JP2007247226A - Method of estimating ground displacement and method of determining ground liquefaction - Google Patents

Method of estimating ground displacement and method of determining ground liquefaction Download PDF

Info

Publication number
JP2007247226A
JP2007247226A JP2006070757A JP2006070757A JP2007247226A JP 2007247226 A JP2007247226 A JP 2007247226A JP 2006070757 A JP2006070757 A JP 2006070757A JP 2006070757 A JP2006070757 A JP 2006070757A JP 2007247226 A JP2007247226 A JP 2007247226A
Authority
JP
Japan
Prior art keywords
ground
displacement
liquefaction
characteristic value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070757A
Other languages
Japanese (ja)
Inventor
Chikashi Kawabe
史 川邊
Mare Morimoto
希 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2006070757A priority Critical patent/JP2007247226A/en
Publication of JP2007247226A publication Critical patent/JP2007247226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the estimation of ground displacement and the determination of ground liquefaction based on various ground data. <P>SOLUTION: In a method of estimating the ground displacement caused by an earthquake, the ground displacement corresponding to a ground characteristic value of a stratum at an objective point with respect to arbitrary earthquake waves is calculated by using a correlation graph between the pre-calculated ground characteristic value and the ground displacement. Herein a relationship between the ground characteristic value with respect to essential earthquake waves and the ground displacement is obtained by a regression analysis based on data plotted on a graph between the ground characteristic values of a plurality of objective points and the ground displacement at the point with respect to the essential earthquake waves, and the ground displacements with respect to the arbitrary earthquake waves at a plurality of model points are obtained by using the ground data of the plotted model points that are approximated by a regression formula obtained from the regression analysis, and the regression analysis is performed again based on the obtained ground displacement and the ground characteristic values at the respective model points, to thereby calculate the correlation graph. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤変位の推定方法および地盤の液状化判定方法に関し、特に簡便に地震による地盤変位の推定および地盤の液状化判定をする方法に関するものである。   The present invention relates to a ground displacement estimation method and ground liquefaction determination method, and more particularly to a method for easily estimating ground displacement due to an earthquake and determining ground liquefaction.

地中送電用の構造物の耐震性評価には、地震による地盤の水平変位量を推定し、かつ、液状化の発生の有無を判定して、地盤が液状化する場合には液状化による地盤の沈下量を求める必要がある。そして、前記地盤の水平変位、地盤の液状化および地盤の沈下により発生する外力とこの外力に対する地中送電用の構造物の耐力を把握することが必要となる。ここで、前記外力は、地盤の土質の動的非線形性を考慮した地震応答解析用ソフトウエアにて高精度に算出可能である(例えば非特許文献1参照)。
「一次元地盤地震応答解析ソフトウェアユーザーマニアル」 中部電力株式会社 平成14年発行
For the seismic evaluation of structures for underground power transmission, the horizontal displacement of the ground due to the earthquake is estimated, the presence or absence of liquefaction is judged, and if the ground liquefies, the ground due to liquefaction It is necessary to calculate the amount of settlement. And it is necessary to grasp the external force generated by the horizontal displacement of the ground, the liquefaction of the ground and the subsidence of the ground, and the strength of the structure for underground power transmission against this external force. Here, the external force can be calculated with high accuracy by software for earthquake response analysis in consideration of the dynamic nonlinearity of the soil soil (for example, see Non-Patent Document 1).
"One-dimensional ground earthquake response analysis software user manual" Chubu Electric Power Co., Inc. issued in 2002

しかし、上述の従来の地震応答解析用ソフトウェアでは、地盤を下から順に礫質土層、シルト層、粘性土層、砂質土層等に区分し、各層ごとに「地層の下端深度」、「湿潤単位体積重量」、「せん断波速度」、「せん断弾性係数」、「ひずみ依存曲線」等の地盤データを測定する必要がある。このため、耐震性評価の対象となる地中送電線の構造物が大規模で広範囲に及ぶ場合には、非常に多くの地点の膨大な地盤データを上述の地震応答解析用ソフトウェアに入力する必要があるため、多大な労力と時間を要するという問題があった。
そこで、本発明が解決しようとする課題は、被対象地点の各種地盤特性値から簡易に該被対象地点の地盤変位の推定および地盤の液状化判定を行う方法を提供することである。
However, the conventional earthquake response analysis software described above divides the ground into a gravel soil layer, a silt layer, a cohesive soil layer, a sandy soil layer, etc. in order from the bottom. It is necessary to measure ground data such as “wet unit volume weight”, “shear wave velocity”, “shear elastic modulus”, “strain dependence curve”. For this reason, when the structure of underground power transmission lines subject to seismic evaluation is large and extensive, it is necessary to input a huge amount of ground data at a large number of points to the above-mentioned earthquake response analysis software. Therefore, there is a problem that it takes a lot of labor and time.
Therefore, the problem to be solved by the present invention is to provide a method for easily estimating the ground displacement of the target point and determining the liquefaction of the ground from various ground characteristic values of the target point.

上記課題を解決するため、請求項1記載の発明は、地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値を用いて算定する地盤変位の推定方法において、任意の地震波に対して被対象地点の地層から求めた地盤特性値に対応した地盤変位を、予め算定した地盤特性値と地盤変位との相関グラフを用いて算定することを特徴とする地盤変位の推定方法である。
請求項1記載の発明により、地盤特性値と地盤変位との相関グラフを予め算定しておき、この相関グラフを用いて、任意の地震波に対して被対象地点の地層から求めた地盤特性値に対応した地盤変位を算定して、この算定した地盤変位が発生すると推定することができる。
In order to solve the above-mentioned problem, the invention according to claim 1 is a ground displacement estimation method for calculating the influence of the ground of the target point by the occurrence of an earthquake using the ground characteristic value of the target point. Estimation of ground displacement by calculating the ground displacement corresponding to the ground property value obtained from the stratum of the target site for the seismic wave using a correlation graph between the ground property value calculated in advance and the ground displacement Is the method.
According to the first aspect of the present invention, a correlation graph between the ground characteristic value and the ground displacement is calculated in advance, and using this correlation graph, the ground characteristic value obtained from the formation of the target point with respect to an arbitrary seismic wave is obtained. By calculating the corresponding ground displacement, it can be estimated that the calculated ground displacement occurs.

