JP2007247051A - High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method - Google Patents

High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method Download PDF

Info

Publication number
JP2007247051A
JP2007247051A JP2006108002A JP2006108002A JP2007247051A JP 2007247051 A JP2007247051 A JP 2007247051A JP 2006108002 A JP2006108002 A JP 2006108002A JP 2006108002 A JP2006108002 A JP 2006108002A JP 2007247051 A JP2007247051 A JP 2007247051A
Authority
JP
Japan
Prior art keywords
alloy molded
metal alloy
molded product
molded object
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006108002A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mori
泰浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006108002A priority Critical patent/JP2007247051A/en
Publication of JP2007247051A publication Critical patent/JP2007247051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-adhesion coating method to an alloy molded object of a magnesium metal etc., and the metal-alloy molded object subjected to high adhesion coating by the method. <P>SOLUTION: The high-adhesion coating method to the alloy molded object of a magnesium metal etc., comprises entirely or partly spraying a flame including a modifier combination part such as silane atoms, to the surface of the alloy molded object of the magnesium metal etc., by using a known surface modification device to perform surface modification in such a manner that the surface of the metal-alloy molded object attains ≥73 dyn/cm in wetting index, then performing coating finish of a coating layer to serve as a direct design layer with one-coat finish without applying a primer. The metal-alloy molded object is subjected to the high-adhesion coating by the method described above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マグネシウム合金、アルミニウム合金、チタン合金、等の金属合金を活用し、インジェクション成型、ダイカスト成型、チクソキャスティング成型、等々の手段により成型された金属合金成型物への新規高密着塗装方法及び同方法により高密着塗装された金属合金成型物に関する。  The present invention uses a metal alloy such as magnesium alloy, aluminum alloy, titanium alloy and the like, a novel high adhesion coating method on a metal alloy molded product molded by means such as injection molding, die casting molding, thixocasting molding, and the like, and The present invention relates to a molded metal alloy that has been coated with high adhesion by the same method.

現在、マグネシウム合金、アルミニウム合金、チタン合金、等の金属合金を活用し、インジェクション成型、ダイカスト成型、チクソキャスティング成型等々の手段により成型された金属合金成型物が、ミニディスクやビデオカメラ、デジタルカメラ、携帯電話、等々のエレクトロニクスの各分野等に広範に使われている。とりわけ、金属合金の中でマグネシウム合金は、軽量で且つABS樹脂等に比べて強度が1桁以上大きく、更に熱伝導率が高く放熱性に優れ電磁シールド性が良好、等々の理由によりその有効性が注目され市場性が年々拡大している。  Currently, metal alloys such as magnesium alloy, aluminum alloy, titanium alloy, etc. are molded by means such as injection molding, die casting molding, thixocasting molding, etc., mini discs, video cameras, digital cameras, Widely used in various fields of electronics such as mobile phones. Among other metal alloys, magnesium alloys are light and have a strength that is more than an order of magnitude higher than that of ABS resin, etc., and have high thermal conductivity, excellent heat dissipation, and good electromagnetic shielding properties. Is attracting attention and its marketability is expanding year by year.

ところで、マグネシウム合金に代表されるインジェクション成型、ダイカスト成型、チクソキャスティング成型等々の手段により成型された金属合金成型物は、その生地のままの状態で使用されることは皆無であって、アクリル樹脂塗料系或いはウレタン樹脂塗料系等々の塗料により意匠が施されているのが一般的である。一方、金属合金成型物の塗装に至るプロセスも、インジェクション成型、ダイカスト成型、チクソキャスティング成型等々の成型手段故に鋳肌が粗面であり且つ付着離型剤等々の問題もあって、各種塗料と金属合金成型物との塗装界面での密着を確保するために極めて複雑な工程を必要としているのが現状である。マグネシウム合金成型品の塗装を事例として説明すると、ワーク投入→湯洗→強アルカリ脱脂→湯洗→純水洗浄→化成処理(リン酸亜鉛皮膜等)→純水洗浄→水切り乾燥→除塵→スプレー塗装工程、と少なくとも塗装工程に至るまで約8工程のプロセスを経る必要があり、加えて、塗装工程に入る前工程として、金属合金成型物と各種塗料との密着を確保し且つ良好な塗装仕上がりを確保するために、エポキシ樹脂系等のプライマーをコーティングし、必要に応じてパテ処理工程を加える等、多大な工程および時間そして労力・コストを掛けざるを得ない状況にあった。  By the way, metal alloy moldings molded by means such as injection molding typified by magnesium alloy, die casting molding, thixocasting molding, etc. have never been used as it is, and acrylic resin paints In general, the design is applied by a paint such as a paint system or a urethane resin paint system. On the other hand, the process leading up to the coating of metal alloy moldings is also difficult due to the casting surface being rough due to injection molding, die casting molding, thixocasting molding, etc. The present situation is that an extremely complicated process is required to ensure adhesion at the paint interface with the alloy molded product. In the case of painting magnesium alloy molded products, the following are examples: Workpiece loading → Hot water washing → Strong alkaline degreasing → Hot water washing → Pure water washing → Chemical conversion treatment (such as zinc phosphate film) → Pure water washing → Draining → Dust removal → Spray painting It is necessary to go through about 8 processes until the process and at least the painting process, and in addition, as a pre-process before entering the painting process, ensure the adhesion between the metal alloy molded product and various paints and achieve a good coating finish In order to ensure this, a large amount of process, time, labor, and cost were required, such as coating with an epoxy resin-based primer and adding a putty treatment process as necessary.

