JP2007246732A - Abrasive material, abrasive and their manufacturing method - Google Patents

Abrasive material, abrasive and their manufacturing method Download PDF

Info

Publication number
JP2007246732A
JP2007246732A JP2006073588A JP2006073588A JP2007246732A JP 2007246732 A JP2007246732 A JP 2007246732A JP 2006073588 A JP2006073588 A JP 2006073588A JP 2006073588 A JP2006073588 A JP 2006073588A JP 2007246732 A JP2007246732 A JP 2007246732A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
abrasive material
carbonized
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006073588A
Other languages
Japanese (ja)
Other versions
JP2007246732A5 (en
Inventor
Shigehisa Ishihara
茂久 石原
Onori Kojima
大典 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAMIKA KK
Original Assignee
MAMIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAMIKA KK filed Critical MAMIKA KK
Priority to JP2006073588A priority Critical patent/JP2007246732A/en
Publication of JP2007246732A publication Critical patent/JP2007246732A/en
Publication of JP2007246732A5 publication Critical patent/JP2007246732A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new abrasive material, abrasive and their manufacturing method. <P>SOLUTION: A carbonized material is obtained by carbonizing a cedar material as a raw material at a carbonization temperature of 600°C for a predetermined carbonizing time. A material having been prepared by adjusting the carbonized material so as to have a predetermined particle size range is used in a polishing process of a lens as an abrasive material. A mixture composition with cerium carbide, etc., may be used as an abrasive material, and the carbonized material may be dispersed in water to give a liquid colloid and be used for polishing in the state of dropping. Compared to a conventional abrasive material mainly composed of cerium oxide, this abrasive material can perform highly accurate polishing in a short time and can provide a detoxified abrasion process by purifying a polishing waste liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カメラ産業、医療用内視鏡産業、又は、光学電子産業等の産業分野において、ビデオカメラレンズやデジタルカメラレンズ等の多種多様の光学レンズ、DVDやCD用のピックアップレンズ、光学デバイス、半導体デバイス、レーザーデバイスとしてのプリズム,反射鏡,鏡面又は界面等の研磨のために用いられる研磨材及びその製造方法に関する。   The present invention relates to a variety of optical lenses such as video camera lenses and digital camera lenses, pickup lenses for DVDs and CDs, and optical devices in industrial fields such as the camera industry, the medical endoscope industry, and the optoelectronics industry. The present invention relates to a polishing material used for polishing a semiconductor device, a prism as a laser device, a reflecting mirror, a mirror surface or an interface, and a manufacturing method thereof.

従来、酸化セリウムや酸化ジルコニウム等の種々の研磨材料(以下「現用研磨材料」という)が用いられ、これらの現用研磨材料を原料とする種々の研磨材が提案されている(例えば特許文献1参照)。このものでは酸化セリウムを原料として用いた研磨材を提案している。   Conventionally, various polishing materials such as cerium oxide and zirconium oxide (hereinafter referred to as “current polishing material”) have been used, and various polishing materials using these current polishing materials as raw materials have been proposed (for example, see Patent Document 1). ). This material proposes an abrasive using cerium oxide as a raw material.

ところで、一般にレンズは荒研削、精研削、研磨という工程を経て加工される。荒研削によりガラスを所定の形状や表面粗さに研削し、精研削によりその表面粗さや曲率を高精度に仕上げ、そして、研磨により表面を研磨して所定の光学性能が付与される。これらは、砥石を装着した研磨機により行われ、砥石としてはダイヤモンド砥粒をボンド材で固めたものであり、Niめっきで固定する電着ボンド、酸化鉄、酸化アルミニウム、酸化ケイ素等の無機物を混合焼成したビトリファイドボンド、ブロンズ等の金属粉末を焼結したメタルボンド、あるいは、硬質樹脂を混合したレジンボンドなどがある。これらは、いずれも高コストである。精研削は、メタルボンド砥石、又はダイヤモンドレジン砥石(ダイヤモンドペレット)を用いるが、これによる精研削では砥石に用いられる砥粒が高硬度であり摺動性に欠けるためレンズ表面にスクラッチ(研削傷)を生ずることになる。研磨は、精研削で発生したスクラッチを完全に除去して滑らかな表面に仕上げ、同時に球面の形状精度を高める工程であり、酸化セリウム、酸化ジルコニウム等の無機物酸化物の微粒子5〜10重量%含む液体を循環流下させるか、あるいは液滴を循環滴下させ、レンズ表面に形成された水和層を研磨材料により微小除去あるいはスクラッチを埋めて平滑にするものである。   Incidentally, a lens is generally processed through steps of rough grinding, fine grinding, and polishing. The glass is ground to a predetermined shape and surface roughness by rough grinding, the surface roughness and curvature are finished with high precision by fine grinding, and the surface is polished by polishing to give predetermined optical performance. These are performed by a grinder equipped with a grindstone, and diamond grits are hardened with a bond material as a grindstone. Electrodeposited bonds fixed by Ni plating, iron oxide, aluminum oxide, silicon oxide and other inorganic substances such as There are mixed and fired vitrified bonds, metal bonds obtained by sintering metal powders such as bronze, and resin bonds obtained by mixing hard resins. These are all expensive. For fine grinding, a metal bond grindstone or diamond resin grindstone (diamond pellet) is used. However, in this precise grinding, the abrasive grains used in the grindstone are high in hardness and lack of slidability, so scratches on the lens surface (grinding scratches) Will result. Polishing is a process in which scratches generated by fine grinding are completely removed to finish a smooth surface, and at the same time, the shape accuracy of the spherical surface is increased, and includes 5 to 10% by weight of fine particles of inorganic oxides such as cerium oxide and zirconium oxide. The liquid is circulated down or the liquid droplets are circulated and dropped, and the hydration layer formed on the lens surface is finely removed or filled with a polishing material to make it smooth.

