JP2007244103A - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
JP2007244103A
JP2007244103A JP2006063548A JP2006063548A JP2007244103A JP 2007244103 A JP2007244103 A JP 2007244103A JP 2006063548 A JP2006063548 A JP 2006063548A JP 2006063548 A JP2006063548 A JP 2006063548A JP 2007244103 A JP2007244103 A JP 2007244103A
Authority
JP
Japan
Prior art keywords
composite material
membrane
conductive
fabric
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063548A
Other languages
Japanese (ja)
Other versions
JP5079244B2 (en
Inventor
Susumu Takagi
進 高木
Masakazu Nomura
正和 野村
Hidekazu Shoji
英一 庄司
Kazuyuki Murase
一之 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2006063548A priority Critical patent/JP5079244B2/en
Priority to EP20070004670 priority patent/EP1833156A3/en
Priority to US11/715,970 priority patent/US8029654B2/en
Publication of JP2007244103A publication Critical patent/JP2007244103A/en
Application granted granted Critical
Publication of JP5079244B2 publication Critical patent/JP5079244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • Y10T442/655Metal or metal-coated strand or fiber material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material that can be curved and deformed by giving a potential difference and that is operated by small electric power, whose deformation amount is large, whose response is quick, the degree of freedom of the shape of which is large, the control of the deformation of which is easy, and furthermore that has strength and durability required for practical use, and that is excellent in the aspect of economy. <P>SOLUTION: The composite material is obtained that causes an ion conduction membrane to be deformed, by joining conductive cloth (preferably having elasticity), which is made conductive by plating a metal on or injecting metal complex into the cloth as electrodes, on both sides of the ion conductive membrane (an ion exchange membrane or a membrane impregnated with an ionic liquid) comprising a fluorine system resin and the like, and by giving the potential difference. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イオン伝導膜の両面に電極を接合してなる複合材料であって、電位差を利用して湾曲、変形を生ぜしめることが可能な複合材料に関する物である。より詳細には、本発明は、イオン伝導膜の両面に電極として導電性布帛を接合してなるものであって、変形力及び迅速応答性に優れ、形状の自由度が大きく、さらに実用上必要な強度及び耐久特性が高く、さらに経済面でも優れた複合材料に関する。   The present invention relates to a composite material in which electrodes are bonded to both surfaces of an ion conductive membrane, and can be curved and deformed using a potential difference. More specifically, the present invention is formed by bonding a conductive fabric as an electrode to both surfaces of an ion conductive membrane, and has excellent deformation force and quick response, a large degree of freedom in shape, and further necessary for practical use. The present invention relates to a composite material that has excellent strength and durability characteristics and is also economically superior.

イオン伝導膜の両面に電極を設け、その電極に電位差を与えることによってイオン伝導膜に湾曲、変形を生じさせる技術については、すでに提案されており、このようなイオン伝導膜の両面に電極を設けた複合材は、構造が単純で小型化が容易であり、小電力で作動するため、アクチュエーター素子として用いられている。   A technology has already been proposed for providing electrodes on both surfaces of an ion conductive membrane and causing the ion conductive membrane to bend and deform by applying a potential difference to the electrodes, and electrodes are provided on both surfaces of such an ion conductive membrane. Since the composite material has a simple structure and can be easily miniaturized, and operates with low power, it is used as an actuator element.

例えば特許文献1には、イオン交換膜の両面にめっき手法等で形成した貴金属の被膜を電極として、数Vの微弱電圧を印加することで膜中の電解質を移動させ、表裏の膨潤差で膜を変形させる方法が提案されている。また、イーメックス社からはイオン交換樹脂に電極として金を化学めっきした複合材がアクチュエーター素子として提案されている(特許文献2及び3参照)。   For example, Patent Document 1 discloses that a noble metal coating formed on both surfaces of an ion exchange membrane by using a plating technique or the like is used as an electrode, and a slight voltage of several volts is applied to move the electrolyte in the membrane. There has been proposed a method of deforming the above. In addition, a composite material obtained by chemically plating gold as an electrode on an ion exchange resin has been proposed as an actuator element by Emex (see Patent Documents 2 and 3).

特公平7−4075JP 7-4075 特開2004−197215JP2004-197215 特開2005−187926JP-A-2005-187926

しかしながら、このようなイオン伝導膜の両面にめっき等の手法で電極金属膜を形成させる従来の技術では、柔軟性、可撓性に欠ける金属膜をイオン伝導膜の両面に設けるため、該イオン伝導膜の湾曲、変形が阻害される傾向にあり、十分な変形力や応答の迅速性が得にくいという欠点があった。   However, in the conventional technique in which the electrode metal film is formed on both surfaces of the ion conductive film by a technique such as plating, a metal film lacking flexibility and flexibility is provided on both surfaces of the ion conductive film. There is a drawback that the bending and deformation of the film tend to be inhibited, and it is difficult to obtain sufficient deformation force and quick response.

すなわち、イオン伝導膜と電極金属膜との複合材は厚みがあるため、該複合材を湾曲させる場合、湾曲の内面と外面では長さの差が生じる。つまり内面の皮膜が縮むか外面の皮膜が伸びるかする必要がある。しかし、イオン伝導膜は湿潤時には変形に必要な伸縮性、柔軟性、可撓性を有しているのに対し、金属膜は伸縮性、可撓性に乏しいため、前記複合材の変形の際に抵抗となって変形力を弱めたり、変形速度を遅くしたりするところがあった。   That is, since the composite material of the ion conductive film and the electrode metal film is thick, when the composite material is curved, a difference in length occurs between the inner surface and the outer surface of the curve. In other words, it is necessary that the inner film shrinks or the outer film grows. However, the ion conductive membrane has the elasticity, flexibility and flexibility necessary for deformation when wet, whereas the metal membrane is poor in elasticity and flexibility. In some cases, it becomes a resistance to weaken the deformation force and slow down the deformation speed.

特に電極の金属膜厚、イオン伝導膜厚が増加するにつれてこの傾向が顕著になるため、イオン伝導膜を厚くして変形力を増大させることが困難であり、結果として大きな変形には追随できない、変形力が弱い、反応が遅い等の課題があった。   In particular, as the metal film thickness of the electrode and the ion conduction film thickness increase, this tendency becomes more prominent, so it is difficult to increase the deformation force by thickening the ion conduction film, and as a result cannot follow a large deformation, There were problems such as weak deformation force and slow reaction.

また、実用性、耐久性についても課題があった。上述の従来技術においては、イオン伝導膜の両面に設けた電極金属膜に電位差をかけることにより湾曲させ、印加を解除すると元に戻り、逆の電位を印加すると反対面に湾曲する性質を利用し、これらの変化を目的に応じて適宜選択、繰り返すことで目的が達せられる。   In addition, there were problems with practicality and durability. In the above-described conventional technology, the electrode metal film provided on both surfaces of the ion conductive film is bent by applying a potential difference, and returns to the original state when the application is canceled, and uses the property of bending to the opposite surface when the reverse potential is applied. The purpose can be achieved by appropriately selecting and repeating these changes according to the purpose.

しかし、該従来技術では、屈曲耐久性に乏しい金属薄膜が、大きな変形や屈曲を繰り返すことによって破断してしまう傾向にあった。電極として設ける金属膜はイオン伝導膜の湾曲、変形を阻害させないようにするため、できるだけ薄く形成することが要求されることから、この傾向は益々顕著になる。   However, in the prior art, a metal thin film having poor bending durability tends to be broken by repeated large deformation and bending. This tendency becomes more prominent because the metal film provided as the electrode is required to be formed as thin as possible in order not to inhibit the bending and deformation of the ion conductive film.

また、変形力を増加させるためイオン伝導膜を厚くすると、湾曲する際に内面と外面のディメンションの差が大きくなり、電極としての金属膜に加わる力がより大きくなって、益々湾曲、変形し難くなり、破断しやすくなる。破断を防ぐために電極の金属膜を厚くすると、湾曲、変形が困難になり、目的を達し得ない。   In addition, if the ion conductive film is thickened to increase the deformation force, the difference in dimension between the inner surface and the outer surface increases when bending, and the force applied to the metal film as an electrode increases, making it more difficult to bend and deform. It becomes easy to break. If the metal film of the electrode is thickened to prevent breakage, it becomes difficult to bend and deform, and the purpose cannot be achieved.

さらに、イオン伝導膜の両面に電極としての金属薄膜を設けた構成では、実用に耐えるだけの引張強度、摩耗強度など実用に際して必要となる複合材としての特性を得ることも困難であった。つまり引張、曲げ、剪断、摩耗等実用に際し複合材に加わるストレスに十分に耐えるだけの性能を得ることができなかった。すなわち、例えば従来の電極に用いる多くの金属膜は伸縮性に乏しく、複合材を10%程度伸ばすと金属膜が破壊されて電極としての用をなさなくなる。特にめっき手法で得られる電極金属膜はこの傾向が強い。   Furthermore, in the configuration in which metal thin films as electrodes are provided on both surfaces of the ion conductive film, it is difficult to obtain characteristics as a composite material necessary for practical use, such as tensile strength and wear strength enough to withstand practical use. That is, it was not possible to obtain performance sufficient to withstand the stress applied to the composite material in practical use such as tension, bending, shearing, and abrasion. That is, for example, many metal films used for conventional electrodes have poor stretchability, and when the composite material is stretched by about 10%, the metal film is destroyed and cannot be used as an electrode. This tendency is particularly strong in electrode metal films obtained by plating techniques.

このように、従来より提案されてきた技術では、電圧を印加した際に十分な湾曲、変形を得るためには電極、イオン伝導膜の素材や厚み等を制限する必要があることから、引張、曲げ、剪断、摩耗等のストレスに対する耐性を十分に改善できなかった。   Thus, in the technology that has been proposed conventionally, in order to obtain sufficient bending and deformation when a voltage is applied, it is necessary to limit the material, thickness, etc. of the electrode, ion conductive membrane, tension, Resistance to stresses such as bending, shearing, and abrasion could not be sufficiently improved.