さらに、請求項2記載の発明は、請求項1記載の地盤変位の推定方法であって、基礎となる地震波に対して、複数の各対象地点における地盤特性値と該各対象地点における地盤変位を、地盤特性値と地盤変位とをそれぞれ軸とするグラフ上にプロットし、該プロットしたデータから、前記基礎となる地震波に対する地盤特性値と地盤変位との関係を回帰分析により求め、該回帰分析から求められた回帰式上から、より近似しているプロットされた複数の地点をモデル地点とし、この複数のモデル地点の地盤データを抽出し、抽出した地盤データを用いて、該複数のモデル地点における、任意の地震波に対する地盤変位を求め、求めた任意の地震波に対する地盤変位と前記モデル地点の地盤特性値とにより再度回帰分析をすることにより、前記相関グラフを算定することを特徴とする請求項1記載の地盤変位の推定方法である。
請求項2記載の発明により、基礎となる地震波に対する地盤特性値と地盤変位との回帰分析式により近似している複数のモデル地点を選択し、このモデル地点を例えば15箇所程度にすることがでる。そして、複数のモデル地点の地盤データにより任意の地震波に対する地盤変位を求めて、求めた地盤変位とモデル地点の地盤特性値とにより、再度回帰分析するときに、多くの地点の地盤特性値が不要になる。このため、簡便に再度の回帰分析をして前記相関グラフを算定することができる。そして、前記相関グラフを用いて任意の地震波に対する多数地点の地盤変位を推定することができる。
Further, the invention according to claim 2 is the ground displacement estimation method according to claim 1, wherein the ground characteristic value at each of a plurality of target points and the ground displacement at each of the target points are calculated with respect to a base seismic wave. Then, plotting on the graph with the ground characteristic value and the ground displacement as axes respectively, and from the plotted data, obtain the relationship between the ground characteristic value and the ground displacement with respect to the base seismic wave by regression analysis, and from the regression analysis From the obtained regression equation, a plurality of plotted points that are more approximated are used as model points, and ground data of the plurality of model points are extracted. Using the extracted ground data, the points at the plurality of model points are extracted. The ground displacement for an arbitrary seismic wave is obtained, and by performing a regression analysis again with the ground displacement for the obtained arbitrary seismic wave and the ground characteristic value of the model point, A method of estimating ground displacement according to claim 1, wherein the calculating the relationship graph.
According to the second aspect of the present invention, a plurality of model points that are approximated by a regression analysis formula between the ground characteristic value and the ground displacement with respect to the base seismic wave are selected, and the model points can be reduced to, for example, about 15 points. . Then, when the ground displacement for an arbitrary seismic wave is obtained from the ground data of multiple model points, and the regression analysis is performed again using the obtained ground displacement and the ground property values of the model points, the ground property values of many points are not required. become. Therefore, the correlation graph can be calculated by simply performing a regression analysis again. And the ground displacement of many points with respect to arbitrary seismic waves can be estimated using the correlation graph.

さらに、請求項3記載の発明は、請求項1または2記載の地盤変位の推定方法であって、前記地盤特性値が地盤の固有周期であり、かつ、前記地盤変位が水平変位であることを特徴とする地盤変位の推定方法である。
すなわち、本発明者らは過去の地震のデータから、地盤の固有周期と地震波に対する地盤の水平変位量の間に相関関係があることを見出し、本発明に至ったものであり、地震波に対する地盤の水平変位は、地盤の固有周期により容易に推定が可能である。
Furthermore, the invention according to claim 3 is the ground displacement estimation method according to claim 1 or 2, wherein the ground characteristic value is a natural period of the ground, and the ground displacement is a horizontal displacement. This is a characteristic ground displacement estimation method.
That is, the present inventors have found from the past earthquake data that there is a correlation between the natural period of the ground and the horizontal displacement of the ground relative to the seismic wave, and have reached the present invention. The horizontal displacement can be easily estimated from the natural period of the ground.

さらに、請求項4記載の発明は、地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値と該被対象地点の地層における補正N値の第1閾値以下の地層厚とを用いて算定する地盤の液状化判定方法であって、任意の地震波に対する被対象地点の地盤の液状化判定を、該被対象地点の地盤特性値と補正N値の第1閾値以下の地層厚とからプロットされる点と、予め算定した該地盤特性値と該補正N値の第1閾値以下の地層厚と相関関係にある液状化判定境界の閾値グラフとを比較することにより評価することを特徴とする地盤の液状化判定方法である。
すなわち、本発明者らは、地震発生時の地盤の液状化の発生有無は、地盤の特性値と補正N値の第1閾値(例えば、10)以下の地層厚とに依存することを見出し、本発明に至ったものであり、該任意の地震波に対する地盤特性値と補正N値の第1閾値以下の地層厚と相関関係にある液状化判定境界を予め算定し、この液状化判定境界と該被対象地点の地盤特性値と補正N値の第1閾値以下の地層厚とからプロットされる点とを比較して、地盤の液状化発生有無を判定することができる。
Furthermore, the invention according to claim 4 is the formation below the first threshold value of the ground characteristic value of the target point and the correction N value in the stratum of the target point affected by the occurrence of the earthquake. A ground liquefaction determination method that uses a thickness to calculate a ground liquefaction determination at a target point with respect to an arbitrary seismic wave, which is equal to or less than a first threshold value of the ground characteristic value of the target point and a correction N value. Evaluation is performed by comparing the points plotted from the formation thickness with the threshold graph of the liquefaction determination boundary correlated with the previously calculated ground characteristic value and the formation thickness below the first threshold value of the corrected N value. This is a ground liquefaction determination method.
That is, the present inventors have found that the presence or absence of liquefaction of the ground at the time of the earthquake depends on the characteristic value of the ground and the formation thickness below the first threshold value (for example, 10) of the correction N value, The present invention has been achieved, and a liquefaction determination boundary correlated with a ground characteristic value with respect to the arbitrary seismic wave and a formation thickness below a first threshold value of the correction N value is calculated in advance, and the liquefaction determination boundary and the liquefaction determination boundary The presence or absence of liquefaction of the ground can be determined by comparing the point plotted from the ground characteristic value of the target point and the formation thickness below the first threshold value of the correction N value.