そこで、本件発明者はマグネシウム合金に代表される金属合金成型物の塗装界面における密着確保に関し、本件発明者が既に開発し実用化を図っている下記特許文献に開示されている「界面改質技術」の活用を試みたところ当該「界面改質技術」がマグネシウム合金に代表される金属合金成型物の界面改質にとって極めて有効裡に働くことを発見・確認し本発明を完成するに至った。
特開2003−238710(特許第3557194号)
Therefore, the present inventor relates to ensuring adhesion at the paint interface of a metal alloy molded product represented by a magnesium alloy, which is disclosed in the following patent document that the present inventor has already developed and put into practical use. As a result, it was discovered and confirmed that the “interface modification technology” works extremely effectively for the interface modification of metal alloy molded products represented by magnesium alloys, and the present invention was completed.
JP 2003-238710 (Patent No. 3557194)

同「特許文献1」には、固体物質の界面改質方法およびその装置の概略が開示されていて、シラン原子、チタン原子、アルミニウム原子を含む界面改質剤化合物であって、それぞれ沸点が10℃〜100℃である表面改質剤化合物を含む燃料ガスを貯蔵するための貯蔵タンクと、当該燃料ガスを噴射部に移送するための移送部と、当該燃料ガスの火炎を吹き付けるための噴射部(バーナー)とを含む界面改質装置を準備し、ケイ酸化炎等を固体物質の材料表面に対して、全面的或いは部分的に吹き付け処理し、当該処理部を活性化させる界面改質技術が開示されている。  The "Patent Document 1" discloses an outline of an interfacial reforming method and apparatus for a solid substance, which is an interfacial modifier compound containing a silane atom, a titanium atom, and an aluminum atom, each having a boiling point of 10 A storage tank for storing a fuel gas containing a surface modifier compound having a temperature of from 100 ° C. to 100 ° C., a transfer unit for transferring the fuel gas to the injection unit, and an injection unit for blowing a flame of the fuel gas An interfacial reforming technique that activates the processing section by preparing an interfacial reforming apparatus including a (burner), spraying silicic acid flame or the like entirely or partially on the surface of a solid material. It is disclosed.

しかしながら、前記特許文献1には、一般的な各固体物質の界面改質につき各種固体物質に共通する表面改質方法が述べられているに留まり、本発明が解決しようとする具体的な課題である、マグネシウム合金に代表される金属合金成型物における塗装界面における密着確保に関しする具体的方法論に関する開示は為されていない。  However, the above-mentioned Patent Document 1 only describes a surface modification method common to various solid substances for interfacial modification of each solid substance, and is a specific problem to be solved by the present invention. There is no disclosure regarding a specific methodology for ensuring adhesion at a paint interface in a metal alloy molded product represented by a magnesium alloy.

本発明は、マグネシウム合金に代表される金属合金成型物の塗装界面における密着確保に関しする具体的方法論を提供するもので、加えて、金属合金成型物の塗装界面における密着を確実なものとするだけではなく、後工程である塗装工程における各種工程を大幅に簡略化可能な金属合金成型物への高密着塗装方法および同塗装方法により高密着塗装された金属合金成型物に関する。  The present invention provides a specific methodology related to ensuring adhesion at the coating interface of a metal alloy molding represented by a magnesium alloy, and in addition, ensures adhesion at the coating interface of the metal alloy molding. Instead, the present invention relates to a high adhesion coating method for a metal alloy molding that can greatly simplify various processes in the painting process, which is a subsequent process, and a metal alloy molding that has been coated with a high adhesion by the coating method.

更に具体的に言えば、従来のマグネシウム合金に代表されるインジェクション成型、ダイカスト成型、チクソキャスティング成型等々の手段により成型される金属合金成型物の成型技術は、チクソキャスティング成型に代表されるように、近年顕著な技術革新に伴いその鋳肌は以前の様に鋳巣が多く散見されるような状況より格段に改善され比較的綺麗な鋳肌になって来ているものとは言え、未だ粗面であることに変わりはなく、当該金属合金成型物に意匠層となる塗装層を施すプロセス迄に、前述した様にワーク投入→湯洗→強アルカリ脱脂→湯洗→純水洗浄→化成処理(リン酸亜鉛皮膜等)→純水洗浄→水切り乾燥→除塵→スプレー塗装工程と、少なくとも塗装工程に至るまで約8工程のプロセスを経る必要があり、加えて、後工程となる塗装工程の前行程として、各種塗料との密着を確保するためにエポキシ樹脂系等のプライマーを施すことは必須であり、更に続けて、多くの場合鋳肌の平滑性を確保するためにパテ処理→サンディング→除塵の各工程を経る必要があった。  More specifically, the molding technology of metal alloy moldings molded by means such as injection molding, die casting molding, thixocasting molding represented by conventional magnesium alloys, as represented by thixocasting molding, With the remarkable technological innovation in recent years, the casting surface has been improved to a much more beautiful condition than the situation where many cast holes have been scattered as before, but it is still a rough surface. As described above, the workpiece is charged → hot water → strong alkaline degreasing → hot water → pure water cleaning → chemical conversion treatment (as described above) until the process of applying the coating layer as the design layer to the metal alloy molded product. Zinc phosphate film, etc.) → Pure water cleaning → Draining drying → Dust removal → Spray painting process, it is necessary to go through at least about 8 processes to the painting process, and in addition, it is a post process As a pre-process of the painting process, it is indispensable to apply an epoxy resin-based primer in order to ensure close contact with various paints, and in addition, in many cases, putty treatment is performed to ensure smoothness of the casting surface. → It was necessary to go through each step of sanding → dust removal.