また、目的の湾曲、変形を得るためには複合材の形状についても制限があった。イオン伝導膜の両面に電位差を与えて膜内の電解質を移動させることで膜の両面に膨潤差を生じせしめて湾曲させる場合、例えば図2に示すような変形をさせるには、長方形、好ましくは長辺と短辺の差を大きくした長方形にする必要がある。仮に正方形の両面に印加した場合、膨潤による変形は正方形の4角に生じ、図2のような変形は期待できない。また、長方形の場合の湾曲は長辺方向に発生し、短辺方向には発生し得ない。このように従来技術では複合材の形状が限定されるために、使い方、用途が制限され、幅を広くして湾曲する力を大きくする等の工夫をすることが容易にできないものであった。
また、イオン伝導膜の両面にめっき等の手法で電極を形成することは、工数と時間がかかるため、コスト面での改善も課題とされていた。
In addition, there is a limitation on the shape of the composite material in order to obtain the desired curvature and deformation. For example, in order to deform as shown in FIG. 2 by applying a potential difference to both surfaces of the ion conductive membrane to cause a swelling difference on both sides of the membrane to bend by moving the electrolyte in the membrane, a rectangular shape, preferably It is necessary to make it a rectangle with a large difference between the long and short sides. If it is applied to both sides of a square, deformation due to swelling occurs in the four corners of the square, and deformation as shown in FIG. 2 cannot be expected. Further, the bending in the case of a rectangle occurs in the long side direction and cannot occur in the short side direction. As described above, since the shape of the composite material is limited in the prior art, usage and usage are limited, and it is not easy to devise such as widening the width and increasing the bending force.
Moreover, since it takes man-hours and time to form electrodes on both surfaces of the ion conductive film by a technique such as plating, improvement in cost has been a problem.

本発明はこれらの課題を解決し、電位差を与えることで伝導膜を湾曲、変形せしめる方法とそれに適した複合材であって、小電力で作動し、変形量が大きく、応答も速く、形状の自由度も大きく、変形の制御が容易で、なおかつ実用上必要な強度、耐久特性を有し、さらに経済面でも優れたものを提供することを目的とする。   The present invention solves these problems, a method for bending and deforming a conductive film by applying a potential difference, and a composite material suitable for the method, which operates with a small electric power, has a large amount of deformation, has a fast response, and has a shape. An object of the present invention is to provide a product that has a high degree of freedom, can easily control deformation, has practically necessary strength and durability characteristics, and is excellent in terms of economy.

本発明者らは、上記目的を達成するため鋭意検討した結果、イオン伝導膜の両面に、電極としてめっき等の手法により金属膜を形成する代わりに、導電性布帛を積層させることにより、上記課題を解決できることを見いだし、本発明に到達した。   As a result of intensive investigations to achieve the above object, the present inventors have found that the above problem can be solved by laminating a conductive fabric on both sides of the ion conductive film instead of forming a metal film as an electrode by a technique such as plating. The present invention has been found.

すなわち、本発明は、以下の(1)〜(8)に示す複合材料を提供するものである。
(1)イオン伝導膜と該イオン伝導膜の両面に接合した電極とからなり、電極に電位差を与えることによりイオン伝導膜に変形を生じせしめる複合材料であって、前記電極が導電性布帛で構成されていることを特徴とする、複合材料。
(2)前記イオン伝導膜が、イオン交換膜またはイオン液体を含浸させた膜であることを特徴とする、(1)記載の複合材料。
That is, this invention provides the composite material shown to the following (1)-(8).
(1) A composite material comprising an ion conductive membrane and electrodes joined to both surfaces of the ion conductive membrane, and causing the ion conductive membrane to be deformed by applying a potential difference to the electrode, wherein the electrode is composed of a conductive cloth. A composite material characterized by being made.
(2) The composite material according to (1), wherein the ion conductive membrane is an ion exchange membrane or a membrane impregnated with an ionic liquid.

(3)前記イオン交換膜またはイオン液体を含浸させた膜が、フッ素樹脂系のポリマーからなることを特徴とする、(2)記載の複合材料。
(4)前記導電性布帛が、めっき手法又は金属錯体注入により布帛と金属を複合化させたものであることを特徴とする、(1)〜(3)のいずれかに記載の複合材料。
(3) The composite material according to (2), wherein the ion-exchange membrane or the membrane impregnated with an ionic liquid is made of a fluororesin polymer.
(4) The composite material according to any one of (1) to (3), wherein the conductive fabric is a composite of the fabric and metal by a plating method or metal complex injection.

(5)前記イオン伝導膜の少なくとも一方の面に接合した電極が、伸縮性を有する導電性布帛で構成されていることを特徴とする、(1)〜(4)のいずれかに記載の複合材料。
(6)前記導電性布帛が、直交する2軸での伸縮性の差を有することを特徴とする、(1)〜(5)のいずれかに記載の複合材料。
(7)前記伸縮性の差が2%以上であることを特徴とする、(6)記載の複合材料。
(8)前記導電性布帛が、電極に電位差を与えたときに前記イオン伝導膜が変形する方向に伸縮性を有するように該イオン伝導膜に接合されていることを特徴とする、(5)〜(7)のいずれかに記載の複合材料。
(5) The composite according to any one of (1) to (4), wherein an electrode bonded to at least one surface of the ion conductive film is formed of a conductive cloth having elasticity. material.
(6) The composite material according to any one of (1) to (5), wherein the conductive fabric has a difference in stretchability between two orthogonal axes.
(7) The composite material according to (6), wherein the difference in stretchability is 2% or more.
(8) The conductive fabric is bonded to the ion conductive film so as to have elasticity in a direction in which the ion conductive film deforms when a potential difference is applied to the electrode. (5) The composite material according to any one of to (7).

本発明の複合材料は、イオン伝導膜の両面に接合させる電極として、めっき等による金属膜に比べて柔軟性、伸縮性、可撓性に優れた導電性布帛を用いているため、電位差の印加時における変形量が大きく、応答が速く、形状の自由度も大きい。さらに、変形の制御が容易で、なおかつ実用上必要な強度、耐久特性を有し、経済面でも優れている。   The composite material of the present invention uses a conductive fabric that is superior in flexibility, stretchability, and flexibility as compared with a metal film formed by plating or the like as an electrode to be bonded to both surfaces of an ion conductive film. The amount of deformation at the time is large, the response is fast, and the degree of freedom in shape is also large. Furthermore, the deformation can be easily controlled, and it has strength and durability characteristics necessary for practical use, and is excellent in terms of economy.

以下、本発明の複合材料を図面に基づいて詳細に説明する。本発明の複合材料は、イオン伝導膜と該イオン伝導膜の両面に接合した電極とからなり、電極に電位差を与えることによりイオン伝導膜に変形を生じせしめるようにしたものである。図1は、本発明の複合材料の一例を示す図である。図1に示すとおり、本発明の複合材料はイオン伝導膜1と、このイオン伝導膜1の両面に接した電極2,2’とからなる。   Hereinafter, the composite material of the present invention will be described in detail with reference to the drawings. The composite material of the present invention comprises an ion conductive film and electrodes bonded to both surfaces of the ion conductive film, and causes the ion conductive film to be deformed by applying a potential difference to the electrodes. FIG. 1 is a diagram showing an example of the composite material of the present invention. As shown in FIG. 1, the composite material of the present invention includes an ion conductive film 1 and electrodes 2 and 2 ′ in contact with both surfaces of the ion conductive film 1.

(1)イオン伝導膜
本発明において、イオン伝導膜に求められる機能は、電位の印加で移動できるイオン性物質が存在することと、イオン性物質が移動することにより膨潤度が変化することである。
(1) Ion Conductive Membrane In the present invention, the functions required of an ion conductive membrane are the presence of an ionic substance that can be moved by the application of a potential, and the degree of swelling changing as the ionic substance moves. .

したがって、このような機能を備える材料からなる膜であれば、特に制限はないが、具体的には、このような機能を有するイオン伝導膜として陽イオン交換膜、陰イオン交換膜、及びイオン液体を含浸した膜等を挙げることができる。   Therefore, there is no particular limitation as long as it is a film made of a material having such a function. Specifically, as an ion conductive film having such a function, a cation exchange membrane, an anion exchange membrane, and an ionic liquid are used. And the like can be mentioned.

陽イオン交換膜としては特に限定されるものではないが、例えばポリエチレン、ポリスチレン、ポリイミド、ポリアリーレン類(芳香族系ポリマー)などの公知の樹脂にアニオン性官能基として、スルホン基、カルボン酸基、リン酸基などを導入したもの、あるいは、フッ素樹脂系のポリマーであるテトラフルオロエチレン、ポリフッ化ビニリデンなどの骨格に上記のアニオン性官能基を導入したパーフルオロカルボン酸樹脂、パーフルオロスルホン酸樹脂、パーフルオロリン酸樹脂などを用いることができる。このような陽イオン交換膜は市販されているものでもよく、例えばパーフルオロスルホン酸/PTFE共重合体(商品名「ナフィオンTM」、デュポン社製)膜などを使用することができる。 Although it does not specifically limit as a cation exchange membrane, For example, a sulfone group, a carboxylic acid group, as an anionic functional group to well-known resin, such as polyethylene, polystyrene, a polyimide, polyarylenes (aromatic polymer), A perfluorocarboxylic acid resin, a perfluorosulfonic acid resin in which a phosphoric acid group is introduced, or a fluororesin-based polymer such as tetrafluoroethylene or polyvinylidene fluoride, in which the above anionic functional group is introduced, Perfluorophosphoric acid resin or the like can be used. Such a cation exchange membrane may be commercially available, and for example, a perfluorosulfonic acid / PTFE copolymer (trade name “Nafion ”, manufactured by DuPont) membrane may be used.

陰イオン交換膜としては特に限定されるものではないが、例えばポリエチレン、ポリスチレン、ポリイミド、ポリアリーレン類(芳香族系ポリマー)などの公知の樹脂に、アンモニウム、スルホニウム、ホスホニウム、オキソニウムなどのカチオン性官能基を導入したもの、あるいは、フッ素樹脂系のポリマーであるテトラフルオロエチレン、ポリフッ化ビニリデンなどの骨格に上記のカチオン性官能基を導入したものを使用することができる。   The anion exchange membrane is not particularly limited, but for example, a known functional resin such as polyethylene, polystyrene, polyimide, polyarylene (aromatic polymer), and a cationic functional group such as ammonium, sulfonium, phosphonium, oxonium. A group into which a cationic functional group is introduced into a skeleton such as tetrafluoroethylene or polyvinylidene fluoride, which is a fluororesin-based polymer, can be used.

