JP2007244572A - Method for producing biological sensor - Google Patents

Method for producing biological sensor Download PDF

Info

Publication number
JP2007244572A
JP2007244572A JP2006070750A JP2006070750A JP2007244572A JP 2007244572 A JP2007244572 A JP 2007244572A JP 2006070750 A JP2006070750 A JP 2006070750A JP 2006070750 A JP2006070750 A JP 2006070750A JP 2007244572 A JP2007244572 A JP 2007244572A
Authority
JP
Japan
Prior art keywords
shape
dimensional
average
procedure
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070750A
Other languages
Japanese (ja)
Inventor
Naoyoshi Tatara
尚愛 多々良
Shinji Mino
真司 美野
Junichi Shimada
純一 嶋田
Hiroshi Koizumi
弘 小泉
Shoichi Hayashida
尚一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006070750A priority Critical patent/JP2007244572A/en
Publication of JP2007244572A publication Critical patent/JP2007244572A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a biological sensor having an attachment section which is attached stably to a specified part of the external ears of a plurality of persons and has high reproducibility regarding an attachment position. <P>SOLUTION: A biological sensor 91 for measuring biological information has the attachment section 13 attached to the external ear of a person. The method for producing the biological sensor is characterized that the shape of a part of the attachment section that comes into contact with a specified part 104 of the external ear is shaped according to an average shape of the specified parts 104 of the external ears of a plurality of persons. The specified part 104 is preferably located on an area from the ear canal 102 to the cavity of concha 103 on the back part of the head. By attaching the attachment section 13 on the specified part 104 of the external ear, the attachment position of a cuff 11 is determined uniquely, and the position of the cuff is prevented from being moved by body motion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外耳に安定して装着可能な生体センサの作製方法に関する。   The present invention relates to a method for manufacturing a biosensor that can be stably attached to an outer ear.

高齢化が進み、成人の生活習慣病への対応が社会的に大きな課題となっている。特に高血圧に関連する疾患の場合、長期の血圧値の収集が非常に重要である点が認識されている。このような観点から、血圧値を始めとして、脈拍、脈波、心電、体温又は動脈血酸素飽和度等の生体情報を継続的に測定する測定装置が開発されている。   With the aging of society, dealing with adult lifestyle-related diseases has become a major social issue. It is recognized that collection of long-term blood pressure values is very important, especially for diseases associated with high blood pressure. From such a point of view, a measuring apparatus that continuously measures biological information such as a blood pressure value, a pulse, a pulse wave, an electrocardiogram, a body temperature, or arterial oxygen saturation has been developed.

生体情報を継続的に測定する測定装置として、外耳道に常時装着する患者モニタ装置がある(例えば、特許文献1参照。)。この装置は、体内へ放射した赤外光、可視光の散乱光の受光量から血圧値などを算出するものである。しかし、この患者モニタ装置では、血圧測定装置としての具体的な構成は示されていない。   As a measurement device that continuously measures biological information, there is a patient monitor device that is always attached to the ear canal (see, for example, Patent Document 1). This apparatus calculates a blood pressure value or the like from the amount of received infrared light or visible light scattered into the body. However, this patient monitor device does not show a specific configuration as a blood pressure measurement device.

ここで、耳介の名称は非特許文献1、2、3による。また、耳介の表側とは耳介の顔面側に面している側であり、耳介の裏側とは耳介の後頭部側に面している側を示す。また、耳介の上端部とは、耳介と側頭部との境界における頭頂側の端部である。耳介の下端部とは、耳介と側頭部との境界における首側の端部である。
特開平9−122083号公報 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.126、(株)医学書院、1996年10月1日発行 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.127、(株)医学書院、1996年10月1日発行 からだの地図帳 (監修・解説:高橋長雄)、p.20、(株)講談社、2004年1月29日発行
Here, the names of the auricles are based on Non-Patent Documents 1, 2, and 3. The front side of the pinna is the side facing the face side of the pinna, and the back side of the pinna is the side facing the occipital side of the pinna. Further, the upper end portion of the pinna is the end on the parietal side at the boundary between the pinna and the temporal region. The lower end of the auricle is the end on the neck side at the boundary between the auricle and the temporal region.
JP-A-9-128203 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 126, Medical School, issued October 1, 1996 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 127, Medical School, issued October 1, 1996 Body map book (supervised and commentary by Nagao Takahashi), p. 20, Kodansha Co., Ltd., issued on January 29, 2004

外耳又はその周囲は、日常生活での振動や変化が手足に比べて少なく、かつ、比較的太い動脈や抹消血管が表皮近くに多く存在するので、血圧値の測定に適している。血圧値を比較するためには脈波の再現性が要求されるが、外耳には動脈が数多く存在するので、装着位置の再現性が要求される。特に、血圧測定時のカフ加減圧に伴い装着位置が変化する場合がある。これを解決する方法としては、血圧計を外耳に装着するための装着部を設ける方法が考えられる。   The outer ear or its surroundings are suitable for the measurement of blood pressure because there are few vibrations and changes in daily life compared to limbs and there are many relatively thick arteries and peripheral blood vessels near the epidermis. In order to compare blood pressure values, pulse wave reproducibility is required, but since there are many arteries in the outer ear, reproducibility of the wearing position is required. In particular, the wearing position may change with cuff pressure increase / decrease during blood pressure measurement. As a method for solving this, a method of providing a mounting portion for mounting the sphygmomanometer to the outer ear can be considered.

装着部は、生体センサを外耳に常時装着して継続的に血圧値を測定するため、装着部の位置をできるだけ小さな刺激で一定の位置に固定する必要がある。しかし、外耳の形状は複雑かつ個人差が大きい。このため、装着部を単一の大きさ若しくは形状又は単純なパラメータによるサイズ分けをして作製しても、フィット感に欠け、装着部を人間の外耳に装着しても装着位置が安定せずに簡単にずれてしまう問題があった。   Since the wearing part always wears the biosensor on the outer ear and continuously measures the blood pressure value, it is necessary to fix the position of the wearing part at a fixed position with as little stimulation as possible. However, the shape of the outer ear is complex and has great individual differences. For this reason, even if the mounting part is made by single size or shape or sizing according to simple parameters, it does not fit and the mounting position is not stable even if the mounting part is mounted on the human outer ear. There was a problem that easily shifted.

一方、装着部と外耳とのフィット感を高めるためオーダメイドにすると、個人ごとに外耳の特定部位の形状を測定し、測定した形状に合わせて装着部の形状を作製することになる。このため、装着部の作製のためのすべての工程を一人一人に対して行わなければならないので、血圧計1個の提供のために大掛かりな作製手順が必要となる。   On the other hand, if it is made in order to enhance the fit between the mounting portion and the outer ear, the shape of the specific part of the outer ear is measured for each individual, and the shape of the mounting portion is produced according to the measured shape. For this reason, since all the steps for producing the mounting portion must be performed for each person, a large production procedure is required to provide one sphygmomanometer.

よって、本発明は、複数の人間の外耳の特定部位に安定して装着が可能であり、かつ、装着位置の再現性が高い装着部を備える生体センサの作製方法の提供を目的とする。   Therefore, an object of the present invention is to provide a method for producing a biosensor including a mounting portion that can be stably mounted on specific parts of a plurality of human outer ears and that has high reproducibility of mounting positions.

本発明に係る生体センサの作製方法は、生体情報を測定する生体センサを人間の外耳に装着する装着部のうち前記外耳の特定部位と接触させる部分の形状を、複数の人間の前記外耳の特定部位の平均形状に沿った形状とすることを特徴とする。   In the method for producing a biosensor according to the present invention, the shape of the portion of the mounting unit that mounts the biosensor for measuring biometric information on the outer ear of a human being to be in contact with the specific part of the outer ear is specified for the plurality of human outer ears. It is characterized by having a shape along the average shape of the part.

具体的には、本発明に係る生体センサの作製方法は、複数の人間の外耳の特定部位の3次元形状を取得する形状取得手順と、前記形状取得手順で取得した複数の3次元形状の平均形状を算出する平均形状算出手順と、生体情報を測定する生体センサを外耳に装着する装着部のうちの前記外耳の特定部位と接触させる部分の形状を、前記平均形状算出手順で算出した前記平均形状に沿った形状に設定する装着部形状設定手順と、を有することを特徴とする。   Specifically, the biosensor manufacturing method according to the present invention includes a shape acquisition procedure for acquiring a three-dimensional shape of specific parts of a plurality of human outer ears, and an average of the plurality of three-dimensional shapes acquired by the shape acquisition procedure. The average shape calculation procedure for calculating the shape, and the average shape calculated in the average shape calculation procedure for the shape of the portion that contacts the specific part of the outer ear of the wearing part that wears the biological sensor for measuring biological information on the outer ear And a mounting portion shape setting procedure for setting the shape in accordance with the shape.

本発明に係る生体センサの作製方法では、前記平均形状算出手順において、前記複数の3次元形状の平均形状を、前記形状取得手順で取得した複数の3次元形状の積和演算又はモーフィングを用いて算出することが好ましい。積和演算又はモーフィングを用いることで、3次元形状の精密な平均形状を算出することができる。さらに、積和演算を用いることで、簡単な演算で平均形状を算出することができる。   In the biosensor manufacturing method according to the present invention, in the average shape calculation procedure, the average shape of the plurality of three-dimensional shapes is calculated using a product-sum operation or morphing of the plurality of three-dimensional shapes acquired in the shape acquisition procedure. It is preferable to calculate. By using product-sum operation or morphing, a precise average shape of a three-dimensional shape can be calculated. Furthermore, by using a product-sum operation, the average shape can be calculated with a simple operation.

本発明に係る生体センサの作製方法では、前記平均形状算出手順において、前記形状取得手順で取得した複数の3次元形状のそれぞれについて前記3次元形状を形成する複数の平面を抽出し、前記平面の中心から前記平面の法線上の他の前記3次元形状を形成する平面までの距離が平均となる平均位置を前記平面ごとに算出し、前記平均位置の集合によって形成される3次元形状を、前記平均形状とすることが好ましい。3次元形状の表面形状のデータを抽出して平均形状を算出できるので、3次元形状を表現するためのデータの容量を減少させることができる。   In the biosensor manufacturing method according to the present invention, in the average shape calculation procedure, a plurality of planes forming the three-dimensional shape are extracted for each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure, The average position where the distance from the center to the plane forming the other three-dimensional shape on the normal of the plane is an average is calculated for each plane, and the three-dimensional shape formed by the set of the average positions is An average shape is preferred. Since the average shape can be calculated by extracting the surface shape data of the three-dimensional shape, the data capacity for expressing the three-dimensional shape can be reduced.