さらに、請求項5記載の発明は、被対象地点が液状化すると判定されたときに、液状化後の地盤沈下量を,予め算定した補正N値の第2閾値以下の地層厚と液状化後の地盤沈下量との相関グラフを用いて、算定することを特徴とする地盤の液状後の地盤沈下量の推定方法である。
すなわち、本発明者らは、液状化後の地盤沈下量は、内陸直下型地震やプレート境界型地震等の波形の違いにかかわらず、補正N値の第2閾値(例えば、15)以下の地層厚と相関関係が認められることを見出し、本発明に至ったものであり、補正N値の第2閾値以下の地層厚と液状化後の地盤沈下量との相関グラフを予め算定し、算定した相関グラフを用いて、被対象地点における液状化後の地盤沈下量を算定することができる。
Furthermore, in the invention according to claim 5, when it is determined that the target point is liquefied, the ground subsidence amount after liquefaction is determined by calculating the subsurface thickness below the second threshold value of the corrected N value calculated in advance and after liquefaction. It is the estimation method of the amount of ground subsidence after the liquid of the ground characterized by calculating using the correlation graph with the amount of ground subsidence.
That is, the present inventors have found that the ground subsidence amount after liquefaction is a stratum below the second threshold value (for example, 15) of the corrected N value, regardless of the difference in waveforms such as inland earthquakes and plate boundary earthquakes. It was found that there is a correlation with the thickness, and the present invention has been achieved, and a correlation graph between the layer thickness below the second threshold value of the corrected N value and the amount of ground subsidence after liquefaction was calculated in advance. Using the correlation graph, the amount of land subsidence after liquefaction at the target point can be calculated.

請求項1記載の発明によれば、任意の地震波に対して、被対象地点の各種地盤特性値から簡易に該被対象地点の地盤変位を推定することができる。
さらに、請求項2記載の発明によれば、請求項1記載の発明の効果とともに、請求項1記載の発明より簡易な方法で多くの該被対象地点の地盤変位を推定することができる。
さらに、請求項3記載の発明によれば、請求項1または2記載の発明の効果とともに、地震波に伴う地盤の水平変位の推定が容易になる。
さらに、請求項4記載の発明によれば、地震波による地盤の液状化を簡易に判定することができる。
さらに、請求項5記載の発明によれば、液状化後の地盤沈下量を簡易に推定することができる。
According to the first aspect of the present invention, the ground displacement of the target point can be easily estimated from various ground characteristic values of the target point for any seismic wave.
Furthermore, according to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it is possible to estimate the ground displacement at a number of the target points by a simpler method than the invention described in claim 1.
Furthermore, according to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, estimation of the horizontal displacement of the ground accompanying the seismic wave is facilitated.
Furthermore, according to invention of Claim 4, the liquefaction of the ground by an earthquake wave can be determined easily.
Furthermore, according to the invention of Claim 5, the amount of ground subsidence after liquefaction can be estimated easily.

以下、本発明における実施の形態を図面に基づいて説明する。
図1は内陸直下型地震の地震波を示し、図2はプレート境界型地震の地震波を示し、図3は地盤の固有周期と地震動による水平変位の関係を示し、図4はモデル地点の地盤の固有周期と水平変位、補正N値10以下の地層厚および液状化指数PLとの関係を示し、図5は地盤の固有周期および補正N値10以下の地層厚と液状化指数PLとの関係の理論値を示し、図6は補正N値15の地層厚と沈下量との関係を示す。さらに、図7は地盤の固有周期および補正N値10以下の地層厚と液状化指数PLとの関係の実証データを示し、図8は補正N値15以下の地層厚と液状化後の沈下量との関係を示し、図9は地盤の水平変位と地中送電用構造物の変形状態の例を示し、図10は地盤の沈下による地中送電用構造物の変形状態の例を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig. 1 shows the seismic wave of an inland direct earthquake, Fig. 2 shows the seismic wave of a plate boundary type earthquake, Fig. 3 shows the relationship between the natural period of the ground and the horizontal displacement due to earthquake motion, and Fig. 4 shows the characteristic of the ground at the model site. Fig. 5 shows the relationship between the period and horizontal displacement, the formation thickness with a correction N value of 10 or less, and the liquefaction index PL. Fig. 5 shows the theory of the relationship between the natural period of the ground and the formation thickness with a correction N value of 10 or less and the liquefaction index PL. FIG. 6 shows the relationship between the formation thickness of the corrected N value 15 and the amount of subsidence. Further, FIG. 7 shows empirical data on the relationship between the natural period of the ground, the formation thickness with a corrected N value of 10 or less, and the liquefaction index PL, and FIG. 8 shows the formation thickness with a corrected N value of 15 or less and the subsidence amount after liquefaction. FIG. 9 shows an example of the horizontal displacement of the ground and the deformation state of the underground power transmission structure, and FIG. 10 shows an example of the deformation state of the underground power transmission structure due to the ground subsidence.