また、イオン液体を含浸した膜としては特に限定されるものではないが、例えばポリエチレン、ポリスチレン、ポリイミド、ポリアリーレン類、あるいはテトラフルオロエチレン、ポリフッ化ビニリデンなどの上記イオン交換膜に用いられるもの(官能基導入前)と同様のポリマーに、イオン液体を含浸させシート化した膜も使用可能である。   Further, the membrane impregnated with the ionic liquid is not particularly limited. For example, polyethylene (polystyrene, polystyrene, polyimide, polyarylenes, tetrafluoroethylene, polyvinylidene fluoride, etc. used for the ion exchange membrane (functional It is also possible to use a film formed by impregnating an ionic liquid into the same polymer as that before introduction of the group.

イオン液体としては特に限定されるものではないが、例えば室温で液体の有機化合物塩、具体的にはイミダゾリウム塩誘導体、ピリジニウム塩誘導体、ホスホニウム塩誘導体、テトラアルキルアンモニウム塩誘導体等の公知の化合物塩を使用することができる。   The ionic liquid is not particularly limited. For example, an organic compound salt that is liquid at room temperature, specifically known compound salts such as imidazolium salt derivatives, pyridinium salt derivatives, phosphonium salt derivatives, tetraalkylammonium salt derivatives, etc. Can be used.

イミダゾリウム塩誘導体としては特に限定されるものではないが、その一例を挙げれば、1−エチル−3−メチルイミダゾリウム・トリフロロメタンスルフォネート、1−エチル−3−メチルイミダゾリウム・テトラフルオロボレート、1−エチル−3−メチルイミダゾリウム・イオダイド、1−エチル−3−メチルイミダゾリウム・ヘキサフルオロホスフェート、1−エチル−3−メチルイミダゾリウム・クロライド、1−エチル−3−メチルイミダゾリウム・ブロマイド、1−n−ブチル−3−メチルイミダゾリウム・トリフロロメタンスルフォネート、1−n−ブチル−3−メチルイミダゾリウム・テトラフルオロボレート、1−n−ブチル−3−メチルイミダゾリウム・ヘキサフルオロホスフェート、1−n−ブチル−3−メチルイミダゾリウム・クロライド、1−エチル−3−メチルイミダゾリウム・ブロマイド等が挙げられる。   The imidazolium salt derivative is not particularly limited, but examples thereof include 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium tetrafluoro. Borate, 1-ethyl-3-methylimidazolium iodide, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium Bromide, 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-n-butyl-3-methylimidazolium tetrafluoroborate, 1-n-butyl-3-methylimidazolium hexa Fluorophosphate, 1-n-butyl-3-methyl Dazoriumu chloride, 1-ethyl-3-methylimidazolium bromide, and the like.

前記イオン伝導膜の厚みは特に限定されないが、好ましくは5〜5,000μm程度である。膜厚が小さい(薄い)と変形し易くなるが、一定電圧の印加による変形のパワー(変形しようとする力)は小さくなる。逆に膜厚が大きい(厚い)場合は変形自体しにくくなるが、一定電圧の印加によるパワーは大きくなる。用途によって膜厚と必要とするパワーは異なるため、用途に応じて適宜選択するのがよい。   The thickness of the ion conductive film is not particularly limited, but is preferably about 5 to 5,000 μm. When the film thickness is small (thin), the film is easily deformed, but the deformation power (force to be deformed) by applying a constant voltage is small. Conversely, when the film thickness is large (thick), it is difficult to deform itself, but the power by applying a constant voltage increases. Since the film thickness and the required power differ depending on the application, it is preferable to select appropriately according to the application.

(2)導電性布帛
本発明の複合材料は、前記電極として導電性布帛を用いていることを特徴とする。すなわち、上記イオン伝導膜の両面に接合する電極2,2’には、繊維布帛を金属化した導電性布帛が用いられる。
(2) Conductive fabric The composite material of the present invention is characterized by using a conductive fabric as the electrode. That is, a conductive cloth obtained by metallizing a fiber cloth is used for the electrodes 2 and 2 ′ bonded to both surfaces of the ion conductive film.

繊維布帛は織物、編み物、不織布のいずれであっても良く、複合材料の形状、目的に合わせてこれらのなかから適宜選定することができる。布帛を構成する繊維の材質としては特に制限はないが、強度・耐久性の面で優れているポリエステル繊維、ポリアミド繊維、ポリアクリル繊維またはポリオレフィン繊維等の合成繊維が好ましく用いられる。   The fiber fabric may be any of a woven fabric, a knitted fabric, and a non-woven fabric, and can be appropriately selected from these according to the shape and purpose of the composite material. Although there is no restriction | limiting in particular as a material of the fiber which comprises a fabric, Synthetic fibers, such as a polyester fiber, a polyamide fiber, a polyacryl fiber, or a polyolefin fiber, which are excellent in terms of strength and durability, are preferably used.

前記導電性布帛は、布帛と金属とを複合化したものであり、繊維布帛をめっき法で導電化するか、超臨界二酸化炭素流体を用いて繊維の中に金属又は金属錯体を注入する方法で造られるが、コスト面では前者の方が有利である。また、このほかに予めめっき等で導電性を付与した繊維を織る、編むなどの方法で布帛としたもの、導電性を付与した繊維状物を通常の方法で不織布としたもの等であってもよい。本発明で用いる導電性布帛の製造方法はこれに限らず、導電性を有する布帛が得られれば如何なる方法を用いてもよい。   The conductive fabric is a composite of a fabric and a metal. The conductive fabric is made conductive by plating, or a metal or metal complex is injected into the fiber using a supercritical carbon dioxide fluid. Although it is manufactured, the former is more advantageous in terms of cost. In addition to this, it may be a fabric made by a method such as weaving or knitting a fiber previously imparted with conductivity by plating or the like, or a fibrous material imparted with conductivity made a non-woven fabric by a normal method. Good. The manufacturing method of the conductive fabric used in the present invention is not limited to this, and any method may be used as long as a conductive fabric is obtained.

布帛をめっき法で導電化する方法によれば、繊維表面に金属被膜層を形成し、布帛を均一に金属化することができる。その具体的な方法としては、従来公知の無電解めっき法及び電気めっき法が好ましい。めっき浴は、金属塩、還元剤、緩衝剤、pH調整剤等からなる。   According to the method of making a fabric conductive by plating, a metal coating layer can be formed on the fiber surface to uniformly metalize the fabric. As the specific method, a conventionally known electroless plating method and electroplating method are preferable. The plating bath includes a metal salt, a reducing agent, a buffering agent, a pH adjusting agent, and the like.

繊維布帛を導電化するのに用いられる金属は、導電性を有する金属であれば全て使用可能であるが、耐久性の面では金、白金、イリジウム、パラジウム、ルテニウム等の貴金属が、またコスト面では銅、ニッケル、錫、銀等がより好ましい。
形成される金属被膜層の厚さは特に限定されないが、0.1〜10μmの範囲にあることが好ましい。被膜が0.1μmより小さいと十分な表面導通性が得られず、10μmより大きいと布帛の柔軟性が損なわれる場合がある。金属膜は一種類である必要はなく、布帛へ金属をめっきした後、さらに他の金属を用いて電気めっき法、無電解めっき法などにより多層化してもよい。
Any metal can be used as long as it has conductivity, but noble metals such as gold, platinum, iridium, palladium, ruthenium, etc. are used in terms of durability. Then, copper, nickel, tin, silver, etc. are more preferable.
Although the thickness of the metal coating layer formed is not specifically limited, It is preferable to exist in the range of 0.1-10 micrometers. If the film is smaller than 0.1 μm, sufficient surface conductivity cannot be obtained, and if it is larger than 10 μm, the flexibility of the fabric may be impaired. The metal film does not need to be of one type, and after plating a metal on the fabric, it may be multilayered by another metal using electroplating or electroless plating.

導電化する方法のうち、金属錯体を注入する方法において用いられる金属錯体としては、ビス(アセチルアセトナト)パラジウム(II)、ビス(アセチルアセトナト)ニッケル(II)、ビス(アセチルアセトナト)銅(II)、ビス(η−シクロペンタジエニル)ニッケル(II)、ジクロロ(1,5−シクロオクタジエン)パラジウム(II)、1,5−シクロオクタジエン)ジメチルプラチナ(II)、ビス(ベンゾニトリル)ジクロロパラジウム(II)、ビス(ヘキサフルオロアセチルアセトナト)パラジウム(II)、ビス(ヘキサフルオロアセチルアセトナト)ニッケル(II)、ビス(ヘキサフルオロアセチルアセトナト)銅(II)等が挙げられる。   Among the conductive methods, metal complexes used in the method of injecting metal complexes include bis (acetylacetonato) palladium (II), bis (acetylacetonato) nickel (II), and bis (acetylacetonato) copper. (II), bis (η-cyclopentadienyl) nickel (II), dichloro (1,5-cyclooctadiene) palladium (II), 1,5-cyclooctadiene) dimethylplatinum (II), bis (benzo Nitrile) dichloropalladium (II), bis (hexafluoroacetylacetonato) palladium (II), bis (hexafluoroacetylacetonato) nickel (II), bis (hexafluoroacetylacetonato) copper (II), etc. .

本発明で用いられる導電性布帛の導電度は特に制限されないが、好ましい導電度としては表面抵抗値が1.0Ω/□以下のものを用いることができる。   The conductivity of the conductive fabric used in the present invention is not particularly limited, but as the preferable conductivity, one having a surface resistance value of 1.0 Ω / □ or less can be used.

イオン伝導膜を主体とする複合材料が湾曲するには、該イオン伝導膜の両面に接合した電極が、湾曲する複合材料の内外でのディメンションの差を解消すべく伸縮する必要がある。そのため、伸縮性を有する導電性布帛で構成される電極を接合させるのが好ましい。   In order for a composite material mainly composed of an ion conductive membrane to bend, electrodes bonded to both surfaces of the ion conductive membrane need to expand and contract in order to eliminate the difference in dimension between the inside and outside of the bendable composite material. Therefore, it is preferable to join an electrode made of a conductive fabric having elasticity.

