JP2007245066A - Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same - Google Patents

Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same Download PDF

Info

Publication number
JP2007245066A
JP2007245066A JP2006074513A JP2006074513A JP2007245066A JP 2007245066 A JP2007245066 A JP 2007245066A JP 2006074513 A JP2006074513 A JP 2006074513A JP 2006074513 A JP2006074513 A JP 2006074513A JP 2007245066 A JP2007245066 A JP 2007245066A
Authority
JP
Japan
Prior art keywords
uranium
extractant
solution
solvent
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074513A
Other languages
Japanese (ja)
Inventor
Masayuki Konno
正幸 紺野
Wataru Shirato
渡 白土
Kazuhiko Hamaguchi
和彦 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2006074513A priority Critical patent/JP2007245066A/en
Publication of JP2007245066A publication Critical patent/JP2007245066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a uranium extracting agent which purifies, separates and recovers uranium from scrap uranium by an extraction chromatography method, makes the elution and depletion of an extractant lower in comparison with the conventional extracting agent, which is used up to now by a method for impregnating a synthetic resin with the extractant to stick the extractant to the surface of the synthetic resin, when uranium is extracted and has high uranium adsorptivity equal to that of the extractant itself, from which adsorbed uranium can be eluted and the used one of which is discarded easily. <P>SOLUTION: The method for manufacturing the uranium extracting agent comprises the steps of: mixing a skeleton solvent composed of a styrene monomer and acrylic acid or methacrylic acid, a cross-linking agent and a polymerization initiator to prepare a liquid mixture; further mixing the extractant consisting of a monoamide-based solvent in the prepared liquid mixture to prepare a dissolved solution; adding the prepared dissolved solution to a surfactant aqueous solution heated to the temperature of 80-110°C; and agitating the dissolved solution-added surfactant aqueous solution for 1-2 hours while keeping such the temperature to polymerize the skeleton solvent, the extractant and the cross-linking agent and synthesize a granular resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多量の不純物を含んでいる不純物濃度が高いスクラップウランからウランを精製分離して回収することが可能なウラン抽出剤及びその製造方法に関する。また本発明はこのウラン抽出剤を用いてウランをスクラップウランから抽出する方法に関するものである。   The present invention relates to a uranium extractant capable of purifying and recovering uranium from scrap uranium containing a large amount of impurities and having a high impurity concentration, and a method for producing the same. The present invention also relates to a method for extracting uranium from scrap uranium using this uranium extractant.

核燃料加工工場の各工程から発生する種々のスクラップの中で、不純物濃度が数%未満と低いものについては、過酸化ウラン沈殿法により不純物濃度がトータルで数百ppm以下のクリーンウランとして回収されている。しかしながら、廃液処理から回収されるものなどのように、NaやCa、Si、Fe、Cr、Ni、Pb等の不純物濃度が数十%と高く、ウラン濃度が低品位なスクラップウランについては、良い精製回収方法がなかった。   Among various scraps generated from each process of a nuclear fuel processing plant, those with a low impurity concentration of less than several percent are recovered as clean uranium with a total impurity concentration of several hundred ppm or less by the uranium peroxide precipitation method. Yes. However, it is good for scrap uranium having a high concentration of impurities such as Na, Ca, Si, Fe, Cr, Ni, and Pb as high as several tens of percent and a low uranium concentration, such as those recovered from waste liquid treatment. There was no purification and recovery method.

スクラップウランの分離回収方法としては、溶媒抽出法が一般的に知られている。この溶媒抽出法は、混合しあわない液体状でかつ抽出溶媒を溶解し易い有機溶媒相と、抽出溶媒の溶解度の低い無機水相とを向流で接触させて、両相間における各種イオンの分配比の差を利用することにより、イオンを選択的に他相へ抽出或いは放出する技術である。抽出溶媒の種類や濃度、有機溶媒の種類の組合せや無機水相中の酸濃度を変化させることにより、イオンの選択性を上げて分離効率を高める研究が行われている。   As a method for separating and recovering scrap uranium, a solvent extraction method is generally known. In this solvent extraction method, an organic solvent phase that is not mixed and easily dissolves the extraction solvent is brought into contact with an inorganic aqueous phase having a low solubility of the extraction solvent in countercurrent to distribute various ions between the two phases. This technique selectively extracts or releases ions to other phases by utilizing the difference in ratio. Studies have been conducted to increase the selectivity of ions and increase the separation efficiency by changing the type and concentration of the extraction solvent, the combination of the types of organic solvents, and the acid concentration in the inorganic aqueous phase.

ウランの抽出溶媒としては、TBP(リン酸トリブチル)が古くから知られている。TBPを使用した溶媒抽出法は、TBPをケロシンやn−ドデカン等の有機溶媒に溶解した有機溶媒相と、硝酸に溶解して硝酸濃度を3規定に調整したウラン溶液とを接触させることにより、ウランのみを有機溶媒相側へ移行させ、移行させた後の有機溶媒相に希硝酸溶液を接触させて水相側へ戻すことにより、初期ウラン溶液中の他の元素と分離し回収するものである。核燃料再処理などにおいてはTBP以外の新たな抽出溶媒として、DHDECMP(dihexyl-N,N-diethyl carbamoyl methyl phosphonate)やCMPO(octyl(phenyl)-N,N-diisobutyl carbamoyl methyl phosphine oxide)等の2座配位子型抽出剤、DOHA(N,N,-di-octyl hexan amide)、DH2EHA(N,N,-di-hexyl 2-ethyl hexan amide)等のモノアミド系抽出溶媒、TODGA(N,N,N',N',-tetra octyl-3-oxapentane-1,5-diamide)等が開発されている。   As a uranium extraction solvent, TBP (tributyl phosphate) has been known for a long time. In the solvent extraction method using TBP, an organic solvent phase in which TBP is dissolved in an organic solvent such as kerosene or n-dodecane is brought into contact with a uranium solution in which nitric acid concentration is adjusted to 3 N by dissolving in nitric acid. By transferring only uranium to the organic solvent phase side, bringing the dilute nitric acid solution into contact with the transferred organic solvent phase and returning it to the aqueous phase side, it is separated and recovered from other elements in the initial uranium solution. is there. In nuclear fuel reprocessing, as a new extraction solvent other than TBP, bidentate such as DHDECMP (dihexyl-N, N-diethyl carbamoyl methyl phosphonate) and CMPO (octyl (phenyl) -N, N-diisobutyl carbamoyl methyl phosphine oxide) Ligand-type extractant, monoamide extraction solvent such as DOHA (N, N, -di-hexyl hexan amide), DH2EHA (N, N, -di-hexyl 2-ethyl hexan amide), TODGA (N, N, N ', N',-tetra octyl-3-oxapentane-1,5-diamide) have been developed.

この抽出溶媒法については、設備の導入費用が高く、廃溶媒の処理設備も必要となり、新たに設備導入する場合にはコスト的に高くなる欠点がある。またTBP等のリン酸系の抽出溶媒ではリン酸の処理方法が問題となっている。また、溶媒の火災等の防火対策が必要となるため、建築物の建設コストが高くなる。更に低品位のスクラップウランでは、有機溶媒相と無機水相間に不純物を原因として、非流動状態(週末などに抽出操作を停止して機器を止めている状態であるが、常に機器内には処理対象の無機水相と抽出溶媒相が常に混在している状態)下で、第三相と呼ばれる中間層を生成する可能性が高く、性能低下をたびたび起こしやすい欠点を有していた。この原因は有機溶媒と無機水相中のアルカリ元素やシリカ等とで、石鹸などに代表される懸濁性物質を作りやすいことが主な原因である。   This extraction solvent method has the disadvantages of high equipment introduction costs, waste solvent treatment equipment, and high costs when new equipment is introduced. In addition, a phosphoric acid-based extraction solvent such as TBP has a problem with a method for treating phosphoric acid. Moreover, since fire prevention measures such as a solvent fire are necessary, the construction cost of the building becomes high. In addition, in low-grade scrap uranium, impurities are caused between the organic solvent phase and the inorganic aqueous phase in a non-flowing state (the extraction operation is stopped on weekends, etc., and the equipment is stopped). In the state where the target inorganic aqueous phase and the extraction solvent phase are always mixed), there is a high possibility that an intermediate layer called a third phase is generated, and the performance is often deteriorated. This is mainly due to the fact that it is easy to make a suspending substance typified by soap or the like with an organic solvent and an alkali element or silica in an inorganic aqueous phase.