以上詳述した通り、マグネシウム合金に代表されるインジェクション成型、ダイカスト成型、チクソキャスティング成型等々の手段により成型される金属合金成型物を対象とした塗装にあっては、その塗装迄に至るプロセスが多くしかも煩雑であり、またその処理コストも少なからず嵩むため、喫緊の課題として何らかのプロセス改善が望まれている状況下にある。  As described in detail above, there are many processes leading to the coating of metal alloy moldings that are molded by means such as injection molding, die casting, and thixocasting, which are typified by magnesium alloys. In addition, the process is complicated and the processing cost is high, so that some process improvement is desired as an urgent issue.

本発明は、前述した金属合金成型物の塗装に至るまでの各工程の多さおよび煩雑さに注目し為されたもので、当該工程の多さと煩雑さとを金属合金成型物の表面界面を本質的に界面改質することで、金属合金成型物の塗装に至るまでの各工程の多さおよび煩雑さを抜本的に改善するに至ったものである。  The present invention has been focused on the number and complexity of each process up to the coating of the metal alloy molded article described above. By interfacial modification, the number and complexity of each process up to the coating of the metal alloy molded product has been drastically improved.

まず、金属合金成型物の界面改質に関しその方法論を説明する。第1図は本発明に係る界面改質装置の概要を示すフローチャートであり、同フローチャートに基づき説明する。
界面改質装置100は、シラン原子、チタン原子、アルミニウム原子を含む界面改質剤化合物であって、アルキルシラン化合物、アルコキシシラン化合物、シロキサン化合物、シラザン化合物、アルキルチタン化合物、アルコキシチタン化合物、アルキルアルミニウム化合物、およびアルコキシアルミニウム化合物からなる群から選択された界面改質剤化合物101を貯蔵するための貯蔵タンク部102と、加熱手段103にて気化させて噴射部(バーナー)104に移送するための移送路105と、プロパンガス・LPGガス等の燃料ガスの貯蔵タンク106、そして、当該燃料ガスの燃焼用空気並びに界面改質剤化合物を搬送する為の空気を供給する圧縮空気源107とで構成されている。また、前記移送路105には第1のサブミキサ108が、また、気化された界面改質剤化合物と空気との混合ガスと前記貯蔵タンク106より送出される燃料ガスとを均一に混合するための第2のメインミキサ109とにより構成されている。
さらには、前記界面改質剤化合物101を貯蔵するための貯蔵タンク部102と、空気を供給する圧縮空気源107および燃料ガスの貯蔵タンク106のそれぞれの送出先出口には、それぞれの送出流量をコントロールするための流量計付き流量調節バルブ、110、111、112、がそれぞれ設けられ、界面改質装置100を構成している。次に前記各主要構成部材(パーツ)の詳細を説明する。
First, a methodology for interfacial modification of a metal alloy molded product will be described. FIG. 1 is a flowchart showing an outline of an interface reforming apparatus according to the present invention, and description will be made based on the flowchart.
The interface reformer 100 is an interface modifier compound containing a silane atom, a titanium atom, and an aluminum atom, and includes an alkylsilane compound, an alkoxysilane compound, a siloxane compound, a silazane compound, an alkyltitanium compound, an alkoxytitanium compound, and an alkylaluminum. A storage tank unit 102 for storing the interfacial modifier compound 101 selected from the group consisting of a compound and an alkoxyaluminum compound, and a transfer for vaporizing by the heating means 103 and transferring to the injection unit (burner) 104 It comprises a passage 105, a fuel gas storage tank 106 such as propane gas and LPG gas, and a compressed air source 107 that supplies combustion air for the fuel gas and air for transporting the interfacial modifier compound. ing. A first sub-mixer 108 is also provided in the transfer path 105 for uniformly mixing the vaporized interface modifier compound and air mixed gas and the fuel gas delivered from the storage tank 106. The second main mixer 109 is configured.
Further, the delivery tanks 102 for storing the interfacial modifier compound 101, the compressed air source 107 for supplying air, and the delivery destination outlets of the fuel gas storage tank 106 have respective delivery flow rates. Flow control valves with flowmeters 110, 111, and 112 for control are provided, respectively, to constitute the interface reformer 100. Next, the detail of each said main structural member (part) is demonstrated.