伸縮性に富む導電性布帛は、膜の少なくとも一方の面に接合されていれば良く、膜の片面のみであっても、両面であってもよい。伸縮性を示す方向は特に問われず、全方向に均等な伸縮性を示す布帛であってもよく、また特定の方向に良好な伸縮性を示すものであってもよい。伸縮性の具体的目安としては、平均伸縮度が好ましくは2%以上、より好ましくは5%以上であるが、これに限定されるものではない。なお、ここでいう平均伸縮度は、導電性の劣化が10%以下となる条件下における最大伸縮度である。   The conductive fabric rich in stretchability may be bonded to at least one surface of the membrane, and may be only one side or both sides of the membrane. The direction in which stretchability is exhibited is not particularly limited, and may be a fabric that exhibits uniform stretchability in all directions, or may exhibit good stretchability in a specific direction. As a specific measure of stretchability, the average stretch degree is preferably 2% or more, more preferably 5% or more, but is not limited thereto. In addition, the average expansion / contraction degree here is the maximum expansion / contraction degree under conditions where the deterioration of conductivity is 10% or less.

特定の方向に良好な伸縮性を示す導電性布帛を用いる場合、電位差を印加したときにイオン伝導膜が変形する方向あるいは所望する変形方向に該布帛が良好な伸縮性を示すように、接合するのがよい。すなわち、導電性布帛の伸縮性を考慮して、複合材料の変形に追随して伸縮できるように、導電性布帛の接合方向を調整するのが好ましい。   When using a conductive fabric exhibiting good stretchability in a specific direction, bonding is performed so that the fabric exhibits good stretchability in the direction in which the ion conductive film deforms or a desired deformation direction when a potential difference is applied. It is good. That is, in consideration of the stretchability of the conductive fabric, it is preferable to adjust the joining direction of the conductive fabric so that the conductive fabric can be stretched following the deformation of the composite material.

さらに前記導電性布帛は、直交する2軸での伸縮性の差を有するものが好ましい。より好ましくは、前記伸縮性の差が2%以上、最も好ましくは5%以上であるのがよい。このような良好な伸縮性を有する導電性布帛を用いることにより、複合材料の形状にかかわらず所望の変形が容易に得られる複合材料とすることができる。   Furthermore, it is preferable that the conductive fabric has a difference in stretchability between two orthogonal axes. More preferably, the difference in stretchability is 2% or more, and most preferably 5% or more. By using such a conductive fabric having good stretchability, it is possible to obtain a composite material in which desired deformation can be easily obtained regardless of the shape of the composite material.

なお、ここでいう直交する2軸は、導電性布帛の表面において伸縮性の差が最大になるように任意に設定される。よって、ここでいう伸縮性の差とは、そのように選択された直交する2軸における伸縮性の差であり、該布帛上の任意の直交する2軸における伸縮性の差の最大値をいう。   The two orthogonal axes here are arbitrarily set such that the difference in stretchability is maximized on the surface of the conductive fabric. Therefore, the difference in stretchability referred to here is the difference in stretchability between the two orthogonal axes selected as such, and the maximum value of the difference in stretchability between any two orthogonal axes on the fabric. .

このような特定方向に良好な伸縮性を有する導電性布帛を用いることにより、従来技術では複合材料の長辺方向の変形のみ可能であり、短辺方向の変形や正方形の材料の変形は制御できなかったという問題を解決し、形状を問わず変形を制御することを可能にした。   By using such a conductive fabric having good stretchability in a specific direction, the conventional technology can only deform the long side direction of the composite material, and can control the deformation of the short side direction and the square material. We solved the problem that there was not, and made it possible to control the deformation regardless of the shape.

前記導電性布帛の厚みは特に限定されず、複合材料に要求される特性や用途に応じて適宜選択することができるが、好ましくは5〜5,000μmである。この範囲内であれば変形しようとする力と変形し易さとの良好なバランスを保つことができる。   The thickness of the conductive fabric is not particularly limited and can be appropriately selected according to the characteristics and applications required of the composite material, but is preferably 5 to 5,000 μm. Within this range, a good balance between the force to be deformed and the ease of deformation can be maintained.

本発明では、金属薄膜と比較して柔軟性、伸縮性、可撓性に優れた導電性布帛を電極として使用することにより、イオン伝導膜の湾曲、変形を阻害しなくなる。導電性布帛に用いる布帛は、その用途、目的等で適宜選定される。例えば変位量が大きく、電極の伸縮性を重視する場合は伸縮性に富む丸編みを、引張強度が必要な場合は織物がより適当である。いずれにしても、電極として柔軟性、伸縮性、可撓性、耐摩耗性に優れる導電性布帛を用いることで、目的とする複合材料へ実用に耐える特性を付与することができる。   In the present invention, the use of a conductive fabric that is superior in flexibility, stretchability, and flexibility as an electrode as compared with a metal thin film prevents the ion conductive membrane from being bent or deformed. The fabric used for the conductive fabric is appropriately selected depending on its use and purpose. For example, when the displacement is large and importance is attached to the stretchability of the electrode, a circular knitting rich in stretchability is more suitable, and when tensile strength is required, a woven fabric is more suitable. In any case, by using a conductive fabric that is excellent in flexibility, stretchability, flexibility, and abrasion resistance as an electrode, it is possible to impart a practical characteristic to the intended composite material.

また、本発明の導電性布帛は公知の方法で予め工業的に生産したものを使用することができ、従来の伝導膜に金属をめっきする方法に比べてコスト面で有利である。   In addition, the conductive fabric of the present invention can be industrially produced in advance by a known method, which is advantageous in terms of cost compared to a conventional method of plating a metal on a conductive film.

(3)複合材料
本発明の複合材料において、電極に電位差を与え湾曲、変形をせしめるには、イオン伝導膜がイオン交換膜の場合は含水状態である必要がある。ここで含水状態とは、この複合材料が水中で、または高湿度の大気中でも作動することを意味する。水中においては周囲の水中に含まれるイオンが動作に影響することもあるが、種々の溶質を含んだ液中でも作動できる。
(3) Composite Material In the composite material of the present invention, in order to give a potential difference to the electrode to cause bending and deformation, the ion conductive membrane needs to be in a water-containing state when it is an ion exchange membrane. Here, the water-containing state means that the composite material operates in water or in a high humidity atmosphere. In water, ions contained in the surrounding water may affect the operation, but it can also operate in liquids containing various solutes.

電極2,2’をリード線を介して任意波形発生電源(直流電源あるいは交流電源)に接続すれば、図1の複合材料は図2のように湾曲する。この作動機構あるいは原理は明確ではないが、イオン交換膜を用いた場合、膜の表裏に電位差がかかることで、図2に示すようにイオン交換膜1中の正イオン3が陰極2’側に移動し、このイオンに伴われて水分子が膜内で移動するために陽極側と陰極側で水分量及び浸透圧に差ができると推定される。したがって、含水率が高まれば膨潤し、含水率が低下すれば収縮するので、膜の表裏で水分量あるいはイオン濃度に差が付けば膜は湾曲すると考えられる。   If the electrodes 2 and 2 'are connected to an arbitrary waveform generating power source (DC power source or AC power source) via lead wires, the composite material of FIG. 1 is bent as shown in FIG. Although the operating mechanism or principle is not clear, when an ion exchange membrane is used, a potential difference is applied to the front and back of the membrane, so that positive ions 3 in the ion exchange membrane 1 are moved to the cathode 2 'side as shown in FIG. It is presumed that there is a difference in water content and osmotic pressure between the anode side and the cathode side because water molecules move in the membrane accompanying the movement of ions. Therefore, it swells when the moisture content increases, and contracts when the moisture content decreases, so it is considered that the membrane bends if there is a difference in moisture content or ion concentration between the front and back of the membrane.

ただし、イオンの分布に差がついても、その状態でイオンの動きが止まれば、膜の外部からの水の拡散によって次第に水分分布は元の均一状態に近づくと推定される。すなわち一定電圧をかけていても膜内の電流が減少すれば、一端生じた含水率の分布は徐々に平均化されて行くために、湾曲は元に戻ると考えられる。このように、電圧の値によって湾曲の状態を制御することができ、また繰り返し湾曲させることができる。   However, even if there is a difference in ion distribution, if the movement of ions stops in that state, it is estimated that the moisture distribution gradually approaches the original uniform state due to diffusion of water from the outside of the membrane. In other words, if the current in the membrane decreases even when a constant voltage is applied, the distribution of water content that has once occurred is gradually averaged, so that the curve is considered to return to its original state. Thus, the state of bending can be controlled by the value of the voltage, and the bending can be repeated.

陽イオン交換膜を純水中で用いた場合、移動するイオンはH+イオンであり、食塩水中で用いた場合はNa+であると考えられるため、電圧をかけるとそれらのイオンは水分子と共に陰極側へ移動する。このように考察すれば、陰極側の膜の含水率が上がり、陽極側の含水率は下がるので、陰極側が伸びて陽極側が縮むため、膜は陽極側へ湾曲することになる。 When the cation exchange membrane is used in pure water, the ions that move are H + ions, and when used in saline, it is thought to be Na +. Move to the cathode side. Considering in this way, the moisture content of the membrane on the cathode side increases and the moisture content on the anode side decreases, so the cathode side extends and the anode side shrinks, so the membrane curves to the anode side.

イオン伝導膜内のイオンは特に限定されるものではないが、カチオン性膜の場合、プロトンに代えて他のイオン、例えばリチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン、ベリリウムイオン、マグネシウムイオン、カルシウムイオンなどのアルカリ土類金属イオン、アンモニウムイオン、ピリジニウムイオン、スルホニウムイオン、ホスホニウムイオン、オキソニウムイオンなどの有機系あるいは無機系のカチオンが利用できる。アニオン性膜の場合には、スルホン酸類、カルボン酸類、リン酸類などが利用できる。カチオン性膜のプロトンを例えばリチウムイオンに交換すると、湾曲、屈曲変形が大きい複合材料を得ることができる。   The ions in the ion conductive membrane are not particularly limited, but in the case of a cationic membrane, other ions such as alkali metal ions such as lithium ions, sodium ions, potassium ions, beryllium ions, magnesium ions are used instead of protons. Organic or inorganic cations such as alkaline earth metal ions such as calcium ions, ammonium ions, pyridinium ions, sulfonium ions, phosphonium ions, and oxonium ions can be used. In the case of an anionic membrane, sulfonic acids, carboxylic acids, phosphoric acids and the like can be used. When protons in the cationic membrane are exchanged with, for example, lithium ions, a composite material having a large curvature and bending deformation can be obtained.

