畳んだ金属布18を袴17で保持した構造に構成した導電性レール11a,11bを用いてもよい。   As shown in FIG. 6, conductive rails 11 a and 11 b configured to hold a folded metal cloth 18 with a flange 17 may be used.

金属電機子20の前に例えばプラスチック製の円柱体(飛翔体本体)を一体化したものを飛翔体として用いてもよい。   For example, a plastic cylindrical body (flying body body) integrated with the metal armature 20 may be used as the flying body.

この発明の電磁加速装置は、レールガンとして利用できる。   The electromagnetic accelerator of the present invention can be used as a rail gun.

実施例1に係る電磁加速装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram illustrating an electromagnetic accelerator according to a first embodiment. 実施例1に係る電磁加速装置の加速筒の構成を示す断面図および展開図である。It is sectional drawing and the expanded view which show the structure of the acceleration cylinder of the electromagnetic accelerator which concerns on Example 1. FIG. 実施例1に係る電磁加速装置における金属電機子の回転機構を説明するための説明図である。It is explanatory drawing for demonstrating the rotation mechanism of the metal armature in the electromagnetic accelerator which concerns on Example 1. FIG. 実施例1に係る電磁加速装置における金属電機子の角速度と速度の数値例を説明するためのグラフである。6 is a graph for explaining a numerical example of an angular velocity and a velocity of a metal armature in the electromagnetic accelerator according to the first embodiment. 実施例2に係る電磁加速装置の加速筒の構成を示す端面図である。It is an end view which shows the structure of the acceleration cylinder of the electromagnetic accelerator which concerns on Example 2. FIG. 実施例3に係る電磁加速装置の加速筒の構成を示す端面図である。It is an end elevation which shows the structure of the acceleration cylinder of the electromagnetic accelerator which concerns on Example 3. FIG.

符号の説明Explanation of symbols

1 パルス電源
10 加速筒
11a 第1導電性レール
11b 第2導電性レール
12a 第1絶縁性レール
12b 第2絶縁性レール
13 外筒体
15 金属線維
16 給電電極
17 袴
18 金属布
20 金属電機子
100 電磁加速装置
DESCRIPTION OF SYMBOLS 1 Pulse power supply 10 Accelerating cylinder 11a 1st conductive rail 11b 2nd conductive rail 12a 1st insulating rail 12b 2nd insulating rail 13 Outer cylinder 15 Metal fiber 16 Feed electrode 17 袴 18 Metal cloth 20 Metal armature 100 Electromagnetic accelerator

Claims (3)

平行螺旋状の一対の導電性レールと、それら導電性レールの間に挟まれる断面輪郭円状の金属電機子と、前記導電性レールの一端側から給電して一方の導電性レール−金属電機子−他方の導電性レールと大電流を流す電源装置とを具備したことを特徴とする電磁加速装置。   A pair of conductive rails in parallel spiral shape, a metal armature having a circular cross-sectional outline sandwiched between the conductive rails, and one conductive rail-metal armature fed from one end side of the conductive rail An electromagnetic acceleration device comprising the other conductive rail and a power supply device for passing a large current. 請求項1に記載の電磁加速装置において、前記導電性レールを金属繊維でブラシ構造に構成したことを特徴とする電磁加速装置。   2. The electromagnetic accelerator according to claim 1, wherein the conductive rail is formed of a metal fiber in a brush structure. 請求項1に記載の電磁加速装置において、前記導電性レールを金属布を重ねた構造に構成したことを特徴とする電磁加速装置。
2. The electromagnetic accelerator according to claim 1, wherein the conductive rail has a structure in which metal cloths are stacked.
JP2006073737A 2006-03-17 2006-03-17 Electromagnetic accelerator Active JP4489041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073737A JP4489041B2 (en) 2006-03-17 2006-03-17 Electromagnetic accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073737A JP4489041B2 (en) 2006-03-17 2006-03-17 Electromagnetic accelerator

Publications (2)

Publication Number Publication Date
JP2007247996A true JP2007247996A (en) 2007-09-27
JP4489041B2 JP4489041B2 (en) 2010-06-23

Family

ID=38592501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073737A Active JP4489041B2 (en) 2006-03-17 2006-03-17 Electromagnetic accelerator