本発明に係る生体センサの作製方法では、前記平均形状算出手順において、前記形状取得手順で取得した複数の3次元形状のそれぞれについて予め定められた断面における2次元形状を抽出し、前記予め定められた断面ごとに前記2次元形状の平均形状を算出し、前記2次元形状の平均形状の集合によって形成される3次元形状を、前記平均形状とすることが好ましい。予め定められた断面を、装着部のうちの重要な部分の断面とすれば、重要な部分の平均形状を精密に算出することができる。   In the biosensor manufacturing method according to the present invention, in the average shape calculation procedure, a two-dimensional shape in a predetermined cross section is extracted for each of a plurality of three-dimensional shapes acquired in the shape acquisition procedure, and the predetermined shape is determined. It is preferable that an average shape of the two-dimensional shape is calculated for each cross section, and a three-dimensional shape formed by a set of the average shapes of the two-dimensional shapes is the average shape. If the predetermined cross section is a cross section of an important portion of the mounting portion, the average shape of the important portion can be accurately calculated.

本発明に係る生体センサの作製方法では、前記形状取得手順で取得した複数の前記3次元形状の表面同士の距離が小さくなるように、前記形状取得手順で取得した複数の前記3次元形状のそれぞれを配置する配置手順を、前記形状取得手順と前記平均形状算出手順の間にさらに有することが好ましい。配置手順をさらに有することで、平均形状算出手順において算出する平均形状を、形状取得手順で取得した複数の3次元形状のそれぞれに近づけることができる。   In the biosensor manufacturing method according to the present invention, each of the plurality of three-dimensional shapes acquired by the shape acquisition procedure is reduced so that the distance between the surfaces of the plurality of three-dimensional shapes acquired by the shape acquisition procedure is reduced. It is preferable to further include an arrangement procedure for arranging between the shape acquisition procedure and the average shape calculation procedure. By further including an arrangement procedure, the average shape calculated in the average shape calculation procedure can be brought close to each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure.

本発明に係る生体センサの作製方法では、前記配置手順において、前記形状取得手順で取得した3次元形状の表面同士の距離について、前記3次元形状の表面の位置ごとの分散又は偏差が最小になるように、前記形状取得手順で取得した複数の前記3次元形状のそれぞれを配置することが好ましい。形状取得手順で取得した3次元形状の表面上の点と他の3次元形状の表面上の点との距離の分散又は偏差が最小になるように、形状取得手順で取得した3次元形状のそれぞれを配置するので、配置手順において、形状取得手順で取得した複数の3次元形状を最も重なるように配置することができる。これにより、平均形状算出手順において算出する平均形状を、形状取得手順で取得した複数の3次元形状のそれぞれに最も近づけることができる。   In the biosensor manufacturing method according to the present invention, in the arrangement procedure, the dispersion or deviation for each position of the surface of the three-dimensional shape is minimized with respect to the distance between the surfaces of the three-dimensional shape acquired in the shape acquisition procedure. Thus, it is preferable to arrange each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure. Each of the three-dimensional shapes acquired by the shape acquisition procedure so that the dispersion or deviation of the distance between the point on the surface of the three-dimensional shape acquired by the shape acquisition procedure and the point on the surface of another three-dimensional shape is minimized. Therefore, in the arrangement procedure, a plurality of three-dimensional shapes acquired in the shape acquisition procedure can be arranged so as to overlap most. Thereby, the average shape calculated in the average shape calculation procedure can be brought closest to each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure.

本発明に係る生体センサの作製方法では、前記形状取得手順で取得した複数の前記3次元形状のうち、前記3次元形状の表面同士の距離が所定距離以下となる類似形状を抽出する類似形状抽出手順を、前記平均形状算出手順と前記装着部形状設定手順との間にさらに有することが好ましい。類似形状抽出手順をさらに有することで、形状取得手順で取得した類似する3次元形状についてのみ平均形状を算出することができる。これにより、装着部の形状を、外耳の形状が類似している人同士の平均形状とすることができるので、外耳の形状が類似している人それぞれに適した装着部の形状に設計することができる。   In the biosensor manufacturing method according to the present invention, a similar shape extraction that extracts a similar shape in which the distance between the surfaces of the three-dimensional shape is equal to or less than a predetermined distance among the plurality of three-dimensional shapes acquired in the shape acquisition procedure. It is preferable to further have a procedure between the average shape calculation procedure and the mounting portion shape setting procedure. By further including a similar shape extraction procedure, an average shape can be calculated only for similar three-dimensional shapes acquired by the shape acquisition procedure. As a result, the shape of the wearing part can be the average shape of people with similar outer ear shapes, so design the shape of the wearing part suitable for each person with similar outer ear shape. Can do.

本発明に係る生体センサの作製方法では、前記形状取得手順において、弾性印象材を用いて型取りしたものを3次元形状スキャナで取り込むことが好ましい。外耳の形状は細かく入り組んでいるので、弾性印象材を用いて型取りすることで、細かな部分についても精密な形状を取得することができる。又、型取りは装置が必要ないので、いろいろな場所で型取りを行うことができる。このため、複数箇所で型取りしたものを集め、共通の3次元形状スキャナで取り込めば、多くの人が利用可能となる。   In the biosensor manufacturing method according to the present invention, in the shape acquisition procedure, it is preferable to take in a shape obtained using an elastic impression material with a three-dimensional shape scanner. Since the shape of the outer ear is intricately complicated, it is possible to obtain a precise shape even for a fine portion by making a mold using an elastic impression material. In addition, since the molding is not necessary, the molding can be performed at various places. For this reason, if a plurality of molds are collected and captured by a common three-dimensional scanner, many people can use it.

本発明に係る生体センサの作製方法では、前記形状取得手順において、一人の人間の外耳の特定部位の3次元形状を取得する際に、前記人間の外耳の特定部位の3次元形状を複数箇所に分けて型取りし、3次元形状スキャナで取り込んだものを合成することが好ましい。外耳の形状は複雑なので、外耳の特定部位の3次元形状を分割して取得することで、正確な3次元形状を取得することができる。   In the biosensor manufacturing method according to the present invention, when acquiring the three-dimensional shape of the specific part of one person's outer ear in the shape acquisition procedure, the three-dimensional shape of the specific part of the human outer ear is obtained at a plurality of locations. It is preferable to mold separately and synthesize what was captured by a three-dimensional shape scanner. Since the shape of the outer ear is complex, an accurate three-dimensional shape can be acquired by dividing and acquiring the three-dimensional shape of a specific part of the outer ear.

本発明に係る生体センサの作製方法では、前記外耳の特定部位が、外耳道から耳甲介腔にかけての後頭部側の部位であることが好ましい。外耳道から耳甲介腔にかけての後頭部側の部位に装着部が接触することで、装着部の外耳への装着位置を一意的に決定することができる。これにより、カフの装着位置の再現性を高めることができる。更に、血圧測定時におけるカフの加減圧の際に、加減圧の反力を耳甲介腔及び外耳道の内壁の広い範囲で受けることができるので、血圧測定時におけるカフの移動を抑制することができる。   In the biosensor manufacturing method according to the present invention, the specific part of the outer ear is preferably a part on the occipital side from the ear canal to the concha cavity. When the mounting portion comes into contact with the occipital region from the ear canal to the concha cavity, the mounting position of the mounting portion on the outer ear can be uniquely determined. Thereby, the reproducibility of the cuff mounting position can be improved. Furthermore, when the cuff is pressurized or depressurized during blood pressure measurement, the reaction force of the pressure or depressurization can be received over a wide range of the concha cavity and the inner wall of the ear canal, thereby suppressing the movement of the cuff during blood pressure measurement. it can.

本発明は、生体センサを外耳に装着する装着部の形状を、複数の人間の外耳の特定部位の3次元形状の平均形状とするので、装着部の形状に各人の特徴を取り入れることができる。装着部の形状に各人の特徴を取り入れることで、各人の外耳の特定部位にフィットする装着部を作製することができる。このように、本発明に係る生体センサの作製方法は、各人の外耳の特定部位にフィットする装着部を作製することができるので、複数の人間の外耳の特定部位に安定して装着が可能であり、かつ、装着位置の再現性が高い装着部を備える生体センサを提供することができる。   In the present invention, since the shape of the mounting portion for mounting the biosensor on the outer ear is an average shape of the three-dimensional shapes of specific parts of a plurality of human outer ears, it is possible to incorporate the characteristics of each person into the shape of the mounting portion. . By incorporating the characteristics of each person into the shape of the mounting part, it is possible to produce a mounting part that fits a specific part of each person's outer ear. As described above, the method for producing a biosensor according to the present invention can produce a mounting portion that fits a specific part of each person's outer ear, and thus can be stably attached to specific parts of a plurality of human outer ears. In addition, it is possible to provide a biosensor including a mounting portion with high reproducibility of the mounting position.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.

図1は、本実施形態に係る生体センサの一例を示す模式図である。図1に示す生体センサ91は、生体情報を測定するものであり、生体センサ91を人間の外耳に装着する装着部13を備える。生体情報は、例えば、脈拍、脈波、心電、体温、脈波血酸素飽和度、血流値及び血圧値である。図1では、一例として、生体センサ91が、耳珠101を挟持して血圧値を測定する2個のカフ11、12を備える場合を示す。生体センサ91は、さらに、先端でカフ11を保持するアーム21と、先端でカフ12を保持するアーム22と、アーム21とアーム22とを回転機構を介して接続するアーム接続部23と、アーム22とカフ12との間隔を大小するカフ調節ネジ24とを備えていてもよい。   FIG. 1 is a schematic diagram illustrating an example of a biosensor according to the present embodiment. A biosensor 91 shown in FIG. 1 measures biometric information, and includes a mounting unit 13 that mounts the biosensor 91 on a human outer ear. The biological information is, for example, pulse, pulse wave, electrocardiogram, body temperature, pulse wave blood oxygen saturation, blood flow value, and blood pressure value. In FIG. 1, as an example, a case where the biosensor 91 includes two cuffs 11 and 12 that measure the blood pressure value while sandwiching the tragus 101 is shown. The biosensor 91 further includes an arm 21 that holds the cuff 11 at the tip, an arm 22 that holds the cuff 12 at the tip, an arm connection unit 23 that connects the arm 21 and the arm 22 via a rotation mechanism, and an arm. A cuff adjusting screw 24 that increases or decreases the distance between the cuff 12 and the cuff 12 may be provided.