しかし、上記の無機物酸化物(現用研磨材料)は高価格であり、その配合調製に高度の技術を要する上に、研磨精度を高めるためには長時間の研磨を必要とするという不都合がある。その一方、上記の光学電子産業等の急速な進歩によって、例えば極微少レンズや極微細プリズム・鏡面の研磨は全く新しい超高精度の研磨技術とそれに用いる研磨材料の開発が要請されるに至っている。又、上記の無機酸化物の液滴を循環滴下することなどにより研磨廃液が発生し、この研磨廃液の浄化も必要となる。   However, the above-described inorganic oxide (currently used polishing material) is expensive, and requires a high level of technology for blending and preparing it. In addition, there is a disadvantage that long polishing is required to improve polishing accuracy. On the other hand, due to the rapid progress of the above-mentioned optical electronics industry, for example, polishing of microlenses, ultrafine prisms and mirror surfaces is required to develop completely new ultra-high precision polishing technology and polishing materials used therefor. . Further, a polishing waste liquid is generated by circulating and dropping the inorganic oxide droplets, and it is necessary to purify the polishing waste liquid.

さらに、新たなレンズ素材である蛍石、合成石英等により形成されたレンズの研磨材料としては、希土類元素酸化物を主成分とするバストネサイトという供給体制に難がある上に天然物由来の品質のバラツキを必然的に有している鉱石素材に対し、その原料を求めざるを得ないという事情もある。   Furthermore, as a polishing material for lenses formed from new lens materials such as fluorite and synthetic quartz, it is difficult to supply bastonite mainly composed of rare earth element oxides, and it is derived from natural products. There is also a circumstance that it is necessary to find raw materials for ore materials that inevitably have variations in quality.

一方、木材を炭化することによって得られる木炭は、炭化温度と炭化時間の如何により硬さ、摺動性、多孔質等が顕著に発現することが本発明者による研究や他の研究によりこれまでに明らかにされている。   On the other hand, charcoal obtained by carbonizing wood has been studied by the present inventors and other studies so far that hardness, slidability, porosity, etc. are remarkably expressed depending on the carbonization temperature and carbonization time. Has been revealed.

特開2005−48181号公報JP 2005-48181 A

そこで、本発明者らは、上記のような事情に鑑みて、バストネサイト、ダイヤモンド等に代わり安価でかつ安定供給することができる上に、より高い研磨性能や研磨廃液の自己浄化を実現し得る研磨材料や研磨材を提供することを目的にした。かかる目的の背景としてあり、互いに融合させることにより本発明を実現させるに至った目的・課題としては次のようなものがある。すなわち、林業資源であるスギ材(間伐材・未利用材)の新規な用途開発による利用拡大・有効利用・高付加価値利用、最先端光学・電子材料の表面・界面・鏡面研磨材料や研磨材の新規開発、環境無負荷研磨材料の開発、及び、研磨廃液の無害化、である。   Therefore, in view of the above circumstances, the present inventors can supply cheaply and stably in place of bust tonesite, diamond, etc., and realize higher polishing performance and self-purification of polishing waste liquid. An object of the present invention is to provide an abrasive material and an abrasive material to be obtained. As the background of this object, the following objects and problems have been achieved by realizing the present invention by fusing each other. In other words, the use of cedar wood (thinned wood / unused wood), which is a forestry resource, by expanding its use through new application development, effective use, high value added use, surface / interface / mirror polishing materials and polishing materials for cutting-edge optical / electronic materials New development, development of environmental non-loading polishing material, and detoxification of polishing waste liquid.

課題を解決するための手段及び発明の作用・効果Means for solving the problems and actions / effects of the invention

上記目的を達成するために、本発明者らは、バストネサイト、ダイヤモンド等に代わる研磨材料として木質炭化物を利用することを見出し、種々の試験を実施した上で本発明を完成させた。かかる本発明は、被研磨材料の研磨工程に的確に対応し得る性能と形状を有した木質炭化物となし、この木質炭化物をそれ単独で、あるいは、木質炭化物を酸化セリウム、酸化ジルコニウム等の現用研磨材料に混合した混合組成物を、研磨材料又は研磨材として用いるものである。これにより、より高い研磨性能や研磨廃液の浄化を実現し得る上に、コストの低減化をも実現させ得ることになる。又、本研磨材料の素材となる木材はいずれも廉価で加工が容易であり、木材の炭化は木材固有の熱分解及び酸化の自己発熱反応を利用することができるものであるため、省エネルギー、環境への負荷が皆無の工程となし得る上に、低コスト生産が可能となる。   In order to achieve the above object, the present inventors have found that wood carbide is used as an abrasive material in place of bust necite, diamond and the like, and have completed the present invention after conducting various tests. The present invention is a wood carbide having performance and shape that can accurately correspond to the polishing process of the material to be polished, and this wood carbide is used alone, or the wood carbide is used for current polishing such as cerium oxide and zirconium oxide. The mixed composition mixed with the material is used as an abrasive material or an abrasive. As a result, higher polishing performance and purification of polishing waste liquid can be realized, and cost reduction can also be realized. In addition, the wood used as the material for this polishing material is inexpensive and easy to process, and the carbonization of wood can utilize the inherent thermal decomposition and oxidation self-heating reactions of wood, saving energy and reducing the environment. In addition, the process can be performed without any load, and low-cost production is possible.

