JP2007243817A - Optical transmitter and optical communication system using the same - Google Patents

Optical transmitter and optical communication system using the same Download PDF

Info

Publication number
JP2007243817A
JP2007243817A JP2006066306A JP2006066306A JP2007243817A JP 2007243817 A JP2007243817 A JP 2007243817A JP 2006066306 A JP2006066306 A JP 2006066306A JP 2006066306 A JP2006066306 A JP 2006066306A JP 2007243817 A JP2007243817 A JP 2007243817A
Authority
JP
Japan
Prior art keywords
signal
optical
optical transmitter
laser diode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066306A
Other languages
Japanese (ja)
Other versions
JP4796872B2 (en
Inventor
Masaru Osada
勝 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miharu Communications Co Ltd
Original Assignee
Miharu Communications Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miharu Communications Co Ltd filed Critical Miharu Communications Co Ltd
Priority to JP2006066306A priority Critical patent/JP4796872B2/en
Publication of JP2007243817A publication Critical patent/JP2007243817A/en
Application granted granted Critical
Publication of JP4796872B2 publication Critical patent/JP4796872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that a transmission band is narrow and a cost is high though an external modulation type optical transmitter is suitable for a large-scale multiple distribution and a long-range transmission, and there is the influence of wavelength dispersion due to a chirping phenomenon, the quality of video signals is degraded and a transmission distance is constrained while a direct luminance modulation type optical transmitter is capable of wide band transmission. <P>SOLUTION: This optical transmitter of a direct luminance modulation type using a laser diode for oscillating the narrow light beam width laser of 1.55 μm band, detects the entire power of RF signals inputted to the optical transmitter, adjusts an optical signal level to be inputted to the laser diode on the basis of the detected level, and controls the optical modulation degree of direct luminance modulation. The optical signal level is set such that the laser oscillated from the laser diode has a narrow light beam width having a chirp suitable for suppressing the generation of SBS. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光送信器とそれを使用した光通信システムに関し、特に、RF信号を中継局から末端加入者である家庭やオフィスまで光ファイバで伝送するFTTH(Fiber To The Home)システムやFTTO(Fiber To The Office)システムへ利用するのに適するものである。   The present invention relates to an optical transmitter and an optical communication system using the optical transmitter, and more particularly to an FTTH (Fiber To The Home) system or an FTTO (Fiber) for transmitting an RF signal from a relay station to a home or office as a terminal subscriber using an optical fiber. It is suitable for use in the To The Office system.

(FTTH:Fiber To The Homeシステムの普及)
現在の光通信サービスは伝送容量の増大化、伝送速度の高速化、映像放送伝送の多チャンネル化の需要が高まったことから、図4のように幹線部分を光ファイバで送り中継局から末端の加入者までをメタルケーブルで送るこれまでの伝送システム(HFC:Hybrid Fiber Coax)から、図5のように幹線部分と中継局から末端の加入者までの全域を光ファイバで伝送するFTTH(Fiber To The Home)システムへと移行しつつある。又、これまではVHF、UHFと、BS・CS−IFは別々に伝送されていたが、今後はVHF、UHF、BS・CS−IF帯までの広帯域を同時に伝送可能なBS・CS−IF伝送の需要も高まるものと予想される。
(FTTH: Spread of Fiber To The Home system)
Current optical communication services have increased demand for transmission capacity, transmission speed, and multi-channel video broadcast transmission. From a conventional transmission system (HFC: Hybrid Fiber Coax) that sends a metal cable to a subscriber, as shown in FIG. 5, the FTTH (Fiber To) is used to transmit the entire area from the trunk line and the relay station to the terminal subscriber as shown in FIG. The Home) system is moving. Up to now, VHF, UHF and BS / CS-IF were transmitted separately, but in the future, BS / CS-IF transmission capable of simultaneously transmitting a wide band up to VHF, UHF, BS / CS-IF bands. Demand is expected to increase.

現在、光通信用に最も普及している光ファイバケーブルは零分散波長(光の伝搬速度の波長依存性が零になり光伝送波形の劣化が最も小さい波長)が1.31μm帯にあるシングルモードファイバ(SMF)である。既設のSMFを有効利用することから、これまで映像配信に使用されている光送信器は分散値が零である1.31μm帯の光発振波長を持つレーザダイオード(LD)を使用したものが多い。しかし1.31μm帯は伝送損失が1.55μm帯に比べて大きく長距離伝送が難しい。また、現在は光伝送システムに使用される1.31μm帯の光送信器も開発されているが、普及率がまだ低いこともあり、生産台数が少なくなり高価になっているため、1.31μm帯の波長を利用した光伝送器はFTTHシステムに不向きと判断されてあまり使用されていない。   Currently, the most popular optical fiber cable for optical communication is a single-mode fiber with a zero-dispersion wavelength (wavelength at which the propagation speed of light is zero and the optical transmission waveform is least degraded) in the 1.31 μm band. (SMF). Since existing SMFs are effectively used, many optical transmitters used so far for video distribution use laser diodes (LDs) having an optical oscillation wavelength in the 1.31 μm band with a dispersion value of zero. However, the 1.31 μm band has a large transmission loss compared to the 1.55 μm band, and long-distance transmission is difficult. Currently, 1.31μm band optical transmitters used in optical transmission systems have also been developed. However, the penetration rate is still low, and the number of units produced is low and expensive. Optical transmitters using wavelengths are not used much because they are judged unsuitable for FTTH systems.

これに対して1.55μm帯の光送信器は1.31μm帯に比べて光ファイバの伝送損失が少なく長距離伝送が可能であること、多くの光増幅器が1.55μm帯の光信号増幅用であることから現在多くの光通信設備に導入され価格が比較的安価になっている。現在、多分配及び長距離配信、低コスト化の目的からFTTHシステムには主に1.55μm帯が使用されている。   On the other hand, 1.55μm band optical transmitters are capable of long-distance transmission with less optical fiber transmission loss than 1.31μm band, and many optical amplifiers are for 1.55μm band optical signal amplification. Since then, it has been introduced into many optical communication facilities and the price is relatively low. Currently, the 1.55 μm band is mainly used for the FTTH system for the purpose of multi-distribution, long-distance distribution, and cost reduction.

しかし、1.55μm帯の光波長はシングルモードファイバ(SMF)内で生じる波長分散(一般に光ファイバはファイバ中を伝播する光の波長によって伝播速度が異なるため波長分散が発生する)によって伝送特性が劣化し易い。また、光送信器に使用されるレーザダイオードは単一波長であるが、光のスペクトルにある程度の幅を持っているため、波長分散により伝播速度に差が生じて伝送後の光信号の波形に変化をもたらす。波形変形した光信号が光受信機で電気信号に変換(O/E変換)されると主に2次歪が劣化した信号が抽出されて信号品質が劣化する。アナログ信号(VSB−AM)は2次歪の劣化により映像にビート障害(斜め縞)が発生するなどして映像品質が劣化する。   However, the optical wavelength in the 1.55 μm band deteriorates in transmission characteristics due to chromatic dispersion that occurs in a single mode fiber (SMF) (generally, chromatic dispersion occurs because optical fibers have different propagation speeds depending on the wavelength of light propagating in the fiber) Easy to do. Laser diodes used in optical transmitters have a single wavelength, but have a certain width in the spectrum of light, so there is a difference in propagation speed due to wavelength dispersion, resulting in a waveform of the optical signal after transmission. Bring change. When an optical signal whose waveform is deformed is converted into an electrical signal (O / E conversion) by an optical receiver, a signal with a second-order distortion deteriorated is extracted, and the signal quality deteriorates. The analog signal (VSB-AM) is deteriorated in video quality due to the occurrence of beat failure (diagonal stripes) in the video due to the deterioration of the secondary distortion.