この第三相生成という欠点を避ける対応策としては、抽出クロマト法を用いる処理プロセスが有効である。即ち、イオン交換樹脂や固形樹脂に抽出溶媒を固定して抽出剤を作製し、この抽出剤をカラムと呼ばれる円筒に充填して、対象イオンが吸着しやすい条件(主に強酸性下)で、このカラムに通液することにより、特定の元素のみを選択的に吸着させ、続いて洗浄液をカラムに通液して微量の付着分を除去し、最後に希酸等をカラムに通液することにより溶離する方法である。抽出クロマト法は、固体−液体間のイオン交換反応であることから、有機溶媒を使用しないため、上記抽出溶媒法のような懸濁性物質を生成させないメリットを有している。   As a countermeasure for avoiding the disadvantage of the third phase generation, a treatment process using an extraction chromatography method is effective. That is, an extraction solvent is fixed to an ion exchange resin or a solid resin to prepare an extractant, and this extractant is filled in a cylinder called a column, and under conditions where the target ions are easily adsorbed (mainly under strong acidity), By passing through this column, only specific elements are selectively adsorbed, and then a cleaning solution is passed through the column to remove a small amount of adhering substances, and finally dilute acid is passed through the column. This is a method of elution. Since the extraction chromatography method is an ion exchange reaction between a solid and a liquid, an organic solvent is not used. Therefore, the extraction chromatography method has an advantage of not generating a suspended substance as in the extraction solvent method.

抽出クロマト法は、国内では再処理プロセスの一環として、CMPOをSiO2系の母材に固定化した抽出剤を使用して分離精製を行っている例がある。この方法では、高レベル放射性廃液(high level radioactive wastes;HLLW)からのマイナーアクチノイド(minor actinoids;MA)の分離回収を目的にしており、ウランは抽出クロマト法によってMAを分離する前にPUREX法等を用いて分離されている。また、DHDECMPやCMPO等の抽出溶媒をChromosorb−102(Jorn's Manville社製)やXAD樹脂(Rohm and Haas社製)等の母材に含浸することにより固定化した抽出剤を用いてHLLWからアクチノイドやランタノイドを抽出する方法も研究されている(例えば、非特許文献1〜3参照。)。
J.Akatsu, T.Kimura, Extraction chromatography in the DHDECMP(XAD-4)-HNO3 system, Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol.140, No.1, 1990、p195-p203 V.Gopalakrishman et al., EXTRACTION AND EXTRACTION CHROMATOGRAPHIC SEPARATION OF MINOR ACTINIDES FROM SULPHATE BEARING HIGH LEVEL WASTE SOLUTIONS USING CMPO, Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol.191, No.2, 1995、p279-p289 M.Yamaura, H.T.Matsuda, Sequential separation of actinides and lanthanides by extraction chromatography using a CMPO-TBP/XAD7 column, Journal of Radioanalytical and Nuclear Chemistry, Vol.241, No.2, 1999、p277-p280
In the extraction chromatographic method, there is an example in which separation and purification is performed using an extractant in which CMPO is immobilized on a SiO 2 base material as part of a reprocessing process in Japan. The purpose of this method is to separate and recover minor actinoids (MA) from high-level radioactive wastes (HLLW). Uranium can be separated by the PUREX method before separating MA by extraction chromatography. Are separated. In addition, an actinide or an actinide from an HLLW using an extractant immobilized by impregnating a base material such as Chromosorb-102 (manufactured by Jorn's Manville) or XAD resin (manufactured by Rohm and Haas) with an extraction solvent such as DHDECMP or CMPO. Methods for extracting lanthanoids have also been studied (for example, see Non-Patent Documents 1 to 3).
J. Akatsu, T. Kimura, Extraction chromatography in the DHDECMP (XAD-4) -HNO3 system, Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol.140, No.1, 1990, p195-p203 V.Gopalakrishman et al., EXTRACTION AND EXTRACTION CHROMATOGRAPHIC SEPARATION OF MINOR ACTINIDES FROM SULPHATE BEARING HIGH LEVEL WASTE SOLUTIONS USING CMPO, Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol.191, No.2, 1995, p279-p289 M. Yamaura, HTMatsuda, Sequential separation of actinides and lanthanides by extraction chromatography using a CMPO-TBP / XAD7 column, Journal of Radioanalytical and Nuclear Chemistry, Vol.241, No.2, 1999, p277-p280

従来の抽出クロマト法で用いられる材料としては、リン酸を構造に有するCMPOを高級な溶媒に固定したり、SiO2系の不燃性の物質に固定していることから、非常に高価であり、また使用後の2次廃棄物の処理方法が困難という課題を有している。また、固着によって樹脂表面に抽出溶媒を固定化しているため、溶離減損し易い問題があった。 As a material used in the conventional extraction chromatography method, CMPO having phosphoric acid in its structure is fixed to a high-grade solvent, or is fixed to a non-combustible substance of SiO 2 , so it is very expensive. Moreover, it has the subject that the processing method of the secondary waste after use is difficult. In addition, since the extraction solvent is fixed on the resin surface by fixing, there is a problem that elution loss tends to occur.

本発明の第1の目的は、抽出クロマト法によりスクラップウランからウランを精製分離して回収することができる、ウラン抽出剤及びその製造方法、該抽出剤を用いてウランをスクラップウランから抽出する方法を提供することにある。
本発明の第2の目的は、合成した樹脂に抽出溶媒を含浸させることによって樹脂表面に抽出溶媒を固着させた従来使用していた抽出剤に比べて、ウラン抽出時の抽出溶媒の溶離減損を低減できる、ウラン抽出剤及びその製造方法を提供することにある。
本発明の第3の目的は、抽出溶媒自体が持つウラン吸着性能と遜色がない高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる、ウラン抽出剤及びその製造方法、該抽出剤を用いてウランをスクラップウランから抽出する方法を提供することにある。
本発明の第4の目的は、使用済みの吸着剤の処分が容易なウラン抽出剤及びその製造方法、該抽出剤を用いてウランをスクラップウランから抽出する方法を提供することにある。
A first object of the present invention is to extract and extract uranium from scrap uranium by using the extractant, a method for producing the same, and a method for producing the uranium that can be purified and recovered from scrap uranium by extraction chromatography. Is to provide.
The second object of the present invention is to reduce the elution loss of the extraction solvent at the time of uranium extraction as compared with the conventionally used extraction agent in which the extraction solvent is fixed on the resin surface by impregnating the synthesized resin with the extraction solvent. An object of the present invention is to provide a uranium extractant and a production method thereof that can be reduced.
The third object of the present invention is to provide a uranium extractant having a high uranium adsorption performance comparable to that of the extraction solvent itself and capable of eluting adsorbed uranium, and a method for producing the same, The object is to provide a method for extracting uranium from scrap uranium using an extractant.
A fourth object of the present invention is to provide a uranium extractant that can easily dispose of a used adsorbent, a method for producing the same, and a method for extracting uranium from scrap uranium using the extractant.