本発明者らは、木材の炭化温度及び炭化時間によって顕著に変化する物理的、化学的性質を機能として捉え、特に硬さ、摺動性、多孔質を研磨性能発現の因子として確保し、所定の微小粒径をもつ研磨材料とすることにより本発明を完成させた。すなわち、種々の炭化条件のうち特に炭化温度及び炭化時間を制御することにより、木質炭化物(木炭)の結合状態と結晶構造の変化により木炭が高硬度となり、一方、グラファイト類似構造への転移により摺動性を生み、又は、炭化した木材細胞壁に生ずる細孔とその分布を制御することができることを見出した。又、その硬さはダイヤモンドに次ぐ硬度であって、鋭い研削・研磨性能を発揮する一方、その高硬度を保持したままの摺動性の発現は研削・研磨に潤滑性を与えレンズ表面のスクラッチ生成を防ぐことになる。また、ミクロ孔〜マクロ孔の細孔をもつ粒径100nm〜500μmの木炭微粒子の液体エマルジョンの分散の向上に役立ち、均一な砥粒分布をもつすぐれた液状コロイドの砥液を確保できることになる。   The present inventors regard the physical and chemical properties that change significantly depending on the carbonization temperature and carbonization time of wood as functions, and in particular, ensure hardness, slidability, and porosity as factors for developing the polishing performance. The present invention was completed by using an abrasive material having a fine particle size of That is, by controlling the carbonization temperature and the carbonization time among various carbonization conditions, the charcoal becomes hard due to the change in the bonding state and crystal structure of the wood carbide (charcoal), while the charcoal is slid by the transition to a graphite-like structure. It has been found that the pores and the distribution of the pores generated in the cell wall of carbonized wood can be controlled. Its hardness is second only to diamond, and it exhibits sharp grinding / polishing performance. On the other hand, its slidability while maintaining its high hardness gives lubricity to grinding / polishing and scratches on the lens surface. It will prevent generation. It also helps to improve the dispersion of the liquid emulsion of fine charcoal particles having micropores to macropores and having a particle size of 100 nm to 500 μm, and ensures an excellent liquid colloidal abrasive solution having a uniform abrasive grain distribution.

具体的に、本発明は次の事項により特定される。すなわち、請求項1に係る発明では、研磨材料として、所定の炭化温度と所定の炭化時間により炭化し、かつ、所定粒径の粉状又は粒状に調製した木質炭化物を、それ単独により、あるいは、この木質炭化物と、酸化セリウム,酸化ジルコニウム,ダイヤモンドのいずれか1以上を含む無機物とを混合した混合組成物により構成してなるものとした。これにより、ミクロ孔(ミクロポア)又はマクロ孔(マクロポア)あるいはこれらの中間のメソ孔の細孔をもつ多孔質粉状又は粒状の研磨材料が得られる。上記の上記木質炭化物、又は、この木質炭化物と混合されてなる混合組成物の粒径としては、100nm〜500μmの範囲に設定することができる(請求項2)。さらに、上記混合組成物は、上記木質炭化物として少なくとも5重量%、上記無機物として少なくとも5重量%を有するようにすることができる(請求項3)。   Specifically, the present invention is specified by the following matters. That is, in the invention according to claim 1, as a polishing material, a wood carbide that is carbonized at a predetermined carbonization temperature and a predetermined carbonization time and is prepared in a powder or granular form with a predetermined particle size, either alone or The wood carbide is composed of a mixed composition in which an inorganic material containing one or more of cerium oxide, zirconium oxide, and diamond is mixed. As a result, a porous powdery or granular abrasive material having micropores (micropores), macropores (macropores), or mesopores intermediate between them is obtained. The particle size of the wood carbide or the mixed composition mixed with the wood carbide can be set in a range of 100 nm to 500 μm (Claim 2). Further, the mixed composition may have at least 5% by weight as the wood carbide and at least 5% by weight as the inorganic substance (Claim 3).

又、請求項4に係る発明では、研磨材料として、所定の直径及び所定の長さを有する多孔質カーボンナノファイバー又は活性炭素繊維からなる多孔性炭素化物繊維を、それ単独により、あるいは、この炭素化物繊維と、酸化セリウム,酸化ジルコニウム,ダイヤモンドのいずれか1以上を含む無機物とを混合した繊維混合組成物により構成してなるものとした。上記炭素化物繊維としては、直径が50nm〜500μm、長さが100μm〜0.5mmの繊維状形態を有するものとすることができる(請求項5)。さらに、上記混合組成物は、上記炭素化物繊維として少なくとも5重量%、上記無機物として少なくとも5重量%を有するようにすることができる(請求項6)。   In the invention according to claim 4, a porous carbonized fiber made of porous carbon nanofibers or activated carbon fibers having a predetermined diameter and a predetermined length is used as the polishing material, either alone or in the form of carbon. It was constituted by a fiber mixture composition in which a chemical fiber and an inorganic material containing at least one of cerium oxide, zirconium oxide and diamond were mixed. The carbonized fiber may have a fibrous form having a diameter of 50 nm to 500 μm and a length of 100 μm to 0.5 mm. Further, the mixed composition may have at least 5% by weight as the carbonized fiber and at least 5% by weight as the inorganic substance.

一方、以上の請求項1〜請求項6のいずれかに記載の研磨材料を、水に対し、0.0001〜0.1重量%分散させて液状コロイドにして液状研磨材料又は液状研磨材とすることができる(請求項7)。又、請求項1〜請求項6のいずれかに記載の研磨材料を、炭素繊維,アラミド繊維又は和紙を含む高強度・高弾性率繊維から選択した1種以上に対し、0.01重量%〜5重量%混抄してシート状に成型してシート状研磨材料又はシート状研磨材にすることもできる(請求項8)。さらに、請求項1〜請求項6のいずれかに記載の研磨材料を、ボンド材料又は硬質樹脂と混合して所定形状の型内に充填して成形し、砥石状研磨材料又は砥石状研磨材にすることができる(請求項9)。   On the other hand, the polishing material according to any one of claims 1 to 6 is dispersed in water in an amount of 0.0001 to 0.1% to form a liquid colloid to obtain a liquid polishing material or a liquid polishing material. (Claim 7). Further, the abrasive material according to any one of claims 1 to 6 is 0.01% by weight to one or more selected from high-strength and high-modulus fibers including carbon fiber, aramid fiber or Japanese paper. 5% by weight can be mixed and molded into a sheet to obtain a sheet-like abrasive or sheet-like abrasive (claim 8). Furthermore, the abrasive material according to any one of claims 1 to 6 is mixed with a bond material or a hard resin, filled into a mold having a predetermined shape, and molded into a grindstone-like abrasive material or grindstone-like abrasive. (Claim 9).