前記した波長分散特性の影響を低減し、伝送特性を維持するために開発され、現在FTTHシステムに使用されるようになったのが外部変調方式を用いた光送信器である。外部変調方式はレーザダイオードから出力される光スペクトルが狭い連続発信レーザ(CWレーザ)を使って光信号に輝度の強弱で変調を掛ける方式であり、光スペクトルが狭いことで波長分散の影響を格段に減少させた技術である(図6(a)、(b))。   An optical transmitter using an external modulation method has been developed to reduce the influence of the chromatic dispersion characteristic and maintain the transmission characteristic, and is now used in the FTTH system. The external modulation method uses a continuous wave laser (CW laser) with a narrow optical spectrum output from the laser diode to modulate the optical signal with the intensity of the brightness. The narrow optical spectrum greatly affects the influence of chromatic dispersion. (Figs. 6 (a) and 6 (b)).

外部変調方式の光送信器は長距離伝送可能であるが伝送周波数帯域が1,000MHzまでと狭いため、今後、需要が広がると思われるVHF、UHF、BS・CS−IF帯までの広帯域を同時に伝送可能なBS・CS−IF伝送には対応出来ず、また、高価であり導入コストが高くなるため小規模施設には敬遠されがちである。   External modulation optical transmitters are capable of long-distance transmission, but the transmission frequency band is as narrow as 1,000 MHz, so it is possible to simultaneously transmit wide bands up to VHF, UHF, and BS / CS-IF bands, which are expected to grow in demand. It cannot respond to possible BS / CS-IF transmissions, and is expensive and expensive to install.

広帯域伝送可能な光送信器として従来の直接輝度変調方式のものがある。直接輝度変調方式は伝送する伝送信号(RF信号)でレーザダイオードを直接変調する方式であり、伝送信号をレーザ駆動電流(バイアス)に重畳させて電気信号を光信号に変換し光の輝度の強弱で変調を掛ける方式であり、実現容易であるため普及してきた(図7(a)、(b))。直接輝度変調方式の光送信器は外部変調方式の光送信器に対して技術的に広帯域化が容易でありBS・CS−IF伝送に対応可能であり安価でもある。   There is a conventional direct luminance modulation type optical transmitter capable of broadband transmission. The direct luminance modulation method is a method in which a laser diode is directly modulated by a transmission signal (RF signal) to be transmitted, and an electric signal is converted into an optical signal by superimposing the transmission signal on a laser driving current (bias), thereby increasing or decreasing the luminance of light. In this method, modulation has been performed, and it has become widespread because it is easy to implement (FIGS. 7A and 7B). The direct luminance modulation type optical transmitter is technically easy to broaden the band compared to the external modulation type optical transmitter, can be adapted to BS / CS-IF transmission, and is inexpensive.

しかし、直接輝度変調方式ではレーザを駆動するバイアス電流へ伝送信号(RF信号)を重畳することにより光スペクトルに揺らぎが生じる現象(チャーピング現象)が起きる(図8)。チャーピング現象が起きると光信号の光スペクトルが広くなるため単一波長である光信号が波長幅を持つ。波長幅があると光ファイバの波長分散特性によって光信号の伝播速度(伝播時間)に差が発生し伝送する映像信号が品質劣化する(図9(a)、(b))。この影響はレーザ発振波長に1.55μm帯を使用した直接輝度変調方式において受け易く、満足したシステム特性(伝送特性)が得られない。また、波長分散はファイバ長に大きく起因するため、システム特性を満足するためには伝送距離を短くして波長分散の影響を低減するしかない。このため、直接輝度変調方式の光送信器で安価なFTTHシステムを構築すると信号の品質保持の面から伝送範囲が限定される。現在、直接輝度変調方式の光送信器を用いたFTTHシステムは数百m〜数km程度の限られた範囲の施設構内(マンション内配信等)で利用されているのが実情である。   However, in the direct luminance modulation system, a phenomenon (chirping phenomenon) in which fluctuation occurs in the optical spectrum occurs by superimposing a transmission signal (RF signal) on a bias current for driving a laser (FIG. 8). When the chirping phenomenon occurs, the optical spectrum of the optical signal becomes wider, so that the optical signal having a single wavelength has a wavelength width. If there is a wavelength width, a difference occurs in the propagation speed (propagation time) of the optical signal due to the chromatic dispersion characteristics of the optical fiber, and the quality of the transmitted video signal deteriorates (FIGS. 9A and 9B). This effect is easily received in the direct luminance modulation method using the 1.55 μm band for the laser oscillation wavelength, and satisfactory system characteristics (transmission characteristics) cannot be obtained. Also, since chromatic dispersion is largely attributable to the fiber length, the only way to satisfy the system characteristics is to reduce the influence of chromatic dispersion by shortening the transmission distance. For this reason, when an inexpensive FTTH system is constructed with a direct luminance modulation type optical transmitter, the transmission range is limited in terms of maintaining signal quality. At present, the FTTH system using a direct luminance modulation type optical transmitter is used in a facility premises (distribution in a condominium, etc.) in a limited range of about several hundred meters to several kilometers.

前記した各種実情から大規模な多分配且つ長距離伝送を行うFTTHシステムには1.55μm帯の発振波長を持つ外部変調型光送信器を使用することが望ましいが、外部変調型光送信器は伝送帯域が狭く、高価であるため加入者数の少ない小規模なFTTHシステムへの導入はコスト面から敬遠されている。   In the FTTH system that performs large-scale multi-distribution and long-distance transmission from the various situations described above, it is desirable to use an external modulation type optical transmitter having an oscillation wavelength of 1.55 μm band. Introducing a small-scale FTTH system with a small number of subscribers due to its narrow bandwidth and high cost is avoided from the viewpoint of cost.

本願発明は1.55μm帯の発振波長を持つ直接輝度変調方式の特徴、即ち、広帯域伝送可能であり、光ファイバでの伝送損失が少なく長距離伝送が可能であり、比較的安価であることを活用し、同変調方式の課題、即ち、チャーピング現象による波長分散の影響、それによる映像信号の品質劣化、伝送距離の制約を改善して、外部変調方式の光送信器よりも低価格で、近年需要の高いVHF、UHF、BS・CS−IF帯までの広帯域同時伝送にも対応可能であり、また波長分散の影響を抑えて伝送距離を伸ばして、これまで伝送距離を伸ばせないことを理由に導入が見送られがちであったFTTHシステムやFTTOシステム、特に、小・中規模施設の光伝送システムに低コストで導入できるように光送信器と、それを使用して構築した光伝送システムを提供するものである。   The present invention utilizes the characteristics of the direct luminance modulation method having an oscillation wavelength of 1.55 μm band, that is, it is possible to transmit over a wide band, can transmit over a long distance with little transmission loss in an optical fiber, and is relatively inexpensive. However, the problem of the modulation method, that is, the influence of the chromatic dispersion due to the chirping phenomenon, the deterioration of the quality of the video signal and the restriction of the transmission distance, has been improved, and the price is lower than the optical transmitter of the external modulation method. It is possible to support high-demand VHF, UHF, and broadband simultaneous transmission up to the BS / CS-IF band, and because the transmission distance can be extended by suppressing the influence of chromatic dispersion. FTTH systems and FTTO systems that were apt to be forgotten to be introduced, especially optical transmitters that can be installed at low cost in optical transmission systems in small and medium-sized facilities, and optical transmission constructed using them. It is intended to provide a stem.