「界面改質剤化合物用貯蔵タンク部」
図1に示すように、界面改質剤化合物用貯蔵タンク部102の下部には、加熱用ヒーター等の加熱手段103が備えられており、常温・常圧状態では液状の界面改質剤化合物101を気化するよう構成されている。そして、当該加熱手段103はCPU(図示せず)によりコントロールされている。すなわち、同CPUは界面改質剤化合物の液量センサー、・液温センサー等の各センサーに電気的に接続されていて、前記界面改質剤化合物の液量および液温が規定の範囲内に収まるように加熱手段をコントロールしている。
なお、本発明では液状の界面改質化合物を使用した例を挙げているが、気体または固体状の化合物も使用できる。気体状の界面改質剤化合物を使用する場合には、前記界面改質剤化合物用貯蔵タンク部にはあえてヒーターを備える必要はなく、代わりに圧力調整弁等の流量調節手段を設ければよい。また、固体状の界面改質剤化合物を使用する場合には、例えば、その固体状化合物を溶媒に溶解するか、熱で溶融させ、本例の貯蔵タンクからバーナーの火炎近傍迄配管した液輸送管中を通らせて、直接バーナー中に送り込むことで界面改質を行うことができる。
"Storage tank for interfacial modifier compound"
As shown in FIG. 1, a heating means 103 such as a heater for heating is provided below the interfacial modifier compound storage tank 102, and the interfacial modifier compound 101 is liquid at room temperature and normal pressure. It is configured to vaporize. The heating means 103 is controlled by a CPU (not shown). That is, the CPU is electrically connected to each sensor such as a liquid quantity sensor of the interfacial modifier compound, a liquid temperature sensor, etc., and the liquid quantity and the liquid temperature of the interfacial modifier compound are within a specified range. The heating means is controlled to fit.
In the present invention, an example in which a liquid interface modifying compound is used is given, but a gas or solid compound can also be used. When a gaseous interfacial modifier compound is used, the interfacial modifier compound storage tank section does not need to be provided with a heater, but instead may be provided with a flow regulating means such as a pressure regulating valve. . Further, when using a solid interfacial modifier compound, for example, the liquid transportation in which the solid compound is dissolved in a solvent or melted with heat and piped from the storage tank of this example to the vicinity of the flame of the burner. Interfacial reforming can be performed by passing through a pipe and feeding directly into a burner.

「移送部」
移送部105には、通常「管」構造であって、図1に示すように、前記圧縮空気源107より供給され燃焼用空気と前記貯蔵タンク102より送出される気化された界面改質剤化合物とを混合するための第1のサブミキサ108と、当該第1のサブミキサ108により混合された混合ガスと、前記燃料ガスの貯蔵タンク106より送出される燃料ガスとを均一に混合するための第2のメインミキサ109が設けられている。
"Transportation part"
As shown in FIG. 1, the transfer unit 105 has a “pipe” structure, and as shown in FIG. 1, the vaporized interface modifier compound supplied from the compressed air source 107 and delivered from the storage tank 102. The first submixer 108 for mixing the fuel gas, the mixed gas mixed by the first submixer 108, and the second gas for uniformly mixing the fuel gas delivered from the fuel gas storage tank 106. The main mixer 109 is provided.

「噴射部(バーナー)」
噴射部(バーナー)104は、図1に示すように、移送部105を経て送られてきた燃焼ガスを燃焼し、得られた火炎113を、被改質処理面(図示せず)に吹き付け被改質処理面を界面改質するものであって、かかる火炎113の状態は、前記した気化された界面改質剤化合物101の流量および圧縮空気源107より送出される燃焼用空気量並びに燃料ガスの貯蔵タンク106より送出される燃料ガス量の各流量を、それぞれのガスの流路に設けられている流量計付き流量調節バルブ110、111、112の開度を調節することに最適に調整される。なお、バーナーの種類は特に制限されるものではないが、例えば、予混合型バーナー、拡散型バーナー、部分予混合型バーナー、噴霧バーナー、蒸発バーナー、等の何れであっても良い。また、バーナーの形態についても特に制限されるものではない。
"Injection part (burner)"
As shown in FIG. 1, the injection unit (burner) 104 burns the combustion gas sent through the transfer unit 105 and sprays the obtained flame 113 onto the surface to be reformed (not shown). The reformed surface is subjected to interfacial reforming, and the state of the flame 113 includes the flow rate of the vaporized interfacial modifier compound 101, the amount of combustion air sent from the compressed air source 107, and the fuel gas. Each flow rate of the fuel gas delivered from the storage tank 106 is optimally adjusted to adjust the opening degree of the flow rate control valves 110, 111, 112 with flow meters provided in the respective gas flow paths. The The type of the burner is not particularly limited, and may be any of a premix burner, a diffusion burner, a partial premix burner, a spray burner, an evaporation burner, and the like. Further, the form of the burner is not particularly limited.

前記界面改質剤化合物としては、シラン原子、チタン原子またはアルミニウム原子を含む化合物であり、且つ、一般的なガスバーナーの火炎中で燃焼し得るものであれば特に制限はない。そして、入手のし易さや取り扱いの容易さを考慮すると、例えば、アルキルシラン化合物、アルコキシシラン化合物、シロキサン化合物、シラザン化合物、アルキルチタン化合物、アルコキシチタン化合物、アルキルアルミニウム化合物、およびアルコキシアルミニウム化合物からなる群から選択される少なくとも一つの化合物であることが好ましい。
アルキルシラン化合物の好適例としては、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、テトラエチルシラン、ジメチルジクロロシラン、ジメチルジフェニルシラン、ジエチルジクロロシラン、ジエチルジフェニルシラン、メチルトリクロロシラン、メチルトリフェニルシラン、ジメチルジエチルシランなどの置換基を有していてもよいモノシラン化合物、ヘキサメチルジシラン、ヘキサエチルジシラン、クロロヘプタメチルジシランなどの置換基を有していても良いジシラン化合物、オクタメチルトリシランなどの置換基を有していても良いトリシラン化合物などが挙げられる。
アルコキシシラン化合物の好適例としては、メトキシシラン、ジメトキシシラン、トリメトキシシラン、テトラメトキシシラン、エトキシシラン、ジエトキシシラン、トリエトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等の一種単独または二種以上の組み合わせが挙げられる。
シロキサン化合物の好適例としては、テトラメチルジシロキサン、ペンタメチルジシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサンなどが挙げられる。
シラザン化合物の好適例としては、ヘキサメチルジシラザンなどが挙げられる。また、アルキルチタン化合物の好適例としては、テトラメチルチタン、テトラエチルチタン、テトラポロピルチタンなどが挙げられる。アルコキシチタン化合物の好適例としては、チタニウムメトキシド、チタニウムエトキシドなどが挙げられる。アルキルアルミニウム化合物の好適例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウムなどが挙げられる。アルコキシアルミニウム化合物の好適例としては、アルミニウムメトキシド、アルミニウムエトキシドなどが挙げられる。これらの化合物は単独で用いても混合して用いても良い。
以上の好適例の中でも、シラン化合物、アルコキシシラン化合物、シロキサン化合物、およびシラザン化合物は、取り扱いが容易であり、気化させやすく、また、入手もしやすいことからより好ましい。
The interface modifier compound is not particularly limited as long as it is a compound containing a silane atom, a titanium atom or an aluminum atom and can burn in a flame of a general gas burner. In view of easy availability and handling, for example, a group consisting of an alkylsilane compound, an alkoxysilane compound, a siloxane compound, a silazane compound, an alkyl titanium compound, an alkoxy titanium compound, an alkyl aluminum compound, and an alkoxy aluminum compound. It is preferable that it is at least one compound selected from.
Preferred examples of the alkylsilane compound include methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, tetraethylsilane, dimethyldichlorosilane, dimethyldiphenylsilane, diethyldichlorosilane, diethyldiphenylsilane, methyltrichlorosilane, methyltriphenylsilane, and dimethyl. Substituents such as monosilane compounds which may have substituents such as diethylsilane, disilane compounds which may have substituents such as hexamethyldisilane, hexaethyldisilane and chloroheptamethyldisilane, and octamethyltrisilane A trisilane compound which may have
Preferred examples of the alkoxysilane compound include methoxysilane, dimethoxysilane, trimethoxysilane, tetramethoxysilane, ethoxysilane, diethoxysilane, triethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and trimethylmethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, trichloromethoxysilane, trichloroethoxysilane , Triphenylmethoxysilane, triphenylethoxysilane and the like alone or in combination of two or more .
Preferred examples of the siloxane compound include tetramethyldisiloxane, pentamethyldisiloxane, hexamethyldisiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexa Examples thereof include siloxane.
Preferable examples of the silazane compound include hexamethyldisilazane. Moreover, as a suitable example of an alkyltitanium compound, tetramethyl titanium, tetraethyl titanium, tetrapolo pyr titanium, etc. are mentioned. Preferable examples of the alkoxytitanium compound include titanium methoxide and titanium ethoxide. Preferable examples of the alkyl aluminum compound include trimethyl aluminum, triethyl aluminum, tripropyl aluminum and the like. Preferable examples of the alkoxyaluminum compound include aluminum methoxide, aluminum ethoxide and the like. These compounds may be used alone or in combination.
Among the above preferable examples, silane compounds, alkoxysilane compounds, siloxane compounds, and silazane compounds are more preferable because they are easy to handle, easily vaporized, and easily available.

次に、前述した図1に例示する本発明に係る界面改質装置を用い、マグネシウム合金:Mg−Al−Zn系(AZ91D)をチクソキャスティング成型して成るマグネシウム系合金成型物を対象として、当該マグネシウム系合金成型物の改質面が如何に改質されるか第2図を基に説明する。  Next, using the interface reformer according to the present invention illustrated in FIG. 1 described above, magnesium alloy: Mg—Al—Zn (AZ91D) is thixocast-molded, and the magnesium-based alloy molded product is used as a target. How the modified surface of the magnesium-based alloy molded product is modified will be described with reference to FIG.

図2は、チクソキャスティング成型手法により成型されたマグネシウム系合金成型物の拡大断面図を模式的に示すもので、鋳肌表面の状況を説明するためのものである。図2において、201はMg−Al−Zn系(AZ91D)成型物であり、同成型物の表面は微視的に観察すると数10μ〜数100μオーダーの凹凸202、203が無数散見される。金属合金成型法の中で鋳肌が比較的平滑なチクソキャスティング成型手法であっても、同鋳肌面に意匠層である塗装層を施すに当たっては、従前の通り事前に、湯洗→強アルカリ脱脂→湯洗→純水洗浄→化成処理(リン酸亜鉛皮膜等)→純水洗浄→水切り乾燥→除塵、とういう工程を踏まなければならず、同工程を省くとMg−Al−Zn系(AZ91D)成型物と塗装層との間の密着を確保することができず、密着を確保するためにいわば必須の工程として認識されるに至っている。  FIG. 2 schematically shows an enlarged cross-sectional view of a magnesium-based alloy molded product molded by a thixocasting molding method, and is for explaining the state of the cast skin surface. In FIG. 2, 201 is a Mg—Al—Zn-based (AZ91D) molded product, and when the surface of the molded product is observed microscopically, innumerable irregularities 202 and 203 on the order of several tens of μ to several hundreds of μ are seen. Even if it is a thixocasting molding method with a relatively smooth casting surface in the metal alloy molding method, when applying a coating layer as a design layer on the casting surface, as before, hot water washing → strong alkali Degreasing → Hot water → Pure water cleaning → Chemical conversion treatment (Zinc phosphate film, etc.) → Pure water cleaning → Draining drying → Dust removal The process must be followed. If this step is omitted, the Mg—Al—Zn system ( AZ91D) The adhesion between the molded product and the coating layer cannot be ensured, and has been recognized as an essential process for ensuring the adhesion.