2個のカフ11、12は、耳珠101を挟持して血圧値を測定するものである。2個のカフ11、12のうちの一方のカフ11が耳珠101の外耳道102側を押圧し、2個のカフ11、12のうちの他方のカフ12が耳珠101の顔面側を押圧する。カフ11、12としては、例えば、膨張または伸縮する袋体を用いることができる。袋体の膨張によって耳珠101を挟持する。ここで、膨張または伸縮は、カフ11又はカフ12のいずれかであってもよいし、カフ11及びカフ12の両方であってもよい。また、カフは弾性体であり、アーム21とアーム22との開閉によってカフ11とカフ12との間の耳珠101を挟持するものであってもよい。   The two cuffs 11 and 12 measure the blood pressure value while sandwiching the tragus 101. One cuff 11 of the two cuffs 11, 12 presses the ear canal 102 side of the tragus 101, and the other cuff 12 of the two cuffs 11, 12 presses the face side of the tragus 101. . As the cuffs 11 and 12, for example, inflated or stretchable bags can be used. The tragus 101 is held by the expansion of the bag. Here, the expansion or expansion may be either the cuff 11 or the cuff 12, or both the cuff 11 and the cuff 12. Further, the cuff is an elastic body, and the tragus 101 between the cuff 11 and the cuff 12 may be sandwiched by opening and closing the arm 21 and the arm 22.

カフ11又はカフ12の少なくともいずれかは、生体情報を測定するものである。例えば、カフ11内に検出器を収容し、当該検出器を用いて生体情報を測定する。生体情報が血圧値の場合、検出器としては脈波を検出する光電センサを用いることができる。また、圧力変動から脈波を検出する圧脈波検出器を用いてもよい。   At least one of the cuff 11 and the cuff 12 measures biological information. For example, a detector is accommodated in the cuff 11, and biological information is measured using the detector. When the biological information is a blood pressure value, a photoelectric sensor that detects a pulse wave can be used as the detector. Further, a pressure pulse wave detector that detects a pulse wave from pressure fluctuation may be used.

装着部13は、生体センサを人間の外耳に装着するものである。図1では、装着部13が2個のカフのうちの一方であるカフ11と固定されることで、生体センサ91を外耳に装着している。装着部13は、接触部31が外耳の特定部位104に接触する。ここで、特定部位104は、外耳道102から耳甲介腔103にかけての後頭部側の部位であることが好ましい。装着部13が外耳の特定部位104に接触することで、カフ11の装着位置を一意的に決定し、身体の動きによってその位置が変化することを抑制することができる。カフ11、12の加減圧の反力を耳甲介腔103及び外耳道102の内壁の全体で受ければ、血圧測定時におけるカフ11、12の装着位置の移動を抑制することができる。装着部13の固定されるカフの一方は、2個のカフのうちのいずれのカフでもよいが、外耳道102側に配置されるカフ11であることが好ましい。   The mounting part 13 is for mounting the biosensor on the human outer ear. In FIG. 1, the living body sensor 91 is attached to the outer ear by fixing the attachment portion 13 to the cuff 11 which is one of the two cuffs. As for the mounting part 13, the contact part 31 contacts the specific site | part 104 of an outer ear. Here, the specific part 104 is preferably a part on the occipital side from the external auditory canal 102 to the concha cavity 103. When the mounting part 13 contacts the specific part 104 of the outer ear, the mounting position of the cuff 11 can be uniquely determined, and the change of the position due to the movement of the body can be suppressed. If the reaction force of the cuffs 11 and 12 is applied to the entire concha cavity 103 and the entire inner wall of the ear canal 102, the movement of the mounting positions of the cuffs 11 and 12 during blood pressure measurement can be suppressed. One of the two cuffs to which the mounting portion 13 is fixed may be any of the two cuffs, but is preferably the cuff 11 disposed on the ear canal 102 side.

さらに、カフ11及びカフ12が耳珠101を押圧しているとき、装着部13には耳甲介腔103から外耳道102の入り口に向かう方向Aに圧力が印加される。この際に、接触部31が外耳道102の後頭部側の内壁及び耳甲介腔103に接触するので、外耳道102の入り口付近の湾曲部で方向Aへの装着部13の移動を制限することができる。さらに、装着部13は、耳甲介腔103から外耳道102の後頭部側の内壁にかけて接触することが好ましい。広い範囲で接触すれば、さらに装着部13を安定して装着し、カフ11、12を安定して固定することができる。さらに、装着部13は、耳珠101側の内壁にも接触することが好ましい。装着部13が耳珠101側の内壁にも接触すれば、耳珠101側の内壁の内側は変形しにくいので、装着部13の方向Aへの移動をさらに制限することができる。   Further, when the cuff 11 and the cuff 12 are pressing the tragus 101, pressure is applied to the mounting portion 13 in the direction A from the concha cavity 103 toward the entrance of the ear canal 102. At this time, since the contact portion 31 contacts the inner wall of the occipital side of the ear canal 102 and the concha cavity 103, the movement of the mounting portion 13 in the direction A can be restricted by the curved portion near the entrance of the ear canal 102. . Furthermore, it is preferable that the mounting portion 13 contacts from the concha cavity 103 to the inner wall on the occipital side of the ear canal 102. If contact is made in a wide range, the mounting portion 13 can be further stably mounted, and the cuffs 11 and 12 can be stably fixed. Furthermore, it is preferable that the mounting part 13 also contacts the inner wall on the tragus 101 side. If the mounting portion 13 also contacts the inner wall on the tragus 101 side, the inner side of the inner wall on the tragus 101 side is not easily deformed, so that the movement of the mounting portion 13 in the direction A can be further restricted.

装着部13は、例えば、2個のカフ11、12の配列方向上でカフの一方であるカフ11を固定し、2個のカフ11、12の配列方向上の端部にカフ11側に凹んだ凹部が接触部31に形成されているものである。2個のカフの配列方向とは、例えばカフ11の中心とカフ12の中心とを結ぶ方向とすることができる。カフ11とカフ12の相対位置が変化する場合は、耳珠101を挟持したときの、又は、カフ同士が対向しているときの、カフ11の中心とカフ12の中心とを結ぶ方向とすることができる。耳珠101に対する外耳道102の入り口の位置は個人差があるので、接触部31の位置は必ずしも2個のカフ11、12の配列方向上にある必要はない。接触部31が2個のカフ11、12の配列方向上に形成されていれば多くの被検者が装着できるので、2個のカフ11、12の配列方向上に接触部31が形成されていることが好ましい。また、固定は、機械的な固定機構を用いた固定でもよいし、接着してもよい。   For example, the mounting portion 13 fixes the cuff 11 which is one of the cuffs in the arrangement direction of the two cuffs 11 and 12, and is recessed on the cuff 11 side at the end in the arrangement direction of the two cuffs 11 and 12. A recess is formed in the contact portion 31. The arrangement direction of the two cuffs can be, for example, a direction connecting the center of the cuff 11 and the center of the cuff 12. When the relative position of the cuff 11 and the cuff 12 changes, it is set as a direction connecting the center of the cuff 11 and the center of the cuff 12 when the tragus 101 is sandwiched or when the cuffs are facing each other. be able to. Since the position of the entrance of the external auditory canal 102 with respect to the tragus 101 varies among individuals, the position of the contact portion 31 does not necessarily have to be on the arrangement direction of the two cuffs 11 and 12. If the contact part 31 is formed on the arrangement direction of the two cuffs 11, 12, a large number of subjects can be worn, so the contact part 31 is formed on the arrangement direction of the two cuffs 11, 12. Preferably it is. Further, the fixing may be a fixing using a mechanical fixing mechanism or may be bonded.

さらに、図1に示す装着部13は、人体に対して十分硬いものが好ましい。すなわち、装着部13は、カフ11から印加される圧力に対して変形しないことが好ましい。例えば、デュロメータ硬さショアA型(JIS K6253)で略硬度90以上であることが好ましい。また、ショアD型(JIS K6253)で略硬度50以上が好ましい。装着部13が人体よりも柔らかい場合、カフ11から印加される圧力によって装着部13が変形することがあるからである。このように、人体に対して十分硬いものであれば、カフ11、12を耳珠101に固定することができる。   Furthermore, the mounting part 13 shown in FIG. 1 is preferably hard enough to the human body. That is, it is preferable that the mounting portion 13 does not deform with respect to the pressure applied from the cuff 11. For example, it is preferable that the durometer hardness is Shore A type (JIS K6253) and the hardness is approximately 90 or more. Further, it is preferably a Shore D type (JIS K6253) having a hardness of about 50 or more. This is because when the mounting portion 13 is softer than the human body, the mounting portion 13 may be deformed by the pressure applied from the cuff 11. In this way, the cuffs 11 and 12 can be fixed to the tragus 101 if they are sufficiently hard against the human body.

本実施形態に係る生体センサの作製方法は、外耳で生体情報を測定する生体センサ91において、生体センサ91を人間の外耳に装着する装着部13のうち外耳の特定部位104と接触させる部分31の形状を、複数の人間の外耳の特定部位104の平均形状に沿った形状とする。例えば、複数の人間の耳珠101の外耳道102側面に接するカフ11の反対側に当たる特定部位104の平均形状を算出し、当該平均形状を生体センサ91を外耳に装着する装着部13の形状とする。   In the biosensor manufacturing method according to the present embodiment, in the biosensor 91 that measures biometric information with the outer ear, the portion 31 of the mounting portion 13 that mounts the biosensor 91 on the human outer ear is brought into contact with the specific part 104 of the outer ear. The shape is a shape along the average shape of the specific portions 104 of the plurality of human outer ears. For example, the average shape of the specific part 104 which hits the opposite side of the cuff 11 in contact with the side surface of the external auditory canal 102 of the plurality of human tragus 101 is calculated, and the average shape is used as the shape of the mounting portion 13 for mounting the biosensor 91 to the outer ear. .

耳珠101で生体情報を測定する生体センサ91にとって重要なことは、加減圧時のカフ11、12の動きによって一意の場所に装置が装着されずに、測定する血圧値の再現性が低下することを防ぐことである。耳珠で測定する場合、生体センサ91のカフ11、12は、耳珠101の外耳道102側と顔面105側の両側から挟持して押圧することが好ましい。この場合、耳珠101を挟持して押圧すると、カフ11、12が押し返され、カフ11、12は耳珠101から外れやすくなる。このとき、外耳道102から耳甲介腔103にかけての後頭部側の湾曲部である特定部位104にカフが固定されていれば、カフ11は外耳から外れにくくなる。このため、外耳の特定部位104の形状にできる限りフィットする形状を抽出することが好ましい。   What is important for the biosensor 91 that measures biometric information with the tragus 101 is that the device is not mounted at a unique location due to the movement of the cuffs 11 and 12 during pressure increase / decrease, and the reproducibility of the blood pressure value to be measured decreases. Is to prevent that. When measuring with the tragus, the cuffs 11 and 12 of the biosensor 91 are preferably sandwiched and pressed from both the ear canal 102 side and the face 105 side of the tragus 101. In this case, when the tragus 101 is sandwiched and pressed, the cuffs 11 and 12 are pushed back, and the cuffs 11 and 12 are easily detached from the tragus 101. At this time, if the cuff is fixed to the specific portion 104 that is a curved portion on the back of the head from the external auditory canal 102 to the concha cavity 103, the cuff 11 is unlikely to be detached from the external ear. For this reason, it is preferable to extract a shape that fits the shape of the specific part 104 of the outer ear as much as possible.