本件発明者は、波長分散の影響、それによる映像信号の品質劣化、伝送距離の制約を改善するため、レーザダイオードから発振されるレーザを狭光線幅(低チャープ)化することに着目した。狭光線幅(低チャープ)のレーザとしては例えばEC−LD(External Cavity LD)がある。EC−LDはこれまで光測定器で波長可変光源などとして使用されてきたレーザであるが、光伝送用、特にアナログ信号の通信には使用されていなかった。その原因はEC−LD自身の伝送特性が格別良くなかったこと、光スペクトルが狭くまた狭光線幅(低チャープ)である光信号が光ファイバへ入力されるとファイバの非線形性で生じる誘導ブリリアン散乱(SBS:Stimulated Brilliant Scattering)の影響を受けてしまうこと等にあったと思われる。   The inventor of the present invention has focused on narrowing the beam width (low chirp) of a laser oscillated from a laser diode in order to improve the influence of chromatic dispersion, the resulting deterioration in the quality of the video signal, and the restriction on the transmission distance. As a laser having a narrow beam width (low chirp), for example, there is an EC-LD (External Cavity LD). EC-LD is a laser that has been used as a wavelength tunable light source in an optical measuring instrument so far, but has not been used for optical transmission, particularly for communication of analog signals. The cause is that the transmission characteristics of the EC-LD itself are not particularly good, and the stimulated Brillouin scattering caused by the nonlinearity of the fiber when an optical signal having a narrow optical spectrum and a narrow light width (low chirp) is input to the optical fiber. It seems to have been influenced by (SBS: Stimulated Brilliant Scattering).

しかし、近年のEC−LDは伝送特性が良くなったことで従来のDFB−LD(Distributed FeedBack LD)よりも長距離伝送に使用可能であるが、波長分散の影響を抑えるために光信号の光スペクトルを狭くして狭線幅化すると伝送媒体である光ファイバの非線形性によって誘導ブリリアン散乱(SBS)が発生する。誘導ブリリアン散乱の発生要因として狭線幅の光スペクトルで高い光パワーが入射されることが挙げられる。誘導ブリリアン散乱が起こると伝送損失の劣化によって受信器側への到達光レベルが低下し映像品質が低下する。誘導ブリリアン散乱が発生しないようにするためには光ファイバへ高い光パワーを入射せず、伝送損失の劣化を含めて受信器側の到達光レベルを基準値となるように伝送路設計を行うことを考えたが、そのようにすると伝送距離が短くなる。長距離伝送するために、光増幅器の台数を増設または送出側の光分配数を増やし、端末側の光分配数を減らすといったシステム構成にしなければならずコストが上がるという新たな課題が発生する。   However, recent EC-LDs can be used for longer distance transmission than conventional DFB-LDs (Distributed FeedBack LDs) due to improved transmission characteristics, but in order to suppress the influence of chromatic dispersion, When the spectrum is narrowed to narrow the line width, stimulated Brillouin scattering (SBS) occurs due to the nonlinearity of the optical fiber that is the transmission medium. As a cause of the generation of stimulated Brillouin scattering, high light power is incident in a narrow linewidth optical spectrum. When stimulated Brillouin scattering occurs, the level of light reaching the receiver decreases due to the deterioration of transmission loss, and the image quality deteriorates. To prevent stimulated Brillouin scattering, design the transmission line so that high optical power is not incident on the optical fiber and the received light level on the receiver side becomes the reference value, including degradation of transmission loss. However, the transmission distance is shortened by doing so. In order to perform long-distance transmission, a system configuration in which the number of optical amplifiers is increased or the number of light distribution on the transmission side is increased and the number of light distribution on the terminal side is reduced must be increased.

そこで本件発明者は、狭光線幅(低チャープ)のレーザを使用して、狭線幅の光スペクトルで高パワーの光を光ファイバへ入射して伝送可能距離を長くしても誘導ブリリアン散乱光の影響を抑えることができるようにするため、光信号に適度なチャープ広がりを持たせるようにした。前記したように直接輝度変調では伝送信号をバイアスに重畳することで電気信号を光信号に変換(E/O変換)しているため、変調度(重畳する信号とレーザの輝度との関係)を高くすることでチャープ広がりを発生させることができる(変調度とチャープ幅は比例関係にある。)そのため、チャープに広がりをもたせるためにはレーザへの信号入力レベルを増やせばよい。しかし、次のような理由から単純に増やすことはできなかった。
1.レーザダイオードの特性を最適に運用できる変調度があり、CATVのように多数の信号波を周波数多重している場合、信号波の数と信号レベルの関係である程度の変調度が決定される。
2.現状のCATVで使われている光送信器の信号は地域や設備規模によって入力波数が異なる。
3.一度設置した機器においても伝送信号の入力波数がいつも一定であるとは限らない。
4.厳密にはCATVの入力信号レベルさえ一定では無い。
Therefore, the present inventor uses a narrow beamwidth (low chirp) laser, and even if a high power light with a narrow linewidth light spectrum is incident on the optical fiber and the transmission distance is increased, the stimulated Brillouin scattered light In order to be able to suppress the influence of the optical signal, an appropriate chirp spread was given to the optical signal. As described above, in direct luminance modulation, an electric signal is converted into an optical signal by superimposing a transmission signal on a bias (E / O conversion), and therefore the degree of modulation (relation between the superimposed signal and the luminance of the laser) is changed. The chirp spread can be generated by increasing it (the degree of modulation and the chirp width are in a proportional relationship). Therefore, in order to make the chirp spread, the signal input level to the laser may be increased. However, it could not be increased simply for the following reasons.
1. There is a degree of modulation that can optimally operate the characteristics of the laser diode, and when a large number of signal waves are frequency-multiplexed as in CATV, a certain degree of modulation is determined by the relationship between the number of signal waves and the signal level.
2. The signal of the optical transmitter used in the current CATV has different input wave numbers depending on the area and the scale of equipment.
3. Even in a device once installed, the input wave number of the transmission signal is not always constant.
4). Strictly speaking, even the input signal level of CATV is not constant.

本件発明者は、前記状況において、常に最適なチャープを保つために、次のようにして変調度を制御することを考えた。
1.光送信器へ入力される信号レベルを最適な変調度になるように、全体の信号電力を検知して制御する(図10)。
2.任意の信号(パイロット信号など)のみを検出して制御する(図11)。
The present inventor has considered to control the modulation degree as follows in order to keep the optimum chirp at all times in the above situation.
1. The entire signal power is detected and controlled so that the signal level input to the optical transmitter has an optimum degree of modulation (FIG. 10).
2. Only an arbitrary signal (such as a pilot signal) is detected and controlled (FIG. 11).

しかし、前記制御方法では1波(1ch)当りの変調度(信号レベル)が上がるため信号受信器側である光/電気変換機の出力信号レベルが光送信器の入力波数及びレベルによって変動する。これではFTTHシステムのように加入者宅に光受信器を設置している場合、光受信器からTVまでの機器接続がどのようになっているか把握できないため、最終的にTVへ伝送されるまでに信号が品質劣化する可能性が出てくる(図12)。   However, since the degree of modulation (signal level) per wave (1ch) increases in the control method, the output signal level of the optical / electrical converter on the signal receiver side varies depending on the input wave number and level of the optical transmitter. In this case, when an optical receiver is installed at the subscriber's home as in the FTTH system, it is not possible to know how the equipment is connected from the optical receiver to the TV. Therefore, there is a possibility that the quality of the signal deteriorates (FIG. 12).