(地盤変位の推定方法)
地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値を用いて算定する地盤変位の推定方法において、任意の地震波に対して被対象地点の地層から求めた地盤特性値に対応した地盤変位を、予め算定した地盤特性値と地盤変位との相関グラフを用いて算定する。
ここで、「地盤特性値」は、例えば図3に示す地盤の固有周期である。また、「地盤変位」は、例えば水平変位(図9参照)および垂直変位である。そして、「相関グラフ」は、例えば図3に示す相関グラフである。
(Ground displacement estimation method)
In the ground displacement estimation method that calculates the influence of the ground at the target point by the occurrence of an earthquake using the ground characteristic value of the target point, the ground characteristics obtained from the stratum of the target point for any seismic wave The ground displacement corresponding to the value is calculated using a correlation graph between the ground property value calculated in advance and the ground displacement.
Here, the “ground characteristic value” is a natural period of the ground shown in FIG. 3, for example. The “ground displacement” is, for example, a horizontal displacement (see FIG. 9) and a vertical displacement. The “correlation graph” is, for example, the correlation graph shown in FIG.

具体的には、まず、基礎となる地震波に対して、複数の各対象地点における地盤特性値と該各対象地点における地盤変位を、地盤特性値と地盤変位とをそれぞれ軸とするグラフ上にプロットし、該プロットしたデータから、前記基礎となる地震波に対する地盤特性値と地盤変位との関係を最小2乗法による回帰分析により求める。
ここで、「基礎となる地震波」は、例えば図1に示す内陸直下型地震の地震波、図2に示すプレート境界型地震の地震波である。なお、ここで、1gal=0.01m/sである。また、「回帰式」は例えば、図3で、xを横軸の地盤の固有周期Tg(s)とし、yを縦軸の水平変位δmax(cm)とすると、内陸直下型地震においては
y=39.267x+1.6232
である。また、図3のプレート境界型地震では
y=6.2804x+4.4335
である。
Specifically, first, with respect to the base seismic wave, the ground characteristic value at each of a plurality of target points and the ground displacement at each target point are plotted on a graph with the ground characteristic value and the ground displacement as axes. Then, from the plotted data, the relationship between the ground characteristic value and the ground displacement with respect to the base seismic wave is obtained by regression analysis using the least square method.
Here, the “basic seismic wave” is, for example, the seismic wave of the inland earthquake shown in FIG. 1 or the seismic wave of the plate boundary type earthquake shown in FIG. Here, 1 gal = 0.01 m / s 2 . The “regression equation” is, for example, in FIG. 3, where x is the natural period Tg (s) of the ground on the horizontal axis and y is the horizontal displacement δmax (cm) on the vertical axis. 39.267x + 1.6232
It is. In the plate boundary earthquake shown in Fig. 3, y = 6.2804x + 4.4335
It is.

そして、該回帰分析から求められた回帰式上から、前記プロットされた地点のうち、より回帰式に近似しているプロットされた複数の地点をモデル地点とし、この複数のモデル地点の地盤データを抽出する。
ここで、「モデル地点」は、例えば、図4に示す15箇所の地点である。なお、図4の縦軸の補正N値(等価N値):Naは、
Na={170N/(σ+70)}×C+C
である。なお、NはN値を示す。ここで、N値は、所定のボールを所定の高さから地面に落下させたときに地面が30cm凹むまでの落下回数をいう。なお、地盤が硬くなるほど、N値が大きくなる。また、σは有効上載圧(圧力の影響を除去するため、N値を有効上載圧100KN/m 相当として、土本来の強さを算出する。)である。
なお、細粒分含有率をFCとすると、
0%≦FC<10%では、 C=1で、C=0である。
10%≦FC<60%では、C=(FC+40)/50で、
=(FC−10)/18である。
FC≧60%では、C=FC/20−1で、C=(FC−10)/18である。
また、「より近似しているプロットされた複数の地点の地盤データ」はモデル地盤データであり、この地盤データは、地盤を構成する下層から上層までの各層のデータであり、例えば、「地盤の地層の下端深度」、「湿潤単位体積重量」、「せん断波速度」、「せん断弾性係数」、「ひずみ依存曲線」等である。
そして、前記地盤データを用いて従来の地震応答解析用ソフトウエアにより、該複数のモデル地点における、任意の地震波に対する地盤変位を求め、求めた地盤変位と前記モデル地点の地盤特性値とにより再度回帰分析をすることにより、前記相関グラフ(例えば、図4の下図に示す。)を算定する。
Then, from the regression equation obtained from the regression analysis, among the plotted points, a plurality of plotted points that are more approximate to the regression equation are used as model points, and the ground data of the plurality of model points is obtained. Extract.
Here, the “model points” are, for example, 15 points shown in FIG. Note that the correction N value (equivalent N value) on the vertical axis in FIG.
Na = {170 N / (σ v +70)} × C 1 + C 2
It is. N represents an N value. Here, the N value refers to the number of drops until the ground is recessed 30 cm when a predetermined ball is dropped from the predetermined height onto the ground. In addition, N value becomes large, so that the ground becomes hard. Further, the sigma v (to remove the influence of the pressure, as active on No圧100KN / m 2 corresponds to N values, to calculate the inherent strength soil.) Effective on No圧it is.
If the fine particle content is FC,
For 0% ≦ FC <10%, C 1 = 1 and C 2 = 0.
For 10% ≦ FC <60%, C 1 = (FC + 40) / 50,
A C 2 = (FC-10) / 18.
For FC ≧ 60%, C 1 = FC / 20-1 and C 2 = (FC-10) / 18.
In addition, “the ground data of plotted points that are more approximate” is model ground data, and this ground data is data of each layer from the lower layer to the upper layer constituting the ground. These are the bottom depth of the stratum, “wet unit volume weight”, “shear wave velocity”, “shear elastic modulus”, “strain dependence curve” and the like.
Then, using the ground data, the conventional seismic response analysis software obtains the ground displacement for any seismic wave at the plurality of model points, and the regression is performed again based on the found ground displacement and the ground property values of the model points. By performing the analysis, the correlation graph (for example, shown in the lower diagram of FIG. 4) is calculated.