請求項1に係る発明は、スチレンモノマー、アクリル酸又はメタクリル酸からなる骨格溶媒と架橋剤とモノアミド系溶媒からなる抽出溶媒とを重合させて合成した顆粒状樹脂であることを特徴とするウラン抽出剤である。
請求項1に係るウラン抽出剤は、上記種類の骨格溶媒と架橋剤と上記種類の抽出溶媒とを重合させて合成された顆粒状樹脂であり、この顆粒状樹脂は架橋剤により骨格溶媒と抽出溶媒とがともに架橋されている構造をとっていると推察される。このような基本構造を有するので、合成した樹脂に抽出溶媒を含浸させることによって樹脂表面に抽出溶媒を固着させた従来使用していた抽出剤に比べて、ウラン抽出時の抽出溶媒の溶離減損を低減できる。またこのウラン抽出剤は、抽出溶媒自体が持つウラン吸着性能と遜色がない高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる。更に上記種類の抽出溶媒と樹脂はC、H、O及びNで構成されている有機構造体である。従って、ウランを抽出した後の使用済みウラン抽出剤は焼却処理により分解することが可能であり、焼却処理した後の重量減損が約98%と殆ど残らず、処分が容易である。
The invention according to claim 1 is a uranium extraction characterized in that it is a granular resin synthesized by polymerizing a skeleton solvent composed of styrene monomer, acrylic acid or methacrylic acid, and an extraction solvent composed of a crosslinking agent and a monoamide solvent. It is an agent.
The uranium extractant according to claim 1 is a granular resin synthesized by polymerizing the above kind of skeleton solvent, a crosslinking agent and the above kind of extraction solvent, and this granular resin is extracted from the skeleton solvent with the crosslinking agent. It is presumed that the solvent is cross-linked together. Since it has such a basic structure, the elution loss of the extraction solvent during uranium extraction is reduced compared to the extractant that has been used in the past by impregnating the extraction resin into the synthesized resin and fixing the extraction solvent to the resin surface. Can be reduced. The uranium extractant has high uranium adsorption performance comparable to that of the extraction solvent itself and can elute adsorbed uranium. Further, the above-mentioned types of extraction solvents and resins are organic structures composed of C, H, O and N. Therefore, the used uranium extractant after extracting uranium can be decomposed by the incineration process, and the weight loss after the incineration process is almost 98%, so that the disposal is easy.

請求項2に係る発明は、スチレンモノマー、アクリル酸又はメタクリル酸からなる骨格溶媒と架橋剤と重合開始剤とを混合して混合液を調製する工程と、混合液に更にモノアミド系溶媒からなる抽出溶媒を混合して溶解液を調製する工程と、80〜110℃の温度に加熱した界面活性剤水溶液に調製した溶解液を添加し、溶解液を添加した界面活性剤水溶液を上記温度に維持しながら1〜2時間攪拌することにより、溶解液中の骨格溶媒と抽出溶媒と架橋剤とを重合させて顆粒状樹脂を合成する工程とを含むことを特徴とするウラン抽出剤の製造方法である。
請求項2に係る製造方法により得られるウラン抽出剤は、樹脂を合成する際に、その樹脂原料中に抽出溶媒を添加混合し、架橋剤により上記種類の骨格溶媒と上記種類の抽出溶媒とがともに架橋されている構造をとるように作製したので、合成した樹脂に抽出溶媒を含浸させることによって樹脂表面に抽出溶媒を固着させた従来使用していた抽出剤に比べて、ウラン抽出時の抽出溶媒の溶離減損を低減できる。また従来抽出溶媒として使用していたCMPOを中性樹脂表面に固着させた抽出剤のように、抽出溶媒を固着させるために高価な中性樹脂を使用する必要が無くなるため、ウラン抽出剤の製造コストを低減することができる。またこの製造方法により得られるウラン抽出剤は、抽出溶媒自体が持つウラン吸着性能と遜色がない高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる。更に上記種類の抽出溶媒と樹脂はC、H、O及びNで構成されている有機構造体である。従って、ウランを抽出した後の使用済みウラン抽出剤は焼却処理により分解することが可能であり、焼却処理した後の重量減損が約98%と殆ど残らず、処分が容易である。
The invention according to claim 2 is a step of preparing a mixed solution by mixing a skeletal solvent composed of styrene monomer, acrylic acid or methacrylic acid, a crosslinking agent and a polymerization initiator, and an extraction further comprising a monoamide solvent in the mixed solution The step of preparing a solution by mixing the solvent and the solution prepared in the surfactant aqueous solution heated to a temperature of 80 to 110 ° C. are added, and the surfactant aqueous solution to which the solution is added is maintained at the above temperature. And a step of synthesizing a granular resin by polymerizing the skeletal solvent, the extraction solvent, and the crosslinking agent in the solution by stirring for 1 to 2 hours. .
In the uranium extractant obtained by the production method according to claim 2, when a resin is synthesized, an extraction solvent is added and mixed in the resin raw material, and the above-mentioned type of skeletal solvent and the above-mentioned type of extraction solvent are mixed with a crosslinking agent. Since it was made to have a cross-linked structure, it was extracted during uranium extraction compared to the conventionally used extractant in which the extracted solvent was fixed to the resin surface by impregnating the synthesized resin with the extraction solvent. Solvent elution loss can be reduced. In addition, it is not necessary to use expensive neutral resin to fix the extraction solvent like the extraction agent in which CMPO used as an extraction solvent is fixed to the surface of the neutral resin. Cost can be reduced. Further, the uranium extractant obtained by this production method has high uranium adsorption performance that is comparable to the uranium adsorption performance of the extraction solvent itself, and can elute adsorbed uranium. Further, the above-mentioned types of extraction solvents and resins are organic structures composed of C, H, O and N. Therefore, the used uranium extractant after extracting uranium can be decomposed by the incineration process, and the weight loss after the incineration process is almost 98%, so that the disposal is easy.

請求項3に係る発明は、図6に示すように、鉛直方向に長い筒体からなるカラム内に請求項1記載のウラン抽出剤又は請求項2記載の方法により得られたウラン抽出剤を所定の割合で充填する工程11と、ウラン成分を含むスクラップウランを硝酸濃度が1〜7モル濃度となるように硝酸水溶液に溶解してスクラップウラン溶解液を調製する工程12と、ウラン抽出剤を充填したカラムに調製したスクラップウラン溶解液を任意の流速で通液することにより、スクラップウランに含まれるウラン成分をカラム内のウラン抽出剤に吸着させる工程13と、ウラン成分を吸着させたウラン抽出剤を充填したカラムに3モル濃度に調整した硝酸溶液を任意の流速で通液することにより、カラム内部を洗浄する工程14と、洗浄したカラムに0.1モル濃度に調整した硝酸溶液を任意の流速で通液することにより、カラムのウラン抽出剤に吸着させたウラン成分を0.1モル濃度硝酸溶液に溶離させる工程16とを含むことを特徴とするウラン抽出剤を用いてウランをスクラップウランから抽出する方法である。
請求項3に係る発明では、上記工程11〜16を経ることにより、抽出溶媒自体が持つウラン吸着性能と遜色がない高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる。
In the invention according to claim 3, as shown in FIG. 6, the uranium extractant according to claim 1 or the uranium extractant obtained by the method according to claim 2 is preliminarily placed in a column composed of a cylindrical body elongated in the vertical direction. The step 11 for filling the uranium component, the step 12 for preparing the scrap uranium solution by dissolving the uranium-containing scrap uranium in the nitric acid aqueous solution so that the nitric acid concentration is 1 to 7 molar, and the uranium extractant is filled. The uranium extract contained in the uranium extractant in the column is adsorbed to the uranium extractant in the column by passing the prepared uranium solution dissolved in the prepared column at an arbitrary flow rate, and the uranium extractant adsorbing the uranium component. A step 14 of washing the inside of the column by passing a nitric acid solution adjusted to a 3 molar concentration through the column packed with a solution at an arbitrary flow rate, and a 0.1 column in the washed column. And a step 16 of eluting the uranium component adsorbed on the uranium extractant of the column into the 0.1 molar nitric acid solution by passing the nitric acid solution adjusted to the concentration at an arbitrary flow rate. This is a method for extracting uranium from scrap uranium using an extractant.
In the invention which concerns on Claim 3, it has the uranium adsorption | suction performance which extraction solvent itself has and the high uranium adsorption | suction performance which is not inferior and can adsorb | suck the adsorbed uranium by passing through the said steps 11-16.