実際には光受信器側においても、全信号電力を検知しまたは特定の1波の信号(パイロット信号など)を基準として検波して出力レベルをコントロールすることで、光受信器から出力される電気信号のレベルを一定にすることはできる(図13)。しかしこれでは受信器側に制御機能の追加や使用される光送信器(全信号電力制御)に対応している専用の光受信器が必要になってくる。しかし、制御機能を追加するのではコスト高になり、FTTHシステム導入が躊躇される一因となる。そこで本願発明は入力信号に関しての1波当りの変調度を変化させることなく、レーザダイオードへの最適な変調度を維持する制御方法として以下の方法を開発した。   Actually, on the optical receiver side as well, the electric power output from the optical receiver is detected by detecting the total signal power or detecting a specific one-wave signal (such as a pilot signal) and controlling the output level. The signal level can be kept constant (FIG. 13). However, this requires the addition of a control function on the receiver side and a dedicated optical receiver corresponding to the used optical transmitter (all signal power control). However, the addition of a control function increases the cost and contributes to the introduction of the FTTH system. Accordingly, the present invention has developed the following method as a control method for maintaining the optimum modulation degree for the laser diode without changing the modulation degree per wave for the input signal.

本願発明の光送信器は請求項1記載のように、直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光送信器へ入力されるRF信号の全電力が検知され、検知に基づいてレーザダイオードに入力される光信号レベルが調節されて直接輝度変調の光変調度が制御され、前記光変調度が、レーザダイオードから発振されるレーザがSBSの発生を抑制するのに適するチャープを持った狭光線幅となるように設定した。   The optical transmitter according to the present invention is a direct luminance modulation type optical transmitter according to claim 1, wherein a laser diode that oscillates a narrow beam width laser having an oscillation wavelength of 1.55 μm band is used as the laser diode. The total power of the RF signal input to the laser diode is detected, and based on the detection, the level of the optical signal input to the laser diode is adjusted to control the light modulation degree of direct luminance modulation, and the light modulation degree is obtained from the laser diode. The laser to be oscillated was set to have a narrow beam width with a chirp suitable for suppressing the generation of SBS.

本願発明の光送信器は請求項2記載のように、直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光送信器へ入力されたRF信号と光送信器内で生成される内部信号或は光送信器の外部より入力された外部信号とが合波されてレーザへの入力信号とされ、前記RF信号レベルが検知され、その検知に基づいて前記内部信号或は外部信号のレベルが調節されてレーザダイオードに入力される光信号レベルが調節されて直接輝度変調の光変調度が制御され、前記光変調度が、レーザダイオードから発振されるレーザがSBSの発生を抑制するのに適するチャープを持った狭光線幅となるように設定した。この場合、請求項3記載のように内部発信信号或は外部入力信号の周波数をRF信号のレベルに影響がない周波数にすることができる。   The optical transmitter according to the present invention is a direct luminance modulation type optical transmitter according to claim 2, wherein a laser diode that oscillates a narrow beam width laser having an oscillation wavelength of 1.55 μm band is used as the laser diode. The RF signal input to the optical signal and the internal signal generated in the optical transmitter or the external signal input from the outside of the optical transmitter are combined to form an input signal to the laser, and the RF signal level is detected. Then, based on the detection, the level of the internal signal or external signal is adjusted, the level of the optical signal input to the laser diode is adjusted, and the light modulation degree of direct luminance modulation is controlled. The laser oscillated from the laser diode was set to have a narrow beam width with a chirp suitable for suppressing the generation of SBS. In this case, the frequency of the internal transmission signal or the external input signal can be set to a frequency that does not affect the level of the RF signal.

本願発明の光送信器は請求項4記載のように、直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光伝送システムのヘッドエンドのシグナルプロセッサへ入力されるRF信号のレベルが低下或は遮断されたときに当該シグナルプロセッサに擬似信号が送出されてシグナルプロセッサが通常通り作動し、入力レベル低下時或は遮断時でもシグナルプロセッサに入力される信号レベルが正常時と同様に保持され、その入力信号により直接輝度変調の光変調度が制御され、その入力信号レベルが、レーザダイオードから発振されるレーザがSBSを抑制するのに適するチャープを持った狭光線幅となるように設定した。この場合、請求項5記載のように、擬似信号を入力レベル低下或は遮断となったRF信号と同一周波数及び同一レベルとすることができる。   The optical transmitter according to the present invention is a direct luminance modulation type optical transmitter as described in claim 4, wherein a laser diode that oscillates a narrow beam width laser having an oscillation wavelength of 1.55 μm band is used as the laser diode. When the level of the RF signal input to the head-end signal processor is lowered or cut off, a pseudo signal is sent to the signal processor and the signal processor operates normally, even when the input level is lowered or cut off. The signal level input to the signal processor is maintained in the same manner as normal, and the light modulation degree of direct luminance modulation is controlled by the input signal, and the laser oscillated from the laser diode suppresses SBS by the input signal level. It was set to have a narrow beam width with a suitable chirp. In this case, as described in claim 5, the pseudo signal can have the same frequency and the same level as the RF signal whose input level is reduced or cut off.

本願発明の光送信システムは請求項6記載のように、FTTHシステム或はFTTOシステム等の光通信システムにおけるセンターや中継局等の光送信器に前記いずれかに記載の光送信器を使用したものである。   As described in claim 6, the optical transmission system of the present invention uses any one of the above optical transmitters as an optical transmitter such as a center or a relay station in an optical communication system such as an FTTH system or an FTTO system. It is.