そして、研磨材料の製造方法として、上記の請求項1〜請求項3のいずれかに記載の研磨材料を構成する木質炭化物を製造する際に、その炭化温度及び炭化時間についての条件を変更設定することにより、光学レンズの荒研削、半光沢面を作り上げる精研削、最終仕上げの研磨の3段階の各工程で要求される性能に対応した機能を発揮する研磨材料を製造することができる(請求項10)。   And as a manufacturing method of polishing material, when manufacturing the wood carbide which comprises the polishing material in any one of said Claims 1-3, the conditions about the carbonization temperature and carbonization time are changed and set. Thus, it is possible to manufacture a polishing material that exhibits functions corresponding to the performance required in each of the three steps of rough grinding of an optical lens, fine grinding for forming a semi-gloss surface, and final finishing polishing. 10).

又、この研磨材料の製造方法において、上記荒研削、精研削、研磨の3段階の各工程で要求される性能に対応して、木質炭化物を得るための炭化原料の材種及びその使用部位を選択的に変更設定するようにすることができる(請求項11)。   In addition, in this method of manufacturing an abrasive material, the type of carbonization raw material for obtaining the wood carbide and the portion to be used in response to the performance required in each of the three steps of rough grinding, fine grinding and polishing are as follows. It is possible to selectively change and set (claim 11).

<第1実施形態>
広葉樹では特にウバメガシや、カシ類を用い、針葉樹ではスギを用いる。これらから選択した炭化原料に対し、まず、300〜400℃で空気遮断加熱を5〜7時間継続して施し、次に、空気を一気に供給することにより、1300〜1350℃で1〜3時間の加熱により精煉した後、10〜20%の水分を含む木炭を用いて急冷消火させる。得られた木炭を所定の粒径の粉状又は粒状に調製して木質炭化物となし、この木質炭化物を研磨材料とする。この研磨材料をボンド材を用いて固定し、砥石(砥石状研磨材)として研削に用いる。
<First Embodiment>
For broad-leaved trees, especially Umegamegashi and oak are used, and for coniferous trees, cedar is used. The carbonized raw material selected from these is first subjected to 300 to 400 ° C. for 5 to 7 hours with air shut-off, and then supplied with air at 1300 to 1350 ° C. for 1 to 3 hours. After refining by heating, it is quenched and extinguished using charcoal containing 10 to 20% moisture. The obtained charcoal is prepared into a powdery or granular form having a predetermined particle diameter to form a wood carbide, and this wood carbide is used as a polishing material. This abrasive material is fixed using a bond material, and used as a grindstone (grindstone-like abrasive) for grinding.

<第2実施形態>
広葉樹ではシラカンバ、ホウノキ、アブラギリ又はウバメガシを用い、針葉樹ではスギ、アカマツ、クロマツ又はトドマツを用いる。これらから選択した炭化原料に対し、昇温速度0.5〜20℃/minに設定し、200℃〜1500℃の範囲から選択した400℃,500℃,600℃,800℃,900℃,1000℃,1100℃,1200℃,及び,1300℃の各温度まで昇温させ、この各温度を維持してそれぞれ空気遮断加熱により木質炭化物を得る。次に、得られた木質炭化物を粒径100nm〜500μmの粒度分布を有する砥粒に調製する。そして、これら炭化温度の異なるそれぞれの砥粒をレジン砥石(ペレット)として精研削工程に用いる。ダイヤモンドペレットに比較してレンズ表面にスクラッチの発生を招くことなく、しかも、「ヤケ」や「曇り」の発生も防止・抑制することができるようになる。
Second Embodiment
For broad-leaved trees, white birch, cypress, abragi or basamushi are used, and for coniferous trees, cedar, red pine, black pine or todomatsu are used. With respect to the carbonization raw material selected from these, it set to the temperature increase rate of 0.5-20 degreeC / min, and selected from the range of 200 degreeC-1500 degreeC 400 degreeC, 500 degreeC, 600 degreeC, 800 degreeC, 900 degreeC, 1000 The wood carbide is obtained by raising the temperature to 1 ° C., 1100 ° C., 1200 ° C., and 1300 ° C., and maintaining each of these temperatures to perform air shut-off heating. Next, the obtained wood carbide is prepared into abrasive grains having a particle size distribution with a particle size of 100 nm to 500 μm. Each abrasive grain having a different carbonization temperature is used as a resin grindstone (pellet) in the fine grinding process. Compared to diamond pellets, scratches are not generated on the lens surface, and the occurrence of “burns” and “cloudiness” can be prevented and suppressed.

<第3実施形態>
上炭化原料としてスギを選択し、炭化温度条件として600℃を選択して、上記の第2実施形態で説明したと同様の炭化手法により炭化させ、得られた木質炭化物を上記と同様の粒度分布の砥粒に調製したものを、酸化セリウムを主成分とする現用研磨材料に対し、0.005重量%、1重量%又は10重量%加えて混合し、さらに、この混合組成物を水に分散させて液状コロイドとなして液状の研磨材とする。そして、この液状研磨材を研磨工程において研磨対象に対し液滴状態で滴下させるように循環させて、滴下研磨を実施する。
<Third Embodiment>
Cedar is selected as the upper carbonization raw material, 600 ° C. is selected as the carbonization temperature condition, carbonization is performed by the same carbonization method as described in the second embodiment, and the obtained wood carbide is subjected to the same particle size distribution as above. 0.005% by weight, 1% by weight or 10% by weight is added to the current polishing material mainly composed of cerium oxide and mixed, and this mixed composition is dispersed in water. It is made into a liquid colloid by making it into a liquid abrasive. Then, the liquid abrasive is circulated so as to be dropped in a droplet state with respect to the object to be polished in the polishing step, and the dropping polishing is performed.