本発明のウラン抽出剤及びその製造方法、ウラン抽出剤を用いてウランをスクラップウランから抽出する方法では、次のような利点がある。第1に、抽出クロマト法によりスクラップウランからウランを精製分離して回収することができる。第2に、樹脂を合成する際に、その樹脂原料中に抽出溶媒を添加混合し、架橋剤により骨格溶媒と抽出溶媒とがともに架橋されている構造をとるように作製したので、合成した樹脂に抽出溶媒を含浸させることによって樹脂表面に抽出溶媒を固着させた従来使用していた抽出剤に比べて、ウラン抽出時の抽出溶媒の溶離減損を低減できる。また従来抽出溶媒として使用していたCMPOを中性樹脂表面に固着させた抽出剤のように、抽出溶媒を固着させるために高価な中性樹脂を使用する必要が無くなるため、ウラン抽出剤の製造コストを低減することができる。第3に、抽出溶媒自体が持つウラン吸着性能と遜色がない高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる。   The uranium extractant of the present invention, the production method thereof, and the method of extracting uranium from scrap uranium using the uranium extractant have the following advantages. First, uranium can be purified and separated from scrap uranium and recovered by extraction chromatography. Secondly, when synthesizing the resin, an extraction solvent is added and mixed in the resin raw material, and the skeleton solvent and the extraction solvent are both crosslinked by a crosslinking agent. Impregnation loss of the extraction solvent at the time of uranium extraction can be reduced as compared with a conventionally used extraction agent in which the extraction solvent is fixed on the resin surface by impregnating with the extraction solvent. In addition, it is not necessary to use expensive neutral resin to fix the extraction solvent like the extraction agent in which CMPO used as an extraction solvent is fixed to the surface of the neutral resin. Cost can be reduced. Thirdly, the uranium adsorption performance of the extraction solvent itself is not inferior to that of the uranium, and the adsorbed uranium can be eluted.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明のウラン抽出剤の処理対象は、核燃料成形加工工程から発生する放射性廃液凝集沈殿物(水ガラス沈殿物、塩化鉄沈殿物)や設備のクリーンアップ回収粉末などである、ウランの品位が数%〜95%程度であり、その中にはNaやCa、Si、Fe、Cr、Ni、Pbなど、多量の不純物が含んでいると考えられる。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The processing target of the uranium extractant of the present invention is the number of uranium grades, such as radioactive waste liquid aggregation precipitates (water glass precipitates, iron chloride precipitates) generated from the nuclear fuel molding process, and equipment cleanup recovered powder. It is considered that a large amount of impurities such as Na, Ca, Si, Fe, Cr, Ni, and Pb are contained therein.

本発明のウラン抽出剤の製造方法について説明する。
先ず、骨格溶媒と架橋剤と重合開始剤とを混合して混合液を調製する。本発明で使用する骨格溶媒と架橋剤は、廃棄物低減の観点からも焼却処理等ができることが望ましく、この条件を満たすものとして、CHON系元素から構成される物質が挙げられる。骨格溶媒としては、得られるウラン抽出剤が顆粒状で実用十分な強度を示すスチレンモノマー、アクリル酸又はメタクリル酸が挙げられる。架橋剤としてはジビニルベンゼン(DVB;divinyl benzene)が一般的であり、重合開始剤としては2,2−アゾビスイソブチロニトリル(AIBN;2,2-azo bis-iso-butylo nitrile)や過酸化ベンゾイルが挙げられる。骨格溶媒と架橋剤との混合割合は骨格溶媒が24〜40重量%、架橋剤が6〜10重量%の範囲内となるように混合することが特に好ましい。
A method for producing the uranium extractant of the present invention will be described.
First, a skeleton solvent, a crosslinking agent, and a polymerization initiator are mixed to prepare a mixed solution. The skeletal solvent and the cross-linking agent used in the present invention are desirably incinerated from the viewpoint of reducing waste, and substances satisfying this condition include substances composed of CHON-based elements. Examples of the skeletal solvent include styrene monomer, acrylic acid or methacrylic acid in which the obtained uranium extractant is granular and exhibits practically sufficient strength. As the crosslinking agent, divinylbenzene (DVB) is generally used, and as the polymerization initiator, 2,2-azobisisobutyronitrile (AIBN) or hydrogen peroxide is used. An example is benzoyl oxide. The mixing ratio of the skeleton solvent and the crosslinking agent is particularly preferably such that the skeleton solvent is in the range of 24 to 40% by weight and the crosslinking agent is in the range of 6 to 10% by weight.

次いで、図1に示すように、先に調製した混合液に更に抽出溶媒を混合して溶解液を調製する。本発明で使用する抽出溶媒としては、2次廃棄物を発生させないものが選択される。具体的にはモノアミド系溶媒が挙げられる。モノアミド系溶媒としては、TODGA、DOBA(N,N-dioctyl butan amide)、DOHA、DHOA(N,N-dihexyl octan amide)、DOOA、DBOA等が挙げられる。抽出溶媒は溶解液を100重量%としたとき、溶解液中に含まれる抽出溶媒の含有量が10〜70重量%の範囲内となるように混合することで、得られるウラン抽出剤に含まれる抽出溶媒の添加率を10〜70重量%とすることができる。   Next, as shown in FIG. 1, an extraction solvent is further mixed with the previously prepared mixed solution to prepare a solution. As the extraction solvent used in the present invention, a solvent that does not generate secondary waste is selected. Specific examples include monoamide solvents. Examples of the monoamide solvent include TODGA, DOBA (N, N-dioctyl butan amide), DOHA, DHOA (N, N-dihexyl octan amide), DOOA, DBOA, and the like. The extraction solvent is contained in the uranium extractant obtained by mixing so that the content of the extraction solvent contained in the solution is within the range of 10 to 70% by weight when the solution is 100% by weight. The addition rate of the extraction solvent can be 10 to 70% by weight.

次に、界面活性剤水溶液を用意する。この界面活性剤水溶液としてはPVA(ポリビニルアルコール)が0.1重量%濃度となるように溶解したPVA水溶液が好ましい。この界面活性剤水溶液を80〜110℃の温度に加熱し、界面活性剤水溶液を攪拌器で攪拌しながら上記調製した溶解液を界面活性剤水溶液中に添加する。図2に示すように、溶解液を添加した界面活性剤水溶液を上記温度を維持しながら1〜2時間攪拌し続けることにより、水溶液中に添加した溶解液が水中懸濁重合反応を始める。この水中懸濁重合反応では、図3に示すように、溶解液中の骨格溶媒と抽出溶媒と架橋剤とが重合して顆粒状樹脂を合成する。重合反応を終えた後は、水溶液中で生成した顆粒状物を回収する。回収は純水で洗浄しながら顆粒状物を濾過することにより行われる。最後にアスピレーターを使用して、顆粒状物に含まれる余分な水分を除去する。   Next, a surfactant aqueous solution is prepared. As this surfactant aqueous solution, a PVA aqueous solution in which PVA (polyvinyl alcohol) is dissolved to a concentration of 0.1% by weight is preferable. This surfactant aqueous solution is heated to a temperature of 80 to 110 ° C., and the solution prepared above is added to the surfactant aqueous solution while stirring the surfactant aqueous solution with a stirrer. As shown in FIG. 2, the aqueous solution of the surfactant to which the solution is added is continuously stirred for 1 to 2 hours while maintaining the above temperature, whereby the solution added to the solution starts a suspension polymerization reaction in water. In the suspension polymerization reaction in water, as shown in FIG. 3, the skeleton solvent, the extraction solvent, and the crosslinking agent in the solution are polymerized to synthesize a granular resin. After the polymerization reaction is completed, the granular material generated in the aqueous solution is recovered. The recovery is performed by filtering the granular material while washing with pure water. Finally, using an aspirator, the excess water contained in the granular material is removed.

上記工程を経ることにより、図4に示すような、骨格溶媒と抽出溶媒と架橋剤とを重合させて合成した顆粒状樹脂を得ることができる。この顆粒状樹脂は、図5に示すような骨格溶媒と架橋剤を重合させて合成した樹脂の官能基部分に抽出溶媒の官能基が置換された形態をとっているものと推察される。図5は骨格溶媒としてスチレンモノマーを用い、抽出溶媒としてモノアミド系溶媒を使用した場合を示す構造図である。なお、製造する際の骨格溶媒、架橋剤及び抽出溶媒の種類、骨格溶媒と架橋剤の混合割合、溶解液中に含まれる抽出溶媒の含有量、界面活性剤水溶液に含まれる界面活性剤濃度、界面活性剤水溶液の加熱温度、水中懸濁重合時における攪拌速度及び攪拌時間、水中懸濁重合に使用する溶解液と界面活性剤水溶液との液割合などを変動させることにより、得られるウラン抽出剤の顆粒の大きさや合成した樹脂の架橋度、ウラン吸着量、分配比等を所望の用途に併せることができる。   By passing through the said process, the granular resin synthesize | combined by superposing | polymerizing a frame | skeleton solvent, an extraction solvent, and a crosslinking agent as shown in FIG. 4 can be obtained. This granular resin is presumed to have a form in which the functional group portion of the extraction solvent is substituted for the functional group portion of the resin synthesized by polymerizing the skeleton solvent and the crosslinking agent as shown in FIG. FIG. 5 is a structural diagram showing a case where a styrene monomer is used as a skeleton solvent and a monoamide solvent is used as an extraction solvent. In addition, the skeleton solvent at the time of production, the kind of the crosslinking agent and the extraction solvent, the mixing ratio of the skeleton solvent and the crosslinking agent, the content of the extraction solvent contained in the solution, the surfactant concentration contained in the surfactant aqueous solution, The uranium extractant obtained by changing the heating temperature of the aqueous surfactant solution, the stirring speed and stirring time during suspension polymerization in water, the ratio of the solution used in suspension polymerization in water and the aqueous surfactant solution, etc. The size of the granules, the degree of crosslinking of the synthesized resin, the amount of uranium adsorbed, the distribution ratio, etc. can be combined with the desired application.