フッ素系や芳香族系のポリマー膜にイオン液体を含浸させたイオン伝導膜を用いた場合は、膜の表裏に電位差が掛かることで膜中のイオン液体が電極の方に移動することによって、イオン交換膜と同様の現象が生ずると推定される。イオン液体の場合、移動するのは水ではなくイオン液体のイオンであるため、低温度下でも水の場合のように温度の影響を受けることなく湾曲運動させることができる。また、イオン液体は水と比較して蒸発しにくいという利点があり、外気が乾燥した環境下においても安定した屈曲が可能となる。   When an ion conductive membrane in which an ionic liquid is impregnated with a fluorine-based or aromatic polymer membrane is used, an ionic liquid in the membrane moves toward the electrode by applying a potential difference to the front and back of the membrane, thereby It is estimated that the same phenomenon as that of the exchange membrane occurs. In the case of an ionic liquid, it is not water that moves, but ions of the ionic liquid that move, so that even under a low temperature, the curved movement can be performed without being affected by the temperature as in the case of water. In addition, the ionic liquid has an advantage that it is less likely to evaporate than water, and stable bending is possible even in an environment where the outside air is dry.

また、従来提案の技術では原理的に形状が限定されるという欠点があった。つまり素子の形状が長方形であれば長辺の方向に湾曲し、短辺の方向に湾曲することはない。また正方形の形状にて電位差を与えた場合4カ所ある角の部分に変形が生ずるだけである。つまり従来の技術であれば図2に示すような変形、湾曲を得るには長方形、特に長辺と短辺の差を大きくする必要があった。   In addition, the conventionally proposed technique has a drawback in that the shape is limited in principle. That is, if the shape of the element is a rectangle, the element is bent in the long side direction and is not bent in the short side direction. Further, when a potential difference is applied in a square shape, only the corners at four corners are deformed. In other words, in the case of the conventional technique, in order to obtain the deformation and curvature as shown in FIG. 2, it is necessary to increase the difference between the rectangle, particularly the long side and the short side.

しかし本発明では、この課題も解決できる。繊維布帛は糸加工、織物、編み物等布帛構造により非常に多彩な伸縮性特性を得ることが可能である。経、緯の一方向のみ伸縮性を有するもの、全方向に伸縮性を有するものまで容易に作ることができる。この繊維布帛をめっき手法で導電化することによって、同じような伸縮特性を有する導電性布帛を容易に得ることができる。   However, the present invention can also solve this problem. The fiber fabric can obtain a wide variety of stretch properties due to the fabric structure such as yarn processing, woven fabric, and knitted fabric. It is possible to easily make a material having elasticity in only one direction of warp and weft and a material having elasticity in all directions. By making this fiber fabric conductive, a conductive fabric having the same stretchability can be easily obtained.

本発明では、このような導電性布帛を電極に用いることにより、湾曲、変形の方向を自由に設計することができる。すなわち、従来は正方形や短辺方向に湾曲する複合材を作成することができなかったが、経・緯方向で伸縮性に差がある導電性布帛を電極に用いることにより、伸縮しやすい方への湾曲、変形を起こさせることができる。これにより、電極の形状によらず電極の伸縮性の方向性を利用することで湾曲、変形の方向の設計が可能になる。このことは、複合材の形状の制限が無くなることを意味し、結果として、例えば短辺の方向に湾曲させることによりその力の増大を図ったり、用途による形状要求に容易に対応したりすることが可能となる。   In the present invention, by using such a conductive fabric for an electrode, the direction of bending and deformation can be freely designed. That is, in the past, it was not possible to create a composite material that curved in the direction of a square or short side, but by using a conductive fabric that has a difference in stretchability in the warp and weft directions, it would be easier to stretch. Can bend and deform. This makes it possible to design the direction of bending and deformation by utilizing the directionality of the stretchability of the electrode regardless of the shape of the electrode. This means that there is no restriction on the shape of the composite material. As a result, for example, the force can be increased by curving in the direction of the short side, or the shape requirement according to the application can be easily met. Is possible.

(4)複合材料の製造方法
図3に示すとおり、本発明の複合材料は、イオン伝導膜1と導電性布帛2及び2’とを積層することにより製造することができる。積層の方法は特に限定されず、通常の積層フィルムの製造方法に用いられる方法を適宜採用することができるが、好ましくは、イオン伝導膜を2枚の導電性布帛で挟み込んで、該イオン伝導膜の両面に導電性布帛が接触したサンドイッチ状とし、次いで、このサンドイッチに片面又は両面から、圧力(0.0001〜10トン程度)をかけることにより、製造できる。このとき、圧力を加えるとともにイオン伝導膜が溶解しない程度の熱(好ましくは40〜300℃程度)を加えて熱プレスを行うこともできる。
(4) Manufacturing method of composite material As shown in FIG. 3, the composite material of this invention can be manufactured by laminating | stacking the ion conductive film 1 and the conductive fabrics 2 and 2 '. The method for laminating is not particularly limited, and a method used in a usual method for producing a laminated film can be appropriately employed. Preferably, the ion conductive membrane is sandwiched between two conductive fabrics, and the ion conductive membrane is used. It can be manufactured by making a sandwich shape in which a conductive fabric is in contact with both sides of the sheet, and then applying pressure (about 0.0001 to 10 tons) to this sandwich from one side or both sides. At this time, hot pressing can be performed by applying a pressure (preferably about 40 to 300 ° C.) that does not dissolve the ion conductive membrane while applying pressure.

また、サンドイッチ状としたときに、さらにその両側を高分子フィルム又は金属板等でカバーして、その上から熱プレス等を行うこともできる。このカバーあるいはサポーター(図3中の4)として用いる高分子フィルムには、PET(ポリエチレンテレフタレート)等のポリエステルフィルム等の汎用高分子フィルムを用いることができる。また、金属板としてはアルミニウム板、銅板、ステンレス板等を用いることができる。金属板を用いる場合は、導電性布帛及びイオン伝導膜をセットするための凹部を表面に形成する。イオン伝導膜と導電性布帛とが接合された後はこれらのカバーあるいはサポーターを取り外す。   In addition, when sandwiched, the both sides can be covered with a polymer film or a metal plate, and then hot pressing or the like can be performed from above. As the polymer film used as the cover or supporter (4 in FIG. 3), a general-purpose polymer film such as a polyester film such as PET (polyethylene terephthalate) can be used. Moreover, as a metal plate, an aluminum plate, a copper plate, a stainless plate, etc. can be used. When using a metal plate, a recess for setting the conductive fabric and the ion conductive film is formed on the surface. After the ion conductive membrane and the conductive fabric are joined, these covers or supporters are removed.

また、導電性布帛は、イオン伝導膜と接触させる前に、該イオン伝導膜と密着性の高いポリマーを溶解させた溶液に含浸させるのが好ましい。例えば、フッ素系ポリマーの場合、フッ素骨格を有する「ナフィオンTM」等のポリマーを溶解させた溶液に含浸させるのが好ましい。浸漬したポリマーがバインダーとなって、イオン伝導膜と導電性布帛との良好な接合を保つことができる。 The conductive fabric is preferably impregnated with a solution in which a polymer having high adhesion to the ion conductive membrane is dissolved before being brought into contact with the ion conductive membrane. For example, in the case of a fluorine-based polymer, it is preferable to impregnate a solution in which a polymer such as “Nafion ” having a fluorine skeleton is dissolved. The soaked polymer serves as a binder, and good bonding between the ion conductive membrane and the conductive fabric can be maintained.

(5)複合材料の用途
本発明の複合材料は、電極間に0.1〜10V程度の任意波形の電圧(直流電圧あるいは交流電圧)をかけることにより、変形率の高い変形を優れた迅速応答性、変形制御性で達成することができる。また、形状の自由度も高く、強度や耐久性にも優れている。よって、本発明の複合材料はアクチュエーター素子として、医療用機器、産業用ロボット、マイクロマシンなどの各種用途に適用できる。例えば、水中で作動する超小型ロボット用に人工筋肉として利用でき、また生体内で使用される医療用器具の動力にも応用できる。
(5) Use of composite material The composite material of the present invention has an excellent rapid response to deformation with a high deformation rate by applying an arbitrary waveform voltage (DC voltage or AC voltage) of about 0.1 to 10 V between the electrodes. And can be achieved with deformation controllability. Moreover, the degree of freedom in shape is high, and the strength and durability are also excellent. Therefore, the composite material of the present invention can be applied as an actuator element to various uses such as medical equipment, industrial robots, and micromachines. For example, it can be used as an artificial muscle for a micro robot operating in water, and can also be applied to the power of a medical instrument used in a living body.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例にのみ限定されるものではない。なお、以下の実施例における各物性の評価方法は以下の通りである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited only to these examples. In addition, the evaluation method of each physical property in the following examples is as follows.

<加工コスト>
複合材料作成にかかる工数、時間を勘案し、以下の基準で評価した。
○;導電性布帛を貼り合わせて1時間以内で製作可能
×;膜の両面にめっき法で電極を形成。5μmの被膜形成に20時間以上かかる。
<Processing cost>
Considering the man-hours and time required to create the composite material, the evaluation was made according to the following criteria.
○: Can be manufactured within 1 hour by bonding conductive fabric ×: Electrodes are formed on both sides of the film by plating. It takes 20 hours or more to form a 5 μm film.