<第4実施形態>
直径が50nm〜500μm、長さが100μm〜0.5mmの多孔質カーボンナノファイバー又は活性炭素繊維からなる多孔性炭素化物繊維を、酸化セリウムを主成分とする現用研磨材料に対し、0.001重量%あるいは少なくとも0.001重量%加えて混合し、さらに、この繊維混合組成物を水に分散させて液状コロイドとなして液状の研磨材とする。そして、この液状研磨材を研磨工程において研磨対象に対し液滴状態で滴下させるように循環させて、滴下研磨を実施する。
<Fourth embodiment>
0.001 weight by weight of a porous carbonized fiber composed of porous carbon nanofibers or activated carbon fibers having a diameter of 50 nm to 500 μm and a length of 100 μm to 0.5 mm with respect to the current polishing material mainly composed of cerium oxide % Or at least 0.001% by weight, and the mixture is further dispersed in water to form a liquid colloid to obtain a liquid abrasive. Then, the liquid abrasive is circulated so as to be dropped in a droplet state with respect to the object to be polished in the polishing step, and the dropping polishing is performed.

<炭化原料>
種々の試験を実施した。試験に供した炭化原料としては、次のものを用いた。すなわち、スギ材として、新潟県高柳地区の樹齢18〜20年のスギ間伐材を用いた。このスギ間伐材は新潟県森林組合連合会より提供を受けた。比較のためにホウノキ、ニホンアブラギリ、シラカンバも用いた。ホウノキ及びニホンアブラキは新潟県産の樹齢10〜15年の材を同森林組合連合会より入手した。シラカンバは有限会社オーリー技研より北海道・上川町産の樹齢10年材のものを入手した。さらに、近時話題となっている木質炭素化物に竹炭があるため、この竹炭を調製するため5〜6年生のモウソウチクを同森林組合連合会より提供を受けた。これら炭化原料は、生材及び乾燥材と、その樹皮とを用いた。又、モウソウチクは、生材、乾燥材及び前熱処理乾燥材の三種を用いた。
<Carbonized raw material>
Various tests were performed. The following were used as the carbonization raw material used for the test. That is, the cedar thinning material of the age of 18-20 years in the Takayanagi district of Niigata Prefecture was used as a cedar material. This cedar thinning was provided by the Niigata Forestry Association. For comparison, cypress, Japanese abragiri, and birch were also used. Hononaki and Japanese Aburaki obtained from Niigata Prefecture 10-15 years old wood from the Japan Federation of Forestry Associations. The birch was obtained from Korikawa-cho, Hokkaido, 10-year-old wood from Ory Giken Co., Ltd. Furthermore, bamboo charcoal is a topical woody carbonized material, and 5-6 year old mosouchiku was provided by the Forestry Union Federation to prepare bamboo charcoal. These carbonized raw materials were raw materials and dried materials, and their bark. In addition, three kinds of moso-chiku were used: raw material, desiccant and preheat-treated desiccant.

<炭化>
炭化装置は独自に開発したものを用い、これを上記の化原料に対する熱処理及び炭素化に供した。炭素化は密閉空気遮断加熱とし、炉内昇温速度を1〜5℃/minに設定し200〜1500℃の範囲の所定の目的設定温度に到達した後、2時間それを保持し、それから後に放冷した。標示炭素化温度は材内温度とし、未炭素化物及び熱処理材も試験材料に供した。
<Carbonization>
The carbonization apparatus was originally developed and used for the heat treatment and carbonization of the chemical raw material. Carbonization is sealed air shut-off heating, the furnace heating rate is set to 1-5 ° C / min, and after reaching a predetermined target set temperature in the range of 200-1500 ° C, it is held for 2 hours, and then Allowed to cool. The marking carbonization temperature was the internal temperature, and the uncarbonized material and heat-treated material were also used for the test material.

<粒度調整>
木材及びその炭化物の超微小粉砕は極めて困難であるため、遊星回転ポットミル(株式会社伊藤製作所製)に対しさらに改良を施し、これを超微小粉砕に供した。粒度調整法として、粉砕時の遊星回転数及び回転時間の組合せによって調整することとした。得られた粉末を粒度分布によって区分し、区分毎に研磨に供した。
<Granularity adjustment>
Since ultrafine pulverization of wood and its carbides is extremely difficult, the planetary rotary pot mill (manufactured by Ito Seisakusho Co., Ltd.) was further improved and subjected to ultrafine pulverization. As the particle size adjustment method, the particle size was adjusted by a combination of the planetary rotation speed and rotation time during pulverization. The obtained powder was classified according to the particle size distribution, and subjected to polishing for each category.

芯材が未発達なスギ除伐材、間伐材炭素化物試料は研磨水への分散・拡散速度が大きく、研磨性能に均一性が保たれた。 Samples of cedar and thinned wood that had not been developed in the core material had a high rate of dispersion and diffusion into the polishing water, and the polishing performance was kept uniform.

<研削・研磨>
工場の実際の研磨各工程の実働条件下において研磨を行い、その評価をそれぞれ担当の熟練技術者により通常業務を行っている出荷時検定の評価基準に基づいて検定・評価した。
<Grinding / Polishing>
Polishing was performed under the actual working conditions of each actual polishing process in the factory, and the evaluation was evaluated and evaluated based on the evaluation criteria of the shipping certification, which is usually performed by the skilled engineer in charge.

<得られた結果>
炭素化物の研磨性能において熱処理及び炭素化温度依存性が認められた。すなわち、レンズ、プリズムの研磨では、未炭素化物〜400℃の炭化温度範囲での炭化物(炭素化物)は粗研磨に適合し、400〜1500℃の炭化温度範囲でのそれは各研磨工程のそれぞれに研磨性能を示した。また、800℃以上の炭化温度範囲では硬質研磨に適正があると認められた。
<Results obtained>
The heat treatment and carbonization temperature dependence was recognized in the polishing performance of the carbonized material. That is, in the polishing of lenses and prisms, carbides (carbonized products) in the carbonization temperature range of uncarbonized to 400 ° C. are suitable for rough polishing, and those in the carbonization temperature range of 400 to 1500 ° C. are used for each polishing step. The polishing performance was shown. Further, it was recognized that the hard polishing was appropriate in the carbonization temperature range of 800 ° C. or higher.