図2は、本実施形態に係る生体センサの作製方法の流れ図である。図2に示す生体センサの作製方法は、形状取得手順S101と、平均形状算出手順S102と、装着部形状設定手順S103と、装着部成形手順S106とを順に有する。以下、図1及び図2を参照しながら各手順について説明する。   FIG. 2 is a flowchart of a method for producing a biosensor according to this embodiment. The biosensor manufacturing method shown in FIG. 2 includes a shape acquisition procedure S101, an average shape calculation procedure S102, a mounting portion shape setting procedure S103, and a mounting portion molding procedure S106 in this order. Hereinafter, each procedure will be described with reference to FIGS. 1 and 2.

形状取得手順S101では、複数の人間の外耳の特定部位104の3次元形状を取得する。3次元形状は、表面の3次元形状であり、例えば立体的な凹凸である。取得は、例えば、ステレオカメラ等の立体カメラ又は3次元スキャナを用いて取得する。ステレオマッチングは複雑な装置が不要なので、3次元形状を手軽に取得することができる。3次元スキャナは、レーザ光線等の非接触のものが好ましい。   In the shape acquisition procedure S101, the three-dimensional shapes of the specific parts 104 of a plurality of human outer ears are acquired. The three-dimensional shape is a three-dimensional shape of the surface, for example, three-dimensional unevenness. For example, the acquisition is performed using a stereoscopic camera such as a stereo camera or a three-dimensional scanner. Since stereo matching does not require a complicated device, a three-dimensional shape can be easily obtained. The three-dimensional scanner is preferably a non-contact type such as a laser beam.

形状取得手順S101において、一人の人間の外耳の特定部位104の3次元形状を取得する際に、弾性印象材を用いて型取りしたものを3次元形状スキャナで取り込むことが好ましい。例えば、外耳道102から耳甲介腔103にかけての特定部位104に、弾性印象材を充填して型取りを行い、その形状を3次元形状スキャナで取り込む。外耳の形状は細かく入り組んでいるので、弾性印象材を用いて型取りすることで、細かな部分についても精密な形状を取得することができる。又、型取りは装置が必要ないので、いろいろな場所で行うことができる。このため、複数箇所で型取りしたものを集め、共通の3次元形状スキャナで取り込めば、多くの人が利用可能となる。弾性印象材は、例えば、ハイドロコロイド印象材、寒天印象材、アルジネート印象材、ゴム質印象材、ポリサルファイドゴム印象材、シリコンゴム印象材又はポリエーテルゴム印象材がある。弾性印象材は人体に無害であることが好ましく、例えばアルジネート印象材又はシリコン印象材が好ましい。   In the shape acquisition procedure S101, when acquiring the three-dimensional shape of the specific part 104 of one person's outer ear, it is preferable to use a three-dimensional shape scanner to capture a model made using an elastic impression material. For example, a specific portion 104 from the external auditory canal 102 to the concha cavity 103 is filled with an elastic impression material, and the shape is taken, and the shape is captured by a three-dimensional shape scanner. Since the shape of the outer ear is intricately complicated, it is possible to obtain a precise shape even for a fine portion by making a mold using an elastic impression material. In addition, since the mold is not necessary, it can be performed in various places. For this reason, if a plurality of molds are collected and captured by a common three-dimensional scanner, many people can use it. Examples of the elastic impression material include a hydrocolloid impression material, an agar impression material, an alginate impression material, a rubbery impression material, a polysulfide rubber impression material, a silicon rubber impression material, and a polyether rubber impression material. The elastic impression material is preferably harmless to the human body. For example, an alginate impression material or a silicon impression material is preferred.

形状取得手順S101において、一人の人間の外耳の特定部位104の3次元形状を取得する際に、人間の外耳の特定部位104の3次元形状を複数箇所に分けて型取りし、3次元形状スキャナで取り込んだものを合成することが好ましい。外耳の形状は複雑なので、外耳の特定部位104の3次元形状を分割して取得することで、正確な3次元形状を取得することができる。   In the shape acquisition procedure S101, when acquiring the three-dimensional shape of the specific part 104 of one person's outer ear, the three-dimensional shape of the specific part 104 of the person's outer ear is divided into a plurality of locations, and the three-dimensional shape scanner It is preferable to synthesize what is taken in. Since the shape of the outer ear is complicated, an accurate three-dimensional shape can be acquired by dividing and acquiring the three-dimensional shape of the specific part 104 of the outer ear.

図3は、形状取得手順S101で取得した外耳の3次元形状の一例を示す。図3では、外耳道102から耳甲介腔103にかけての外耳の3次元形状の表面形状が示されている。形状取得手順S101において、取得した外耳の3次元形状のなかから、外耳の特定部位104の3次元形状を抽出することが好ましい。装着部の外耳へのフィット感に最も重要な部分は外耳の特定部位104である。フィット感のために重要な部位を残して不要な部分は削除することで、複数人の外耳の特定部位104の形状にできる限りフィットさせることができる。よって、より多くの使用者に適用可能な装着部を提供することができる。   FIG. 3 shows an example of the three-dimensional shape of the outer ear acquired in the shape acquisition procedure S101. FIG. 3 shows a three-dimensional surface shape of the outer ear from the ear canal 102 to the concha cavity 103. In the shape acquisition procedure S101, it is preferable to extract the three-dimensional shape of the specific part 104 of the outer ear from the acquired three-dimensional shape of the outer ear. The most important part for the fit of the wearing part to the outer ear is the specific part 104 of the outer ear. It is possible to fit as much as possible to the shape of the specific part 104 of the outer ears of a plurality of persons by deleting an unnecessary part while leaving an important part for the fit. Therefore, it is possible to provide a mounting portion that can be applied to more users.

平均形状算出手順S102では、形状取得手順S101で取得した複数の3次元形状についての平均形状を算出する。平均形状算出手順S102の第1例としては、例えば、形状取得手順S101で取得した複数の3次元形状の積和演算又はモーフィングを用いて算出する。ここで、平均形状を求める積和演算とは、ブーリアン演算における積(AND)又は和(OR)の処理で平均を求めることである。例えば、積算によって共通の形状を抽出し、共通の形状で形成されるもっともありえる形状を平均形状として算出する。又、平均形状を求める積和演算は、積及び和の処理で平均を求めてもよい。例えば、画像同士の共通部分を順次足し合わせて平均を求めてもよい。画像の積算とは、例えば、多数枚の画像を重ねあわせ、重なり合う部分を残して、重ならない部分を削除することである。削除は例えば透明にする。画像の和算とは、例えば、多数枚の画像を重ね合わせ、背景は除く重ならない部分を追加することである。積和演算を用いることで、簡単な構成で複数の3次元形状の平均形状を得ることができる。又、平均形状を求めるモーフィングとは、一方の形状から他方の形状へ滑らかに変化していくように処理し、一方の形状と他方の形状との間を補完する複数の中間形状からもっともありえる形状を平均形状として算出することである。複数の3次元形状のうちのそれぞれについて複数の中間形状を算出することで、複数の3次元形状の平均形状を算出することができる。中間形状は、一方の形状と他方の形状との間の1次補完であってもよいし、2次以上の補完であってもよい。又、平均形状はサンプルデータの平均を行うことで算出してもよい。例えば、画素ごとにデータの平均値を算出することで、もっともありえる形状である平均形状を算出することができる。又、画素などの座標ごとに平均値を算出し、当該平均値によって形成される形状を平均形状としてもよい。平均形状算出手順S102は、例えば、3DCADや3D形状データを扱うことのできるモデリングソフトウェアを用いる。3次元形状を扱うソフトウェアのみならず、各ポリゴンデータの相対的な位置関係が分かれば、手動の数値計算によっても行うことができる。   In the average shape calculation procedure S102, an average shape for a plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 is calculated. As a first example of the average shape calculation procedure S102, for example, calculation is performed using a product-sum operation or morphing of a plurality of three-dimensional shapes acquired in the shape acquisition procedure S101. Here, the product-sum operation for obtaining an average shape is to obtain an average by a product (AND) or sum (OR) process in a Boolean operation. For example, a common shape is extracted by integration, and the most likely shape formed by the common shape is calculated as an average shape. In addition, the product-sum operation for obtaining the average shape may obtain the average by product and sum processing. For example, the average may be obtained by sequentially adding the common portions of the images. The integration of images is, for example, superimposing a large number of images, leaving overlapping portions, and deleting non-overlapping portions. Deletion is made transparent, for example. The image summation is, for example, adding a non-overlapping portion excluding the background by superimposing a large number of images. By using the product-sum operation, an average shape of a plurality of three-dimensional shapes can be obtained with a simple configuration. Morphing for obtaining an average shape is the most probable shape from a plurality of intermediate shapes that are processed so as to smoothly change from one shape to the other and complement the gap between one shape and the other. Is calculated as an average shape. By calculating a plurality of intermediate shapes for each of the plurality of three-dimensional shapes, an average shape of the plurality of three-dimensional shapes can be calculated. The intermediate shape may be a primary complement between one shape and the other, or may be a secondary or higher complement. The average shape may be calculated by averaging the sample data. For example, by calculating an average value of data for each pixel, an average shape that is the most likely shape can be calculated. Further, an average value may be calculated for each coordinate such as a pixel, and a shape formed by the average value may be used as the average shape. For example, modeling software that can handle 3D CAD or 3D shape data is used in the average shape calculation procedure S102. If the relative positional relationship of each polygon data is known as well as software that handles a three-dimensional shape, it can be performed by manual numerical calculation.

図4は、平均形状算出手順S102の第2例を示す模式図である。図4は、形状取得手順S101で取得した3次元形状の表面形状210、220のそれぞれが、複数の平面で形成されている。平面は、例えばポリゴンである。図4では、表面形状210を形成する複数の平面のうちの平面211と平面212のみが示されている。又、表面形状220を形成する複数の平面のうちの平面221と平面222のみが示されている。更に、図4は、平面211の中心点215を通る平面211の法線方向の断面を示している。   FIG. 4 is a schematic diagram illustrating a second example of the average shape calculation procedure S102. In FIG. 4, each of the three-dimensional surface shapes 210 and 220 acquired in the shape acquisition procedure S101 is formed of a plurality of planes. The plane is, for example, a polygon. In FIG. 4, only the plane 211 and the plane 212 of the plurality of planes forming the surface shape 210 are shown. Further, only the plane 221 and the plane 222 among the plurality of planes forming the surface shape 220 are shown. Further, FIG. 4 shows a cross section in the normal direction of the plane 211 passing through the center point 215 of the plane 211.