本発明の製造方法により得られるウラン抽出剤は高いウラン吸着性能を有し、かつ、吸着したウランを溶離させることができる。本発明のウラン抽出剤は抽出溶媒と架橋した樹脂からなり、この抽出溶媒と樹脂はC、H、O及びNで構成されている有機構造体である。従って、ウランを抽出した後の使用済みウラン抽出剤は焼却処理により分解することが可能であり、焼却処理した後の重量減損が約98%と殆ど残らず、処分が容易である。また本発明の製造方法により得られるウラン抽出剤は、樹脂を合成する際に、その樹脂原料中に抽出溶媒を添加混合し、架橋剤により骨格溶媒と抽出溶媒とがともに架橋されている構造をとるように作製したので、合成した樹脂に抽出溶媒を含浸させることによって樹脂表面に抽出溶媒を固着させた従来使用していた抽出剤に比べて、ウラン抽出時の抽出溶媒の溶離減損を低減できる。また従来抽出溶媒として使用していたCMPOを中性樹脂表面に固着させた抽出剤のように、抽出溶媒を固着させるために高価な中性樹脂を使用する必要が無くなるため、ウラン抽出剤の製造コストを低減することができる。   The uranium extractant obtained by the production method of the present invention has high uranium adsorption performance and can elute adsorbed uranium. The uranium extractant of the present invention comprises a resin crosslinked with an extraction solvent, and this extraction solvent and resin are organic structures composed of C, H, O and N. Therefore, the used uranium extractant after extracting uranium can be decomposed by the incineration process, and the weight loss after the incineration process is almost 98%, so that the disposal is easy. Further, the uranium extractant obtained by the production method of the present invention has a structure in which an extraction solvent is added and mixed in the resin raw material when the resin is synthesized, and the skeleton solvent and the extraction solvent are both crosslinked by the crosslinking agent. As a result, it is possible to reduce the elution loss of the extraction solvent during uranium extraction compared to the conventional extraction agent in which the extraction solvent is impregnated on the resin surface by impregnating the synthesized resin with the extraction solvent. . In addition, it is not necessary to use expensive neutral resin to fix the extraction solvent like the extraction agent in which CMPO used as an extraction solvent is fixed to the surface of the neutral resin. Cost can be reduced.

次に、骨格溶媒としてスチレンモノマーを、架橋剤としてDVBを、重合開始剤としてAIBNを、抽出溶媒としてDOBAを用いてウラン抽出剤を製造する方法について説明する。
先ず、ビーカー内にスチレンモノマーとDVBとAIBNを所望の割合でそれぞれ投入し、混合して混合液を調製する。この混合液に更にDOBAを所望の割合で添加し、30分程度攪拌することにより溶解液を調製する。次いで、別のビーカーを用意し、このビーカーに純水とPVAをそれぞれ投入して30分程度攪拌し、液温を80〜100℃の範囲内に加熱して、純水中にPVAを溶解させPVA水溶液を調製する。次に、上記温度に加熱したPVA水溶液を攪拌器で攪拌し続けながら先に調製した溶解液をこの水溶液に添加する。溶解液を添加したPVA水溶液を上記温度を維持しながら1〜2時間攪拌し続けることにより、顆粒状物が合成される。反応後は、PVA水溶液中で合成された顆粒状物を回収する。回収は純水で洗浄しながら顆粒状物を濾過することにより行われる。最後にアスピレーターを使用して、顆粒状物に含まれる余分な水分を除去することにより、本発明のウラン抽出剤が得られる。このウラン抽出剤は、スチレンモノマーとDOBAとDVBとが重合してDVBによりスチレンモノマーとDOBAとがともに架橋されている構造を有する。
Next, a method for producing a uranium extractant using styrene monomer as a skeleton solvent, DVB as a crosslinking agent, AIBN as a polymerization initiator, and DOBA as an extraction solvent will be described.
First, a styrene monomer, DVB, and AIBN are respectively put into a beaker at a desired ratio and mixed to prepare a mixed solution. DOBA is further added to this mixture at a desired ratio, and a solution is prepared by stirring for about 30 minutes. Next, prepare another beaker, put pure water and PVA into this beaker, stir for about 30 minutes, heat the liquid temperature within the range of 80 to 100 ° C., and dissolve PVA in pure water. An aqueous PVA solution is prepared. Next, the previously prepared solution is added to the aqueous solution while continuing to stir the aqueous PVA solution heated to the above temperature with a stirrer. A granular material is synthesized by continuing to stir the PVA aqueous solution to which the dissolution liquid has been added for 1 to 2 hours while maintaining the above temperature. After the reaction, the granular material synthesized in the PVA aqueous solution is recovered. The recovery is performed by filtering the granular material while washing with pure water. Finally, by using an aspirator to remove excess moisture contained in the granular material, the uranium extractant of the present invention can be obtained. This uranium extractant has a structure in which a styrene monomer, DOBA, and DVB are polymerized and both the styrene monomer and DOBA are crosslinked by DVB.

本発明のウラン抽出剤を用いてウランをスクラップウランから抽出する方法について説明する。
先ず、図6に示すように、鉛直方向に長い筒体からなるカラム内に上記方法により得られた本発明のウラン抽出剤を所定の割合で充填する(工程11)。次いで、ウラン成分を含むスクラップウランを硝酸濃度が1〜7モル濃度となるように硝酸水溶液に溶解してスクラップウラン溶解液を調製する(工程12)。調製するスクラップウラン水溶液の硝酸濃度を上記範囲内としたのは、ウラン抽出剤が高いウラン吸着量を示すためである。次に、ウラン抽出剤を充填したカラムに調製したスクラップウラン溶解液を任意の流速で通液することにより、スクラップウランに含まれるウラン成分をカラム内のウラン抽出剤に吸着させる(工程13)。
A method for extracting uranium from scrap uranium using the uranium extractant of the present invention will be described.
First, as shown in FIG. 6, the uranium extractant of the present invention obtained by the above method is packed into a column consisting of a cylindrical body elongated in the vertical direction at a predetermined ratio (step 11). Next, scrap uranium containing a uranium component is dissolved in an aqueous nitric acid solution so that the nitric acid concentration is 1 to 7 molar concentration to prepare a scrap uranium solution (step 12). The reason why the nitric acid concentration of the aqueous scrap uranium solution to be prepared is within the above range is that the uranium extractant exhibits a high uranium adsorption amount. Next, the uranium component contained in the scrap uranium is adsorbed on the uranium extractant in the column by passing the scrap uranium solution prepared through the column filled with the uranium extractant at an arbitrary flow rate (step 13).