又、供試材料の研磨性能において材料粒度の依存性が認められ、数十nm〜数十μmの粒度分布をもつスギの炭化物(炭素化物)に現用研磨材料を凌駕する性能が認められた。   Further, the dependence of the material particle size on the polishing performance of the test material was recognized, and the performance of the cedar carbide (carbonized material) having a particle size distribution of several tens of nanometers to several tens of micrometers was superior to that of the current polishing material.

上記のように熱処理温度、炭素化温度及び粒度によって機能制御されたスギの炭素化物は、研磨工程の種類に応じて、単独使用や混合組成物としての使用が可能であり、それを適正に選択して利用することにより、各工程においてより高精度の研磨や、広範態様の研磨を実現させ得るものと考えられる。   As described above, the cedar carbonized product whose function is controlled by the heat treatment temperature, carbonization temperature and particle size can be used alone or as a mixed composition depending on the type of polishing process, and it is selected appropriately. Therefore, it is considered that more accurate polishing and a wide range of polishing can be realized in each process.

そして、スギの炭素化物を研磨材料として用いた研磨では、従来及び現用研磨材料に比べ、ガラス面に擦り傷や曇りあるいはヤケが認められず、研磨速度に格段の向上が認められた。加えて、スギの炭素化物はそれを従来及び現用研磨材料に対し添加、配合、複合しても、それによる研磨性能の低減は認められず、それらの混用、併用が可能であることが確認された。さらに、スギの炭素化物を研磨材料として用いた研磨では、その研磨廃液に有害成分の残留等がなく、現用研磨材料に比して顕著な研磨廃液浄化機能が認められた。   In the polishing using the cedar carbonized material as the polishing material, no scratches, cloudiness or burns were observed on the glass surface compared with the conventional and current polishing materials, and a marked improvement in the polishing rate was recognized. In addition, it was confirmed that the carbonization product of cedar was added, blended, and combined with conventional and current polishing materials, and no reduction in polishing performance was observed. It was. Further, in the polishing using the cedar carbonized product as the polishing material, no harmful components remained in the polishing waste liquid, and a remarkable polishing waste liquid purification function was recognized as compared with the current polishing material.

<供試体>
図1に示す如く、現用研磨材料単独(同図に[A]として示す)、本発明の木質炭化物単独により構成した研磨材料(同図に[B]として示す)、現用研磨材料と本発明の木質炭化物との混合組成物により構成した研磨材料2種類(同図に[A]+[B]として示す)、現用研磨材料と本発明のカーボンナノファイバーとの混合組成物により構成した研磨材料(同図に[A]+[C]として示す)とを用いて、比較試験を実施した。
<Specimen>
As shown in FIG. 1, the current abrasive material alone (shown as [A] in the figure), the abrasive material composed of the wood carbide alone of the invention (shown as [B] in the figure), the current abrasive material and the present invention Two types of abrasive materials composed of a mixed composition with wood carbide (shown as [A] + [B] in the figure), an abrasive material composed of a mixed composition of the current abrasive material and the carbon nanofibers of the present invention ( A comparative test was conducted using [A] + [C] in the figure.

[A]は酸化セリウムCeO2を45〜60%とLaO3他を含む酸化セリウム系の現用研磨材料である。[B]はスギを用いて炭化温度条件として600℃に設定し、第2実施形態で説明した炭化手法にて炭化し、得られた木質炭化物を粒径100nm〜500μmの範囲での粒度分布を有するように調製したものである。   [A] is a cerium oxide-based current polishing material containing 45 to 60% cerium oxide CeO2 and LaO3 and others. [B] is set to 600 ° C. as a carbonization temperature condition using cedar, carbonized by the carbonization method described in the second embodiment, and the obtained wood carbide has a particle size distribution in a particle size range of 100 nm to 500 μm. It was prepared to have.

<試験方法>
それぞれの研磨材料の供試体それぞれを10%の研磨水分散濃度にして滴下研磨を所定時間(300秒又は600秒)実施した。そして、研磨後のニュートン干渉縞を観察することによる研磨精度の比較と、目視によるやけやくもりの発生状況の観察とを行った。又、併せて、研磨廃液内のレアメタル濃度を検出測定した。
<Test method>
Dropping polishing was performed for a predetermined time (300 seconds or 600 seconds) with each of the specimens of each polishing material having a polishing water dispersion concentration of 10%. And the comparison of the grinding | polishing precision by observing the Newton interference fringe after grinding | polishing, and observation of the generation | occurrence | production state of tingling and cloudiness by visual observation were performed. In addition, the rare metal concentration in the polishing waste liquid was detected and measured.

<試験結果>
上記の供試体[A]の現用研磨材料で300秒研磨した場合には、ニュートン干渉縞が3〜5本(図2に示す写真参照)であり、研磨精度としては通常程度の精度に止まっているのに対し、[B]の本発明の炭化物単独や、[B]の混合組成物からなる研磨材料、及び[C]のカーボンナノファイバーの混合組成物からなる研磨材料では研磨時間の長短の如何に拘わらず、ニュートン干渉縞は1〜2本(図3に示す写真参照)と高精度の研磨精度を実現した。特に、現用研磨材料のみの[A]で600秒の研磨時間継続した研磨した場合の研磨精度と、上記の本発明の炭化物[B]の単独又は混合組成物において300秒での研磨精度とが互いに同程度であって、研磨効率の観点からも高い研磨性能を発揮していることが分かった。
<Test results>
When the current polishing material of the above specimen [A] is polished for 300 seconds, there are 3 to 5 Newton interference fringes (see the photograph shown in FIG. 2), and the polishing accuracy is limited to a normal level. On the other hand, the polishing material of [B] according to the present invention alone, the polishing material made of the mixed composition of [B], and the polishing material made of the mixed composition of carbon nanofibers of [C] have long and short polishing times. Regardless of the case, the Newton interference fringes were realized with high accuracy of 1 to 2 (see the photograph shown in FIG. 3). In particular, the polishing accuracy when polishing is continued for 600 seconds with [A] of the current polishing material alone, and the polishing accuracy at 300 seconds in the above-mentioned carbide [B] of the present invention alone or in the mixed composition. It was found that they were comparable to each other and exhibited high polishing performance from the viewpoint of polishing efficiency.