また、「地盤の固有周期Tg」は例えば図3、図4および図5に示されているものである。具体的には、

Figure 2007247226

である。なお、Hは第i層の厚さ(m)であり、Vsiは第i層のせん断弾性波速度(m/s)である。
なお、粘性土では、Vsi=100×N (1/3) (1≦N≦25)
砂質土では、Vsi=80×N (1/3) (1≦N≦50)
となる。 Further, “the natural period Tg of the ground” is shown in, for example, FIGS. 3, 4, and 5. In particular,
Figure 2007247226

It is. Note that H i is the thickness (m) of the i-th layer, and V si is the shear elastic wave velocity (m / s) of the i-th layer.
In viscous soil, V si = 100 × N i (1/3) (1 ≦ N i ≦ 25)
In sandy soil, V si = 80 × N i (1/3) (1 ≦ N i ≦ 50)
It becomes.

また、「水平変位δmax」は、例えば図9に示されているものであり、図3および図4の縦軸に示されている。
図9においては、地中2に埋設されたマンホール3に接合個所5で接合された管路4が示されている。なお、4aは管路4の中心軸である。地中2の水平変位δmaxによる管路4の水平方向の最大曲げ個所4b、4cにおいて管路4が破損するおそれがある。また、地中2の水平方向の地盤バネ7は管路4の両側において示されている。この地盤バネ7は地盤の水平変位による外力が管路4に作用する場合の地盤の弾性を示している。
Further, the “horizontal displacement δmax” is shown in FIG. 9, for example, and is shown on the vertical axis in FIG. 3 and FIG.
In FIG. 9, a pipe line 4 joined to a manhole 3 buried in the ground 2 at a joint point 5 is shown. Reference numeral 4 a denotes a central axis of the pipe 4. There is a possibility that the pipeline 4 may be broken at the maximum bending portions 4b and 4c in the horizontal direction of the pipeline 4 due to the horizontal displacement δmax of the underground 2. Further, the ground spring 7 in the horizontal direction of the underground 2 is shown on both sides of the pipeline 4. The ground spring 7 indicates the elasticity of the ground when an external force due to the horizontal displacement of the ground acts on the pipe 4.

(地盤の液状化判定方法)
さらに、本発明の地盤の液状化判定方法は、地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値と該被対象地点の地層における補正N値10以下の地層厚とを用いて算定する地盤の液状化判定方法において、任意の地震波に対する被対象地点の地盤の液状化判定を、該被対象地点の地盤特性値と補正N値10以下の地層厚とからプロットされる点と、予め算定した該地盤特性値と該補正N値10以下の地層厚と相関関係にある液状化判定境界の閾値グラフとを比較することにより評価する。
ここで、「液状化判定境界の閾値グラフ」は、図4および図5に示されている閾値直線(PL=5判別線)である。
図5に、液状化指数PLを使用して、液状化の危険度を示す。PLは20m以浅の液状化程度の指標であり、下記のようにして算出される。

Figure 2007247226

ここで、FLは液状化に対する抵抗率であり、xは土層厚(m)である。
0<PL≦5では液状化の危険度は低く、5<PL≦15では液状化の危険度が高くなり、さらに、PL>15では液状化の危険度が極めて高いことになる。 (Method of judging liquefaction of ground)
Furthermore, the ground liquefaction determination method according to the present invention is the ground layer having a ground characteristic value of the target point and a correction N value of 10 or less in the base layer of the target point due to the occurrence of an earthquake. In the ground liquefaction judgment method calculated using the thickness, plot the ground liquefaction judgment at the target point for any seismic wave from the ground characteristic value of the target point and the stratum thickness with a correction N value of 10 or less. This is evaluated by comparing the ground characteristic value calculated in advance with the threshold graph of the liquefaction determination boundary correlated with the formation thickness of the correction N value of 10 or less.
Here, the “threshold graph of the liquefaction determination boundary” is the threshold straight line (PL = 5 discriminant line) shown in FIG. 4 and FIG.
FIG. 5 shows the risk of liquefaction using the liquefaction index PL. PL is an index of the degree of liquefaction below 20 m and is calculated as follows.
Figure 2007247226

Here, FL is the resistivity against liquefaction, and x is the soil layer thickness (m).
When 0 <PL ≦ 5, the risk of liquefaction is low. When 5 <PL ≦ 15, the risk of liquefaction is high, and when PL> 15, the risk of liquefaction is extremely high.

(地盤沈下量の推定方法)
被対象地点が液状化すると判定されたときに、さらに、液状化後の地盤沈下量を,予め算定した補正N値15以下の地層厚と液状化後の地盤沈下量との相関グラフを用いて、算定する。具体的には、前記相関グラフは図6に示されている。図6において、xを横軸の値とし、yを縦軸の値とすると、y=3.1414x+10.642は内陸直下型地震のときの液状化後の地盤沈下量のプロットした各データに対応する相関グラフを示し、y=2.7993x+11.726はプレート境界型地震のときの液状化後の地盤沈下量のプロットした各データに対応する相関グラフを示し、両相関グラフは接近した値になっている。
なお、図10は、図9に対応するものであり、地盤沈下量を示している。図10においては、地面1および地中2の管路4が二点鎖線で示すように沈下している。なお、上下方向の地盤バネ6が示されている。この場合、接合個所5で破損するおそれがある。
(Estimation method of land subsidence)
When it is determined that the target site is liquefied, the subsidence amount after liquefaction is further calculated using a correlation graph between the subsidence thickness after the correction N value of 15 or less calculated in advance and the subsidence amount after liquefaction. Calculate. Specifically, the correlation graph is shown in FIG. In FIG. 6, where x is the value on the horizontal axis and y is the value on the vertical axis, y = 3.1414x + 10.642 corresponds to the plotted data of land subsidence after liquefaction during an inland earthquake Y = 2.7993x + 11.726 shows the correlation graph corresponding to each plotted data of land subsidence amount after liquefaction at the time of plate boundary type earthquake, and both correlation graphs become close values ing.
FIG. 10 corresponds to FIG. 9 and shows the amount of ground subsidence. In FIG. 10, the pipelines 4 of the ground 1 and the underground 2 are sinking as indicated by a two-dot chain line. Note that the ground spring 6 in the vertical direction is shown. In this case, there is a risk of damage at the joint 5.