本件出願の請求項1〜5記載の光送信器は次のような効果がある。
1.直接輝度変調型であり、レーザダイオードが発振波長1.55μm帯の狭光線幅レーザを発振するものであるため次のような効果がある。
(1)広い帯域伝送が可能であり、近年需要の高まっているBS・CS−IF帯の一括送信が可能となる。
(2)光ファイバ内での伝送損失が少なく長距離伝送が可能となり、多分配が可能になる。
(3)外部変調方式の光送信器に比べて安価であり、FTTHシステム或はFTTOシステムへの導入コストの削減が可能となる。
(4)狭光線幅レーザを発振するため1.55μm帯の直接輝度変調で問題となる波長分散の影響による2次歪の防止、2次歪による映像品質の劣化も防止できる。
2.光送信器へ入力されるRF信号の全電力を検知し、検知されたRF信号電力に基づいてレーザダイオードが適度のチャープを持つのに適するようにレーザダイオードへの入力信号レベルを増減して光変調度を制御するので次のような効果がある。
(1)狭光線幅レーザが適度のチャープを持つので誘導ブリリアン散乱の影響を受けにくく画像が品質劣化しにくい。
(2)1波(1ch)当りの変調度(信号レベル)が上がることにはならないため、信号受信器側である光/電気変換機の出力信号レベルが光送信器の入力波数及びレベルによって変動することがない。このため、FTTHシステムや或はFTTOシステムのように加入者宅に光受信器が設置されており、しかも光受信器からTVまでの機器接続がどのようになっているか把握できない場合であっても、最終的にTVへ伝送されるまでに信号が品質劣化することがない。また、受信器側に制御機能を追加するとか使用される光送信器(全信号電力制御)に対応している専用の光受信器を設ける必要がないためコスト高になることがなく、FTTHシステムやFTTOシステムに導入し易い。
(4)適度なチャープを発生させることで高パワーの光信号を入射しても、ブリリアン散乱の影響を受けにくく、安定した光伝送サービスが可能となる。
The optical transmitter according to claims 1 to 5 of the present application has the following effects.
1. Since it is a direct luminance modulation type and the laser diode oscillates a narrow beam width laser having an oscillation wavelength band of 1.55 μm, the following effects are obtained.
(1) Wide band transmission is possible, and collective transmission in the BS / CS-IF band, which has been increasing in demand in recent years, is possible.
(2) Long-distance transmission is possible with little transmission loss in the optical fiber, and multiple distribution becomes possible.
(3) It is less expensive than an external modulation type optical transmitter, and the introduction cost to the FTTH system or the FTTO system can be reduced.
(4) Since a narrow beam width laser is oscillated, it is possible to prevent secondary distortion due to the influence of chromatic dispersion, which is a problem in direct luminance modulation in the 1.55 μm band, and it is also possible to prevent image quality deterioration due to secondary distortion.
2. The total power of the RF signal input to the optical transmitter is detected, and based on the detected RF signal power, the input signal level to the laser diode is increased or decreased so that the laser diode is suitable to have an appropriate chirp. Since the modulation degree is controlled, the following effects are obtained.
(1) Since a narrow beam width laser has an appropriate chirp, it is not easily affected by stimulated Brillouin scattering, and the quality of an image is unlikely to deteriorate.
(2) Since the modulation degree (signal level) per wave (1ch) does not increase, the output signal level of the optical / electrical converter on the signal receiver side varies depending on the input wave number and level of the optical transmitter. There is nothing to do. For this reason, even if an optical receiver is installed at the subscriber's home as in the FTTH system or the FTTO system, and it is not possible to grasp how the equipment is connected from the optical receiver to the TV. The signal does not deteriorate in quality until it is finally transmitted to the TV. Further, there is no need to add a control function on the receiver side or to provide a dedicated optical receiver corresponding to the optical transmitter (all signal power control) to be used. And easy to install in FTTO system.
(4) By generating an appropriate chirp, even if a high-power optical signal is incident, it is not easily affected by Brillouin scattering, and a stable optical transmission service is possible.

本願発明の請求項2記載の光送信器は、光送信器へ入力されたRF信号と光送信器内で生成される内部信号もしくは光送信器の外部より入力された外部信号とを合波してレーザへの入力信号とし、その合波信号のレベルを調節することにより直接輝度変調の光変調度を制御し、前記合波信号レベルが、レーザダイオードから発振されるレーザがSBSを抑制するのに適するチャープを持った狭光線幅となるように設定したので、前記効果の他に、光送信器へ入力されるRF信号のレベル変動に拘わらず常にSBSを抑制するのに適するチャープを持った狭光線幅レーザが発振され、SBSの影響を受けにくく画像品質が劣化しにくくなる、という効果がある。   The optical transmitter according to claim 2 of the present invention combines an RF signal input to the optical transmitter and an internal signal generated in the optical transmitter or an external signal input from the outside of the optical transmitter. By controlling the level of the combined signal as an input signal to the laser, the light modulation degree of direct luminance modulation is controlled, and the combined signal level suppresses SBS by the laser oscillated from the laser diode. In addition to the above effects, the chirp is always suitable for suppressing SBS regardless of the fluctuation in the level of the RF signal input to the optical transmitter. The narrow beam width laser is oscillated, and the image quality is hardly deteriorated due to being hardly affected by SBS.

本願発明の請求項3記載の光送信器は、請求項2記載の光送信器における内部信号或は外部信号の周波数がRF信号のレベルに影響がない周波数としたので、これら信号を光送信器の外部より入力された外部信号或いは内部信号と合波してレーザへの入力信号としてもRF信号に悪影響が無い。   In the optical transmitter according to claim 3 of the present invention, the frequency of the internal signal or the external signal in the optical transmitter according to claim 2 is set to a frequency that does not affect the level of the RF signal. There is no adverse effect on the RF signal even if the signal is combined with an external signal or an internal signal input from the outside of the laser and input to the laser.

本願発明の請求項4記載の光送信器は、光伝送システムのヘッドエンドのSPへのRF信号の入力レベルが低下或は遮断されたときに当該SPに無変調搬送波または他の信号に影響を与えない変調搬送波の擬似信号を送出してSPを通常通り作動させて、入力レベル低下時或は遮断時でもSPから光送信器に入力される信号レベルを正常時と同様に保持し、その入力信号により直接輝度変調の光変調度を制御し、その入力信号レベルが、レーザダイオードから発振されるレーザがSBSを抑制するのに適するチャープを持った狭光線幅となるように設定したので、前記効果の他に次のような効果もある。即ち、放送終了後に停波もしくは送出信号のレベルが低下しても、光送信器に入力される信号レベルを正常時と同様の状態になり、光送信器の変調度設定がアナログ信号に割合が多くなっている場合に容易に誘導ブリリアン散乱を抑圧することができる、という効果もある。ちなみに、SPにはスケルチ機能があり、放送終了後に停波もしくは送出信号のレベルが低下するとスケルチ機能がONとなって、SPからの出力がOFFになることがある。この場合は光送信器の入力が減ってしまいレーザダイオードの変調度が低下して誘導ブリリアン散乱が発生し伝送特性が劣化する。   In the optical transmitter according to claim 4 of the present invention, when the input level of the RF signal to the SP at the head end of the optical transmission system is lowered or cut off, the unmodulated carrier wave or other signal is affected to the SP. A pseudo signal of a modulated carrier wave that is not applied is transmitted and the SP is operated normally, and the signal level input from the SP to the optical transmitter is maintained as in the normal state even when the input level is lowered or cut off. The light modulation degree of direct luminance modulation is controlled by the signal, and the input signal level is set so that the laser oscillated from the laser diode has a narrow beam width with a chirp suitable for suppressing SBS. In addition to the effects, there are the following effects. That is, even if the level of the stop signal or the transmitted signal decreases after the broadcast ends, the signal level input to the optical transmitter will be in the same state as normal, and the modulation factor setting of the optical transmitter will be in proportion to the analog signal. There is also an effect that the stimulated Brillouin scattering can be easily suppressed when the number is large. Incidentally, the SP has a squelch function, and when the wave stops or the level of the transmission signal decreases after the broadcast ends, the squelch function may be turned on and the output from the SP may be turned off. In this case, the input of the optical transmitter is reduced, the modulation degree of the laser diode is lowered, stimulated Brillouin scattering occurs, and transmission characteristics deteriorate.

本願発明の請求項5記載の光送信器は、前記擬似信号を入力レベルが低下或は遮断したRF信号と同一周波数及び同一レベルにしたため、擬似信号への切替え後も歪特性に変化がなく、RF信号に基いて変調度を制御する場合と同じ状態で変調度を制御することができる。   In the optical transmitter according to claim 5 of the present invention, since the pseudo signal has the same frequency and the same level as the RF signal whose input level is reduced or cut off, the distortion characteristic does not change even after switching to the pseudo signal. The modulation degree can be controlled in the same state as when the modulation degree is controlled based on the RF signal.

本願発明の請求項6記載の光送信システムは、前記光送信器をFTTHシステム或はFTTOシステム等の光通信システムにおけるセンターや中継局等の光送信器が光通信システムに利用したので、それら光送信器の特徴を備えた光送信システムとなる。   In the optical transmission system according to claim 6 of the present invention, the optical transmitter is used in an optical communication system by an optical transmitter such as a center or a relay station in an optical communication system such as an FTTH system or an FTTO system. An optical transmission system having the characteristics of a transmitter is obtained.