さらに、研磨廃液のレアメタル濃度においては、現用研磨材料単独の[A]の場合では研磨時間の経過後に0.1〜0.3mg/mの酸化セリウムや酸化ランタンが検出されたのに対し、本発明の炭化物[A]を僅か0.005重量%混合しただけでもレアメタル濃度として有意な濃度検出はなく、炭化物の有する自己浄化機能が発揮されていると考えられる。 Furthermore, in the rare metal concentration of the polishing waste liquid, 0.1 to 0.3 mg / m 3 of cerium oxide or lanthanum oxide was detected after the polishing time in the case of [A] of the current polishing material alone, Even if only 0.005 wt% of the carbide [A] of the present invention is mixed, there is no significant concentration detection as a rare metal concentration, and it is considered that the self-purifying function of the carbide is exhibited.

なお、上記の供試体を用いて、被研磨対象であるレンズに対し、精研削工程を省略して研磨工程のみを15〜30分行ったところ、ニュートン干渉縞が1〜2本という高精度の研磨を実現することができた。このことは、新しい研磨方式の可能性について示唆するものと考えられる。   In addition, when the above-mentioned specimen was used and the polishing process was omitted for the lens to be polished and the polishing process was performed for 15 to 30 minutes, the Newton interference fringes with high accuracy of 1 to 2 were obtained. Polishing could be realized. This is considered to suggest the possibility of a new polishing method.

本発明の実施例2の供試体と試験結果をまとめた表である。It is the table | surface which put together the specimen and test result of Example 2 of this invention. ニュートン干渉縞の観察写真である。It is an observation photograph of Newton interference fringes. 図2とは異なるニュートン干渉縞の観察写真である。It is an observation photograph of Newton interference fringes different from FIG.

Claims (11)

所定の炭化温度と所定の炭化時間により炭化され、かつ、所定粒径の粉状又は粒状に調製された木質炭化物を、それ単独により、あるいは、この木質炭化物と、酸化セリウム,酸化ジルコニウム,ダイヤモンドのいずれか1以上を含む無機物とを混合した混合組成物により構成してなる、研磨材料。 A wood carbide that has been carbonized at a predetermined carbonization temperature and a predetermined carbonization time and that has been prepared in the form of powder or granules having a predetermined particle size, either alone or with this wood carbide and cerium oxide, zirconium oxide, diamond A polishing material comprising a mixed composition obtained by mixing any one or more inorganic substances. 請求項1に記載の研磨材料であって、
上記木質炭化物、又は、この木質炭化物と混合されてなる混合組成物の粒径を、100nm〜500μmの範囲に設定してなる、研磨材料。
The abrasive material according to claim 1,
A polishing material, wherein the particle size of the wood carbide or a mixed composition mixed with the wood carbide is set in a range of 100 nm to 500 μm.
請求項1又は請求項2に記載の研磨材料であって、
上記混合組成物は、上記木質炭化物として少なくとも5重量%、上記無機物として少なくとも5重量%を有している、研磨材料。
The abrasive material according to claim 1 or 2,
The abrasive composition, wherein the mixed composition has at least 5% by weight as the wood carbide and at least 5% by weight as the inorganic substance.
所定の直径及び所定の長さを有する多孔質カーボンナノファイバー又は活性炭素繊維からなる多孔性炭素化物繊維を、それ単独により、あるいは、この炭素化物繊維と、酸化セリウム,酸化ジルコニウム,ダイヤモンドのいずれか1以上を含む無機物とを混合した繊維混合組成物により構成してなる、研磨材料。 A porous carbonized fiber composed of porous carbon nanofibers or activated carbon fibers having a predetermined diameter and a predetermined length, either alone or with this carbonized fiber and either cerium oxide, zirconium oxide or diamond A polishing material comprising a fiber mixed composition obtained by mixing an inorganic material containing one or more. 請求項4に記載の研磨材料であって、
上記炭素化物繊維は、直径が50nm〜500μm、長さが100μm〜0.5mmの繊維状形態を有している、研磨材料
The abrasive material according to claim 4,
The carbonized fiber has a fibrous form having a diameter of 50 nm to 500 μm and a length of 100 μm to 0.5 mm.
請求項4又は請求項5に記載の研磨材料であって、
上記混合組成物は、上記炭素化物繊維として少なくとも5重量%、上記無機物として少なくとも5重量%を有している、研磨材料。
The abrasive material according to claim 4 or 5, wherein
The polishing composition, wherein the mixed composition has at least 5% by weight as the carbonized fiber and at least 5% by weight as the inorganic substance.
請求項1〜請求項6のいずれかに記載の研磨材料を、水に対し、0.0001〜0.1重量%分散させて液状コロイドとしてなる、液状研磨材。 A liquid abrasive comprising the abrasive material according to any one of claims 1 to 6 dispersed in water in an amount of 0.0001 to 0.1% by weight to form a liquid colloid. 請求項1〜請求項6のいずれかに記載の研磨材料を、炭素繊維,アラミド繊維又は和紙を含む高強度・高弾性率繊維から選択した1種以上に対し、0.01重量%〜5重量%混抄してシート状に成型してなる、シート状研磨材。 The abrasive material according to any one of claims 1 to 6, with respect to one or more selected from high-strength and high-modulus fibers including carbon fiber, aramid fiber or Japanese paper, 0.01 wt% to 5 wt% % Sheet-like abrasive material that is mixed and molded into a sheet. 請求項1〜請求項6のいずれかに記載の研磨材料を、ボンド材料又は硬質樹脂と混合して所定形状の型内に充填して成形してなる、砥石状研磨材。 A grindstone-like abrasive formed by mixing the abrasive material according to any one of claims 1 to 6 with a bond material or a hard resin and filling a mold having a predetermined shape. 請求項1〜請求項3のいずれかに記載の研磨材料を構成する木質炭化物を製造する際に、その炭化温度及び炭化時間についての条件を変更設定することにより、光学レンズの荒研削、半光沢面を作り上げる精研削、最終仕上げの研磨の3段階の各工程で要求される性能に対応した機能を発揮する研磨材料を製造するようにした、研磨材料の製造方法。 When manufacturing the wood carbide constituting the polishing material according to any one of claims 1 to 3, by changing the conditions for the carbonization temperature and carbonization time, rough grinding of the optical lens, semi-gloss A method for producing an abrasive material, which produces an abrasive material that exhibits a function corresponding to the performance required in each of the three stages of fine grinding to form a surface and polishing for final finishing. 請求項10に記載の研磨材料の製造方法であって、
上記荒研削、精研削、研磨の3段階の各工程で要求される性能に対応して、木質炭化物を得るための炭化原料の材種及びその使用部位を選択的に変更設定するようにした、研磨材料の製造方法。
A method for producing an abrasive material according to claim 10,
Corresponding to the performance required in each of the three steps of rough grinding, fine grinding, and polishing, the material type of the carbonized raw material for obtaining the wood carbide and its use site were selectively changed and set. A method for producing an abrasive material.
JP2006073588A 2006-03-16 2006-03-16 Abrasive material, abrasive and their manufacturing method Pending JP2007246732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073588A JP2007246732A (en) 2006-03-16 2006-03-16 Abrasive material, abrasive and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073588A JP2007246732A (en) 2006-03-16 2006-03-16 Abrasive material, abrasive and their manufacturing method