次に、ウラン成分を吸着させたウラン抽出剤を充填したカラムに3モル濃度に調整した硝酸溶液を任意の流速で通液することにより、カラム内部を洗浄する(工程14)。この工程14では、カラム内に残留しているスクラップウラン溶解液を洗い流してウラン成分のみを残留させることを目的として行われる。更に、洗浄したカラムに0.1モル濃度に調整した硝酸溶液を任意の流速で通液することにより、カラムのウラン抽出剤に吸着させたウラン成分を0.1モル濃度硝酸溶液に溶離させる(工程16)。硝酸濃度が0.1モル濃度であれば、ほぼウランが吸着しないことから、ウランを吸着したウラン抽出剤に0.1モル濃度程度の硝酸溶液を接触させることにより、吸着したウランをウラン抽出剤から溶離させることができる。   Next, the inside of the column is washed by passing a nitric acid solution adjusted to a 3 molar concentration through the column filled with the uranium extractant adsorbing the uranium component at an arbitrary flow rate (step 14). In this step 14, the scrap uranium solution remaining in the column is washed away to leave only the uranium component. Further, the uranium component adsorbed on the uranium extractant of the column is eluted into the 0.1 molar nitric acid solution by passing the nitric acid solution adjusted to 0.1 molar concentration through the washed column at an arbitrary flow rate ( Step 16). If the nitric acid concentration is 0.1 molar, uranium is hardly adsorbed, so that the adsorbed uranium is extracted by contacting the uranium extract adsorbing uranium with a nitric acid solution of about 0.1 molar concentration. Can be eluted.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1〜11>
先ず、次の表1に示す種類の骨格溶媒、架橋剤、重合開始剤及び抽出溶媒をそれぞれ用意した。次いで、ビーカー内に骨格溶媒と架橋剤と重合開始剤を次の表1に示す割合となるように投入し、混合して混合液を調製した。この混合液に更に抽出溶媒を次の表1に示す割合となるように添加し、30分程度攪拌して重合開始剤を溶解させることにより溶解液をそれぞれ調製した。次に、別のビーカーを用意し、このビーカーに純水500mLとPVA0.1gをそれぞれ投入して30分程度攪拌し、液温を80℃に加熱して、純水中にPVAを溶解させ0.02重量%PVA水溶液を調製した。次に、この80℃に加熱したPVA水溶液を攪拌器で攪拌し続けながら先に調製した溶解液をこの水溶液に添加した。攪拌速度は300rpmとした。溶解液を添加したPVA水溶液を上記温度を維持しながら2時間攪拌し続けることにより、顆粒状物が合成された。反応後は、PVA水溶液中で合成された顆粒状物を回収した。回収は純水で洗浄しながら顆粒状物を濾過することにより行った。最後にアスピレーターを使用して、抽出剤に含まれる余分な水分を除去することにより、ウラン抽出剤を得た。
Next, examples of the present invention will be described in detail together with comparative examples.
<Examples 1 to 11>
First, a skeleton solvent, a crosslinking agent, a polymerization initiator, and an extraction solvent of the types shown in the following Table 1 were prepared. Next, a skeleton solvent, a crosslinking agent, and a polymerization initiator were charged into the beaker so as to have the ratio shown in Table 1 below, and mixed to prepare a mixed solution. An extraction solvent was further added to this mixed solution so as to have a ratio shown in Table 1 below, and the resulting solution was stirred for about 30 minutes to dissolve the polymerization initiator. Next, another beaker is prepared, and 500 mL of pure water and 0.1 g of PVA are respectively added to this beaker and stirred for about 30 minutes, and the liquid temperature is heated to 80 ° C. to dissolve PVA in pure water. A 0.02 wt% PVA aqueous solution was prepared. Next, the solution prepared previously was added to this aqueous solution while continuing to stir the PVA aqueous solution heated to 80 ° C. with a stirrer. The stirring speed was 300 rpm. Granules were synthesized by continuing to stir the PVA aqueous solution to which the solution had been added for 2 hours while maintaining the above temperature. After the reaction, the granular material synthesized in the PVA aqueous solution was recovered. The collection was performed by filtering the granular material while washing with pure water. Finally, by using an aspirator to remove excess water contained in the extractant, a uranium extractant was obtained.

<評価試験1>
実施例1〜11で得られたウラン抽出剤を用いて以下に示すウラン吸着試験を行った。先ず、ウラン濃度が1000ppmのスクラップウラン模擬廃液を硝酸濃度が3モル濃度となるように硝酸水溶液に溶解してスクラップウラン溶解液を調製した。次に、このスクラップウラン溶解液50mlを約25℃の液温に保持した状態で、スクラップウラン溶解液にウラン抽出剤1gを浸漬し、105回/分の割合で48時間振盪し続けるバッチ試験を行った。試験後の吸着を終えたウラン抽出剤は溶解液より取り出し、吸着を終えたウラン抽出剤についてICP測定を行った。また吸着を終えたウラン抽出剤に吸着したウラン吸着量を求めた。更に、分配比(Kd)を求めた。その結果を次の表2に示す。
<Evaluation test 1>
Using the uranium extractant obtained in Examples 1 to 11, the following uranium adsorption test was performed. First, a scrap uranium solution was prepared by dissolving a scrap uranium simulated waste solution having a uranium concentration of 1000 ppm in an aqueous nitric acid solution so that the nitric acid concentration was 3 molar. Next, a batch test in which 1 g of uranium extractant was immersed in the scrap uranium solution while shaking 50 ml of the scrap uranium solution at a liquid temperature of about 25 ° C. and continued to shake for 48 hours at a rate of 105 times / min. went. The uranium extractant after adsorption after the test was taken out from the solution, and ICP measurement was performed on the uranium extractant after adsorption. The amount of uranium adsorbed on the uranium extractant after adsorption was determined. Furthermore, the distribution ratio (Kd) was determined. The results are shown in Table 2 below.

表2より明らかなように、ウラン吸着量が最大になったのは実施例10のウラン抽出剤であり、実施例5のウラン抽出剤も1gのウラン抽出剤当たり30mgを越えるウラン吸着量となった。また多くの実施例が20mgを越えるウラン吸着量を示しており、本発明の製造方法により得られたウラン抽出剤は高いウラン吸着量を示していることが確認された。   As is clear from Table 2, the uranium extraction amount in Example 10 had the largest uranium adsorption amount, and the uranium extractant in Example 5 also had a uranium adsorption amount exceeding 30 mg per gram of uranium extractant. It was. Moreover, many examples showed uranium adsorption amount exceeding 20 mg, and it was confirmed that the uranium extractant obtained by the production method of the present invention showed high uranium adsorption amount.

<評価試験2>
実施例5で得られたウラン抽出剤を用いて以下に示すスクラップウラン溶解液の硝酸濃度に対するウラン吸着量の硝酸濃度依存性試験を行った。先ず、ウラン濃度が1000ppmのスクラップウラン模擬廃液を硝酸濃度が0.1〜7モル濃度となるようにそれぞれ硝酸水溶液に溶解して8種類のスクラップウラン溶解液を調製した。次に、これらのスクラップウラン溶解液50mlを約25℃の液温に保持した状態で、スクラップウラン溶解液にウラン抽出剤を1g浸漬し、100回/分の割合で48時間振盪し続けるバッチ試験を行った。試験後の吸着を終えたウラン抽出剤は溶解液より取り出し、溶解液中のウラン濃度を測定した。また吸着を終えたウラン抽出剤に吸着したウラン吸着量を求めた。更に、分配比(Kd)を求めた。その結果を次の表3に示す。また、ウラン濃度が1000ppmのスクラップウラン溶解液におけるウラン吸着剤の硝酸濃度依存性を示す図を図7に示す。
<Evaluation Test 2>
Using the uranium extractant obtained in Example 5, the nitric acid concentration dependence test of the uranium adsorption amount with respect to the nitric acid concentration of the scrap uranium solution shown below was conducted. First, a scrap uranium simulated waste liquid having a uranium concentration of 1000 ppm was dissolved in an aqueous nitric acid solution so that the nitric acid concentration would be 0.1 to 7 molar, thereby preparing eight types of scrap uranium solution. Next, a batch test in which 1 g of uranium extractant is immersed in the scrap uranium solution while shaking 50 ml of these scrap uranium solutions at a liquid temperature of about 25 ° C. and is continuously shaken at a rate of 100 times / minute for 48 hours. Went. The uranium extractant that had been adsorbed after the test was taken out of the solution, and the uranium concentration in the solution was measured. In addition, the amount of uranium adsorbed on the uranium extractant after adsorption was determined. Furthermore, the distribution ratio (Kd) was determined. The results are shown in Table 3 below. FIG. 7 is a graph showing the nitric acid concentration dependence of the uranium adsorbent in a scrap uranium solution having a uranium concentration of 1000 ppm.

表3及び図7に示すように、ウラン抽出剤に対するウラン吸着量は硝酸濃度3〜4モル濃度で最大吸着量を示し、硝酸濃度が上がるにつれて吸着量は減少する傾向となっていた。この結果から調製するスクラップウラン溶解液の硝酸濃度を3〜4モル濃度とすることでウラン抽出剤へのウラン吸着量を最大にすることができることが確認された。また、硝酸濃度が0.1モル濃度でほぼウランが吸着しないことから、ウランを吸着したウラン抽出剤に0.1モル濃度の硝酸溶液を接触させることにより、ウランを抽出剤から溶離させることができることが判った。   As shown in Table 3 and FIG. 7, the uranium adsorption amount with respect to the uranium extractant showed the maximum adsorption amount at a nitric acid concentration of 3 to 4 molar, and the adsorption amount tended to decrease as the nitric acid concentration increased. From this result, it was confirmed that the amount of uranium adsorbed on the uranium extractant can be maximized by adjusting the concentration of nitric acid in the dissolved uranium solution to 3 to 4 molar. Further, since uranium is hardly adsorbed at a nitric acid concentration of 0.1 molar, uranium can be eluted from the extractant by contacting the uranium extractant adsorbing uranium with a 0.1 molar nitric acid solution. I found that I can do it.

<評価試験3>
上記評価試験2ではウラン濃度が1000ppmと高濃度であった。そこで、ウラン濃度を10ppmとしたスクラップウラン溶解液を使用した以外は上記評価試験2と同様にしてバッチ試験を行い、ウラン濃度が低濃度の場合での硝酸濃度依存性とウラン吸着量を確認した。その結果を次の表4に示す。また、ウラン濃度が10ppmのスクラップウラン溶解液におけるウラン吸着剤の硝酸濃度依存性を示す図を図8に示す。
<Evaluation Test 3>
In the evaluation test 2, the uranium concentration was as high as 1000 ppm. Therefore, a batch test was conducted in the same manner as in Evaluation Test 2 except that a scrap uranium solution with a uranium concentration of 10 ppm was used, and the nitric acid concentration dependency and uranium adsorption amount were confirmed when the uranium concentration was low. . The results are shown in Table 4 below. Moreover, the figure which shows the nitric acid concentration dependence of the uranium adsorbent in the scrap uranium solution with a uranium concentration of 10 ppm is shown in FIG.

表4及び図8より明らかなように、ウラン濃度が10ppmと低濃度の場合でも、前述した表3並びに図7と同様の傾向を有する硝酸濃度依存性が確認された。また、ウラン吸着量は低いものの、硝酸濃度が3〜5モル濃度の範囲内で分配比Kdが80強を示した。   As is apparent from Table 4 and FIG. 8, even when the uranium concentration is as low as 10 ppm, the dependence on nitric acid concentration having the same tendency as in Table 3 and FIG. 7 was confirmed. Further, although the uranium adsorption amount was low, the distribution ratio Kd was a little over 80 when the nitric acid concentration was in the range of 3 to 5 molar concentration.

<評価試験4>
上記評価試験2及び評価試験3での結果から、ウラン濃度が10ppmと1000ppmではウラン抽出剤1g当たりのウラン吸着量がイオン強度(溶液中のイオン量)によって変化することが確認された。そこで、ウラン濃度が50ppm〜1000ppmまでの間でどのように変化するかを確認するため、ウラン濃度が50ppm〜1000ppmの7種類のスクラップウラン模擬廃液を硝酸濃度が3モル濃度となるようにそれぞれ硝酸水溶液に溶解して調製した7種類のスクラップウラン溶解液を使用した以外は上記評価試験2と同様にしてバッチ試験を行い、ウラン濃度を変動させた場合でのウラン吸着量と分配比Kdを求めた。その結果を次の表5に示す。また、ウラン濃度が50ppm〜1000ppmのスクラップウラン溶解液とウラン吸着剤のウラン吸着量との関係を示す吸着等温線を図9に示す。
<Evaluation Test 4>
From the results of Evaluation Test 2 and Evaluation Test 3, it was confirmed that the uranium adsorption amount per gram of uranium extractant varies depending on the ionic strength (the amount of ions in the solution) when the uranium concentration is 10 ppm and 1000 ppm. Therefore, in order to confirm how the uranium concentration varies between 50 ppm and 1000 ppm, seven types of scrap uranium simulated waste liquids with a uranium concentration of 50 ppm to 1000 ppm were mixed with nitric acid so that the nitric acid concentration would be 3 molar. A batch test is performed in the same manner as in the above evaluation test 2 except that seven types of scrap uranium solution prepared by dissolving in an aqueous solution are used, and the uranium adsorption amount and distribution ratio Kd are obtained when the uranium concentration is changed. It was. The results are shown in Table 5 below. Further, FIG. 9 shows an adsorption isotherm showing the relationship between the scrap uranium solution having a uranium concentration of 50 ppm to 1000 ppm and the uranium adsorption amount of the uranium adsorbent.

表5より明らかなように、ウラン濃度の増加に従って、ウラン抽出剤へのウラン吸着量も増加しているが、分配比Kdは全て60弱であった。これはウラン抽出剤が溶解液中から一定の割合でしかウランを吸着していないことを意味すると考えられる。また、図9に示す吸着等温線から高濃度側でウラン吸着量が減少していることからウラン抽出剤のウラン吸着部位は全て使用しているものと考えられる。   As is clear from Table 5, as the uranium concentration increased, the amount of uranium adsorbed on the uranium extractant also increased, but the distribution ratios Kd were all less than 60. This is thought to mean that the uranium extractant adsorbs uranium only at a certain rate from the solution. Moreover, since the amount of uranium adsorption decreases on the high concentration side from the adsorption isotherm shown in FIG. 9, it is considered that all the uranium adsorption sites of the uranium extractant are used.

ウラン抽出剤の原料である溶解液を調製している状態を示す写真図。The photograph figure which shows the state which is preparing the solution which is a raw material of a uranium extractant. 溶解液を添加した界面活性剤水溶液を加熱しながら攪拌している状態を示す写真図。The photograph figure which shows the state which is stirring, heating surfactant aqueous solution which added the solution. 水中懸濁重合反応により界面活性剤水溶液中に得られた顆粒状物を示す写真図。The photograph figure which shows the granular material obtained in surfactant aqueous solution by suspension polymerization reaction in water. 本発明のウラン抽出剤を示す写真図。The photograph figure which shows the uranium extractant of this invention. 本発明のウラン抽出剤の基本構造を示す図。The figure which shows the basic structure of the uranium extractant of this invention. 本発明のウラン抽出剤を用いてスクラップウランからウランを抽出する方法を工程順に示す図。The figure which shows the method of extracting uranium from scrap uranium using the uranium extractant of this invention in order of a process. ウラン濃度が1000ppmのスクラップウラン溶解液におけるウラン吸着剤の硝酸濃度依存性を示す図。The figure which shows the nitric acid concentration dependence of the uranium adsorbent in the scrap uranium solution with a uranium concentration of 1000 ppm. ウラン濃度が10ppmのスクラップウラン溶解液におけるウラン吸着剤の硝酸濃度依存性を示す図。The figure which shows the nitric acid concentration dependence of the uranium adsorbent in the scrap uranium solution with a uranium concentration of 10 ppm. スクラップウラン溶解液中のウラン濃度とウラン抽出剤へのウラン吸着量の関係を示す図。The figure which shows the relationship between the uranium density | concentration in scrap uranium solution, and the uranium adsorption amount to a uranium extractant.