(実施形態1)
本発明の光送信器の第1の実施例を図1に基づいて説明する。この実施例の光送信器はレーザダイオード1に発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードを使用し、光送信器2の入力端(RF input)3へ入力されるRF信号の全電力でレーザダイオード1を直接輝度変調する方式である。この場合、前記入力RF信号の一部を分岐器4で分岐して検知器5で検知し、その検知電力で増幅器6の増幅度を増減(制御)して、光送信器2内の発振器7で発振される内部信号のレベルを常に一定に制御し、その制御済みの内部信号を合波器8で前記RF信号(増幅器9、10で増幅されたRF信号)に合波してレーザダイオード1への入力信号とし、レーザダイオード1で直接輝度変調する。前記内部信号のレベル制御はSBSを抑制するのに適するチャープを持った狭光線幅のレーザがレーザダイオード1から発振される変調度となるようにする。レーザダイオード1で直接輝度変調されたRF信号を含む出力信号は光送信器2の出力端(RFoutput)11より外部へ伝送される。
(Embodiment 1)
A first embodiment of the optical transmitter of the present invention will be described with reference to FIG. The optical transmitter of this embodiment uses a laser diode that oscillates a narrow-light-width laser with an oscillation wavelength of 1.55 μm as the laser diode 1, and transmits an RF signal input to the input terminal (RF input) 3 of the optical transmitter 2. This is a method in which the luminance of the laser diode 1 is directly modulated with all the electric power. In this case, a part of the input RF signal is branched by the branching device 4 and detected by the detector 5, and the amplification degree of the amplifier 6 is increased / decreased (controlled) by the detected power, thereby the oscillator 7 in the optical transmitter 2. The level of the internal signal oscillated at is always controlled to be constant, and the controlled internal signal is combined with the RF signal (the RF signal amplified by the amplifiers 9 and 10) by the multiplexer 8 so that the laser diode 1 As an input signal, the laser diode 1 directly modulates the luminance. The level control of the internal signal is such that a narrow beam width laser having a chirp suitable for suppressing SBS has a modulation degree oscillated from the laser diode 1. An output signal including an RF signal directly luminance-modulated by the laser diode 1 is transmitted to the outside from an output terminal (RFoutput) 11 of the optical transmitter 2.

前記レーザダイオード1には例えばEC−LDを使用することができる。EC−LDの光線幅は400kHz程度であり、本発明で実用化可能な狭光線幅の光信号が得られる。DFB−LDの光線幅は数MHz(約3MHz程度)と広いが、最近はDFB−LDの狭線幅化が進められているため、近い将来はDFB−LDも本発明に使用可能となる。   For the laser diode 1, for example, an EC-LD can be used. The light width of the EC-LD is about 400 kHz, and an optical signal having a narrow light width that can be put to practical use in the present invention can be obtained. The beam width of DFB-LD is as wide as several MHz (about 3 MHz). However, since the line width of DFB-LD has been recently reduced, DFB-LD can be used in the present invention in the near future.

本願発明では前記内部発振信号の代わりに外部信号、例えばパイロット信号を使用することもできる。この場合は光送信器2へ入力されるRF信号レベルを検知し、その検知レベルに基づいて外部信号レベルをSBSを抑制するのに適するチャープを持った狭光線幅のレーザがレーザダイオード1から発振される変調度となるように制御する。この場合は、受信器側で利用するRF信号のレベルを変化させること無く変調度を制御することができる。   In the present invention, an external signal such as a pilot signal can be used instead of the internal oscillation signal. In this case, the RF signal level input to the optical transmitter 2 is detected, and a laser with a narrow beam width having a chirp suitable for suppressing SBS from the external signal level is oscillated from the laser diode 1 based on the detected level. It controls so that it may become a modulation degree. In this case, the modulation degree can be controlled without changing the level of the RF signal used on the receiver side.

(実施形態2)
本発明の光送信器の第2の実施例を図2、3に基づいて説明する。この光送信器も直接輝度変調方式であり、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードを使用する。近年のFTTHシステムの伝送方法ではアナログ信号とデジタル信号の双方が伝送されている。この場合、アナログ信号の入力レベルがデジタル信号の入力レベルよりも高いためアナログ信号の方が変調度にかかわる割合が多い。CATVシステムではアナログ信号を伝送するときはヘッドエンドに自動利得調節(AGC)付きのシグナルプロセッサ(SP:図3)が設置されているため昼間の番組放送時には光送信器への入力レベルはほぼ一定である。しかし、深夜になると、アナログ信号を使用した番組は放送局によっては放送終了後に停波もしくは送信信号のレベルを低くすることがある。通常、SPには入力レベルが所定以下になると入力信号が無いと判断して出力をOFFにするスケルチ機能がついている。このため、前記のように停波もしくは送信信号がレベル低下して光送信器の入力が低減するとレーザダイオードの変調度が低下してSBSが発生し、伝送特性が低下する(図3)。図2に示す第2の実施形態の光送信器はこのような状態においてもレーザダイオードの変調度が低下せず、SBSが発生しにくく、伝送特性が低下しにくくなるようにしたものである。
(Embodiment 2)
A second embodiment of the optical transmitter of the present invention will be described with reference to FIGS. This optical transmitter is also a direct luminance modulation method, and a laser diode that oscillates a narrow beam width laser with an oscillation wavelength of 1.55 μm band is used as the laser diode. In recent FTTH system transmission methods, both analog signals and digital signals are transmitted. In this case, since the input level of the analog signal is higher than the input level of the digital signal, the analog signal has a higher ratio related to the modulation degree. In the CATV system, when an analog signal is transmitted, a signal processor (SP: FIG. 3) with automatic gain control (AGC) is installed at the head end, so that the input level to the optical transmitter is almost constant during the daytime program broadcast. It is. However, at midnight, a program using an analog signal may stop the wave or lower the level of the transmission signal after the broadcast ends depending on the broadcasting station. Normally, the SP has a squelch function that determines that there is no input signal when the input level falls below a predetermined level and turns off the output. For this reason, as described above, when the level of the wave stop or the transmission signal is reduced and the input of the optical transmitter is reduced, the modulation degree of the laser diode is reduced, SBS is generated, and transmission characteristics are deteriorated (FIG. 3). The optical transmitter of the second embodiment shown in FIG. 2 is configured such that even in such a state, the modulation degree of the laser diode does not decrease, SBS is unlikely to occur, and transmission characteristics are unlikely to deteriorate.