Publications (2)

Publication Number Publication Date
JP2007246732A true JP2007246732A (en) 2007-09-27
JP2007246732A5 JP2007246732A5 (en) 2009-04-23

Family

ID=38591367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073588A Pending JP2007246732A (en) 2006-03-16 2006-03-16 Abrasive material, abrasive and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2007246732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016115A (en) 2019-06-03 2022-02-08 산와 덴푼코교 가부시키가이샤 Spherical carbon particles and their manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164806A (en) * 1990-10-26 1992-06-10 Aomori Pref Gov Production of wood ceramics
JPH07118654A (en) * 1993-10-20 1995-05-09 Fukuoka Pref Gov Apparatus of carbonizing furnace
JP2000143467A (en) * 1998-11-16 2000-05-23 Toyo Denka Kogyo Co Ltd Dentifrice agent
JP2001131533A (en) * 1999-11-08 2001-05-15 Mitsuko Osono Charcoal for cleaning or grinding and cleaning or grinding by using the same
JP2002052472A (en) * 2000-08-10 2002-02-19 Nippon G C Kogyo Kk Self-lubricating grinding wheel and its manufacturing method
JP2005111232A (en) * 2003-10-10 2005-04-28 Seiko:Kk Grinding material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164806A (en) * 1990-10-26 1992-06-10 Aomori Pref Gov Production of wood ceramics
JPH07118654A (en) * 1993-10-20 1995-05-09 Fukuoka Pref Gov Apparatus of carbonizing furnace
JP2000143467A (en) * 1998-11-16 2000-05-23 Toyo Denka Kogyo Co Ltd Dentifrice agent
JP2001131533A (en) * 1999-11-08 2001-05-15 Mitsuko Osono Charcoal for cleaning or grinding and cleaning or grinding by using the same
JP2002052472A (en) * 2000-08-10 2002-02-19 Nippon G C Kogyo Kk Self-lubricating grinding wheel and its manufacturing method
JP2005111232A (en) * 2003-10-10 2005-04-28 Seiko:Kk Grinding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016115A (en) 2019-06-03 2022-02-08 산와 덴푼코교 가부시키가이샤 Spherical carbon particles and their manufacturing method

Similar Documents

Publication Publication Date Title
BE1017275A3 (en) ABRASIVE TOOLS HAVING A PERMEABLE STRUCTURE.
Zhang et al. Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding
CN103992743B (en) Polishing fluid and its preparation process containing cerium dioxide powder Yu colloidal silicon dioxide compound abrasive
JP4309357B2 (en) Abrasive articles fixed with a hybrid binder
CN101678534A (en) Bonding abrasive article and manufacture method
TWI761649B (en) Porous silica particles and method for producing the same
TWI680104B (en) Near-infrared absorbing fine particle dispersion and manufacturing method thereof
Alvarez‐Clemares et al. Transparent alumina/ceria nanocomposites by spark plasma sintering
JP6305007B2 (en) Spherical amorphous silica particles, method for producing the same, and resin composition containing the same
CN106041764A (en) Composite bonding agent diamond grinding wheel
JP5456535B2 (en) Resin bond grinding wheel
JP2012011525A (en) Abrasive and manufacturing method thereof
Chen et al. Dependency of structural change and polishing efficiency of meso-silica/ceria core/shell composite abrasives on calcination temperatures
JP2001348271A (en) Polishing compact and polishing surface plate using the same
CN103387394A (en) Preparation method of high-precision ceramic ball
CN108406619A (en) The good polishing machine polishing disk of antioxidant wear-resistant performance and its preparation process
CN106737256A (en) A kind of Nano diamond grinding tool pellet preparation method of use wet mixing method
JP2007246732A (en) Abrasive material, abrasive and their manufacturing method
JP2007246732A5 (en)
CN104692805A (en) Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
Liu et al. Influence of preparing conditions on the hot‐pressed sintering of transparent polycrystalline fluorite ceramics
CN104962234A (en) Titania-doped diamond composite abrasive particle and preparation method and application thereof
Jamrozik et al. Additives for abrasive materials
TWI403389B (en) Water-resistant grinding wheel
Liu et al. Fabrication of ultra-fine diamond abrasive tools by sol-gel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120726