平均形状算出手順S102の第2例では、形状取得手順S101で取得した複数の3次元形状のそれぞれについて3次元形状の表面形状210、220、230を形成する複数の平面211、212、221、222、231、232を抽出する。そして、平面211の中心点215から平面211の法線方向に垂線を伸ばし、当該垂線が他の3次元形状の表面形状220、230と交差するまでのそれぞれの距離216、217を算出する。ここで、なお、平面からの垂線が他のポリゴンと交差しないものについては、対象から除外することが好ましい。そして、平面211の法線上の他の3次元形状を形成する平面220、230までの距離216と距離217の平均となる平均位置218を算出する。同様に、平面212についても平均位置219を算出し、平均位置218及び平均位置219の集合によって形成される3次元形状を、平均形状とする。3次元形状の表面形状のデータを抽出して平均形状を算出できるので、3次元形状を表現するためのデータの容量を減少させることができる。   In the second example of the average shape calculation procedure S102, a plurality of planes 211, 212, 221, and 222 that form the three-dimensional surface shapes 210, 220, and 230 for each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101. , 231 and 232 are extracted. Then, a perpendicular line is extended from the center point 215 of the plane 211 in the normal direction of the plane 211, and respective distances 216 and 217 until the perpendicular line intersects with other three-dimensional surface shapes 220 and 230 are calculated. Here, it is preferable to exclude those whose perpendicular from the plane does not intersect with other polygons. Then, an average position 218 that is an average of the distances 216 and 217 to the planes 220 and 230 forming another three-dimensional shape on the normal line of the plane 211 is calculated. Similarly, the average position 219 is calculated for the plane 212, and the three-dimensional shape formed by the average position 218 and the set of the average positions 219 is defined as the average shape. Since the average shape can be calculated by extracting the surface shape data of the three-dimensional shape, the data capacity for expressing the three-dimensional shape can be reduced.

平均形状算出手順S102の第2例では、さらに、表面形状220及び表面形状230についても同様に平均形状を算出し、平均形状同士の平均形状を算出し、最終的な形状を平均形状とすることが好ましい。又、平均位置を平面ごとに算出するとき、ポリゴン分割を行うことが好ましい。平均位置の集合から3次元形状への算出は、ベジエ曲線等の多項式曲線の特徴指定による補間又は線形補間による補間によって行うことが好ましい。又、平均位置の集合によって形成されるメッシュ上に曲面を張ることで3次元形状を算出することが好ましい。又、平均位置の集合によって形成されるメッシュを内挿することが好ましい。   In the second example of the average shape calculation procedure S102, the average shape is calculated similarly for the surface shape 220 and the surface shape 230, the average shape between the average shapes is calculated, and the final shape is set as the average shape. Is preferred. Further, it is preferable to perform polygon division when calculating the average position for each plane. The calculation from the set of average positions to the three-dimensional shape is preferably performed by interpolation by specifying a characteristic of a polynomial curve such as a Bezier curve or interpolation by linear interpolation. Moreover, it is preferable to calculate a three-dimensional shape by drawing a curved surface on a mesh formed by a set of average positions. It is also preferable to interpolate a mesh formed by a set of average positions.

ポリゴンデータの状態では処理が行えない場合は、耳珠側を埋めるソリッドとしたデータに対して同様の処理を行い、その後耳珠側を埋めている面を取り除けばよい。これにより、この組み合わせ中のすべての外耳道−耳甲介腔形状をもつ使用者に装着可能な形状が抽出される。   If processing cannot be performed in the state of polygon data, the same processing is performed on the solid data that fills the tragus side, and then the surface that fills the tragus side may be removed. As a result, shapes that can be worn by the user having all the ear-canal-concha cavity shapes in this combination are extracted.

図5は、平均形状算出手順S102の第3例を示す模式図である。図5は、形状取得手順S101で取得した3次元形状の表面形状の予め定められた断面における2次元形状251、252、253を示す。2次元形状は、表面形状を抽出した2次元曲線で示されている。2次元形状251、252、253は、断面の2次元形状からエッジを抽出し、耳珠(図1の符号101)側又は外耳道(図1の符号102)側のソリッド部分を削除し、2次元形状を抽出することが好ましい。ここで、2次元形状は、エッジとして残った画素の集合であってもよいが、ベジエ曲線やスプライン曲線などの多項式曲線に変換してもよい。   FIG. 5 is a schematic diagram illustrating a third example of the average shape calculation procedure S102. FIG. 5 shows two-dimensional shapes 251, 252, and 253 in a predetermined cross section of the three-dimensional surface shape acquired in the shape acquisition procedure S101. The two-dimensional shape is indicated by a two-dimensional curve obtained by extracting the surface shape. The two-dimensional shapes 251, 252, and 253 are obtained by extracting an edge from the two-dimensional shape of the cross section and deleting the solid part on the tragus (reference numeral 101 in FIG. 1) side or the ear canal (reference numeral 102 in FIG. 1) side. It is preferable to extract the shape. Here, the two-dimensional shape may be a set of pixels remaining as an edge, but may be converted into a polynomial curve such as a Bezier curve or a spline curve.

平均形状算出手順S102の第3例では、形状取得手順S101で取得した複数の3次元形状のそれぞれについて予め定められた断面における2次元形状251、252、253を抽出する。ここで、予め定められた断面は、例えば、カフ11、12のそれぞれの中心及びアーム接続部23を通る面内に配置される装着部13の断面又はこの断面に平行な断面である。複数の断面について2次元形状を算出することが好ましく、更に断面同士の間隔は短いことが好ましい。そして、予め定められた断面ごとに2次元形状の平均形状を算出する。例えば、2次元形状251、252、253の平均形状を算出する。平均形状は、例えば座標軸ごとに平均して算出する。又、2次元形状251、252、253の曲線同士の距離の平均から算出する。そして、2次元形状の平均形状の集合によって形成される3次元形状を、平均形状とすることが好ましい。複数の2次元形状の平均形状からの3次元形状の算出は、ベジエ曲線等の多項式曲線の特徴指定による補間、線形補間又はモーフィングによって行うことが好ましい。   In the third example of the average shape calculation procedure S102, two-dimensional shapes 251, 252, and 253 in a predetermined cross section are extracted for each of a plurality of three-dimensional shapes acquired in the shape acquisition procedure S101. Here, the predetermined cross section is, for example, a cross section of the mounting portion 13 disposed in a plane passing through the centers of the cuffs 11 and 12 and the arm connecting portion 23 or a cross section parallel to the cross section. It is preferable to calculate a two-dimensional shape for a plurality of cross sections, and the interval between the cross sections is preferably short. Then, an average shape of a two-dimensional shape is calculated for each predetermined cross section. For example, the average shape of the two-dimensional shapes 251 252 253 is calculated. The average shape is calculated by averaging for each coordinate axis, for example. In addition, it is calculated from the average distance between the curves of the two-dimensional shapes 251 252 253. A three-dimensional shape formed by a set of two-dimensional average shapes is preferably an average shape. The calculation of the three-dimensional shape from the average shape of a plurality of two-dimensional shapes is preferably performed by interpolation, linear interpolation or morphing by specifying a characteristic of a polynomial curve such as a Bezier curve.

装着部形状設定手順S103では、生体センサ91を外耳に装着する装着部13のうちの外耳の特定部位104と接触させる部分31の形状を、平均形状算出手順S102で算出した平均形状に沿った形状に設定する。ここで、平均形状に沿った形状は、例えば、装着部13を平均形状算出手順S102で算出した平均形状に合わせたときに、当該平均形状と装着部13のうちの外耳の特定部位104と接触させる部分とが満遍なく接触する形状である。平均形状に沿った形状は、平均形状の凹凸を反転させた形状あることが好ましい。又、装着部13を外耳に装着した際に、空隙なく接触するような形状であることが好ましい。なお、当該平均形状と装着部13のうちの外耳の特定部位104と接触させる部分との間に、接触しない部分があってもよい。例えば、発汗や皮膚呼吸を妨げないように凹凸が設けられていることが好ましい。   In the mounting portion shape setting procedure S103, the shape of the portion 31 that is brought into contact with the specific part 104 of the outer ear in the mounting portion 13 where the biosensor 91 is mounted on the outer ear is the shape along the average shape calculated in the average shape calculating procedure S102. Set to. Here, the shape along the average shape is, for example, in contact with the specific part 104 of the outer ear of the mounting portion 13 when the mounting portion 13 is matched with the average shape calculated in the average shape calculating procedure S102. It is the shape which contacts the part to be made evenly. The shape along the average shape is preferably a shape obtained by inverting the unevenness of the average shape. Moreover, it is preferable that it is a shape which contacts without a space | gap, when the mounting part 13 is mounted | worn with an outer ear. There may be a non-contact portion between the average shape and the portion of the mounting portion 13 that is in contact with the specific part 104 of the outer ear. For example, it is preferable that unevenness is provided so as not to prevent sweating and skin respiration.

装着部成形手順S106では、装着部13の形状を、装着部形状設定手順S103で設定した形状に成形する。例えば、装着部形状設定手順S103で設定した形状の型を作製し、型に装着部13の原料を流し込んで成形する。又、押し出し成形によって成形してもよい。装着部13の原料は、例えば樹脂又はゴムがある。装着部13は人体に対して影響の少ないものが好ましく、例えばシリコンが好ましい。   In the mounting portion forming procedure S106, the shape of the mounting portion 13 is formed into the shape set in the mounting portion shape setting procedure S103. For example, a mold having the shape set in the mounting portion shape setting procedure S103 is produced, and the raw material of the mounting portion 13 is poured into the mold and molded. Moreover, you may shape | mold by extrusion molding. The raw material of the mounting portion 13 is, for example, resin or rubber. The mounting portion 13 is preferably one that has little influence on the human body, for example, silicon.

以上説明したように、本実施形態に係る生体センサ91の作製方法は、生体センサを外耳に装着する装着部13の形状を、複数の人間の外耳の特定部位の3次元形状の平均形状とする。装着部13の形状には各人の特徴が取り入れられているので、個人ごとに外耳の特定部位104にばらつきがある場合でも、複数の人のそれぞれにフィットする装着部13を作製することができる。これにより、本実施形態に係る生体センサ91は、複数の人のそれぞれに対し、外耳の特定部位104に安定して装着が可能であり、かつ、装着位置の再現性が高い装着部13を備えることができる。   As described above, in the manufacturing method of the biosensor 91 according to the present embodiment, the shape of the mounting portion 13 that mounts the biosensor on the outer ear is the average shape of the three-dimensional shapes of specific parts of the plurality of human outer ears. . Since the shape of the mounting portion 13 incorporates the characteristics of each person, the mounting portion 13 that fits each of a plurality of people can be produced even if the specific part 104 of the outer ear varies among individuals. . Thereby, the biosensor 91 according to the present embodiment includes the mounting portion 13 that can be stably mounted on the specific part 104 of the outer ear and has high reproducibility of the mounting position for each of a plurality of persons. be able to.