Country Status (1)

Country Link
JP (1) JP4489041B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281678A (en) * 2008-05-23 2009-12-03 Japan Steel Works Ltd:The Solid armature
JP2016080461A (en) * 2014-10-15 2016-05-16 日油株式会社 Speed measurement device of bullet inside bore
CN110631413A (en) * 2019-08-30 2019-12-31 南京理工大学 Electromagnetic gun with guide rail and rifling combined in segmented mode
CN113624069A (en) * 2021-08-08 2021-11-09 南京理工大学 Armature structure for improving rotation stability of electric conductor in rail type electromagnetic transmitter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317499A (en) * 1989-06-15 1991-01-25 Ishikawajima Harima Heavy Ind Co Ltd Rotation type electromagnetic accelerator
JPH05223498A (en) * 1991-10-25 1993-08-31 Tzn Forschungs & Entwicklungszentrum Unterluess Gmbh Rail gun
JPH07311541A (en) * 1994-05-16 1995-11-28 Kobe Steel Ltd Electro-magnetic accelerating tube
US20030137377A1 (en) * 2002-01-22 2003-07-24 The Curators Of The University Of Missouri Apparatus for commutation of a helical coil launcher

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317499A (en) * 1989-06-15 1991-01-25 Ishikawajima Harima Heavy Ind Co Ltd Rotation type electromagnetic accelerator
JPH05223498A (en) * 1991-10-25 1993-08-31 Tzn Forschungs & Entwicklungszentrum Unterluess Gmbh Rail gun
JPH07311541A (en) * 1994-05-16 1995-11-28 Kobe Steel Ltd Electro-magnetic accelerating tube
US20030137377A1 (en) * 2002-01-22 2003-07-24 The Curators Of The University Of Missouri Apparatus for commutation of a helical coil launcher

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281678A (en) * 2008-05-23 2009-12-03 Japan Steel Works Ltd:The Solid armature
JP2016080461A (en) * 2014-10-15 2016-05-16 日油株式会社 Speed measurement device of bullet inside bore
CN110631413A (en) * 2019-08-30 2019-12-31 南京理工大学 Electromagnetic gun with guide rail and rifling combined in segmented mode
CN110631413B (en) * 2019-08-30 2021-07-13 南京理工大学 Electromagnetic gun with guide rail and rifling combined in segmented mode
CN113624069A (en) * 2021-08-08 2021-11-09 南京理工大学 Armature structure for improving rotation stability of electric conductor in rail type electromagnetic transmitter
CN113624069B (en) * 2021-08-08 2023-01-24 南京理工大学 Armature structure for improving rotation stability of conductor in track type electromagnetic transmitter

Also Published As

Publication number Publication date
JP4489041B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4489041B2 (en) Electromagnetic accelerator
RU2678240C2 (en) Engine for spacecraft and spacecraft comprising such engine
JP6802262B2 (en) Electromagnetic fluid generator
US11025112B2 (en) Electrical machine rotor
JP2015511287A (en) Hall effect thruster
JP2019050693A (en) Rotor
JPH06303732A (en) Motor and electromagnetic coil assembly
JP2009303446A (en) Permanent magnet motor
JP5730273B2 (en) Electromagnetic accelerator
JP6669036B2 (en) Rotating electric machine
JP2008128144A (en) Wind turbine generator
TWI609554B (en) Electrical rotating machine
WO2001031279A2 (en) Projectile for use in an electromagnetic launcher and method therefor
US8132562B1 (en) ILP rail-gun armature and rails
US5101728A (en) Precision guided munitions alternator
JP2010203661A (en) Directional high explosive shell
JP2019071763A (en) Rotor, rotary electric machine, and method for manufacturing coated tube
JP2018503774A (en) Hall effect thruster
US20220187048A1 (en) Energy harvesting assemblies
JP2016033256A (en) Arc evaporation source
JP2008302461A (en) Electric discharge machining device and method
JP2023025482A (en) Rotor of electric motor
JP5483779B1 (en) Flying object with thermal battery
RU2764496C1 (en) Magnetoplasma electric jet engine
Gao et al. Experimental study of MHD-assisted mixing and combustion under low pressure conditions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4489041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250