符号の説明Explanation of symbols

11 カラム内にウラン抽出剤を充填する工程
12 スクラップウラン溶解液を調製する工程
13 ウラン成分をカラム内のウラン抽出剤に吸着させる工程
14 カラム内部を洗浄する工程
16 ウラン抽出剤に吸着させたウラン成分を溶離させる工程
11 Step of filling uranium extractant into column 12 Step of preparing scrap uranium solution 13 Step of adsorbing uranium component to uranium extractant in column 14 Step of washing inside column 16 Uranium adsorbed to uranium extractant Elution of components

Claims (3)

スチレンモノマー、アクリル酸又はメタクリル酸からなる骨格溶媒と架橋剤とモノアミド系溶媒からなる抽出溶媒とを重合させて合成した顆粒状樹脂であることを特徴とするウラン抽出剤。   A uranium extractant characterized by being a granular resin synthesized by polymerizing a skeletal solvent composed of styrene monomer, acrylic acid or methacrylic acid, an extraction solvent composed of a crosslinking agent and a monoamide solvent. スチレンモノマー、アクリル酸又はメタクリル酸からなる骨格溶媒と架橋剤と重合開始剤とを混合して混合液を調製する工程と、
前記混合液に更にモノアミド系溶媒からなる抽出溶媒を混合して溶解液を調製する工程と、
80〜110℃の温度に加熱した界面活性剤水溶液に前記調製した溶解液を添加し、前記溶解液を添加した界面活性剤水溶液を上記温度に維持しながら1〜2時間攪拌することにより、前記溶解液中の骨格溶媒と抽出溶媒と架橋剤とを重合させて顆粒状樹脂を合成する工程と
を含むことを特徴とするウラン抽出剤の製造方法。
A step of preparing a mixed solution by mixing a skeletal solvent comprising a styrene monomer, acrylic acid or methacrylic acid, a crosslinking agent and a polymerization initiator;
A step of further mixing an extraction solvent comprising a monoamide solvent with the mixed solution to prepare a solution;
By adding the prepared solution to a surfactant aqueous solution heated to a temperature of 80 to 110 ° C. and stirring the surfactant aqueous solution to which the solution is added at the above temperature for 1 to 2 hours, And a step of synthesizing a granular resin by polymerizing a skeletal solvent, an extraction solvent, and a crosslinking agent in a solution.
鉛直方向に長い筒体からなるカラム内に請求項1記載のウラン抽出剤又は請求項2記載の方法により得られたウラン抽出剤を所定の割合で充填する工程(11)と、
ウラン成分を含むスクラップウランを硝酸濃度が1〜7モル濃度となるように硝酸水溶液に溶解してスクラップウラン溶解液を調製する工程(12)と、
前記ウラン抽出剤を充填したカラムに前記調製したスクラップウラン溶解液を任意の流速で通液することにより、前記スクラップウランに含まれるウラン成分をカラム内のウラン抽出剤に吸着させる工程(13)と、
前記ウラン成分を吸着させたウラン抽出剤を充填したカラムに3モル濃度に調整した硝酸溶液を任意の流速で通液することにより、前記カラム内部を洗浄する工程(14)と、
前記洗浄したカラムに0.1モル濃度に調整した硝酸溶液を任意の流速で通液することにより、前記カラムのウラン抽出剤に吸着させたウラン成分を0.1モル濃度硝酸溶液に溶離させる工程(16)と
を含むことを特徴とするウラン抽出剤を用いてウランをスクラップウランから抽出する方法。
A step (11) of filling the uranium extractant according to claim 1 or the uranium extractant obtained by the method according to claim 2 into a column comprising a vertically long cylinder in a predetermined ratio;
A step (12) of preparing a scrap uranium solution by dissolving scrap uranium containing a uranium component in an aqueous nitric acid solution so that the nitric acid concentration is 1 to 7 molar;
A step (13) of adsorbing the uranium component contained in the scrap uranium to the uranium extractant in the column by passing the prepared scrap uranium solution through the column filled with the uranium extractant at an arbitrary flow rate; ,
A step (14) of washing the inside of the column by passing a nitric acid solution adjusted to a 3 molar concentration through the column filled with the uranium extractant adsorbing the uranium component at an arbitrary flow rate;
The step of eluting the uranium component adsorbed on the uranium extractant of the column into the 0.1 molar nitric acid solution by passing the nitric acid solution adjusted to 0.1 molar concentration through the washed column at an arbitrary flow rate. (16) A method for extracting uranium from scrap uranium using a uranium extractant characterized by comprising:
JP2006074513A 2006-03-17 2006-03-17 Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same Pending JP2007245066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074513A JP2007245066A (en) 2006-03-17 2006-03-17 Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074513A JP2007245066A (en) 2006-03-17 2006-03-17 Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same

Publications (1)

Publication Number Publication Date
JP2007245066A true JP2007245066A (en) 2007-09-27

Family

ID=38589914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074513A Pending JP2007245066A (en) 2006-03-17 2006-03-17 Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same

Country Status (1)

Country Link
JP (1) JP2007245066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045869A (en) * 2012-12-27 2013-04-17 北京大学 Method for enriching uranium and thorium from water phase by using cloud point extraction technology
WO2013171804A1 (en) * 2012-05-18 2013-11-21 日揮株式会社 Uranium solvent extraction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290249A (en) * 1989-04-28 1990-11-30 Sumitomo Chem Co Ltd Uranium adsorption material
JPH04142500A (en) * 1990-10-04 1992-05-15 Asahi Chem Ind Co Ltd Separating method for radioactive material
JP2005061971A (en) * 2003-08-11 2005-03-10 Inst Of Research & Innovation Method for treating high-level radioactive liquid waste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290249A (en) * 1989-04-28 1990-11-30 Sumitomo Chem Co Ltd Uranium adsorption material
JPH04142500A (en) * 1990-10-04 1992-05-15 Asahi Chem Ind Co Ltd Separating method for radioactive material
JP2005061971A (en) * 2003-08-11 2005-03-10 Inst Of Research & Innovation Method for treating high-level radioactive liquid waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171804A1 (en) * 2012-05-18 2013-11-21 日揮株式会社 Uranium solvent extraction method
AU2012379875B2 (en) * 2012-05-18 2015-10-22 Jgc Corporation Uranium solvent extraction method
CN103045869A (en) * 2012-12-27 2013-04-17 北京大学 Method for enriching uranium and thorium from water phase by using cloud point extraction technology
CN103045869B (en) * 2012-12-27 2014-07-30 北京大学 Method for enriching uranium and thorium from water phase by using cloud point extraction technology

Similar Documents

Publication Publication Date Title
Mu et al. Removal of radioactive palladium based on novel 2D titanium carbides
Zhu et al. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Florek et al. Functionalization of mesoporous materials for lanthanide and actinide extraction
Galhoum et al. Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd (III), Dy (III) and Yb (III)]
Kaynar et al. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies
JP5118159B2 (en) Phosphorus recovery
Weerasekara et al. Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater
Wei et al. Stoichiometry, isotherms and kinetics of adsorption of In (III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions
CN103464102A (en) Porous composite adsorbing agent for removing stream substrate sludge contamination and preparation process of agent
Wang et al. Functionalized magnetic silica nanoparticles for highly efficient adsorption of Sm3+ from a dilute aqueous solution
WO2014110014A1 (en) Strontium and cesium specific ion-exchange media
Ilaiyaraja et al. Removal of thorium from aqueous solution by adsorption using PAMAM dendron-functionalized styrene divinyl benzene
Zhang et al. Kinetics of the adsorption of strontium (II) by a novel silica-based 4, 4′,(5′)-di (tert-butylcyclohexano)-18-crown-6 extraction resin in nitric acid medium
Pathak et al. Removal of americium from aqueous nitrate solutions by sorption onto PC88A—Impregnated macroporous polymeric beads
Akkaya et al. Adsorption isotherms, kinetics, thermodynamics and desorption studies for uranium and thorium ions from aqueous solution by novel microporous composite P (HEMA-EP)
Mahmoud et al. Adsorption behavior of samarium (III) from aqueous solutions onto PAN@ SDS core-shell polymeric adsorbent
JP5684102B2 (en) Method and apparatus for treating radioactive cesium-containing material
Zhang et al. Construction of dopamine supported Mg (Ca) Al layered double hydroxides with enhanced adsorption properties for uranium
JP2007245066A (en) Uranium extracting agent and method for manufacturing the same and method for extracting uranium from scrap uranium by using the same
Shah et al. Characterization of hydroxybenzoic acid chelating resins: Equilibrium, kinetics, and isotherm profiles for Cd (II) and Pb (II) uptake
CN105664845A (en) Compound adsorbent for absorbing rubidium ions as well as preparation method and application of compound adsorbent
Tharanitharan et al. Removal of Pb (II) from aqueous solutions by using dioctyl sodium sulphosuccinate-EDTA modified Amberlite XAD-7HP resin
JP2016097351A (en) Purification method and purification device for slurry including arsenic
Chmielewska et al. Nanocomposite SiEA-KNiFe sorbent—Complete solution from synthesis through radiocesium sorption to vitrification using the sol–gel method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113