さらに、本実施形態に係る生体センサ91は、複数の人のそれぞれに対して外耳の特定部位104に安定して装着が可能な装着部13を備えるので、生体センサ91の装着時において、複数の人のそれぞれの生体センサ91の装着位置を安定させることができる。これにより、生体情報の測定時における生体センサ91の装着位置のずれを各人共に防ぐことができる。又、生体センサ91は、複数の人のそれぞれに対して装着位置の再現性が高い装着部13を備えるので、生体センサ91の装着位置の再現性を各人共に高めることができる。よって、各人共に再現性の高い生体情報を測定することができる生体センサ91とすることができる。   Furthermore, since the biosensor 91 according to the present embodiment includes the attachment unit 13 that can be stably attached to the specific part 104 of the outer ear for each of a plurality of persons, It is possible to stabilize the mounting position of each human biosensor 91. Accordingly, each person can be prevented from shifting the mounting position of the biosensor 91 when measuring biometric information. In addition, since the biosensor 91 includes the mounting portion 13 with high reproducibility of the mounting position for each of a plurality of people, the reproducibility of the mounting position of the biosensor 91 can be improved for each person. Therefore, it can be set as the biosensor 91 which can measure biometric information with high reproducibility for each person.

本実施形態に係る生体センサの作製方法では、形状取得手順S101と平均形状算出手順S102の間に配置手順S104をさらに有することが好ましい。配置手順S104では、形状取得手順S101で取得した複数の3次元形状が重なり合うように配置する。例えば、形状取得手順S101で取得した複数の3次元形状の表面同士の距離が小さくなるように、形状取得手順S101で取得した複数の3次元形状のそれぞれを配置する。表面同士の距離は、あらかじめ定められた3次元形状の表面の一部同士の距離が小さくなるように配置することが好ましい。あらかじめ定められた3次元形状の表面の一部は、外耳の特定部位104のうちの、外耳道102側の端部と、外耳道102の入り口付近に配置されることになる部分と、耳甲介腔103側の端部であることが好ましい。配置手順S104をさらに有することで、平均形状算出手順S102において算出する平均形状を、形状取得手順S101で取得した複数の3次元形状のそれぞれに近づけることができる。ここで、配置手順S104は、本実施形態に係る生体センサの作製方法が類似形状抽出手順S105をさらに有する場合は、類似形状抽出手順S105の前であることが好ましい。類似形状抽出手順S105の前であることで、類似形状抽出手順S105においてより正確に類似形状を抽出することができる。   In the biosensor manufacturing method according to the present embodiment, it is preferable to further include an arrangement procedure S104 between the shape acquisition procedure S101 and the average shape calculation procedure S102. In the arrangement procedure S104, the three-dimensional shapes acquired in the shape acquisition procedure S101 are arranged so as to overlap each other. For example, each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 is arranged so that the distance between the surfaces of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 is reduced. The distance between the surfaces is preferably arranged so that the distance between a part of the surfaces of a predetermined three-dimensional shape is small. A part of the surface of the predetermined three-dimensional shape includes a part of the specific portion 104 of the outer ear on the side of the ear canal 102 side, a portion to be disposed in the vicinity of the entrance of the ear canal 102, and the concha The end portion on the 103 side is preferable. By further including the arrangement procedure S104, the average shape calculated in the average shape calculation procedure S102 can be approximated to each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101. Here, when the biosensor manufacturing method according to the present embodiment further includes a similar shape extraction procedure S105, the arrangement procedure S104 is preferably before the similar shape extraction procedure S105. By being before the similar shape extraction procedure S105, the similar shape can be extracted more accurately in the similar shape extraction procedure S105.

例えば、配置手順S104では、前述の平均形状算出手順S102で説明した図4のように、外耳の3次元形状の表面形状210を形成する平面211の中心点215から、他の人の外耳の3次元形状の表面形状220を形成する平面221までの距離を算出し、その平面ごとの距離が小さくなるように配置する。又、配置手順S104では、前述の平均形状算出手順S102で説明した図5のように、形状取得手順S101で取得した複数の3次元形状の表面形状のそれぞれについて、予め定められた断面における2次元形状を抽出し、2次元形状同士の距離が小さくなるように、形状取得手順S101で取得した複数の3次元形状の表面形状のそれぞれについて配置する。   For example, in the arrangement procedure S104, as shown in FIG. 4 described in the average shape calculation procedure S102 described above, from the center point 215 of the plane 211 that forms the surface shape 210 of the outer ear three-dimensional shape, The distance to the plane 221 forming the dimensional surface shape 220 is calculated and arranged so that the distance for each plane becomes small. Further, in the arrangement procedure S104, as shown in FIG. 5 described in the average shape calculation procedure S102 described above, the two-dimensional surface in the predetermined cross section is obtained for each of the plurality of three-dimensional surface shapes acquired in the shape acquisition procedure S101. The shapes are extracted and arranged for each of the surface shapes of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 so that the distance between the two-dimensional shapes becomes small.

配置手順S104において、形状取得手順S101で取得した3次元形状の表面同士の距離について、3次元形状の表面の位置ごとの分散又は偏差が最小になるように、形状取得手順S101で取得した複数の3次元形状のそれぞれを配置することが好ましい。形状取得手順S101で取得した3次元形状の表面上の点と他の3次元形状の表面上の点との距離の分散又は偏差が最小になるように、形状取得手順S101で取得した3次元形状のそれぞれを配置するので、配置手順S104において、形状取得手順S101で取得した複数の3次元形状を重なる部分が最も多くなるように配置することができる。これにより、平均形状算出手順S102において算出する平均形状を、形状取得手順S101で取得した複数の3次元形状のそれぞれに最も近づけることができる。   In the arrangement procedure S104, the distance between the surfaces of the three-dimensional shape acquired in the shape acquisition procedure S101 is a plurality of pieces acquired in the shape acquisition procedure S101 so that the variance or deviation for each position of the surface of the three-dimensional shape is minimized. It is preferable to arrange each of the three-dimensional shapes. The three-dimensional shape acquired in the shape acquisition procedure S101 so that the dispersion or deviation of the distance between the point on the surface of the three-dimensional shape acquired in the shape acquisition procedure S101 and the point on the surface of another three-dimensional shape is minimized. Therefore, in the arrangement procedure S104, the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 can be arranged so as to have the largest number of overlapping portions. Thereby, the average shape calculated in the average shape calculation procedure S102 can be brought closest to each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101.

3次元形状の表面の位置は、例えば、図4に示す平面の中心点215の頂点若しくは中心点215又は図5に示す2次元形状251の曲線を形成している点の各座標である。図4に示す平面の中心点215であれば、外耳の3次元形状の表面形状210からの人の外耳の3次元形状の表面形状220までの距離を平面ごとに算出し、平面間の分散又は偏差が最小になるように、外耳の3次元形状の表面形状210と人の外耳の3次元形状の表面形状220とを配置する。   The position of the surface of the three-dimensional shape is, for example, each coordinate of a point forming the vertex of the center point 215 or the center point 215 of the plane shown in FIG. 4 or the curve of the two-dimensional shape 251 shown in FIG. If the center point 215 of the plane shown in FIG. 4, the distance from the three-dimensional surface shape 210 of the outer ear to the three-dimensional surface shape 220 of the human outer ear is calculated for each plane, The three-dimensional surface shape 210 of the outer ear and the three-dimensional surface shape 220 of the human outer ear are arranged so that the deviation is minimized.

本実施形態に係る生体センサの作製方法では、類似形状抽出手順S105を、平均形状算出手順S102と装着部形状設定手順S103との間にさらに有することが好ましい。類似形状抽出手順S105では、形状取得手順S101で取得した複数の3次元形状のうち、類似形状を集めたクラスタを作成する。そして、クラスタごとに平均形状算出手順S102へと移行する。すなわちクラスタごとに平均形状算出手順S102を行う。類似形状抽出手順S105をさらに有することで、形状取得手順S101で取得した3次元形状についてのみ平均形状を算出することができる。これにより、装着部の形状を、外耳の形状が類似している人同士の平均形状とすることができるので、外耳の形状が類似している人それぞれに適した装着部の形状に設計することができる。   In the biosensor manufacturing method according to the present embodiment, it is preferable to further include a similar shape extraction procedure S105 between the average shape calculation procedure S102 and the mounting portion shape setting procedure S103. In the similar shape extraction procedure S105, a cluster in which similar shapes are collected from the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101 is created. And it transfers to average shape calculation procedure S102 for every cluster. That is, the average shape calculation procedure S102 is performed for each cluster. By further including the similar shape extraction procedure S105, the average shape can be calculated only for the three-dimensional shape acquired in the shape acquisition procedure S101. As a result, the shape of the wearing part can be the average shape of people with similar outer ear shapes, so design the shape of the wearing part suitable for each person with similar outer ear shape. Can do.

類似形状抽出手順S105では、例えば、形状取得手順S101で取得した複数の3次元形状のうち、3次元形状の表面同士の距離が所定距離以下となる類似形状を抽出する。3次元形状の表面同士の距離は、当該表面の法線方向又は座標軸上の距離とすることができる。3次元形状の表面同士の距離は、例えば、各ポリゴンに対して計算した他の3次元形状との距離をn個算出し、算出したn個の距離のうちの一定割合以上が所定距離以内に収まっているときに類似形状とする。例えば、図5に示すように、2次元形状252と2次元形状253との距離をn個算出し、算出したn個の距離のうちの一定割合以上が所定距離以内に収まっているときに類似形状とする。2次元形状252と2次元形状253との距離は、同軸上であってもよいし、2次元形状252の法線方向であってもよい。ここで、一定割合は、80%以上、望ましくは90%が好ましい。又、所定距離は1mmであることが好ましい。3次元形状の表面同士の距離が1mm以内であることで、装着部の形状を、外耳の形状が類似している人それぞれに適した装着部の形状に設計することができる。   In the similar shape extraction procedure S105, for example, a similar shape in which the distance between the surfaces of the three-dimensional shape is a predetermined distance or less is extracted from the plurality of three-dimensional shapes acquired in the shape acquisition procedure S101. The distance between the surfaces of the three-dimensional shape can be a normal direction of the surfaces or a distance on a coordinate axis. For the distance between the surfaces of the three-dimensional shape, for example, n distances to other three-dimensional shapes calculated for each polygon are calculated, and a certain percentage or more of the calculated n distances is within a predetermined distance. Similar shape when fit. For example, as shown in FIG. 5, n distances between the two-dimensional shape 252 and the two-dimensional shape 253 are calculated, and similar when a certain percentage or more of the calculated n distances is within a predetermined distance. Shape. The distance between the two-dimensional shape 252 and the two-dimensional shape 253 may be on the same axis or in the normal direction of the two-dimensional shape 252. Here, the certain ratio is 80% or more, desirably 90%. The predetermined distance is preferably 1 mm. When the distance between the surfaces of the three-dimensional shape is within 1 mm, the shape of the mounting portion can be designed to be the shape of the mounting portion suitable for each person who has a similar shape of the outer ear.