<変形性>
評価サンプル(3×15mm)に、3Vの直流電圧を印加した時の長辺方向の変位を測定し、以下の基準で評価した。
○;変位5mm以上
△;変位2mm以上〜5mm未満
×;変位2mm未満
<Deformability>
The displacement in the long side direction when a DC voltage of 3 V was applied to the evaluation sample (3 × 15 mm) was measured and evaluated according to the following criteria.
○: Displacement 5 mm or more Δ; Displacement 2 mm or more to less than 5 mm ×; Displacement less than 2 mm

<強度(引張強度)>
実施例の評価サンプルをカットして10mm×10mmの複合材料を作成し、これに1kgの荷重を掛けた時の電極破壊状況を、導電性劣化を測定することにより以下の基準で評価し、判定した。ここで導電性劣化は、荷重有りの場合と無しの場合における複合材料の表面抵抗値(導電性)を測定し、その変化率(表面抵抗値変化率)をもって導電性劣化として評価した。なお表面抵抗値は、日置電機株式会社製、抵抗値測定器ミリオームハイテスター3220を用い、クリップ平衡電極幅10cm、電極間距離10cmにおける導電性を測定した(クリップ法)。
○;導電性劣化が10%未満
×;導電性劣化が10%以上
<Strength (tensile strength)>
The evaluation sample of the example was cut to prepare a composite material of 10 mm × 10 mm, and the electrode destruction situation when a load of 1 kg was applied to this was evaluated by the following criteria by measuring the conductivity deterioration, and judged. did. Here, the conductivity degradation was evaluated as the conductivity degradation by measuring the surface resistance value (conductivity) of the composite material with and without a load, and the rate of change (surface resistance value change rate). In addition, the surface resistance value measured the electroconductivity in clip equilibrium electrode width 10cm and distance 10cm between electrodes using the resistance value measuring device milliohm high tester 3220 by Hioki Electric Co., Ltd. (clip method).
○: Less than 10% conductivity deterioration ×: More than 10% conductivity deterioration

<強度(屈曲性)>
評価サンプル(3×15mm)について、180度屈曲を10回繰り返した後の電極破壊状況を、導電性を測定して以下の基準で判定した。
○;導電性劣化が10%未満
×;導電性劣化が10%以上
<Strength (flexibility)>
For the evaluation sample (3 × 15 mm), the state of electrode breakage after repeating 180 ° bending 10 times was determined by measuring the conductivity and using the following criteria.
○: Less than 10% conductivity deterioration ×: More than 10% conductivity deterioration

<表面抵抗値>
導電性布帛の表面抵抗値は、日置電機株式会社製、抵抗値測定器ミリオームハイテスター3220を用い、クリップ平衡電極幅10cm、電極間距離10cmにおける導電性を測定した(クリップ法)。
<Surface resistance value>
As for the surface resistance value of the conductive fabric, conductivity was measured at a clip balanced electrode width of 10 cm and an inter-electrode distance of 10 cm using a resistance value measuring device milliohm high tester 3220 manufactured by Hioki Electric Co., Ltd. (clip method).

<伸縮性>
導電性布帛を10mm×10mmにカットし、表面抵抗値の測定方法を用いて導電性を測定しながら、荷重を加えて伸び率を測定し、荷重を増やしていって導電性劣化が10%となった時点での伸び率を伸縮度とした。
<Elasticity>
Cut the conductive fabric into 10 mm x 10 mm, measure the conductivity using the measurement method of the surface resistance value, measure the elongation by applying a load, increase the load, and the conductivity deterioration is 10% The elongation at that time was taken as the degree of stretch.

[実施例1]
イオン伝導膜として、厚さ約200ミクロンのパーフルオロスルホン酸/PTFE共重合体(商品名「ナフィオンTM」、デュポン社製)膜(プロトン型)(2cm×5cm)を用意した。このナフィオン膜を5Mの硝酸水溶液500mL中で80℃から100℃で30分加熱し、イオン交換水でよく洗浄した。次いで、イオン交換水500mLに浸けて30分程度沸騰した。このようにして複合材料に用いるナフィオン膜を得た。
[Example 1]
As an ion conductive membrane, a perfluorosulfonic acid / PTFE copolymer (trade name “Nafion ”, manufactured by DuPont) having a thickness of about 200 microns was prepared (proton type) (2 cm × 5 cm). This Nafion membrane was heated in 500 mL of 5M nitric acid aqueous solution at 80 ° C. to 100 ° C. for 30 minutes and washed thoroughly with ion-exchanged water. Next, it was immersed in 500 mL of ion exchange water and boiled for about 30 minutes. In this way, a Nafion membrane used for the composite material was obtained.

一方、約60g/m2のポリエステル織物(タフタ)に公知の方法で金めっきを施して表面抵抗値0.1Ω/□の導電性布帛(厚み;90μm、平均伸縮度;タテ・ヨコともに約0%、バイアス方向に10%、バイアス方向の伸縮性の差;約0%)を得た。この導電性布帛(2cm×5cm)をバイアス方向に2枚切り出し、ナフィオンが溶解している低級アルコール溶液に浸けた後、先に洗浄したナフィオン膜をこの2枚の不織布で、手早くサンドイッチ状に挟み込んだ。 On the other hand, about 60 g / m 2 of polyester fabric (taffeta) is gold-plated by a known method to obtain a conductive fabric having a surface resistance of 0.1 Ω / □ (thickness: 90 μm, average stretch; %, 10% in the bias direction, and a difference in stretchability in the bias direction; about 0%). Two pieces of this conductive fabric (2 cm × 5 cm) are cut out in the bias direction, immersed in a lower alcohol solution in which Nafion is dissolved, and then the previously washed Nafion membrane is quickly sandwiched between the two nonwoven fabrics. It is.

得られたサンドイッチを、6cm×10cm程度の2枚のポリエステル(PET)フィルムで手早く両側からカバーし、温度を90℃に設定した熱プレス機にセットする。スタートの時点で0.5トン程度の圧力を加える。30分後に取り出し、3mm×15mmにカットしてイオン伝導膜と導電性布帛(不織布)とが積層された複合材料を得た。得られた複合材料(コンポジット膜)の不織布とナフィオン膜の密着を確認し、また1〜5V程度の直流電圧で膜が変形することを確認した。   The obtained sandwich is quickly covered with two polyester (PET) films of about 6 cm × 10 cm from both sides, and set in a hot press set at a temperature of 90 ° C. Apply a pressure of about 0.5 tons at the start. It was taken out after 30 minutes and cut to 3 mm × 15 mm to obtain a composite material in which an ion conductive membrane and a conductive fabric (nonwoven fabric) were laminated. It was confirmed that the obtained composite material (composite film) non-woven fabric and Nafion film were in close contact, and the film was deformed by a DC voltage of about 1 to 5V.

また、このコンポジット膜を0.2M程度の水酸化リチウム溶液中に1時間程度浸漬し、内部のプロトンをリチウムイオンに交換した。イオン交換水ですすぎ、表面の水分を軽くふき取った後、1〜5V程度の直流電圧で変形することを確認した。また、このリチウムイオンに交換した複合材料の引張強度、耐屈曲性を評価した結果、いずれも優れたものであった。評価結果を表1に示す。   The composite membrane was immersed in a lithium hydroxide solution of about 0.2 M for about 1 hour, and the proton inside was exchanged for lithium ions. After rinsing with ion-exchanged water and lightly wiping off the water on the surface, it was confirmed that it was deformed by a DC voltage of about 1 to 5V. Moreover, as a result of evaluating the tensile strength and the bending resistance of the composite material exchanged with the lithium ion, both were excellent. The evaluation results are shown in Table 1.

[実施例2]
イオン伝導膜として、厚さ約200ミクロンのパーフルオロスルホン酸/PTFE共重合体(商品名「ナフィオンTM」、デュポン社製)膜(プロトン型)(2cm×5cm)を用意した。このナフィオン膜を5Mの硝酸水溶液500mL中で80℃から100℃で30分加熱し、イオン交換水でよく洗浄した。次いで、イオン交換水500mLに浸けて30分程度沸騰した。さらに、0.2M程度の水酸化リチウム溶液500mL中に1時間程度浸漬した。リチウムイオンで交換したこの膜をイオン交換水で良くすすぎ、洗浄する。120°Cにセットしたオーブンで10時間程度乾燥させる。このようにして得たフィルムをイオン性液体の1−エチル−3−メチルイミダゾリウム トリフルオロメタンスルホネートで10時間程度浸漬した。このようにして複合材料に用いるイオン伝導膜(ナフィオン)膜を得た。
[Example 2]
As an ion conductive membrane, a perfluorosulfonic acid / PTFE copolymer (trade name “Nafion ”, manufactured by DuPont) having a thickness of about 200 microns was prepared (proton type) (2 cm × 5 cm). This Nafion membrane was heated in 500 mL of 5M nitric acid aqueous solution at 80 ° C. to 100 ° C. for 30 minutes and washed thoroughly with ion-exchanged water. Next, it was immersed in 500 mL of ion exchange water and boiled for about 30 minutes. Furthermore, it was immersed for about 1 hour in 500 mL of about 0.2M lithium hydroxide solution. The membrane exchanged with lithium ions is rinsed well with ion exchange water and washed. Dry in an oven set at 120 ° C for about 10 hours. The film thus obtained was immersed in ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate for about 10 hours. In this way, an ion conductive membrane (Nafion) membrane used for the composite material was obtained.

一方、約60g/m2のポリエステル織物(タフタ)に公知の方法で金めっきを施して表面抵抗値0.1Ω/□の導電性布帛(厚み;90μm、平均伸縮度;タテ・ヨコともに約0%、バイアス方向に10%、バイアス方向の伸縮性の差;約0%)を得た。この導電性布帛(2cm×5cm)をバイアス方向に2枚切り出し、ナフィオンが溶解している低級アルコール溶液に浸けた後、先に洗浄したナフィオン膜をこの2枚の不織布で、手早くサンドイッチ状に挟み込んだ。 On the other hand, about 60 g / m 2 of polyester fabric (taffeta) is gold-plated by a known method to obtain a conductive fabric having a surface resistance of 0.1 Ω / □ (thickness: 90 μm, average stretch; %, 10% in the bias direction, and a difference in stretchability in the bias direction; about 0%). Two pieces of this conductive fabric (2 cm × 5 cm) are cut out in the bias direction, immersed in a lower alcohol solution in which Nafion is dissolved, and then the previously washed Nafion membrane is quickly sandwiched between the two nonwoven fabrics. It is.