以上の構成の地盤の変位の推定方法、地盤の液状化判定方法および地盤沈下量の推定方法により以下の作用がある。
任意の地震波に対する地盤特性値と地盤変位との相関グラフを予め算定しておき、この相関グラフを用いて、任意の地震波に対して被対象地点の地層から求めた地盤特性値に対応した地盤変位を算定して、この算定した地盤変位が発生すると推定することができる。
According to the ground displacement estimation method, the ground liquefaction determination method, and the ground subsidence estimation method having the above-described configuration, the following effects are obtained.
A correlation graph between the ground characteristic value and the ground displacement for any seismic wave is calculated in advance, and the ground displacement corresponding to the ground characteristic value obtained from the stratum at the target point for this arbitrary seismic wave is calculated using this correlation graph. It can be estimated that the calculated ground displacement occurs.

さらに、基礎となる地震波に対する地盤特性値と地盤変位との回帰分析式により近似している複数のモデル地点を選択し、このモデル地点を例えば15箇所程度にすることがでる。そして、複数のモデル地点の地盤データにより任意の地震波に対する地盤変位を求めて、求めた地盤変位とモデル地点の地盤特性値とにより、再度回帰分析するときに、多くの地点の地盤特性値が不要になる。このため、簡便に再度の回帰分析をして前記相関グラフを算定することができる。そして、前記相関グラフを用いて任意の地震波に対する多数地点の地盤変位を推定することができる。
なお、複数のモデル地点を15箇所程度にすることができるので、任意の地震波に対して再度回帰分析するときに、多くの地点の地盤特性値のデータが不要になる。このため、簡便に再度回帰分析をすることができる。
Furthermore, it is possible to select a plurality of model points that are approximated by a regression analysis formula between the ground characteristic value and the ground displacement with respect to the base seismic wave, and to set the number of model points to about 15, for example. Then, when the ground displacement for an arbitrary seismic wave is obtained from the ground data of multiple model points, and the regression analysis is performed again using the obtained ground displacement and the ground property values of the model points, the ground property values of many points are not required. become. Therefore, the correlation graph can be calculated by simply performing a regression analysis again. And the ground displacement of many points with respect to arbitrary seismic waves can be estimated using the correlation graph.
In addition, since a plurality of model points can be set to about fifteen, when the regression analysis is performed again with respect to an arbitrary seismic wave, data of ground characteristic values at many points becomes unnecessary. For this reason, the regression analysis can be easily performed again.

地震波に伴う地盤の水平変位は、地盤の固有周期で予測可能であるので、上記実施の形態のとおり、前記地盤特性値として地盤の固有周期を用い、かつ、前記地盤変位を水平変位とすることにより、地盤変位の推定が容易になる。
なお、本発明は上記実施の形態に限定されず、地盤特性値と地盤変位との間に相関関係が認められるものであればよく、地盤の固有周期と水平変位以外の組み合わせであってもよい。
Since the horizontal displacement of the ground due to seismic waves can be predicted with the natural period of the ground, as in the above embodiment, the natural period of the ground is used as the ground characteristic value, and the ground displacement is set as the horizontal displacement. This makes it easy to estimate the ground displacement.
Note that the present invention is not limited to the above-described embodiment, and may be any combination as long as a correlation is recognized between the ground characteristic value and the ground displacement, and may be a combination other than the natural period of the ground and the horizontal displacement. .

地盤の液状化は、地盤の特性値と補正N値10以下の地層厚とに依存するので、該任意の地震波に対する地盤特性値と補正N値10以下の地層厚と相関関係にある液状化判定境界を予め算定し、この液状化判定境界と該被対象地点の地盤特性値と補正N値10以下の地層厚とからプロットされる点とを比較して、地盤の液状化を判定することができる。
図7は、上記「地盤の液状化の判定方法」を兵庫県南部地震による地盤の液状化で検証した結果を示している。図7においては、上記「地盤の液状化の判定方法」は、実測した10個所のうち、「液状化有」の8個所全てで正しく、「液状化無」の2個所のうち1箇所で正しい結果となった。
Liquefaction of the ground depends on the characteristic value of the ground and the thickness of the corrected N value of 10 or less. Therefore, the liquefaction judgment correlates with the ground characteristic value for the arbitrary seismic wave and the thickness of the corrected N value of 10 or less. Calculating the boundary in advance and comparing the liquefaction determination boundary with the point plotted from the ground characteristic value of the target point and the layer thickness of the correction N value of 10 or less to determine liquefaction of the ground it can.
FIG. 7 shows the result of verifying the above “determination method of ground liquefaction” by ground liquefaction caused by the Hyogo-ken Nanbu Earthquake. In FIG. 7, the above “determination method of ground liquefaction” is correct in all 8 points of “with liquefaction” out of 10 points actually measured, and correct in 1 of 2 points of “no liquefaction”. As a result.

液状化後の地盤沈下量は、内陸直下型地震やプレート境界型地震等の波形の違いに係らず、補正N値15以下の地層厚と相関が認められるので、補正N値15以下の地層厚と液状化後の地盤沈下量を,予め算定した補正N値15以下の地層厚と液状化後の地盤沈下量との相関グラフを予め算定し、この相関グラフを用いて液状化後の地盤沈下量を算定することができる。
図8は、上記「補正N値15以下の地層厚と液状化後の地盤沈下量の相関グラフ」を神戸市での実測で検証した結果を示す。
The subsidence after liquefaction correlates with the formation thickness of corrected N value of 15 or less regardless of the difference in waveforms such as inland earthquakes and plate boundary earthquakes. The correlation graph of the subsidence thickness after the liquefaction and the subsidence amount after the liquefaction N value of 15 or less and the subsidence amount after liquefaction are calculated in advance. The quantity can be calculated.
FIG. 8 shows the result of verifying the above-mentioned “correlation graph of the layer thickness with a corrected N value of 15 or less and the amount of ground subsidence after liquefaction” by actual measurement in Kobe City.