まず、形状取得手順S101において、外耳道から耳甲介腔にかけての後頭部側の部位に、弾性印象材を充填して型取りを行い、その形状を、3次元形状スキャナ(コニカミノルタセンシング製、非接触3次元デジタイザ、VIVID910)で取り込んだ。取り込んだ形状を以後、簡単のため、外耳道−耳甲介腔形状と呼ぶ。そして、複数人の外耳道−耳甲介腔形状にできるだけフィットする形状を取得する必要があるので、外耳道−耳甲介腔形状以外の不要な部分は削除した。   First, in the shape acquisition procedure S101, a part of the occipital region from the external auditory canal to the concha is filled with an elastic impression material to perform molding, and the shape is obtained by a three-dimensional shape scanner (manufactured by Konica Minolta Sensing, non-contact type). 3D digitizer, VIVID 910). The captured shape is hereinafter referred to as an external auditory canal-concha cavity shape for simplicity. Then, since it is necessary to obtain a shape that fits as much as possible to the external auditory canal-concha conchasal shape of multiple persons, unnecessary portions other than the external auditory canal-concha cavity shape were deleted.

配置手順S104では、モデリングソフトウェア(InusTechnology製、RapidForm2004)を用い、取り込んだ複数の外耳道−耳甲介腔形状データを目視で形状の大部分が重なるように配置した。そして、「スキャン」ワークベンチの「位置合わせ(オート)」機能を用いて複数の外耳道−耳甲介腔形状の配置を最適化した。   In the arrangement procedure S104, modeling software (RapidForm 2004, manufactured by Inus Technology) was used to arrange a plurality of captured external auditory canal-concha conchae space shape data so that most of the shapes overlapped visually. Then, the arrangement of a plurality of external auditory canal-concha conchae shapes was optimized using the “alignment (auto)” function of the “scan” workbench.

類似形状抽出手順S105では、外耳道−耳甲介腔形状のポリゴン間の距離の平均が1mm以内となる外耳道−耳甲介腔形状データの組み合わせにクラスタ化した。   In the similar shape extraction step S105, clustering is performed on combinations of data of the external auditory canal-concha cavity shape data in which the average distance between polygons of the external auditory canal and concha cavity shape is within 1 mm.

装着部形状設定手順S103では、モデリングソフトウェア(InusTechnology製、RapidForm2004)の「ポリゴン」ワークベンチの「ブーリアン演算、シェルとシェルの積」の機能を使い、クラスタ内の外耳道−耳甲介腔形状データについて平均形状を算出した。   In the mounting part shape setting step S103, the “polygon” workbench “Boolean operation, product of shell and shell” of the modeling software (Inus Technology, RapidForm 2004) is used to calculate the external auditory canal-concha conchae shape data in the cluster. The average shape was calculated.

15人の被検者に対して形状取得手順S101、配置手順S104及び類似形状抽出手順S105を行った結果、4人の外耳道−耳甲介腔形状が同一のクラスタに該当した。そして、この同一クラスタの4人の外耳道−耳甲介腔形状について装着部形状設定手順S103を行い、平均形状を算出した。ここでは簡単のため、平均形状をマージシェルと呼ぶ。図6、図7、図8、図9は、同一クラスタの4人の外耳道−耳甲介腔形状のそれぞれについて、外耳道−耳甲介腔形状とマージシェルとの距離を測定した結果である。   As a result of performing the shape acquisition procedure S101, the placement procedure S104, and the similar shape extraction procedure S105 for 15 subjects, the four ear canal and concha cavity shapes corresponded to the same cluster. Then, the wearing part shape setting procedure S103 was performed for the four ear canal-concha conchasal shapes of the same cluster, and the average shape was calculated. Here, for simplicity, the average shape is called a merge shell. 6, 7, 8, and 9 are the results of measuring the distance between the ear canal-concha conchae shape and the merge shell for each of the four ear canal—concha conchae shapes in the same cluster.

図10は、血圧測定時の脈波を検出した1回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。図10(a)において、511は光電容積脈波、512はカフ圧、513は受光レベルを示す。図10(b)において、515は光電容積脈波、516はカフ圧、517は受光レベルを示す。   FIG. 10 shows the first result of detecting the pulse wave during blood pressure measurement, where (a) shows the case where the merge shell is not attached and (b) shows the case where the merge shell is attached. In FIG. 10A, 511 is a photoelectric volume pulse wave, 512 is a cuff pressure, and 513 is a light reception level. In FIG. 10B, 515 indicates a photoelectric volume pulse wave, 516 indicates a cuff pressure, and 517 indicates a light reception level.

図11は、血圧測定時の脈波を検出した2回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。図11(a)において、521は光電容積脈波、522はカフ圧、523は受光レベルを示す。図11(b)において、525は光電容積脈波、526はカフ圧、527は受光レベルを示す。   FIG. 11 shows the second result of detecting the pulse wave at the time of blood pressure measurement. FIG. 11A shows the case where the merge shell is not attached, and FIG. 11B shows the case where the merge shell is attached. In FIG. 11A, 521 indicates a photoelectric volume pulse wave, 522 indicates a cuff pressure, and 523 indicates a light reception level. In FIG. 11B, 525 indicates the photoelectric volume pulse wave, 526 indicates the cuff pressure, and 527 indicates the light reception level.

図12は、血圧測定時の脈波を検出した9回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。図12(a)において、591は光電容積脈波、592はカフ圧、593は受光レベルを示す。図12(b)において、595は光電容積脈波、596はカフ圧、597は受光レベルを示す。   FIGS. 12A and 12B show the ninth result of detecting a pulse wave during blood pressure measurement. FIG. 12A shows the case where the merge shell is not attached, and FIG. 12B shows the case where the merge shell is attached. In FIG. 12A, 591 is a photoelectric volume pulse wave, 592 is a cuff pressure, and 593 is a light receiving level. In FIG. 12B, 595 indicates a photoelectric volume pulse wave, 596 indicates a cuff pressure, and 597 indicates a light reception level.

上記図10、図11及び図12の結果から、血圧計がマージシェルを備えない場合は受光レベル、カフ圧及び光電容積脈波のいずれも再現性がないが、マージシェルによって固定したときは、受光レベル、カフ圧及び光電容積脈波の波形のいずれも再現性があることが分かった。特に、光電容積脈波の波形については、脈波の出現する時点及び最大振幅となる時点が重要になる。これらの時点に注目した場合、図11(a)及び図12(a)に示すマージシェルを備えない場合は脈波の最大振幅となる時点が判別できず、血圧値の検出が不可能となっている。しかし、図10(b)、図11(b)及び図12(b)に示すマージシェルによって血圧計を外耳に装着した場合は、いずれについても理想的な脈波振幅の増減となっており、光電容積脈波の最大振幅の時点を高い再現性にて検出することができる。よって、血圧値を再現性よく測定することができる。   From the results of FIG. 10, FIG. 11 and FIG. 12, when the sphygmomanometer does not have a merge shell, none of the light reception level, cuff pressure and photoelectric volume pulse wave is reproducible, but when fixed by the merge shell, It was found that all of the received light level, cuff pressure, and photoelectric volume pulse waveform were reproducible. In particular, regarding the waveform of the photoelectric volume pulse wave, the time point at which the pulse wave appears and the time point at which the maximum amplitude is reached are important. When attention is paid to these time points, when the merge shell shown in FIGS. 11 (a) and 12 (a) is not provided, the time point at which the maximum amplitude of the pulse wave cannot be determined, and the blood pressure value cannot be detected. ing. However, when the sphygmomanometer is attached to the outer ear by the merge shell shown in FIG. 10 (b), FIG. 11 (b) and FIG. The time of the maximum amplitude of the photoelectric volume pulse can be detected with high reproducibility. Therefore, the blood pressure value can be measured with good reproducibility.

本発明に係る生体センサは、外耳から生体情報を測定できるので、美容や健康の用途にも用いることができる。   Since the biological sensor according to the present invention can measure biological information from the outer ear, it can also be used for beauty and health applications.

本実施形態に係る生体センサの一例を示す模式図である。It is a schematic diagram which shows an example of the biosensor which concerns on this embodiment. 本実施形態に係る生体センサの作製方法の流れ図である。It is a flowchart of the manufacturing method of the biosensor which concerns on this embodiment. 形状取得手順S101で取得した外耳の3次元形状の一例を示す。An example of the three-dimensional shape of the outer ear acquired in the shape acquisition procedure S101 is shown. 平均形状算出手順S102の第2例を示す模式図である。It is a schematic diagram which shows the 2nd example of average shape calculation procedure S102. 平均形状算出手順S102の第3例を示す模式図である。It is a schematic diagram which shows the 3rd example of average shape calculation procedure S102. 同一クラスタの4人の外耳道−耳甲介腔形状のそれぞれについて、外耳道−耳甲介腔形状とマージシェルとの距離を測定した結果である。It is the result of having measured the distance of an external auditory canal-concha conchasal shape and a merge shell about each of four external auditory canal-concha conchasal shape of the same cluster. 同一クラスタの4人の外耳道−耳甲介腔形状のそれぞれについて、外耳道−耳甲介腔形状とマージシェルとの距離を測定した結果である。It is the result of having measured the distance of an external auditory canal-concha conchasal shape and a merge shell about each of four external auditory canal-concha conchasal shape of the same cluster. 同一クラスタの4人の外耳道−耳甲介腔形状のそれぞれについて、外耳道−耳甲介腔形状とマージシェルとの距離を測定した結果である。It is the result of having measured the distance of an external auditory canal-concha conchasal shape and a merge shell about each of four external auditory canal-concha conchasal shape of the same cluster. 同一クラスタの4人の外耳道−耳甲介腔形状のそれぞれについて、外耳道−耳甲介腔形状とマージシェルとの距離を測定した結果である。It is the result of having measured the distance of an external auditory canal-concha conchasal shape and a merge shell about each of four external auditory canal-concha conchasal shape of the same cluster. 血圧測定時の脈波を検出した1回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。It is the result of the 1st time which detected the pulse wave at the time of blood-pressure measurement, (a) shows the case where a merge shell is not mounted | worn, (b) shows the case where a merge shell is mounted | worn. 血圧測定時の脈波を検出した2回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。It is the result of the 2nd time which detected the pulse wave at the time of blood-pressure measurement, (a) shows the case where a merge shell is not mounted | worn, (b) shows the case where a merge shell is mounted | worn. 血圧測定時の脈波を検出した9回目の結果であり、(a)はマージシェルを装着しなかった場合、(b)はマージシェルを装着した場合を示す。It is the result of the ninth time when the pulse wave at the time of blood pressure measurement is detected. (A) shows the case where the merge shell is not attached, and (b) shows the case where the merge shell is attached.