図3の実施形態では停波時もしくはレベル低下時にSPに擬似信号を送って、SPのスケルチ機能が動作せずSPが正常時と同様に動作するようにした。そのため、例えば、SPのスケルチ回路部分に切替え器などを設けて、この切替え器が停波時もしくはレベル低下時に自動的に擬似信号発生器側に切替わって擬似信号発生器から擬似信号が発生され、それがSPに自動的に送出されるようにする。この擬似信号には光送信器へ入力されていたRF信号(運用信号)と同一周波数及び同レベルの無変調搬送波或は変調搬送波を使用するのが望ましく(図2)、そのようにすることによりRF信号がある場合と同じ状態でダイオード1から適度のチャープの光信号が発振される。ちなみに、停波もレベル低下もしない通常放送時のチャープ幅の広がりは約1.2GHzであったのに対し、VHFの10波(1〜12ch)が停波したときは700MHzであった。この実施形態に基づいて停波時に擬似信号を入力するとチャープ幅が通常時と同様に1.2GHzとなった。   In the embodiment of FIG. 3, a pseudo signal is sent to the SP at the time of a wave stop or a level drop so that the SP squelch function does not operate and the SP operates in the same manner as when it is normal. Therefore, for example, a switch or the like is provided in the squelch circuit portion of the SP, and this switch is automatically switched to the pseudo signal generator when the wave is stopped or the level is lowered to generate a pseudo signal from the pseudo signal generator. , So that it is automatically sent to the SP. It is desirable to use an unmodulated carrier wave or a modulated carrier wave having the same frequency and the same level as the RF signal (operation signal) input to the optical transmitter for this pseudo signal (FIG. 2). An optical signal with an appropriate chirp is oscillated from the diode 1 in the same state as when there is an RF signal. By the way, the spread of the chirp during normal broadcasting without stopping or lowering the level was about 1.2 GHz, whereas it was 700 MHz when 10 VHF waves (1 to 12 ch) stopped. Based on this embodiment, when a pseudo signal is input when the wave is stopped, the chirp width becomes 1.2 GHz as in the normal case.

(光送信システムの実施形態)
本願発明の光送信システムは、FTTHシステム或はFTTOシステム等の光送信システムのセンターや中継局等の光送信器に前記実施形態の光送信器を導入したものである。
(Embodiment of optical transmission system)
The optical transmission system according to the present invention is obtained by introducing the optical transmitter of the above-described embodiment into an optical transmitter such as a center of an optical transmission system such as an FTTH system or an FTTO system or a relay station.

(本件発明の実験例)
本件発明者が実際に開発した光送信器の伝送特性を使用して多チャンネル信号を伝送した実験結果を表1に示す。表1は横軸に伝送路であるファイバの距離を、縦軸に2次歪(CSO)の劣化度合いを示してある。ファイバのない状態を0としてファイバの距離を増やすことによる劣化を確認した。波長分散による影響を受けた場合は主に2次歪の劣化となるため表1には複合2次歪(CSO:Composite Second Order)の測定結果を表示した。表1よりEC−LDは直接変調型ではあるが同じ直接変調型であるDFB−LDに比べて2次歪の劣化が少なく、外部変調器(EXT−MOD)はファイバの距離による影響を余り受けていないことがわかる。
(Experimental example of the present invention)
Table 1 shows the experimental results of transmitting a multi-channel signal using the transmission characteristics of the optical transmitter actually developed by the present inventors. In Table 1, the horizontal axis indicates the distance of the fiber that is the transmission line, and the vertical axis indicates the degree of deterioration of the secondary distortion (CSO). Deterioration due to increasing the fiber distance was confirmed by setting the state of no fiber to zero. When affected by the chromatic dispersion, the second order distortion is mainly deteriorated. Therefore, Table 1 shows the measurement result of the composite second order (CSO). From Table 1, although EC-LD is a direct modulation type, the secondary distortion is less deteriorated than DFB-LD, which is the same direct modulation type, and the external modulator (EXT-MOD) is much affected by the distance of the fiber. You can see that it is not.

Figure 2007243817
Figure 2007243817

本発明の光送信器、光送信システムは、CATV以外のFTTHシステムやFTTOシステムといった光送信システム以外の光通信システムにも利用可能である。   The optical transmitter and optical transmission system of the present invention can also be used for optical communication systems other than optical transmission systems such as FTTH systems and FTTO systems other than CATV.

本発明の光送信器の第1の実施形態を示す説明図。Explanatory drawing which shows 1st Embodiment of the optical transmitter of this invention. 本発明の光送信器の第2の実施形態を示す説明図。Explanatory drawing which shows 2nd Embodiment of the optical transmitter of this invention. 通常のシグナルプロセッサの動作説明図。Operation | movement explanatory drawing of a normal signal processor. 従来のHFC伝送システムの説明図。Explanatory drawing of the conventional HFC transmission system. 従来のFTTH伝送システムの説明図。Explanatory drawing of the conventional FTTH transmission system. (a)は外部変調方式の説明図、(b)は外部変調方式と波長分散による伝送後の時間差の様子を示す説明図。(A) is explanatory drawing of an external modulation system, (b) is explanatory drawing which shows the mode of the time difference after transmission by an external modulation system and wavelength dispersion. (a)、(b)は直接輝度変調方式の説明図。(A), (b) is explanatory drawing of a direct luminance modulation system. チャーピング現象と波長分散による伝送後の時間差の様子を示す説明図。Explanatory drawing which shows the mode of the time difference after transmission by a chirping phenomenon and wavelength dispersion. (a)は1.31μm帯レーザ伝送時の波長分散による伝送後の時間差の様子を示す説明図、(b)は1.55μm帯レーザ伝送時の波長分散による伝送後の時間差の様子を示す説明図。(A) is explanatory drawing which shows the mode of the time difference after transmission by the wavelength dispersion at the time of 1.31 micrometer band laser transmission, (b) is explanatory drawing which shows the mode of the time difference after transmission by the wavelength dispersion at the time of 1.55 micrometer band laser transmission. 全信号電力制御方式のブロック説明図。Block explanatory diagram of the all signal power control method. 光送信器への入力信号中の任意信号(パイロット信号)検出型制御ブロックの構成図。The block diagram of the arbitrary signal (pilot signal) detection type control block in the input signal to an optical transmitter. 加入者側の接続状況説明図。FIG. 3 is a connection state explanatory diagram on the subscriber side. 光受信器側における任意信号(パイロット信号)検出型制御ブロックの構成図。The block diagram of the arbitrary signal (pilot signal) detection type | mold control block in the optical receiver side.

符号の説明Explanation of symbols

1 レーザダイオード
2 光送信器
3 光送信器の入力端(RF input)
4 分岐器
5 検知器
6 増幅器
7 発振器
8 合波器
9、10 RF信号用の増幅器
11 送信器の出力端(RF output)

1 Laser diode 2 Optical transmitter 3 Optical transmitter input terminal (RF input)
4 Branching device 5 Detector 6 Amplifier 7 Oscillator 8 Mux 9, 10 RF signal amplifier 11 Transmitter output (RF output)

Claims (6)