なお、上記実施の形態において、補正N値について、その第1閾値を10とし、第2閾値を15としているが、これに限定されず、第1閾値および第2閾値を適切に選定することにより地盤の液状化有無の判定と液状化後の地盤沈下量の推定を行うことができる。
また、上記発明は、地震時の被害を想定することが可能であるため、保守個所にてそれぞれの設備の耐震性を評価することが可能である。そして、得られた評価結果を元に、地震発生時の設備点検・補修の優先順位付けが可能となる。
さらに、本発明は、管路を地中に埋設する電力業界のみならず、他の埋設事業者(ガス、上水、下水、通信事業)への適用が可能である。
In the above embodiment, the correction N value has a first threshold value of 10 and a second threshold value of 15. However, the present invention is not limited to this, but by appropriately selecting the first threshold value and the second threshold value. It is possible to determine whether the ground is liquefied and to estimate the amount of ground subsidence after liquefaction.
Moreover, since the said invention can assume the damage at the time of an earthquake, it is possible to evaluate the earthquake resistance of each installation in a maintenance location. And based on the obtained evaluation results, it becomes possible to prioritize equipment inspection and repair in the event of an earthquake.
Furthermore, the present invention can be applied not only to the electric power industry in which pipes are buried in the ground, but also to other embedders (gas, tap water, sewage, communication business).

内陸直下型地震の地震波を示すグラフである。It is a graph which shows the seismic wave of an inland direct type earthquake. プレート境界型地震の地震波を示すグラフである。It is a graph which shows the seismic wave of a plate boundary type earthquake. 地盤の固有周期と地震動による水平変位の関係を示すグラフである。It is a graph which shows the relationship between the natural period of a ground and the horizontal displacement by an earthquake motion. モデル地点の地盤の固有周期と水平変位、補正N値10以下の地層厚および液状化指数PLとの関係を示すグラフである。It is a graph which shows the relationship between the natural period of the ground of a model point, horizontal displacement, the formation thickness of correction | amendment N value 10 or less, and the liquefaction index PL. 地盤の固有周期および補正N値10以下の地層厚と液状化指数PLとの関係の理論値を示すグラフである。It is a graph which shows the theoretical value of the relationship between the natural period of a ground, the formation thickness of correction | amendment N value 10 or less, and the liquefaction index PL. 補正N値15の地層厚と沈下量との関係を示すグラフである。It is a graph which shows the relationship between the formation thickness of correction | amendment N value 15, and subsidence. 地盤の固有周期および補正N値10以下の地層厚と液状化指数PLとの関係の実証データを示すグラフである。It is a graph which shows the verification data of the relationship between the natural period of the ground, the formation thickness of correction | amendment N value 10 or less, and the liquefaction index PL. 補正N値15以下の地層厚と液状化後の沈下量との関係を示すグラフである。It is a graph which shows the relationship between formation thickness of correction | amendment N value 15 or less, and the amount of settlement after liquefaction. 地盤の水平変位と構造物の変形状態の例を示す説明図である。It is explanatory drawing which shows the example of the horizontal displacement of a ground, and the deformation | transformation state of a structure. 地盤の沈下による構造物の変形状態の例を示す説明図である。It is explanatory drawing which shows the example of the deformation | transformation state of the structure by the subsidence of the ground.

符号の説明Explanation of symbols

Tg 地盤の固有周期
δmax 水平変位
PL 液状化指数
Tg Natural period of ground δmax Horizontal displacement PL Liquefaction index

Claims (5)

地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値を用いて算定する地盤変位の推定方法において、
任意の地震波に対して被対象地点の地層から求めた地盤特性値に対応した地盤変位を、予め算定した地盤特性値と地盤変位との相関グラフを用いて算定することを特徴とする地盤変位の推定方法。
In the ground displacement estimation method for calculating the influence of the ground at the target point by the occurrence of an earthquake using the ground characteristic value of the target point,
The ground displacement corresponding to the ground characteristic value obtained from the stratum of the target point for any seismic wave is calculated using a correlation graph between the ground characteristic value calculated in advance and the ground displacement. Estimation method.
請求項1記載の地盤変位の推定方法であって、
基礎となる地震波に対して、複数の各対象地点における地盤特性値と該各対象地点における地盤変位を、地盤特性値と地盤変位とをそれぞれ軸とするグラフ上にプロットし、該プロットしたデータから、前記基礎となる地震波に対する地盤特性値と地盤変位との関係を回帰分析により求め、
該回帰分析から求められた回帰式上から、より近似しているプロットされた複数の地点をモデル地点とし、この複数のモデル地点の地盤データを抽出し、
前記抽出した地盤データを用いて、該複数のモデル地点における、任意の地震波に対する地盤変位を求め、
前記任意の地震波に対する地盤変位と前記モデル地点の地盤特性値とにより再度回帰分析をすることにより、前記相関グラフを算定することを特徴とする請求項1記載の地盤変位の推定方法。
A method for estimating ground displacement according to claim 1,
For the base seismic wave, plot the ground characteristic value at each target point and the ground displacement at each target point on a graph with the ground characteristic value and the ground displacement as axes, respectively. The relationship between the ground characteristic value and the ground displacement for the base seismic wave is obtained by regression analysis,
From the regression equation obtained from the regression analysis, a plurality of plotted points that are more approximated are used as model points, and ground data of the plurality of model points is extracted.
Using the extracted ground data, the ground displacement for any seismic wave at the plurality of model points is determined,
The ground displacement estimation method according to claim 1, wherein the correlation graph is calculated by performing a regression analysis again based on the ground displacement with respect to the arbitrary seismic wave and the ground characteristic value of the model point.
請求項1または2記載の地盤変位の推定方法であって、
前記地盤特性値が地盤の固有周期であり、かつ、前記地盤変位が水平変位であることを特徴とする地盤変位の推定方法。
A ground displacement estimation method according to claim 1 or 2,
The ground displacement estimation method, wherein the ground characteristic value is a natural period of the ground, and the ground displacement is a horizontal displacement.
地震の発生により、被対象地点の地盤が受ける影響を該被対象地点の地盤特性値と該被対象地点の地層における補正N値の第1閾値以下の地層厚とを用いて算定する地盤の液状化判定方法であって、
任意の地震波に対する被対象地点の地盤の液状化判定を、該被対象地点の地盤特性値と補正N値の第1閾値以下の地層厚とからプロットされる点と、予め算定した該地盤特性値と該補正N値の第1閾値以下の地層厚と相関関係にある液状化判定境界の閾値グラフとを比較することにより評価することを特徴とする地盤の液状化判定方法。
The influence of the ground on the target point due to the occurrence of the earthquake is calculated using the ground characteristic value of the target point and the layer thickness below the first threshold value of the correction N value in the stratum of the target point. A determination method,
The ground liquefaction determination at the target point for any seismic wave is plotted from the ground characteristic value of the target point and the layer thickness below the first threshold value of the correction N value, and the ground characteristic value calculated in advance And a threshold graph of a liquefaction determination boundary correlated with a formation thickness below the first threshold value of the correction N value.
被対象地点が液状化すると判定されたときに、液状化後の地盤沈下量を、予め算定した補正N値の第2閾値以下の地層厚と液状化後の地盤沈下量との相関グラフを用いて、算定することを特徴とする地盤の液状化後の地盤沈下量の推定方法。
When it is determined that the target site will be liquefied, use the correlation graph between the subsidence amount after liquefaction and the subsidence amount after liquefaction, and the subsidence amount after the liquefaction. A method for estimating the amount of ground subsidence after liquefaction of the ground, characterized in that it is calculated.
JP2006070757A 2006-03-15 2006-03-15 Method of estimating ground displacement and method of determining ground liquefaction Pending JP2007247226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070757A JP2007247226A (en) 2006-03-15 2006-03-15 Method of estimating ground displacement and method of determining ground liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070757A JP2007247226A (en) 2006-03-15 2006-03-15 Method of estimating ground displacement and method of determining ground liquefaction