得られたサンドイッチを、6cm×10cm程度の2枚のポリエステル(PET)フィルムで手早く両側からカバーし、温度を90℃に設定した熱プレス機にセットする。スタートの時点で0.5トン程度の圧力を加える。30分後に取り出し、イオン伝導膜と導電性布帛(不織布)とが積層された複合材料を得た。得られた複合材料の不織布とナフィオン膜の密着を確認し、また1〜5V程度の直流電圧で膜が変形することを確認した。また、複合材料の引張強度、耐屈曲性を評価した結果、いずれも優れたものであった。評価結果を表1に示す。   The obtained sandwich is quickly covered with two polyester (PET) films of about 6 cm × 10 cm from both sides, and set in a hot press set at a temperature of 90 ° C. Apply a pressure of about 0.5 tons at the start. After 30 minutes, a composite material in which an ion conductive membrane and a conductive fabric (nonwoven fabric) were laminated was obtained. It was confirmed that the non-woven fabric of the obtained composite material and the Nafion membrane were in close contact, and that the membrane was deformed by a DC voltage of about 1 to 5V. Moreover, as a result of evaluating the tensile strength and the bending resistance of the composite material, both were excellent. The evaluation results are shown in Table 1.

[実施例3]
約60g/m2のポリエステル織物(タフタ)に公知の方法で銅めっき皮膜を付与し、さらに銅皮膜上にニッケルめっきを施して表面抵抗値0.05Ω/□の導電性布帛(厚み;90μm、平均伸縮度;タテ・ヨコともに約0%、バイアス方向に10%、バイアス方向の伸縮性の差;約0%)を得た。得られた銅・ニッケルめっきの導電性布帛を用いる以外は、実施例1に準じて複合材料を製造、評価した。1〜5V程度の直流電圧で変形することを確認した。また、このリチウムイオンに交換した複合材料の引張強度、耐屈曲性を評価した結果、いずれも優れたものであった。評価結果を表1に示す。
[Example 3]
About 60 g / m 2 of polyester fabric (taffeta) is provided with a copper plating film by a known method, and further, nickel plating is applied on the copper film to form a conductive cloth having a surface resistance value of 0.05Ω / □ (thickness: 90 μm, Average stretch degree: about 0% for both vertical and horizontal, 10% in the bias direction, difference in stretchability in the bias direction; about 0%). A composite material was produced and evaluated according to Example 1 except that the obtained conductive cloth of copper / nickel plating was used. It confirmed that it deform | transformed with the DC voltage of about 1-5V. Moreover, as a result of evaluating the tensile strength and the bending resistance of the composite material exchanged with lithium ions, both were excellent. The evaluation results are shown in Table 1.

[実施例4]
イオン伝導膜の膜厚を200ミクロンから800ミクロンに、導電性布帛を織物から丸編み(金めっき、表面抵抗値;0.1Ω/□、厚み;90μm、平均伸縮度;全方向に10%、伸縮性の差;0%)に変える以外は実施例1に準じて複合材を製造し、電圧での変形、耐屈曲性を評価した結果優れていた。評価結果を表1に示す。
[Example 4]
The film thickness of the ion conductive film is changed from 200 microns to 800 microns, and the conductive fabric is knitted from a woven fabric (gold plating, surface resistance value: 0.1 Ω / □, thickness: 90 μm, average elasticity: 10% in all directions, A composite material was produced according to Example 1 except that the difference in stretchability was changed to 0%), and the results were excellent as a result of evaluating deformation and bending resistance with voltage. The evaluation results are shown in Table 1.

[実施例5]
イオン伝導膜、導電性布帛、複合材料それぞれの形状を約5cm×5cmとし、また前記導電性布帛として正方形の一方向はほとんど伸びず、それと直交するもう一方の方向は良く伸びるトリコットを基布とする導電性布帛(金めっき、表面抵抗値;0.1Ω/□、厚み;90μm、平均伸縮度;タテ方向が0%、横方向が5%、伸縮性の差;5%)を用いた以外は実施例1に準じて複合材料を製造し、15×15mmにカットした評価サンプルで評価を行った。1〜5V程度の電圧で導電布の伸縮性に優れた方向に変形することを確認した。また屈曲性にも優れていた。評価結果を表1に示す。
[Example 5]
The shape of each of the ion conductive membrane, the conductive fabric, and the composite material is about 5 cm × 5 cm, and the conductive fabric is a tricot that extends little in one direction of the square and extends well in the other direction perpendicular thereto. Other than using conductive fabric (gold plating, surface resistance value: 0.1 Ω / □, thickness: 90 μm, average stretch degree: 0% in the vertical direction, 5% in the horizontal direction, difference in stretchability: 5%) Manufactured the composite material according to Example 1, and evaluated it with the evaluation sample cut to 15x15 mm. It confirmed that it deform | transformed in the direction excellent in the elasticity of the electrically conductive cloth with the voltage of about 1-5V. It was also excellent in flexibility. The evaluation results are shown in Table 1.

[実施例6]
イオン伝導膜の片側に接合する電極として、伸び(平均伸縮度)が全方向に10%以上ある丸編みの導電性布帛を、もう一方の面には殆ど伸びのない織物の導電性布帛を用いた。それ以外は全て実施例1に準じて複合材料を製造、評価した。その結果、電圧を掛けたときの変形、屈曲、強度のいずれも優れたものであった。評価結果を表1に示す。
[Example 6]
As an electrode to be joined to one side of the ion conductive membrane, a circular knitted conductive fabric having an elongation (average stretch) of 10% or more in all directions and a woven conductive fabric having almost no elongation on the other side are used. It was. Except for this, composite materials were produced and evaluated according to Example 1. As a result, all of deformation, bending and strength when voltage was applied were excellent. The evaluation results are shown in Table 1.

[比較例1]
電極形成に導電性布帛を用いず、イオン伝導膜に無電解めっき手法で厚さ3ミクロンの金めっき被膜を直接形成した。めっき手法で電極を形成するのに約50時間の時間を要した。電極以外は全て実施例1に準じて複合材料を作成し、1〜5Vでの変形、耐屈曲性、引張強度を評価した。その結果、実施例1に比較し変形しにくく、引張強度、耐屈曲性に劣るものであった。評価結果を表1に示す。
[Comparative Example 1]
A conductive cloth was not used for electrode formation, and a gold plating film having a thickness of 3 microns was directly formed on the ion conductive film by an electroless plating method. It took about 50 hours to form the electrode by the plating method. A composite material was prepared in accordance with Example 1 except for the electrodes, and the deformation, flex resistance, and tensile strength at 1 to 5 V were evaluated. As a result, compared with Example 1, it was hard to deform | transform and was inferior to tensile strength and bending resistance. The evaluation results are shown in Table 1.

[比較例2]
電極形成に導電性布帛を用いず、約800ミクロンのイオン伝導膜に無電解めっき手法で3ミクロンの金めっき被膜を直接形成した。めっき手法で電極を形成するのに約50時間の時間を要した。電極以外は全て実施例1に準じて複合材料を作成し、1〜5Vでの変形、耐屈曲性、引張強度を評価した。その結果、実施例3と比較し1〜5Vの電圧ではほとんど変形せず、引張強度、耐屈曲性にも劣るものであった。評価結果を表1に示す。
[Comparative Example 2]
A conductive fabric was not used for electrode formation, and a 3 micron gold plating film was directly formed on an ion conductive film of about 800 microns by an electroless plating method. It took about 50 hours to form the electrode by the plating method. A composite material was prepared in accordance with Example 1 except for the electrodes, and the deformation, flex resistance, and tensile strength at 1 to 5 V were evaluated. As a result, compared with Example 3, it hardly deformed at a voltage of 1 to 5 V, and was inferior in tensile strength and flex resistance. The evaluation results are shown in Table 1.

[比較例3]
電極を直接イオン伝導膜に形成する以外は実施例5に準じて複合材料を製造、評価した。その結果、変形は正方形の4角がわずかに変形するだけであった。耐屈曲、引張強度も劣るものであった。評価結果を表1に示す。
[Comparative Example 3]
A composite material was produced and evaluated according to Example 5 except that the electrode was directly formed on the ion conductive membrane. As a result, the deformation was only slightly deformed at the four corners of the square. Bending resistance and tensile strength were also inferior. The evaluation results are shown in Table 1.

Figure 2007244103
Figure 2007244103

本発明の複合材料は、イオン伝導膜の両面に接合させる電極として柔軟性、伸縮性、可撓性に優れた導電性布帛を用いているため、電位差の印加時における変形量が大きく、迅速応答性、変形制御性に優れている。また、形状の自由度も高く、なおかつ実用上必要な強度や耐久性にも優れ、経済性も高い。よって、本発明の複合材料はアクチュエータ素子として、医療用機器、産業用ロボット、マイクロマシンなどの各種用途に適用できる。例えば、水中で作動する超小型ロボット用に人工筋肉として利用でき、また生体内で使用される医療用器具の動力にも応用できる。   Since the composite material of the present invention uses a conductive fabric excellent in flexibility, stretchability, and flexibility as electrodes to be bonded to both surfaces of the ion conductive membrane, the deformation amount when applying a potential difference is large and quick response Excellent in controllability and deformation control. In addition, it has a high degree of freedom in shape, is excellent in practically necessary strength and durability, and is economical. Therefore, the composite material of the present invention can be applied as an actuator element to various uses such as medical equipment, industrial robots, and micromachines. For example, it can be used as an artificial muscle for a micro robot operating in water, and can also be applied to the power of a medical instrument used in a living body.

本発明の複合材料の一実施例において、電位差を印加しない状態における側断面図である。In one Example of the composite material of this invention, it is a sectional side view in the state which does not apply a potential difference. 本発明の複合材料の一実施例において、電位差を印加した状態における側断面図である。In one Example of the composite material of this invention, it is a sectional side view in the state which applied the electric potential difference. 本発明の複合材料の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the composite material of this invention.