直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光送信器へ入力されるRF信号の全電力が検知され、検知に基づいてレーザダイオードに入力される光信号レベルが調節されて直接輝度変調の光変調度が制御され、前記光変調度が、レーザダイオードから発振されるレーザがSBSの発生を抑制するのに適するチャープを持った狭光線幅となるように設定されたことを特徴とする光送信器。   In a direct luminance modulation type optical transmitter, a laser diode that oscillates a narrow beam width laser with an oscillation wavelength of 1.55 μm is used as the laser diode, and the total power of the RF signal input to the optical transmitter is detected. Based on this, the optical signal level input to the laser diode is adjusted to control the light modulation degree of direct luminance modulation, and the light modulation degree is a chirp suitable for the laser emitted from the laser diode to suppress the occurrence of SBS. An optical transmitter characterized in that it is set so as to have a narrow light beam width. 直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光送信器へ入力されたRF信号と光送信器内で生成される内部信号或は光送信器の外部より入力された外部信号とが合波されてレーザへの入力信号とされ、前記RF信号レベルが検知され、その検知に基づいて前記内部信号或は外部信号のレベルが調節されてレーザダイオードに入力される光信号レベルが調節されて直接輝度変調の光変調度が制御され、前記光変調度が、レーザダイオードから発振されるレーザがSBSの発生を抑制するのに適するチャープを持った狭光線幅となるように設定されたことを特徴とする光送信器。   In a direct luminance modulation type optical transmitter, a laser diode that oscillates a narrow beam width laser having an oscillation wavelength of 1.55 μm band is used as a laser diode, and an RF signal input to the optical transmitter and an optical transmitter are generated. An internal signal or an external signal input from the outside of the optical transmitter is combined to be an input signal to the laser, and the RF signal level is detected. Based on the detection, the internal signal or the external signal The level of the optical signal input to the laser diode is adjusted to adjust the optical modulation degree of direct luminance modulation, and the optical modulation degree is controlled by the laser oscillated from the laser diode to suppress the generation of SBS. An optical transmitter set to have a narrow beam width with a chirp suitable for the above. 請求項2記載の光送信器において、内部信号或は外部信号の周波数がRF信号のレベルに影響のない周波数であることを特徴とする光送信器。   3. The optical transmitter according to claim 2, wherein the frequency of the internal signal or the external signal is a frequency that does not affect the level of the RF signal. 直接輝度変調型の光送信器において、レーザダイオードに発振波長1.55μm帯の狭光線幅レーザを発振するレーザダイオードが使用され、光伝送システムのヘッドエンドのシグナルプロセッサへ入力されるRF信号のレベルが低下或は遮断されたときに当該シグナルプロセッサに擬似信号が送出されてシグナルプロセッサが通常通り作動し、入力レベル低下時或は遮断時でもシグナルプロセッサに入力される信号レベルが正常時と同様に保持され、その入力信号により直接輝度変調の光変調度が制御され、その入力信号レベルが、レーザダイオードから発振されるレーザがSBSを抑制するのに適するチャープを持った狭光線幅となるように設定されたことを特徴とする光送信器。   In a direct luminance modulation type optical transmitter, a laser diode that oscillates a narrow beam width laser with an oscillation wavelength of 1.55 μm is used as the laser diode, and the level of the RF signal input to the signal processor at the head end of the optical transmission system is A pseudo signal is sent to the signal processor when it is lowered or shut down, and the signal processor operates normally. Even when the input level drops or shuts down, the signal level input to the signal processor remains the same as when it is normal. The light modulation degree of direct luminance modulation is controlled by the input signal, and the input signal level is set so that the laser oscillated from the laser diode has a narrow beam width with a chirp suitable for suppressing SBS. An optical transmitter. 請求項4記載の光送信器において、擬似信号が入力レベル低下或は遮断となったRF信号と同一周波数及び同一レベルであることを特徴とする光送信器。   5. The optical transmitter according to claim 4, wherein the pseudo signal has the same frequency and the same level as the RF signal whose input level is reduced or cut off. FTTHシステム或はFTTOシステム等の光通信システムにおけるセンターや中継局等の光送信器が請求項1乃至請求項5のいずれかに記載の光送信器であることを特徴とする光通信システム。
An optical communication system, wherein an optical transmitter such as a center or a relay station in an optical communication system such as an FTTH system or an FTTO system is the optical transmitter according to any one of claims 1 to 5.
JP2006066306A 2006-03-10 2006-03-10 Direct luminance modulation type optical transmitter and optical communication system using the same Active JP4796872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066306A JP4796872B2 (en) 2006-03-10 2006-03-10 Direct luminance modulation type optical transmitter and optical communication system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066306A JP4796872B2 (en) 2006-03-10 2006-03-10 Direct luminance modulation type optical transmitter and optical communication system using the same

Publications (2)

Publication Number Publication Date
JP2007243817A true JP2007243817A (en) 2007-09-20
JP4796872B2 JP4796872B2 (en) 2011-10-19

Family

ID=38588857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066306A Active JP4796872B2 (en) 2006-03-10 2006-03-10 Direct luminance modulation type optical transmitter and optical communication system using the same

Country Status (1)

Country Link
JP (1) JP4796872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169943A (en) * 2011-02-15 2012-09-06 Miharu Communications Co Ltd Sbs reduction and distortion restriction method in optical signal transmission and optical transmitter in optical signal transmission system
US10050283B2 (en) 2012-06-22 2018-08-14 Centre National De La Recherche Scientifique (C.N.R.S) Process for preparing nanoparticles of a catalyst for cathodic reduction of dioxygen in the presence of methanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152523A (en) * 1992-11-05 1994-05-31 Aichi Electron Co Ltd Electrical-to-optical transducer division multiplex light transmission system
JPH0870280A (en) * 1994-08-29 1996-03-12 Furukawa Electric Co Ltd:The Optical modulation control method for optical transmitter
JP2004032177A (en) * 2002-06-24 2004-01-29 Miharu Communications Co Ltd Method of modulating signal for cable television system, and node for cable television system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152523A (en) * 1992-11-05 1994-05-31 Aichi Electron Co Ltd Electrical-to-optical transducer division multiplex light transmission system
JPH0870280A (en) * 1994-08-29 1996-03-12 Furukawa Electric Co Ltd:The Optical modulation control method for optical transmitter
JP2004032177A (en) * 2002-06-24 2004-01-29 Miharu Communications Co Ltd Method of modulating signal for cable television system, and node for cable television system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169943A (en) * 2011-02-15 2012-09-06 Miharu Communications Co Ltd Sbs reduction and distortion restriction method in optical signal transmission and optical transmitter in optical signal transmission system
US10050283B2 (en) 2012-06-22 2018-08-14 Centre National De La Recherche Scientifique (C.N.R.S) Process for preparing nanoparticles of a catalyst for cathodic reduction of dioxygen in the presence of methanol

Also Published As

Publication number Publication date
JP4796872B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR101523396B1 (en) Method and apparatus for low chirp transmitter for optical fiber communications
JP4668164B2 (en) Laser light transmission system directly modulated by phase modulation
US6535315B1 (en) Optical fiber transmitter for simultaneously suppressing stimulated brillouin scattering and self/external-phase modulation-induced nolinear distortions in a long-distance broadband distribution system
EP3132548B1 (en) Smart receivers and transmitters for catv networks
JPH07193537A (en) Noise level reduction system
JPWO2005088877A1 (en) Optical transmitter and optical transmission system
US20180212681A1 (en) Optical communication device, optical communication system, and optical communication method
KR20060009388A (en) Optical communication system with suppressed sbs
JP4796872B2 (en) Direct luminance modulation type optical transmitter and optical communication system using the same
JP6201140B2 (en) Electro-optical converter
WO2020123944A1 (en) Automatic bias control of an optical transmitter
US11320675B2 (en) Automatic bias control of an optical transmitter
KR20060016808A (en) Optical communication system with suppressed sbs
JPH11196054A (en) Optical communication network
WO2020158911A1 (en) Optical transmission system and carrier monitoring device
US11294206B2 (en) Performance prediction and maintenance of an optical transmitter
JP4912971B2 (en) Optical transmitter and optical transmission system
JP7154047B2 (en) Optical analog signal transmission line
JPH0969814A (en) Optical communication system
KR200475491Y1 (en) Optical transmitting apparatus in Hybrid Fiber Coaxial and Optical transmitting module including the same
JP5116859B2 (en) SBS generation reduction and distortion generation suppression method in optical signal transmission, and optical transmitter in optical signal transmission system
JP4607525B2 (en) Optical fiber distribution system and optical transmitter
JP2007053672A (en) Optical transmission apparatus
YONEDA et al. Erbium-doped fiber amplifiers for all-fiber video distribution (AFVD) systems
JPH07231300A (en) Optical transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250