ところで、図1に例示する本発明に係る界面改質装置を用いて、Mg−Al−Zn系(AZ91D)成型物と塗装層との界面を改質するに当たっては、同Mg−Al−Zn系(AZ91D)成型物を弱アルカリ溶液にて先ず脱脂処理を行い、続いて水切り乾燥を終了した後、図1に例示する界面改質装置(界面改質剤化合物:シラン化合物系界面改質剤化合物を使用)を用いて同上Mg−Al−Zn系(AZ91D)成型物の表面を界面改質すると、図2と同様なマグネシウム系合金成型物の拡大断面を図3に例示する通り、数ナノメータ(数nm)〜数10nm厚みの例えばケイ酸塩系の界面改質層301が形成される。  By the way, when the interface between the Mg—Al—Zn (AZ91D) molded product and the coating layer is modified using the interface reforming apparatus according to the present invention illustrated in FIG. 1, the same Mg—Al—Zn system is used. (AZ91D) The molded product is first degreased with a weak alkaline solution, then drained and dried, and then the interface reformer illustrated in FIG. 1 (interface modifier compound: silane compound-based interface modifier compound) When the surface of the Mg-Al-Zn-based (AZ91D) molded product is subjected to interfacial modification using the above-mentioned, a magnified cross section of the magnesium-based alloy molded product similar to that shown in FIG. For example, a silicate-based interface modified layer 301 having a thickness of several nm) to several tens of nm is formed.

以上詳述したとおり本発明によれば、前記図3に示す界面改質層301の界面改質性能は、濡れ指数試薬で測定した場合で濡れ指数(測定温度25℃)で73dyn/cm以上、接触角で測定した場合であっても、10°(測定温度25℃)以下と超親水性効果が確実に得られ、この界面改質状態において後工程である意匠層となる塗装工程をプライマー工程を省いたままの状態で塗工して、Mg−Al−Zn系(AZ91D)成型物と塗装層との界面の密着強度並びに塗装外観共に何ら遜色が無いことを確認することができた。また、他のアルミニウム系或いはチタン系合金成型物であっても同界面改質装置によりマグネシュウム合金成型物と同様に界面改質が図られ超親水性効果を現出することができた。  As described above in detail, according to the present invention, the interface modification performance of the interface modification layer 301 shown in FIG. 3 is 73 dyn / cm or more in terms of the wetting index (measured temperature: 25 ° C.) when measured with a wetting index reagent. Even when measured with a contact angle, a super hydrophilic effect of 10 ° (measurement temperature 25 ° C.) or less can be reliably obtained, and a coating process that becomes a design layer as a post-process in this interface modification state is a primer process. It was confirmed that there was no inferiority in the adhesion strength and the coating appearance of the interface between the Mg—Al—Zn-based (AZ91D) molded product and the coating layer. In addition, even with other aluminum-based or titanium-based alloy molded products, the interface modification device was used to modify the interface in the same manner as the magnesium alloy molded products, and the superhydrophilic effect could be achieved.

なお、本発明をチクソキャスティング成型手法により成型されたマグネシウム系合金系(Mg−Al−Zn系:AZ91D)成型物を事例として、塗装工程の前処理工程から意匠層形成迄の流れを説明すると、弱アルカリ脱脂工程→湯洗或いは純水洗浄工程→水切り乾燥工程→界面活性化処理工程→除塵工程→プライマーレス・塗装工程となり、従来手法による工程:湯洗→強アルカリ脱脂→湯洗→純水洗浄→化成処理(例:リン酸亜鉛皮膜)→純水洗浄→水切り乾燥→除塵→プライマー塗布工程と比較して、従来の工程数:8工程が5工程へとほぼ工程数が半減することとなり、大幅な製造時間の短縮および製造コストの低減化を図ることが可能となる。加えて、意匠層形成のための塗装工程にあっても、プライマー塗布工程が不必要となり、そのまま1コートフィニッシュ仕上がりが可能で、意匠層形成に直接移行できるメリットもあり、経済的効果は絶大である。  The flow from the pretreatment process of the painting process to the formation of the design layer will be described using a magnesium alloy-based (Mg-Al-Zn-based: AZ91D) molded product molded by the thixocasting molding technique as an example. Weak alkaline degreasing process → Hot water washing or pure water washing process → Draining and drying process → Interfacial activation process → Dust removal process → Primerless / painting process, conventional process: Hot water washing → Strong alkaline degreasing → Hot water washing → Pure water Cleaning → Chemical conversion treatment (example: zinc phosphate coating) → Pure water cleaning → Draining dry → Dust removal → Compared with the primer application process, the number of conventional processes: 8 processes will be reduced to 5 processes. Therefore, it is possible to greatly reduce the manufacturing time and the manufacturing cost. In addition, even in the painting process for forming the design layer, the primer coating process is unnecessary, and one coat finish can be finished as it is, and there is a merit that can directly shift to the design layer formation, and the economic effect is enormous. is there.

なお、前記の様に界面改質装置により、各種金属合金成型物の塗装界面を界面改質すると、各種金属合金成型物の表面即ち鋳肌に形成される数10μ〜数100μオーダーの鋳巣等の凹凸表面が超親水状態となるため、事後に形成される各種塗料が当該凹凸面に流動すると共に馴染み、確実に密着するために各種金属合金成型物の界面における後工程となる塗装工程はプライマーレスの状態にて十分な密着を確保出来ることを確認した。  In addition, when the interface of the coating of various metal alloy molded products is modified by the interface reforming device as described above, the cast hole of the order of several tens to several hundreds of microns formed on the surface of the various metal alloy molded products, that is, the casting surface, etc. Since the uneven surface of the metal is in a super hydrophilic state, various paints formed later flow into the uneven surface and become familiar and adhere securely, and the coating process that is the subsequent process at the interface of various metal alloy molded products is a primer It was confirmed that sufficient adhesion could be secured in the state of less.

[実施例1]
マグネシウム系合金(Mg−Al−Zn系:AZ91D)にて、チクソキャスティング成型手法により携帯電話機の筐体を得た。同筐体を以下に示すプロセスを経て意匠層形成の前処理を行った。
(1)前処理工程
ワーク投入→弱アルカリ脱脂(1分)→水洗(1分)→水切り乾燥(1分)→界面活性化処理(2秒)、なお、界面活性化処理における改質剤化合物はヘキサメチルジシロキサンを使用し、火炎処理用の燃料GASとしてプロパン・GASを使用した。
(2)意匠層形成工程
次に、前記前処理工程を終了した携帯電話機の筐体を下記に示すプロセスを経て意匠層を形成した。
ワーク投入→除塵(2秒)→プライマーレス・スプレー塗装:平均膜厚(25μ)・(10秒):熱硬化型塗料(2液型ウレタン樹脂:イシマット・ジャパン製:IMS−100)→セッティング(室温:10分)→硬化乾燥(70℃×30分)→クーリング(5分)→ワーク取出し。
(3)塗膜外観
塗膜外観は、プライマーレス・1コートフィニッシュで極めて平滑な仕上がりであり、外観上の問題点は一切認められなかった。
(4)塗膜物性

Figure 2007247051
Figure 2007247051
[Example 1]
A case of a mobile phone was obtained by a thixocasting molding method using a magnesium alloy (Mg—Al—Zn system: AZ91D). The casing was subjected to a pretreatment for forming a design layer through the following process.
(1) Pretreatment process Work input → Weak alkaline degreasing (1 minute) → Washing with water (1 minute) → Draining and drying (1 minute) → Interfacial activation treatment (2 seconds), modifier compound in interfacial activation treatment Used hexamethyldisiloxane and propane / GAS as the fuel GAS for flame treatment.
(2) Design layer formation process Next, the design layer was formed through the process shown below in the case of the cellular phone that completed the pretreatment process.
Workpiece input → Dust removal (2 seconds) → Primerless spray coating: Average film thickness (25μ) • (10 seconds): Thermosetting paint (2-component urethane resin: ISIMAT Japan: IMS-100) → Setting ( Room temperature: 10 minutes) → curing and drying (70 ° C. × 30 minutes) → cooling (5 minutes) → work removal.
(3) Appearance of the coating film The appearance of the coating film was a primer-less, one-coat finish with an extremely smooth finish, and no problems with appearance were observed.
(4) Physical properties of coating film
Figure 2007247051
Figure 2007247051

界面改質装置の概要を示す図である。It is a figure which shows the outline | summary of an interface reforming apparatus. マグネシウム系合金成型物の拡大断面図。The expanded sectional view of a magnesium system alloy molding. マグネシウム系合金成型物の拡大断面図。The expanded sectional view of a magnesium system alloy molding.

符号の説明Explanation of symbols

100:界面改質装置
101:界面改質剤化合物
102:貯蔵タンク部
103:加熱手段
104:噴射部(バーナー)
105:移送路
106:燃料ガスの貯蔵タンク
107:圧縮空気源
108:サブミキサ
109:メインミキサ
110:流量計付き流量調節バルブ
111:流量計付き流量調節バルブ112:
112:流量計付き流量調節バルブ
113:火炎
201:Mg−Al−Zn系(AZ91D)成型物
202:凹凸
203:凹凸
301:界面改質層
DESCRIPTION OF SYMBOLS 100: Interface modifier 101: Interface modifier compound 102: Storage tank part 103: Heating means 104: Injection part (burner)
105: Transfer path 106: Fuel gas storage tank 107: Compressed air source 108: Submixer 109: Main mixer 110: Flow rate adjustment valve 111 with flow meter 111: Flow rate adjustment valve 112 with flow meter
112: Flow control valve with flow meter 113: Flame 201: Mg—Al—Zn (AZ91D) molding 202: Concavity and convexity 203: Concavity and convexity 301: Interface modification layer