符号の説明Explanation of symbols

11、12 カフ
13 装着部
21、22 アーム
23 アーム接続部
24 カフ調節ネジ
31 接触部
91 生体センサ
101 耳珠
102 外耳道
103 耳甲介腔
104 外耳の特定部位
105 顔面
A 方向
DESCRIPTION OF SYMBOLS 11, 12 Cuff 13 Mounting part 21, 22 Arm 23 Arm connection part 24 Cuff adjustment screw 31 Contact part 91 Biosensor 101 Tragus 102 External auditory canal 103 Concha cavity 104 Specific part of outer ear 105 Face A direction

Claims (11)

生体情報を測定する生体センサを人間の外耳に装着する装着部のうち前記外耳の特定部位と接触させる部分の形状を、複数の人間の前記外耳の特定部位の平均形状に沿った形状とすることを特徴とする生体センサの作製方法。   The shape of the portion of the mounting portion that mounts the biological sensor for measuring biological information on the outer ear of the human being to be in contact with the specific portion of the outer ear is set to a shape that conforms to the average shape of the specific portion of the outer ear of a plurality of humans. A method for producing a biosensor characterized by the above. 複数の人間の外耳の特定部位の3次元形状を取得する形状取得手順と、
前記形状取得手順で取得した複数の3次元形状の平均形状を算出する平均形状算出手順と、
生体情報を測定する生体センサを外耳に装着する装着部のうちの前記外耳の特定部位と接触させる部分の形状を、前記平均形状算出手順で算出した前記平均形状に沿った形状に設定する装着部形状設定手順と、を有することを特徴とする生体センサの作製方法。
A shape acquisition procedure for acquiring a three-dimensional shape of a specific part of a plurality of human outer ears;
An average shape calculation procedure for calculating an average shape of a plurality of three-dimensional shapes acquired in the shape acquisition procedure;
A mounting unit that sets a shape of a portion that contacts a specific part of the outer ear of a mounting unit that mounts a biometric sensor for measuring biological information on the outer ear to a shape along the average shape calculated in the average shape calculation procedure. A method for producing a biosensor, comprising: a shape setting procedure.
前記平均形状算出手順において、前記複数の3次元形状の平均形状を、前記形状取得手順で取得した複数の3次元形状の積和演算又はモーフィングを用いて算出することを特徴とする請求項2に記載の生体センサの作製方法。   The average shape calculation procedure includes calculating an average shape of the plurality of three-dimensional shapes using a product-sum operation or morphing of the plurality of three-dimensional shapes acquired in the shape acquisition procedure. A method for producing the biosensor as described. 前記平均形状算出手順において、前記形状取得手順で取得した複数の3次元形状のそれぞれについて前記3次元形状を形成する複数の平面を抽出し、前記平面の中心から前記平面の法線上の他の前記3次元形状を形成する平面までの距離が平均となる平均位置を前記平面ごとに算出し、前記平均位置の集合によって形成される3次元形状を、前記平均形状とすることを特徴とする請求項2に記載の生体センサの作製方法。   In the average shape calculation procedure, a plurality of planes forming the three-dimensional shape are extracted for each of the plurality of three-dimensional shapes acquired in the shape acquisition procedure, and the other planes on the normal line of the plane from the center of the plane The average position at which the distance to the plane forming the three-dimensional shape is averaged is calculated for each plane, and the three-dimensional shape formed by the set of the average positions is defined as the average shape. 3. A method for producing the biosensor according to 2. 前記平均形状算出手順において、前記形状取得手順で取得した複数の3次元形状のそれぞれについて予め定められた断面における2次元形状を抽出し、前記予め定められた断面ごとに前記2次元形状の平均形状を算出し、前記2次元形状の平均形状の集合によって形成される3次元形状を、前記平均形状とすることを特徴とする請求項2に記載の生体センサの作製方法。   In the average shape calculation procedure, a two-dimensional shape in a predetermined cross section is extracted for each of a plurality of three-dimensional shapes acquired in the shape acquisition procedure, and the average shape of the two-dimensional shape is determined for each predetermined cross section. The biosensor manufacturing method according to claim 2, wherein a three-dimensional shape formed by a set of average shapes of the two-dimensional shapes is calculated as the average shape. 前記形状取得手順で取得した複数の前記3次元形状の表面同士の距離が小さくなるように、前記形状取得手順で取得した複数の前記3次元形状のそれぞれを配置する配置手順を、前記形状取得手順と前記平均形状算出手順の間にさらに有することを特徴とする請求項2から5のいずれかに記載の生体センサの作製方法。   An arrangement procedure for arranging each of the plurality of three-dimensional shapes acquired by the shape acquisition procedure so that distances between the surfaces of the plurality of three-dimensional shapes acquired by the shape acquisition procedure are reduced. The method for producing a biosensor according to claim 2, further comprising: between the average shape calculation procedure and the average shape calculation procedure. 前記配置手順において、前記形状取得手順で取得した3次元形状の表面同士の距離について、前記3次元形状の表面の位置ごとの分散又は偏差が最小になるように、前記形状取得手順で取得した複数の前記3次元形状のそれぞれを配置することを特徴とする請求項6に記載の生体センサの作製方法。   In the arrangement procedure, with respect to the distance between the surfaces of the three-dimensional shape acquired in the shape acquisition procedure, a plurality of acquired in the shape acquisition procedure so that the variance or deviation for each position of the surface of the three-dimensional shape is minimized. Each of the said three-dimensional shape is arrange | positioned, The manufacturing method of the biosensor of Claim 6 characterized by the above-mentioned. 前記形状取得手順で取得した複数の前記3次元形状のうち、前記3次元形状の表面同士の距離が所定距離以下となる類似形状を抽出する類似形状抽出手順を、前記平均形状算出手順と前記装着部形状設定手順との間にさらに有することを特徴とする請求項2から7のいずれかに記載の生体センサの作製方法。   Among the plurality of three-dimensional shapes acquired in the shape acquisition procedure, a similar shape extraction procedure for extracting a similar shape in which the distance between the surfaces of the three-dimensional shape is a predetermined distance or less, the average shape calculation procedure and the mounting The biosensor manufacturing method according to claim 2, further comprising a part shape setting procedure. 前記形状取得手順において、弾性印象材を用いて型取りしたものを3次元形状スキャナで取り込むことを特徴とする請求項2から8のいずれかに記載の生体センサの作製方法。   The method for producing a biosensor according to claim 2, wherein in the shape acquisition procedure, a shape taken using an elastic impression material is captured by a three-dimensional shape scanner. 前記形状取得手順において、一人の人間の外耳の特定部位の3次元形状を取得する際に、前記人間の外耳の特定部位の3次元形状を複数箇所に分けて型取りし、3次元形状スキャナで取り込んだものを合成することを特徴とする請求項9に記載の生体センサの作製方法。   In the shape acquisition procedure, when acquiring a three-dimensional shape of a specific part of a person's outer ear, the three-dimensional shape of the specific part of the person's outer ear is divided into a plurality of locations, and a three-dimensional shape scanner is used. The biosensor production method according to claim 9, wherein the taken-in one is synthesized. 前記外耳の特定部位が、外耳道から耳甲介腔にかけての後頭部側の部位であることを特徴とする請求項1から10のいずれかに記載の生体センサの作製方法。



The method for producing a biosensor according to claim 1, wherein the specific part of the outer ear is a part on the occipital side from the ear canal to the concha cavity.



JP2006070750A 2006-03-15 2006-03-15 Method for producing biological sensor Pending JP2007244572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070750A JP2007244572A (en) 2006-03-15 2006-03-15 Method for producing biological sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070750A JP2007244572A (en) 2006-03-15 2006-03-15 Method for producing biological sensor

Publications (1)

Publication Number Publication Date
JP2007244572A true JP2007244572A (en) 2007-09-27

Family

ID=38589486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070750A Pending JP2007244572A (en) 2006-03-15 2006-03-15 Method for producing biological sensor

Country Status (1)

Country Link
JP (1) JP2007244572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530563A (en) * 2009-07-02 2012-12-06 ヴェーデクス・アクティーセルスカプ Ear plug with surface electrode
JP2020069272A (en) * 2018-11-01 2020-05-07 株式会社富士インダストリーズ Biological data measuring device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530563A (en) * 2009-07-02 2012-12-06 ヴェーデクス・アクティーセルスカプ Ear plug with surface electrode
US9408552B2 (en) 2009-07-02 2016-08-09 Widex A/S Ear plug with surface electrodes
US11161306B2 (en) 2009-07-02 2021-11-02 T&W Engineering A/S Ear plug with surface electrodes
JP2020069272A (en) * 2018-11-01 2020-05-07 株式会社富士インダストリーズ Biological data measuring device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5655068B2 (en) Ear plug with surface electrode
CA2905895C (en) Facial mask apparatus and method of making
US10286173B2 (en) Facial mask apparatus and method of making
Abdollahi et al. 3D printing silicone elastomer for patient‐specific wearable pulse oximeter
JP2021142360A (en) Acquisition of medical diagnostic information and provision of telehealth services
JP6181373B2 (en) Medical information processing apparatus and program
EP3657820A1 (en) Method and system for modeling a custom fit earmold
WO2014112635A1 (en) Movement-information processing device
JP2008501375A (en) Mask matching system and method
CN106137169A (en) A kind of wearable multiple physiological parameter monitoring method and device thereof
JP2016077853A (en) Artificial limb and artificial limb manufacturing method
Valentin et al. Custom-fitted in-and around-the-ear sensors for unobtrusive and on-the-go EEG acquisitions: development and validation
EP2747646B1 (en) Device and method for capturing a surface of an object
KR101554691B1 (en) Hair-wear having an auxiliary device for forming head or making space
JP2007244572A (en) Method for producing biological sensor
KR101702774B1 (en) manufacturing method for overhead molding and the overhead molding thereof
Reimer et al. Individualized arm shells towards an ergonomic design of exoskeleton robots
US20220240802A1 (en) In-ear device for blood pressure monitoring
Won et al. Phase-based Eulerian motion magnification reveals eardrum mobility from pneumatic otoscopy without sealing the ear canal
US20230138891A1 (en) Wearable three-dimensional auricular multi-point bio-signal acquisition, health status monitoring, and bio-stimulation device
Shah et al. Use of soft tissue properties for ergonomic product design
JP6553634B2 (en) Cap with aid for profile correction or space formation
de Souza et al. Generation of 3D thermal models for dentistry applications
KR101731500B1 (en) Ear-prostheses having acoustic function
Servi et al. Comparative evaluation of low-cost 3D scanning devices for ear acquisition