Publications (1)

Publication Number Publication Date
JP2007247226A true JP2007247226A (en) 2007-09-27

Family

ID=38591814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070757A Pending JP2007247226A (en) 2006-03-15 2006-03-15 Method of estimating ground displacement and method of determining ground liquefaction

Country Status (1)

Country Link
JP (1) JP2007247226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054338A (en) * 2008-08-28 2010-03-11 Yamaguchi Univ Liquefaction occurrence evaluation system
KR102277315B1 (en) * 2020-12-22 2021-07-14 한국건설기술연구원 Ground liquefaction risk assessment system, method, and recording medium recording a computer-readable program for executing the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352238A (en) * 1998-06-08 1999-12-24 Tokyo Gas Co Ltd Method, device, and system for detecting liquidization of ground

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352238A (en) * 1998-06-08 1999-12-24 Tokyo Gas Co Ltd Method, device, and system for detecting liquidization of ground

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054338A (en) * 2008-08-28 2010-03-11 Yamaguchi Univ Liquefaction occurrence evaluation system
KR102277315B1 (en) * 2020-12-22 2021-07-14 한국건설기술연구원 Ground liquefaction risk assessment system, method, and recording medium recording a computer-readable program for executing the method

Similar Documents

Publication Publication Date Title
CN107563014B (en) Method for calculating buckling strain and critical fault displacement of pipeline under fault action
JP5327632B2 (en) Earthquake damage prediction method, earthquake damage prediction system, and earthquake damage prediction chart for foundation structures
Liao et al. A probabilistic evaluation of pier-scour potential in the Gaoping River Basin of Taiwan
Zeitoun et al. Pipeline stability: state of the art
JP2007247226A (en) Method of estimating ground displacement and method of determining ground liquefaction
JP6338610B2 (en) Pipe damage prediction apparatus, pipe damage prediction method, and pipe damage prediction program
Bouziou et al. Evaluation of ground deformations during the 2010–2011 Canterbury earthquake sequence
JP4819009B2 (en) Cable earthquake damage estimation apparatus, method and program
Ismail et al. Reliability Analysis of Buried Offshore Pipelines in Sand Subject to Upheaval Buckling
Goldsworthy et al. Measuring the risk of geotechnical site investigations
Pinna et al. Field observations and modelling of the self-burial of a North West Shelf pipeline
JP2009257017A (en) Pile evaluating chart, method for preparing it and method for evaluating pile
JP7288229B2 (en) Pipeline vulnerability estimation system, pipeline vulnerability estimation method, model creation device, and program
White et al. Temporal changes in pipeline-seabed condition, and their effect on operating behaviour
Griffiths et al. Pipeline and cable stability: updated state of the art
Campbell Three-dimensional finite element modelling of corroded corrugated metal pipe culverts
Arslan et al. Strain demand estimation for pipelines in challenging arctic and seismically active regions
Cubrinovski et al. Horizontal Infrastructure Performance and Application of the Liquefaction Resistance Index Methodology in Christchurch City through the 2010-2011 Canterbury Earthquake Sequence
Hørte et al. Wellhead Fatigue: Effect of Directional and Annual Variation in Weather for a Sequence of Drilling Operations
Kenny et al. Probabilistic design methodology to mitigate ice gouge hazards for offshore pipelines
Ho et al. Safeguarding a buried pipeline in a landslide region
CN117074180B (en) Method for measuring pressure change of underground soil body of building
Thusyanthan et al. Free Span Rectification by Pipeline Lowering (PL) Method
Tang Probability-based serviceability evaluation of buildings adjacent to an excavation using random finite element method
Briaud et al. The observation method for bridge scour: Case histories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111227

Free format text: JAPANESE INTERMEDIATE CODE: A02