Claims (4)

少なくとも、下記各工程を経ることを必須とする金属合金成型物への高密着塗装方法。
1、金属合金成型物のアルカリ脱脂処理工程。
2、前1号記載の金属合金成型物の純水又は水或いは温水による洗浄工程。
3、前2号記載の金属合金成型物の水切り乾燥工程。
4、前3号工程後に、シラン原子、チタン原子またはアルミニウム原子を含む改質化合物であって、それぞれ沸点が10℃〜105℃である改質剤化合物を含む燃料ガスの火炎を、金属合金成型物の表面に対して、全面または部分的に吹き付け、金属合金成型物の表面が濡れ指数(測定温度25℃)で73dyn/cm以上となるよう界面活性化処理する工程。
5、前4号記載界面活性化処理工程を経て意匠層となる塗料層を施す塗装工程。
A high adhesion coating method on a metal alloy molded product that requires at least the following steps.
1. Alkali degreasing process of metal alloy molding.
2. A cleaning step of the metal alloy molded product described in the previous item 1 with pure water, water, or warm water.
3. A draining and drying process of the metal alloy molded product described in the previous item 2.
4. After the previous No. 3 step, a flame of a fuel gas containing a modifying compound containing a silane atom, a titanium atom or an aluminum atom and having a boiling point of 10 ° C. to 105 ° C. is formed into a metal alloy. A step of spraying the entire surface or a part of the surface of the object to perform surface activation treatment so that the surface of the metal alloy molded product has a wetness index (measurement temperature of 25 ° C.) of 73 dyn / cm or more.
5, The coating process which applies the coating layer used as a design layer through the surface activation treatment process as described in No. 4 above.
請求項1における金属合金成型物が、マグネシア合金またはアルミニウム合金或いはチタン合金である高密着塗装方法。  The high adhesion coating method in which the metal alloy molded product according to claim 1 is a magnesia alloy, an aluminum alloy, or a titanium alloy. 請求項1に基づき高密着塗装された金属合金成型物。  A metal alloy molded product coated with high adhesion according to claim 1. 請求項2に基づき高密着塗装された金属合金成型物。  A metal alloy molded product coated with high adhesion according to claim 2.
JP2006108002A 2006-03-14 2006-03-14 High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method Pending JP2007247051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108002A JP2007247051A (en) 2006-03-14 2006-03-14 High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108002A JP2007247051A (en) 2006-03-14 2006-03-14 High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method

Publications (1)

Publication Number Publication Date
JP2007247051A true JP2007247051A (en) 2007-09-27

Family

ID=38591665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108002A Pending JP2007247051A (en) 2006-03-14 2006-03-14 High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method

Country Status (1)

Country Link
JP (1) JP2007247051A (en)

Similar Documents

Publication Publication Date Title
Ramezani et al. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties
CN103785601B (en) There is the ceramic coating of improved scratch resistance and heat-conductive characteristic
US20110034615A1 (en) Process for producing sugar-plum-shaped particle
CN101925457A (en) Member with corrosion-resistant coating film, process for production of the same, and coating composition for production thereof
WO2006050918A3 (en) Process for producing a repair coating on a coated metallic surface
Nadargi et al. Synthesis and characterization of transparent hydrophobic silica thin films by single step sol–gel process and dip coating
JP5206312B2 (en) Water-based paint
TW201808973A (en) Bisaminoalkoxysilane compounds and methods for using same to deposit silicon-containing films
TW200947551A (en) Plasma processing method and plasma processing system
KR20010050755A (en) A method for smoothing the surface of a protective coating
CN107921730A (en) The manufacture method and insulated body of insulated body
JP4651098B2 (en) Anticorrosion film using nano hollow particles made of silica shell and anticorrosion coating using nano hollow particles made of silica shell
CN102859396A (en) Reflector having high resistance against weather and corrosion effects and method for producing same
JP4854599B2 (en) Coating method and article
CN101921420A (en) Removable hydrophobic composition, coating and preparation method thereof
Jeevajothi et al. Non-fluorinated, room temperature curable hydrophobic coatings by sol–gel process
Lu et al. An organic silicone composite coating for protection of Ti-6Al-4V alloy: Oxidation behavior at 600 ºC in dry air
JP4196304B2 (en) Coating / coating method of water-based polyurethane resin coating on difficult adhesion / hard adhesion base material and difficult adhesion / hard adhesion base material coated / coated by the same method
JP5293534B2 (en) Anti-fingerprint coating product and anti-fingerprint coating material composition
CN100584996C (en) Thin diamond film coating method and cemented carbide member coated with diamond thin film
JP2007247051A (en) High-adhesion coating method to metal-alloy molded object and metal-alloy molded object subjected to high-adhesion coating by the method
CN107641785A (en) A kind of spheroidal graphite cast-iron surface wearable coating preparation method
JP2011195806A (en) Fingerprint-resistant coating film-formed article and fingerprint-resistant coating material composition
JP2019039063A (en) Method for producing a surface treatment powder for thermally conductive grease, and surface treatment powder for thermally conductive grease
JP4207067B2 (en) Dissimilar material composite molding method based on insert mold technology and dissimilar material composite molding formed by the same method

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070903

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304