符号の説明Explanation of symbols

1 イオン伝導膜
2 導電性布帛
2’ 導電性布帛
3 正イオン
4 カバー又はサポーター
DESCRIPTION OF SYMBOLS 1 Ion conductive film 2 Conductive fabric 2 'Conductive fabric 3 Positive ion 4 Cover or supporter

Claims (8)

イオン伝導膜と該イオン伝導膜の両面に接合した電極とからなり、電極に電位差を与えることによりイオン伝導膜に変形を生じせしめる複合材料であって、前記電極が導電性布帛で構成されていることを特徴とする、複合材料。 A composite material comprising an ion conductive film and electrodes joined to both surfaces of the ion conductive film, and causing the ion conductive film to be deformed by applying a potential difference to the electrode, wherein the electrode is composed of a conductive cloth. A composite material characterized by that. 前記イオン伝導膜が、イオン交換膜またはイオン液体を含浸させた膜であることを特徴とする、請求項1記載の複合材料。 The composite material according to claim 1, wherein the ion conductive membrane is an ion exchange membrane or a membrane impregnated with an ionic liquid. 前記イオン交換膜またはイオン液体を含浸させた膜が、フッ素樹脂系のポリマーからなることを特徴とする、請求項2記載の複合材料。 3. The composite material according to claim 2, wherein the ion exchange membrane or the membrane impregnated with an ionic liquid is made of a fluororesin polymer. 前記導電性布帛が、めっき手法又は金属錯体注入により布帛と金属を複合化させたものであることを特徴とする、請求項1〜3のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 3, wherein the conductive fabric is a composite of a fabric and a metal by a plating method or metal complex injection. 前記イオン伝導膜の少なくとも一方の面に接合した電極が、伸縮性を有する導電性布帛で構成されていることを特徴とする、請求項1〜4のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 4, wherein an electrode bonded to at least one surface of the ion conductive film is made of a conductive cloth having stretchability. 前記導電性布帛が、直交する2軸での伸縮性の差を有することを特徴とする、請求項1〜5のいずれかに記載の複合材料。 The composite material according to claim 1, wherein the conductive fabric has a difference in stretchability between two orthogonal axes. 前記伸縮性の差が2%以上であることを特徴とする、請求項6記載の複合材料。 The composite material according to claim 6, wherein the difference in stretchability is 2% or more. 前記導電性布帛が、電極に電位差を与えたときに前記イオン伝導膜が変形する方向に伸縮性を有するように該イオン伝導膜に接合されていることを特徴とする、請求項5〜7のいずれかに記載の複合材料。

8. The conductive fabric according to claim 5, wherein the conductive fabric is joined to the ion conductive membrane so as to be stretchable in a direction in which the ion conductive membrane is deformed when a potential difference is applied to the electrodes. The composite material according to any one of the above.

JP2006063548A 2006-03-09 2006-03-09 Composite material Expired - Fee Related JP5079244B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006063548A JP5079244B2 (en) 2006-03-09 2006-03-09 Composite material
EP20070004670 EP1833156A3 (en) 2006-03-09 2007-03-07 Complex material
US11/715,970 US8029654B2 (en) 2006-03-09 2007-03-09 Complex material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063548A JP5079244B2 (en) 2006-03-09 2006-03-09 Composite material

Publications (2)

Publication Number Publication Date
JP2007244103A true JP2007244103A (en) 2007-09-20
JP5079244B2 JP5079244B2 (en) 2012-11-21

Family

ID=37951943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063548A Expired - Fee Related JP5079244B2 (en) 2006-03-09 2006-03-09 Composite material

Country Status (3)

Country Link
US (1) US8029654B2 (en)
EP (1) EP1833156A3 (en)
JP (1) JP5079244B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329334A (en) * 2006-06-08 2007-12-20 Univ Of Fukui High molecular actuator and its manufacturing method
JP2009278787A (en) * 2008-05-15 2009-11-26 Sony Corp Actuator element
JP2010226898A (en) * 2009-03-24 2010-10-07 Sony Corp Actuator
WO2011070988A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
WO2011070986A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
WO2011070912A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
JP2012016247A (en) * 2010-07-05 2012-01-19 Kansai Electric Power Co Inc:The Polyimide-based high polymer actuator and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318933A (en) * 2006-05-26 2007-12-06 Olympus Corp High-polymer actuator and drive method therefor
JP2013062964A (en) * 2011-09-14 2013-04-04 Seiko Epson Corp Actuator and method of manufacturing the same
CN103444069B (en) 2011-10-11 2015-12-02 住友理工株式会社 Transducer
CN106564057B (en) * 2015-10-09 2018-11-16 中国科学院理化技术研究所 A kind of soft robot
DE102022116203A1 (en) 2022-06-29 2024-01-04 BAUER Lean-Engineering GmbH Method and device for producing sheet metal packages from sheet metal lamellas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129450A (en) * 1998-10-22 2000-05-09 Seiren Co Ltd Partially plated base material, its production and electrode material using it
JP2005051949A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Actuator and articulated drive mechanism using the same
JP2005139586A (en) * 2003-11-07 2005-06-02 Shinano Kenshi Co Ltd Carbon material and method for producing the same
JP2005229696A (en) * 2004-02-12 2005-08-25 Yaskawa Electric Corp Macromolecular actuator
JP2006014562A (en) * 2004-06-29 2006-01-12 Eamex Co Conductive polymer electrode and actuator using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356607A (en) * 1964-07-22 1967-12-05 Ionics Reinforced ion-exchange membranes
US3346789A (en) * 1965-10-22 1967-10-10 Sprague Electric Co Electrical capacitor with impregnated metallized electrode
GB1192245A (en) * 1966-06-21 1970-05-20 Monsanto Co Electrolytic Cell and Membrane Assembly.
GB2031438B (en) * 1978-09-27 1983-01-12 Diamond Shamrock Corp Fabric-reinforced ion exchange membranes
US4715235A (en) * 1985-03-04 1987-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Deformation sensitive electroconductive knitted or woven fabric and deformation sensitive electroconductive device comprising the same
US4826554A (en) * 1985-12-09 1989-05-02 The Dow Chemical Company Method for making an improved solid polymer electrolyte electrode using a binder
JPH074075B2 (en) * 1991-02-28 1995-01-18 工業技術院長 Actuator element
US5672438A (en) * 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell
JPH11209887A (en) * 1998-01-23 1999-08-03 Suga Test Instr Co Ltd Water electrolytic gas generating device
JP3903457B2 (en) * 2000-03-29 2007-04-11 セーレン株式会社 Conductive fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129450A (en) * 1998-10-22 2000-05-09 Seiren Co Ltd Partially plated base material, its production and electrode material using it
JP2005051949A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Actuator and articulated drive mechanism using the same
JP2005139586A (en) * 2003-11-07 2005-06-02 Shinano Kenshi Co Ltd Carbon material and method for producing the same
JP2005229696A (en) * 2004-02-12 2005-08-25 Yaskawa Electric Corp Macromolecular actuator
JP2006014562A (en) * 2004-06-29 2006-01-12 Eamex Co Conductive polymer electrode and actuator using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329334A (en) * 2006-06-08 2007-12-20 Univ Of Fukui High molecular actuator and its manufacturing method
JP2009278787A (en) * 2008-05-15 2009-11-26 Sony Corp Actuator element
JP2010226898A (en) * 2009-03-24 2010-10-07 Sony Corp Actuator
JP2011125094A (en) * 2009-12-08 2011-06-23 Canon Inc Actuator
WO2011070986A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
WO2011070912A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
WO2011070988A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Actuator
JP2011125092A (en) * 2009-12-08 2011-06-23 Canon Inc Actuator
JP2011142796A (en) * 2009-12-08 2011-07-21 Canon Inc Actuator
US8816569B2 (en) 2009-12-08 2014-08-26 Canon Kabushiki Kaisha Actuator
US9051924B2 (en) 2009-12-08 2015-06-09 Canon Kabushiki Kaisha Actuator
US9062663B2 (en) 2009-12-08 2015-06-23 Canon Kabushiki Kaisha Actuator
JP2012016247A (en) * 2010-07-05 2012-01-19 Kansai Electric Power Co Inc:The Polyimide-based high polymer actuator and manufacturing method thereof

Also Published As

Publication number Publication date
US20070209915A1 (en) 2007-09-13
US8029654B2 (en) 2011-10-04
EP1833156A2 (en) 2007-09-12
JP5079244B2 (en) 2012-11-21
EP1833156A3 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5079244B2 (en) Composite material
Oguro et al. Polymer electrolyte actuator with gold electrodes
JP4287504B1 (en) Conductive polymer actuator and manufacturing method thereof
Carrico et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)
US8172998B2 (en) Ionic solvents used in ionic polymer transducers, sensors and actuators
JP4256469B1 (en) Conductive polymer actuator and manufacturing method thereof
US7583009B2 (en) Actuator
Jeon et al. Novel biomimetic actuator based on SPEEK and PVDF
Wu et al. Soft mechanical sensors through reverse actuation in polypyrrole
JP4256470B1 (en) Conductive polymer actuator, manufacturing method thereof, and driving method thereof
US20110050041A1 (en) Actuator with sensor
JPH04275078A (en) Actuator element
Shoji et al. Effects of humidity on the performance of ionic polymer− metal composite actuators: experimental study of the back-relaxation of actuators
CN103026519A (en) Energy harvesting devices using carbon nanotube (cnt)-based electrodes
JP6102610B2 (en) Ion conductive polymer actuator
Onishi et al. Bending response of polymer electrolyte actuator
Liang et al. High Specific Surface Area Pd/Pt Electrode-Based Ionic Polymer–Metal Composite for High-Performance Biomimetic Actuation
Lee et al. High-performance polymer ionomer–ionic liquid membrane IPMC actuator
Khmelnitskiy et al. Performance improvement of an ionic polymer-metal composite actuator by using DMSO as solvent
JP5474387B2 (en) Polymer actuator
Bennett et al. Manufacture of Ionic Polymer Actuators Using Non-Precious Metal Electrodes
JP2008022655A (en) Wiring connection structure in polymer actuator or polymer sensor
US9316211B2 (en) Actuator and method for manufacturing the same
Shoji et al. Novel conducting fabric polymer composites as stretchable electrodes: one‐step fabrication of chemical actuators
Akhtar et al. Ionic polymer metal composites

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees