JP2007240475A - Physical quantity distribution detector - Google Patents

Physical quantity distribution detector Download PDF

Info

Publication number
JP2007240475A
JP2007240475A JP2006066979A JP2006066979A JP2007240475A JP 2007240475 A JP2007240475 A JP 2007240475A JP 2006066979 A JP2006066979 A JP 2006066979A JP 2006066979 A JP2006066979 A JP 2006066979A JP 2007240475 A JP2007240475 A JP 2007240475A
Authority
JP
Japan
Prior art keywords
conductive polymer
physical quantity
array
polymer fiber
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066979A
Other languages
Japanese (ja)
Inventor
Kiyoshi Akutagawa
清 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006066979A priority Critical patent/JP2007240475A/en
Publication of JP2007240475A publication Critical patent/JP2007240475A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity distribution detector capable of increasing the resolution of physical quantity distribution. <P>SOLUTION: The physical quantity distribution detector includes a conductive polymer fiber arrangement texture 10, comprising an arrangement 11 of conductive polymer fibers extending parallel to each other and an arrangement 12 of conductive polymer fibers, extending parallel to each other in a direction of crossing the arrangement 11; an energizing section 20 in electrical conduction to each conductive polymer fiber; an electrical characteristic detection sections 30 for each of the conductive polymer fibers; and an operational section 40 sectioning the conductive polymer fiber arrangement texture 10 into n×m division regions, including a plurality of crossing regions to define physical quantity for each division region as a matrix constituent element, and applying a matrix operational expression to a detected the electrical characteristic value. When the physical quantities of the division region which is an arrangement of the conductive fibers crossing each other and which includes the arrangement 12 of one conductive polymer fiber, the operational section 40 energizes the arrangement 11 of the other conductive polymer fiber crossing the arrangement 12 of the one conductive polymer fiber and controls the energizing section 20 so that the sensitivity of the division region changes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力等の物理量の分布を検出する物理量分布検出装置の改良に関する。   The present invention relates to an improvement in a physical quantity distribution detection device that detects a distribution of physical quantities such as pressure.

従来から、物理量分布検出装置として、例えば、車両座席の座り心地や靴の履き心地、ベッドの寝心地を評価する評価装置として、圧力が加わる各微小部位毎に圧力分布を計測する圧力分布検出装置が知られている。   Conventionally, as a physical quantity distribution detection device, for example, as an evaluation device for evaluating sitting comfort of a vehicle seat, comfort of shoes, and sleeping comfort of a bed, a pressure distribution detection device that measures a pressure distribution for each minute part to which pressure is applied has been known. Are known.

この従来の圧力分布検出装置では、例えば複数個の圧力検出センサとしての圧電素子をマトリックス状に配設し、圧電素子と圧電素子との間をスイッチング素子を介して接続し、スイッチング手段を制御する複数本の制御線と圧電素子に蓄積された電荷量を読み取る複数本の読み取り線とを設け、スイッチング手段により読み取るべき圧電素子を切り換えて、各圧電素子毎の圧力を計測する圧力分布検出装置が知られている(例えば、特許文献1参照。)。
特公平6−103233号公報
In this conventional pressure distribution detection device, for example, a plurality of piezoelectric elements as pressure detection sensors are arranged in a matrix, and the piezoelectric elements and the piezoelectric elements are connected via switching elements to control the switching means. There is provided a pressure distribution detection device that provides a plurality of control lines and a plurality of reading lines for reading the amount of electric charge accumulated in the piezoelectric elements, switches the piezoelectric elements to be read by the switching means, and measures the pressure for each piezoelectric element. It is known (for example, refer to Patent Document 1).
Japanese Examined Patent Publication No. 6-103233

しかしながら、この従来の物理量分布検出装置としての圧力分布検出装置では、ある所定の面積に加わる圧力を細かく分割して圧力分布の高分解能化を図ろうとする場合や大面積のものに加わる圧力分布を求めようとする場合、マトリックスの構成要素に相当する圧電素子及びスイッチング素子が多数となるという問題点がある。   However, in the pressure distribution detection device as the conventional physical quantity distribution detection device, when the pressure applied to a predetermined area is divided finely to increase the resolution of the pressure distribution, or the pressure distribution applied to the large area When seeking, there is a problem that there are a large number of piezoelectric elements and switching elements corresponding to the components of the matrix.

本発明は、上記の事情に鑑みて為されたもので、その目的とするところは、物理量分布の高分解能化を図ることができる物理量分布検出装置を提供するところにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a physical quantity distribution detecting device capable of increasing the resolution of the physical quantity distribution.

本発明の物理量分布測定装置は、互いに平行に延びる導電性高分子繊維の配列と該配列と交差する方向に互いに平行に延びる導電性高分子繊維の配列とから構成され、前記各導電性高分子繊維に加わる物理量から互いに交差する方向に延びる導電性高分子繊維の各交差領域の物理量の分布を感知する物理量感知手段として用いることが可能な導電性高分子繊維配列組織と、
前記導電性繊維高分子繊維配列組織を構成する各導電性高分子繊維へ通電する通電部と、
前記導電性高分子繊維の各繊維1本毎の電気的特性をそれぞれ検出可能な電気的特性検出部と、
前記導電性高分子繊維配列組織を複数個の交差領域を含むn×mの分割領域に区画して該各分割領域毎の物理量をそれぞれ求めるために、該各分割領域毎の物理量をマトリックス構成要素と定義し、前記電気的特性検出部を用いて各導電性高分子繊維毎に検出された電気的特性値にマトリックス演算式を適用する演算部とを有し、
該演算部は前記マトリックス演算式の解を得るために、互いに交差する導電繊維の配列であって一方の導電性高分子繊維の配列を含む分割領域の物理量を求めるときに該一方の導電性高分子繊維の配列と交差する他方の導電性高分子繊維の配列に通電して当該分割領域の感度が変化するように前記通電部を制御することを特徴とする。
The physical quantity distribution measuring apparatus of the present invention comprises an array of conductive polymer fibers extending in parallel with each other and an array of conductive polymer fibers extending in parallel with each other in a direction intersecting the array, A conductive polymer fiber array structure that can be used as a physical quantity sensing means for sensing a physical quantity distribution in each crossing region of conductive polymer fibers extending in a direction crossing each other from a physical quantity applied to the fiber;
An energization section for energizing each conductive polymer fiber constituting the conductive fiber polymer fiber array structure;
An electrical property detector capable of detecting electrical properties of each of the conductive polymer fibers, and
In order to divide the conductive polymer fiber array structure into n × m divided regions including a plurality of intersecting regions and obtain physical quantities for each divided region, the physical quantities for each divided region are determined as matrix components. And an arithmetic unit that applies a matrix arithmetic expression to the electrical property value detected for each conductive polymer fiber using the electrical property detector.
In order to obtain the solution of the matrix calculation formula, the calculation unit calculates the physical quantity of one of the conductive fibers intersecting each other and including the one conductive polymer fiber, and determines the physical quantity of the one. The current-carrying part is controlled so that the sensitivity of the divided region is changed by energizing the other conductive polymer fiber array intersecting with the molecular fiber array.

好ましくは、分割領域の個数を4個とし、演算部は4×4の正方行列を用いて前記各分割領域毎の物理量を演算するのが望ましい。   Preferably, the number of divided regions is four, and the arithmetic unit calculates a physical quantity for each divided region using a 4 × 4 square matrix.

更には、演算部は、各分割領域毎にこの分割領域を更に細かく4分割することを繰り返して各導電性高分子繊維の各1本毎の交差領域の物理量を求めるのが望ましい。   Further, it is desirable that the calculation unit repeats further dividing this divided region into four for each divided region, and obtains the physical quantity of the intersecting region for each conductive polymer fiber.

その電気的特性値は、導電性高分子繊維の抵抗値であり、その物理量が圧力であるのが望ましい。   The electrical characteristic value is the resistance value of the conductive polymer fiber, and the physical quantity is preferably pressure.

本発明の圧力分布検出方法は、互いに平行に延びる導電性高分子繊維の配列と該配列と交差する方向に互いに平行に延びる導電性高分子繊維の配列とから構成され、前記各導電性高分子繊維に加わる圧力から互いに交差する方向に延びる導電性高分子繊維の各交差領域の物理量の分布を感知する物理量感知手段として用いることが可能な導電性高分子繊維配列組織の少なくとも一方の配列に通電して他方の配列に加わる圧力に基づく抵抗値の変化を検出することにより、各交差領域毎の圧力を求めて導電性高分子繊維配列組織に加わる圧力分布を検出することを特徴とする。   The pressure distribution detection method of the present invention comprises an array of conductive polymer fibers extending in parallel to each other and an array of conductive polymer fibers extending in parallel to each other in a direction crossing the array, and each of the conductive polymers described above. Electricity is passed through at least one array of conductive polymer fiber arrays that can be used as a physical quantity sensing means for sensing the distribution of physical quantities in each crossing region of conductive polymer fibers extending in a direction crossing each other from the pressure applied to the fibers. Then, by detecting a change in resistance value based on the pressure applied to the other array, the pressure distribution applied to the conductive polymer fiber array structure is detected by obtaining the pressure for each crossing region.

本発明によれば、導電性高分子繊維を用いてその各交差領域に加わる物理量の分布を行列式を用いて測定できるので、圧電素子とスイッチング素子との個数に左右されることなく、物理量分布の高分解能化を図ることができるという効果を奏する。   According to the present invention, the distribution of physical quantities applied to each crossing region using conductive polymer fibers can be measured using a determinant, so that the physical quantity distribution is not affected by the number of piezoelectric elements and switching elements. There is an effect that the resolution can be increased.

特に、ソフトウエアプログラムにより交差領域の物理量を求めることにしたから、スイッチの個数を減少させることができる。   In particular, since the physical quantity of the intersection region is determined by a software program, the number of switches can be reduced.

特に、圧力分布の計測の高分解能化を図るのに好適である。   In particular, it is suitable for increasing the resolution of pressure distribution measurement.

以下に、本発明に係わる物理量分布検出装置及び圧力分布検出方法の発明の実施の形態を図面を参照しつつ説明する。   Embodiments of a physical quantity distribution detection device and a pressure distribution detection method according to the present invention will be described below with reference to the drawings.

図1において、10は面状の導電性高分子繊維配列組織である。この導電性高分子繊維配列組織10は互いに平行に延びる導電性高分子繊維の横配列11とこの横配列11に重ね合わされてこれと交差する方向に互いに平行に延びる導電性高分子繊維の縦配列12とから構成されている。その横配列11は例えばN本の導電性高分子繊維11iからなり、縦配列12はM本の導電性高分子繊維12jからなっている。各導電性高分子繊維11i、12jは互いに絶縁されているものとする。また、この導電性高分子繊維11iと導電性高分子繊維12jとの交差領域を符号(i,j)で表す。ここで、添え字iは0からN−1までの整数、添え字jは0からM−1までの整数である。   In FIG. 1, 10 is a planar conductive polymer fiber array structure. The conductive polymer fiber array structure 10 includes a horizontal array 11 of conductive polymer fibers extending in parallel to each other and a vertical array of conductive polymer fibers extending in parallel to each other in a direction crossing the horizontal array 11. 12. The horizontal array 11 is composed of, for example, N conductive polymer fibers 11i, and the vertical array 12 is composed of M conductive polymer fibers 12j. Each conductive polymer fiber 11i, 12j is insulated from each other. Moreover, the intersection area | region of this conductive polymer fiber 11i and the conductive polymer fiber 12j is represented by a code | symbol (i, j). Here, the subscript i is an integer from 0 to N-1, and the subscript j is an integer from 0 to M-1.

また、ここでは、説明の便宜のため、横配列11の導電性高分子繊維の本数と縦配列12の導電性高分子の本数とは同じである(N=M)とし、また、その本数は偶数であり、例えば、8本であるとする。   Here, for convenience of explanation, the number of conductive polymer fibers in the horizontal array 11 is the same as the number of conductive polymers in the vertical array 12 (N = M), and the number is It is assumed that the number is even, for example, eight.

その、導電性高分子繊維11i、12jにはポリピロール、ポリアニリン、スチレンスルホン酸、ポリフェニレンビニレンを含む材料を用いる。この導電性高分子繊維11i、12jは圧力が加わると変形し、この変形により導電率が変化するという電気的特性、この導電性高分子繊維11i、12jに電流を流すと弾力特性が変化するという物理的性質がある。これら例示の導電性高分子繊維11i、12jの導電率は例えば0.5〜500S/cm(ジーメンスパーセンチメートル)である。   For the conductive polymer fibers 11i and 12j, a material containing polypyrrole, polyaniline, styrene sulfonic acid and polyphenylene vinylene is used. The conductive polymer fibers 11i and 12j are deformed when pressure is applied, and the electrical characteristics that the conductivity is changed by the deformation, and the elastic characteristics are changed when a current is passed through the conductive polymer fibers 11i and 12j. Has physical properties. The conductivity of these exemplary conductive polymer fibers 11i and 12j is, for example, 0.5 to 500 S / cm (Siemens per centimeter).

導電性高分子繊維11i、12jの各長さは例えばLであり、各導電性高分子繊維11i、12jの一端部11a、12aには通電部20と電気的特性検出部30とに接続され、他端部11b、12bはそれぞれアースされている。   Each length of the conductive polymer fibers 11i, 12j is, for example, L, and one end portions 11a, 12a of the respective conductive polymer fibers 11i, 12j are connected to the energization unit 20 and the electrical property detection unit 30, The other end portions 11b and 12b are grounded.

その導電性高分子繊維配列組織10は各導電性高分子繊維11i、12jに加わる物理量に基づき互いに交差する方向に延びる導電性高分子繊維11i、12jの各交差領域(i、j)の物理量の分布を感知する物理量感知手段として用いられ、これについては後に詳述する。   The conductive polymer fiber array structure 10 has a physical quantity of each intersection region (i, j) of the conductive polymer fibers 11i, 12j extending in a direction intersecting with each other based on a physical quantity applied to each conductive polymer fiber 11i, 12j. This is used as a physical quantity sensing means for sensing the distribution, which will be described in detail later.

通電部20は導電性繊維高分子繊維配列組織10を構成する各導電性高分子繊維11i、12jへ通電する機能を有し、この通電部20は演算部40によって通電を制御される。電気的特性検出部30は導電性高分子繊維11i、12jの各繊維1本毎の電気的特性をそれぞれ検出可能とされている。   The energization unit 20 has a function of energizing the conductive polymer fibers 11 i and 12 j constituting the conductive fiber polymer fiber array structure 10, and the energization unit 20 is controlled by the operation unit 40. The electrical characteristic detector 30 can detect the electrical characteristics of each of the conductive polymer fibers 11i and 12j.

その通電部20は、例えば、図2に示すように、(N+M)個のスイッチング素子20aと電流制限抵抗20bとから構成されている。その(N+M)個のスイッチング素子20aは演算部40からのオン・オフ信号S1によってオン・オフされ、これによって、導電性高分子繊維11i、12jに一定の電流I1が流される。電気的特性検出部30は、図3に示すように(N+M)個のスイッチング素子30aと基準抵抗30bとバッファ回路30cとアナログデジタルコンバータ30dとから構成されている。その(N+M)個のスイッチング素子30aは演算部40からのオン・オフ信号S2によってオン・オフされる。この電気的特性検出部30はここでは各導電性高分子繊維11i、12jの電気的特性としての抵抗値Rを検出する機能を有する。   For example, as shown in FIG. 2, the energization unit 20 includes (N + M) switching elements 20a and current limiting resistors 20b. The (N + M) switching elements 20a are turned on / off by an on / off signal S1 from the calculation unit 40, whereby a constant current I1 flows through the conductive polymer fibers 11i, 12j. As shown in FIG. 3, the electrical characteristic detector 30 includes (N + M) switching elements 30a, a reference resistor 30b, a buffer circuit 30c, and an analog-digital converter 30d. The (N + M) switching elements 30a are turned on / off by an on / off signal S2 from the arithmetic unit 40. Here, the electrical property detector 30 has a function of detecting the resistance value R as the electrical property of each of the conductive polymer fibers 11i and 12j.

導電性高分子繊維11i、12jの各1本毎についてはその物理的性質は同じであると仮定し、導電性高分子繊維11i、12jに圧力が加わると、導電率が変化するので、1本の導電性高分子繊維の導電率の逆数と長さLとで求まる抵抗値Rを検出すると、1本の導電性高分子繊維に加わる圧力が原理的には求められる。   It is assumed that the physical properties of each of the conductive polymer fibers 11i and 12j are the same, and the conductivity changes when pressure is applied to the conductive polymer fibers 11i and 12j. When the resistance value R obtained by the reciprocal of the electrical conductivity of the conductive polymer fiber and the length L is detected, the pressure applied to one conductive polymer fiber is determined in principle.

1本の導電性高分子繊維をN区間に分割すると仮定すると、1区間当たりの抵抗をRkとすると、
R=ΣRk(kは1からNまでの正の整数)…(1)
として求められる。
Assuming that one conductive polymer fiber is divided into N sections, if the resistance per section is Rk,
R = ΣRk (k is a positive integer from 1 to N) (1)
As required.

抵抗値Rkは圧力値Pk(区間kに加わる圧力)により決まるので、関数fを用いて
Rk=f(Pk) …(2)
として求められる。
Since the resistance value Rk is determined by the pressure value Pk (pressure applied to the section k), Rk = f (Pk) (2) using the function f.
As required.

関数fは、導電性高分子繊維の物理的特性により変化するので、電気的抵抗値から圧力値に換算する場合には、例えば、近似式を用いて求めることができる。   Since the function f varies depending on the physical characteristics of the conductive polymer fiber, the function f can be obtained, for example, using an approximate expression when converting the electrical resistance value into the pressure value.

すなわち、抵抗値Rが求まると、この抵抗値Rを用いて圧力Pに換算することができる。   That is, when the resistance value R is obtained, the resistance value R can be converted into the pressure P using the resistance value R.

電気的特性検出部30は、基準抵抗30bの基準抵抗値をRi、導電性高分子繊維の両端11a−11b間、12a−12b間の抵抗値をRf、各スイッチング素子30aの抵抗値をRs、電源電圧をVとして、導電性高分子繊維の両端11a−11b間、12a−12b間に生じた電圧Vfを検出する。   The electrical property detector 30 has a reference resistance value Ri of the reference resistor 30b, a resistance value between both ends 11a-11b of the conductive polymer fiber, a resistance value between 12a-12b, Rf, and a resistance value of each switching element 30a Rs, Assuming that the power supply voltage is V, a voltage Vf generated between both ends 11a-11b and 12a-12b of the conductive polymer fiber is detected.

この電圧Vfはアナログデジタルコンバータ30dによりデジタル信号に変換されて、演算部40に入力される。   This voltage Vf is converted into a digital signal by the analog-digital converter 30d and input to the arithmetic unit 40.

抵抗値Rfは下記の関係式を用いて電圧Vfから求めることができる。
Vf=V×(Rf+Rs)/(Rf+Rs+Ri)…(3)
よって、各導電性高分子繊維11i、12jの電圧値Vfを計測することにより各導電性高分子繊維毎に抵抗値Rfを求めることができ、この抵抗値Rfが求まれば、導電性高分子繊維11i、12jに加わる圧力を求めることができる。
The resistance value Rf can be obtained from the voltage Vf using the following relational expression.
Vf = V × (Rf + Rs) / (Rf + Rs + Ri) (3)
Therefore, the resistance value Rf can be obtained for each conductive polymer fiber by measuring the voltage value Vf of each conductive polymer fiber 11i, 12j. If this resistance value Rf is obtained, the conductive polymer fiber can be obtained. The pressure applied to the fibers 11i and 12j can be obtained.

ところが、抵抗値Rfとして求まるのは、導電性高分子繊維の長さL当たりの抵抗値Rfであって、導電性高分子繊維の長さLをN区間に分割した区間毎の抵抗値Rkではない。従って、導電性高分子繊維の区間毎の圧力Pkではない。従って、このままでは、導電性高分子繊維の交差領域(i、j)毎の圧力Pijを求めることはできない。   However, the resistance value Rf is obtained as the resistance value Rf per length L of the conductive polymer fiber, and the resistance value Rk for each section obtained by dividing the length L of the conductive polymer fiber into N sections. Absent. Therefore, it is not the pressure Pk for each section of the conductive polymer fiber. Accordingly, the pressure Pij for each intersecting region (i, j) of the conductive polymer fiber cannot be obtained as it is.

そこで、演算部40を、図5に模式的に示すように、導電性高分子繊維配列組織10を複数個の交差領域(i、j)を含むn×mの分割領域に区画して各分割領域毎の物理量(圧力に対応する抵抗値)をそれぞれ求めるために、各分割領域毎の物理量(圧力に対応する抵抗値)をマトリックス構成要素と定義し、電気的特性検出部30を用いて各導電性高分子繊維11i、12j毎に検出された電気的特性値としての抵抗値Rにマトリックス演算式を適用する機能を有するように構成する。   Accordingly, as schematically shown in FIG. 5, the calculation unit 40 divides the conductive polymer fiber array structure 10 into n × m divided regions including a plurality of intersecting regions (i, j), thereby dividing each division. In order to obtain the physical quantity (resistance value corresponding to pressure) for each area, the physical quantity (resistance value corresponding to pressure) for each divided area is defined as a matrix component, and each electrical characteristic detection unit 30 is used to define each physical quantity (resistance value corresponding to pressure). It is configured to have a function of applying a matrix arithmetic expression to a resistance value R as an electrical characteristic value detected for each of the conductive polymer fibers 11i and 12j.

ここでは、説明の便宜のため、分割領域の個数を4個とし、演算部40は4×4の正方行列を用いて各分割領域毎の物理量を演算することとする。ここでは、その四分割領域a00、a01、a10、a11には例えば縦横にそれぞれ偶数本(ここでは4本)の導電性高分子繊維(111〜114、115〜118、121〜124、125〜128)の配列が含まれているとする。また、各分割領域a00、a01、a10、a11に加わる圧力をP00、P01、P10、P11とし、この圧力P00、P01、P10、P11に対応する抵抗値をR00、R01、R10、R11とする。各分割領域a00、a01、a10、a11の抵抗値R00、R01、R10、R11は面状合成抵抗値と考えるべきものであり、各導電性高分子繊維が同じ物理的性質を有すると考えると、縦配列12の導電性高分子繊維12iと横配列11の導電性高分子繊維11jとの線形和で表すことができ、横配列11と縦配列12とに分解して抵抗値を求めたとしても、同じ値を有すると解することができる。 Here, for convenience of explanation, it is assumed that the number of divided regions is four, and the calculation unit 40 calculates a physical quantity for each divided region using a 4 × 4 square matrix. Here, in the quadrants a 00 , a 01 , a 10 and a 11 , for example, an even number (four in this case) of conductive polymer fibers (11 1 to 11 4 , 11 5 to 11 8 ) are arranged vertically and horizontally, respectively. , 12 1 to 12 4 , 12 5 to 12 8 ). Further, the pressure applied to each of the divided regions a 00 , a 01 , a 10 , a 11 is P 00 , P 01 , P 10 , P 11, and the resistance corresponding to the pressures P 00 , P 01 , P 10 , P 11 The values are R 00 , R 01 , R 10 , R 11 . The resistance values R 00 , R 01 , R 10 , R 11 of the divided regions a 00 , a 01 , a 10 , a 11 should be considered as planar composite resistance values, and each conductive polymer fiber has the same physical properties. Can be represented by a linear sum of the conductive polymer fibers 12i in the vertical array 12 and the conductive polymer fibers 11j in the horizontal array 11, and is decomposed into the horizontal array 11 and the vertical array 12. Even if the resistance value is obtained, it can be understood that the resistance value is the same.

すると、図5に示す分割領域a00、a01、a10、a11について、下記の関係式が成り立つ。 Then, the following relational expressions hold for the divided areas a 00 , a 01 , a 10 , and a 11 shown in FIG.

00+R01=Rh0
10+R11=Rh1
00+R10=Rv0
01+R11=Rv1
ここで、抵抗値Rh0は分割領域a00、a01内の横配列11の4本の導電性高分子繊維の抵抗値の和であり、抵抗値Rh1は分割領域a10、a11内の横配列11の4本の導電性高分子繊維の抵抗値の和であり、抵抗値Rv0は分割領域a00とa10内の縦配列12の4本の導電性高分子繊維の抵抗値の和であり、抵抗値Rv1は分割領域a01、a11内の縦配列12の4本の導電性高分子繊維の抵抗値の和であり、これらの抵抗値Rh1〜Rv1はこれらの分割領域内の導電性高分子繊維の各抵抗値を電気的特性検出部30を制御して求めることにより求められる。上記の式を行列式で表現したものが下記の[数1]式である。
R 00 + R 01 = R h0
R 10 + R 11 = R h1
R 00 + R 10 = R v0
R 01 + R 11 = R v1
Here, the resistance value R h0 is the sum of the resistance values of the four conductive polymer fibers in the horizontal array 11 in the divided regions a 00 and a 01 , and the resistance value R h1 is in the divided regions a 10 and a 11 . The resistance value R v0 is the resistance value of the four conductive polymer fibers of the vertical array 12 in the divided regions a 00 and a 10 . The resistance value R v1 is the sum of the resistance values of the four conductive polymer fibers in the longitudinal array 12 in the divided regions a 01 and a 11 , and these resistance values R h1 to R v1 are these Each resistance value of the conductive polymer fiber in the divided region is obtained by controlling the electrical property detector 30. The above expression is expressed by a determinant as the following [Equation 1].

Figure 2007240475
この行列式を用いて、マトリックス構成要素としての抵抗値R00、R01、R10、R11を求めようとしても、クラメールの定理によって行列式の値が「0」となり解が得られない。
Figure 2007240475
Even if an attempt is made to obtain resistance values R 00 , R 01 , R 10 , and R 11 as matrix components using this determinant, the value of the determinant becomes “0” by Kramer's theorem and no solution is obtained. .

例えば、上記の連立方程式について、
00+R01=Rh0とR00+R10=Rv0の式を用いてR00を消去すると、
01−R10=Rh0−Rv0となり、
10+R11=Rh1とR01+R11=Rv1の式を用いてR11を消去すると、
10−R01=Rh1−Rv1となり、
01−R10=Rh0−Rv0とR10−R01=Rh1−Rv1との二式からR01又はR10を求めようとすると、左辺の項が「0」となり、抵抗値R00、R01、R10、R11を求めることができない結果となる。
For example, for the above simultaneous equations,
Clearing the R 00 using the formula R 00 + R 01 = R h0 and R 00 + R 10 = R v0 ,
R 01 −R 10 = R h0 −R v0 ,
Erasing R 11 using the formula R 10 + R 11 = R h1 and R 01 + R 11 = R v1
R 10 −R 01 = R h1 −R v1 ,
When a two equations of R 01 -R 10 = R h0 -R v0 and R 10 -R 01 = R h1 -R v1 attempts to find the R 01 or R 10, "0" left term is, and the resistance value As a result, R 00 , R 01 , R 10 and R 11 cannot be obtained.

そこで、演算部40はマトリックス演算式の解を得るために、互いに交差する導電繊維の配列11、12であって一方の導電性高分子繊維の配列を含む分割領域の物理量を求めるときに一方の導電性高分子繊維の配列12と交差する他方の導電性高分子繊維の配列11に通電して当該分割領域の感度が変化するように通電部20を制御する構成とする。   Therefore, in order to obtain the solution of the matrix calculation formula, the calculation unit 40 is one of the conductive fiber arrays 11 and 12 that intersect each other and calculates the physical quantity of the divided region including the one conductive polymer fiber array. The current-carrying section 20 is controlled so that the other conductive polymer fiber array 11 intersecting the conductive polymer fiber array 12 is energized to change the sensitivity of the divided region.

ここでは、演算部40は、通電部20を制御して、分割領域a11内の縦配列12の4本分の導電性高分子繊維125〜128の分割領域a11の抵抗値R11を求めるために、分割領域a10、a11内の横配列12の4本分の導電性高分子繊維115〜118に矢印で示すように一定電流I1を流す。すると、この一定電流I1を流すことにより、横配列12の4本分の導電性高分子繊維115〜118の弾力特性がそれぞれ変化する。 Here, the arithmetic unit 40 controls the energization unit 20, the resistance value R 11 of the divided region a 11 four duty conductive polymer fibers 12 5-12 8 vertical array 12 in the divided region a 11 Is obtained, a constant current I 1 is supplied to the four conductive polymer fibers 11 5 to 11 8 in the horizontal array 12 in the divided regions a 10 and a 11 as indicated by arrows. Then, by supplying the constant current I 1 , the elasticity characteristics of the four conductive polymer fibers 11 5 to 11 8 in the lateral array 12 are changed.

検出しようとする導電性高分子繊維125〜128と交差する導電性高分子繊維115〜118に通電するとその弾力特性が変化するため、検出しようとする導電性高分子繊維125〜128の変形量が異なることになるので、同じ圧力P11が分割領域a11に加わっていたとしても、検出しようとする導電性高分子繊維の抵抗値R11が異なることになる。 When the conductive polymer fibers 11 5 to 11 8 intersecting with the conductive polymer fibers 12 5 to 12 8 to be detected are energized, their elasticity characteristics change, so that the conductive polymer fibers 12 5 to 12 5 to be detected are changed. Since the deformation amount of 12 8 is different, even if the same pressure P 11 is applied to the divided region a 11 , the resistance value R 11 of the conductive polymer fiber to be detected is different.

例えば、図4(a)に示すように、横方向の導電性高分子繊維Xに電流を流していないとき(I1=0)に圧力Pを加えたときの縦方向の導電性高分子繊維Yの抵抗値をRxとして、次に図4(b)に示すように横方向の導電性高分子繊維Xに電流を流したとき(I1=I1)に同じ圧力Pを加えたときに縦方向の導電性高分子繊維Yの抵抗値がRx’となったとすると、その変化の比γは、
γ=Rx’/Rxである。
For example, as shown in FIG. 4A, the conductive polymer fiber in the vertical direction when pressure P is applied when no current is passed through the conductive polymer fiber X in the horizontal direction (I 1 = 0). When the resistance value of Y is Rx and the same pressure P is applied when a current is passed through the conductive polymer fiber X in the lateral direction (I 1 = I 1 ) as shown in FIG. If the resistance value of the conductive polymer fiber Y in the longitudinal direction is Rx ′, the change ratio γ is
γ = Rx ′ / Rx.

この比γは、加わる圧力Pが一定であっても、流す電流を変えることにより、計測される抵抗値が変化するという意味で、「感度」と表現することもできる。このγは導電性高分子繊維に流す電流と加える圧力とを決めれば、一義的に決定できるので予め求まる。   This ratio γ can also be expressed as “sensitivity” in the sense that even when the applied pressure P is constant, the measured resistance value changes by changing the flowing current. Since γ can be uniquely determined by determining the current to be applied to the conductive polymer fiber and the pressure to be applied, it can be determined in advance.

分割領域a11内の縦配列12の導電性高分子繊維は、図5に示す場合には、4本であるので、分割領域a11内の横配列11の導電性高分子繊維115〜118の4本に同じ電流を流して、分割領域a11の感度を変化させる。各比γは各導電性高分子繊維125〜128について同じであり、圧力は単位面積当たりの力として定義されているので本数が変化して面積が増加しても単位面積当たりの比はγであるからα=γとして、この感度αを用いて、マトリックス演算式を作成すると、[数2]式が得られる。 Conductive polymer fibers of the longitudinal array 12 in the divided region a 11 is, in the case shown in FIG. 5 are the four conductive polymer fibers 11 5-11 of transversely aligned 11 in the divided region a 11 8 four for flowing the same current, changes the sensitivity of the divided areas a 11. Each ratio γ is the same for each conductive polymer fiber 12 5 to 12 8 , and the pressure is defined as a force per unit area, so even if the number changes and the area increases, the ratio per unit area is Since γ, α = γ, and using this sensitivity α, a matrix arithmetic expression is created to obtain [Expression 2].

Figure 2007240475
すなわち、分割領域a00、a01内の横配列11の導電性高分子繊維111〜114と分割領域a10、a11内の横配列11の導電性高分子繊維115〜118の抵抗値を検出するときと、分割領域a00、a10内の縦配列12の導電性高分子繊維121〜124の抵抗値を検出するときとには、いずれの導電性高分子繊維にも通電を行わずに、演算部40は各抵抗値Rh0、Rh1、Rv0を検出する。
Figure 2007240475
That is, the conductive polymer fibers 11 1 to 11 4 in the horizontal array 11 in the divided regions a 00 and a 01 and the conductive polymer fibers 11 5 to 11 8 in the horizontal array 11 in the divided regions a 10 and a 11 are arranged. and when detecting a resistance value, to the time of detecting the resistance value of the divided regions a 00, a 10 conductive vertical array 12 of the polymer fibers 12 1 to 12 4, in any of the conductive polymer fibers In addition, without conducting current, the calculation unit 40 detects the resistance values R h0 , R h1 , R v0 .

分割領域a01、a02内の縦配列12の導電性高分子繊維125〜128の抵抗値を検出するときには、演算部40は通電部20を制御して分割領域a10、a11内の横配列11の4本の導電性高分子繊維115〜118に通電し、その際の分割領域a01、a02内の縦配列12の導電性高分子繊維125〜128の抵抗値Rv1を検出する。 When detecting the resistance value of the conductive polymer fibers 12 5 to 12 8 in the longitudinal array 12 in the divided regions a 01 and a 02 , the arithmetic unit 40 controls the energizing unit 20 to within the divided regions a 10 and a 11 . The four conductive polymer fibers 11 5 to 11 8 in the horizontal array 11 are energized, and the resistance of the conductive polymer fibers 12 5 to 12 8 in the vertical array 12 in the divided regions a 01 and a 02 at that time. The value R v1 is detected.

その[数2]式から抵抗値R11が得られる。 The resistance value R 11 is obtained from the equation [2].

例えば、[数2]式を連立方程式で表現すると、
00+R01=Rh0 …(4−1)
10+R11=Rh1 …(4−2)
00+R10=Rv0 …(4−3)
01+αR11=Rv1…(4−4)
ここで、
10+R11=Rh1の式(4−1)とR00+R10=Rv0の式(4−3)とを用いてR10を消去すると、
11−R00=Rh1−Rv0…(4−5)
式が得られる。
For example, when [Expression 2] is expressed by simultaneous equations,
R 00 + R 01 = R h0 (4-1)
R 10 + R 11 = R h1 (4-2)
R 00 + R 10 = R v0 (4-3)
R 01 + αR 11 = R v1 (4-4)
here,
Clearing the R 10 by using the equation (4-3) of the formula R 10 + R 11 = R h1 and (4-1) R 00 + R 10 = R v0,
R 11 −R 00 = R h1 −R v0 (4-5)
The formula is obtained.

また、R00+R01=Rh0の式(4−1)とR01+αR11=Rv1の式(4−4)とを用いてR01を消去すると、
00−αR11=Rh0−Rv1 …(4−6)
式が得られる。
Further, when R 01 is erased using the equation (4-1) of R 00 + R 01 = R h0 and the equation (4-4) of R 01 + αR 11 = R v1 ,
R 00 −αR 11 = R h0 −R v1 (4-6)
The formula is obtained.

この(4−5)式、(4−6)式を用いてR00を消去すると、
11−αR11=Rh1−Rv0+Rh0−Rv1 …(4−7)
この(6)式を変形すると、
(1−α)R11=(Rh1+Rh0)−(Rv1+Rv0) …(4−8)
式が得られる。
When R 00 is erased using the equations (4-5) and (4-6),
R 11 −αR 11 = R h1 −R v0 + R h0 −R v1 (4-7)
When this equation (6) is transformed,
(1-α) R 11 = (R h1 + R h0 ) − (R v1 + R v0 ) (4-8)
The formula is obtained.

ここで、感度αは事前に演算によって求められた既知の値であり、抵抗値Rv0、Rh0、Rh1、Rv1は計測によって得られた既知の値であるから、分割領域a11の抵抗値R11は(4−8)式を解くことによって得られる。 Here, the sensitivity α is a known value obtained by advance calculation, since the resistance value R v0, R h0, R h1 , R v1 is a known value obtained by the measurement, the divided areas a 11 The resistance value R 11 is obtained by solving the equation (4-8).

分割領域a11の抵抗値R11が求まると、例えば、式(4−2)を解くことにより分割領域a10の電気的抵抗値R10が得られ、式(4−4)を解くことにより分割領域a01の電気的抵抗値R01が求まり、式(4−1)を用いて分割領域a00の電気的抵抗値R00が得られ、全ての分割領域a00、a01、a10、a11に対応する電気的抵抗値R00、R01、R10、R11が得られる。この電気的抵抗値R00、R01、R10、R11は圧力P00、P01、P10、P11に近似式を用いて換算できる。 When the resistance value R 11 of the divided region a 11 is obtained, for example, the electrical resistance value R 10 of the divided regions a 10 obtained by solving the equation (4-2), by solving the equation (4-4) Motomari electrical resistance value R 01 of the divided regions a 01, equation (4-1) is electric resistance value R 00 of the divided regions a 00 using obtained, all the divided areas a 00, a 01, a 10 , A 11 corresponding to electrical resistance values R 00 , R 01 , R 10 , R 11 are obtained. The electrical resistance values R 00 , R 01 , R 10 , and R 11 can be converted to pressures P 00 , P 01 , P 10 , and P 11 using approximate equations.

次に、図6に示すように、分割領域a00、a01を上下に二分割すると共に、分割領域
10、分割領域a11を上下に二分割する。この分割領域を符号a00h0、a01h0、a00h1、a01h1、a10h0、a11h0、a10h1、a11h1で表す。
Next, as shown in FIG. 6, the divided areas a 00 and a 01 are divided into upper and lower parts, and the divided area a 10 and divided area a 11 are divided into upper and lower parts. This divided area is represented by the symbols a 00h0 , a 01h0 , a 00h1 , a 01h1 , a 10h0 , a 11h0 , a 10h1 , a 11h1 .

分割領域a00h0、a01h0、a00h1、a01h1のグループと分割領域a10h0、a11h0
10h1、a11h1のグループとに分けて考え、横配列11の2本の導電性繊維(111、112)、(113、114)、(115、116)、(117、118)毎に抵抗値を測定する。
Divided areas a 00h0, a 01h0, a 00h1 , groups and divided areas of a 01h1 a 10h0, a 11h0,
The two conductive fibers (11 1 , 11 2 ), (11 3 , 11 4 ), (11 5 , 11 6 ), (11 7 ) in the horizontal array 11 are considered separately as a group of a 10h1 and a 11h1. , 11 8 ) to measure the resistance value.

分割領域a01h1の物理量(抵抗値又は圧力)及び分割領域a11h1の物理量(抵抗値又は圧力)を測定するときに、分割領域a01、a11内の縦配列12の4本の導電性高分子繊維125〜128に通電して分割領域a01h1、a11h1の感度を変化させる。 Physical quantity (resistance or pressure) and the physical size of the divided region a 11H1 divided regions a 01H1 when measuring (resistance or pressure), the divided areas a 01, a 4 pieces of conductive high vertical array 12 of 11 The molecular fibers 12 5 to 12 8 are energized to change the sensitivity of the divided regions a 01h1 and a 11h1 .

このようにして、分割領域a00h0、a01h0内の2本の導電性高分子繊維(111、112)、分割領域a00h1、a01h1内の2本の導電性高分子繊維(113、114)、分割領域
10h0、a11h0内の2本の導電性高分子繊維(115、116)、分割領域a10h1、a11h1内の2本の導電性高分子繊維(117、118)の抵抗値を求める。これらの値をそれぞれ、Rh00、Rh01、Rh10、Rh11とする。
In this way, two conductive polymer fibers in the divided regions a 00h0, a 01h0 (11 1 , 11 2), divided areas a 00H1, two conductive polymer fibers in a 01h1 (11 3 , 11 4), the divided areas a 10h0, a 2 pieces of conductive polymer fibers in 11h0 (11 5, 11 6) , divided areas a 10h1, 2 pieces of the conductive polymer fibers in a 11h1 (11 7 , 11 8 ). These values are Rh00 , Rh01 , Rh10 , and Rh11 , respectively.

また、各分割領域a00h0、a01h0、a00h1、a01h1、a10h0、a11h0、a10h1、a11h1の抵抗値をR00h0、R01h0、R00h1、R01h1、R10h0、R11h0、R10h1、R11h1とする。 Further , the resistance values of the divided areas a00h0 , a01h0 , a00h1 , a01h1 , a10h0 , a11h0 , a10h1 , a11h1 are set to R00h0 , R01h0 , R00h1 , R01h1 , R10h0 , R11h0 , Let R10h1 and R11h1 .

すると、分割領域a00h0、a01h0、a00h1、a01h1のグループと分割領域a10h0
11h0、a10h1、a11h1のグループとについて[数3]式、[数4]式が得られる。
Then, the divided areas a 00h0 , a 01h0 , a 00h1 , a 01h1 and the divided areas a 10h0 ,
With respect to the groups a 11h0 , a 10h1 and a 11h1 , [Expression 3] and [Expression 4] are obtained.

Figure 2007240475
Figure 2007240475

Figure 2007240475
Figure 2007240475

[数3]式、[数4]式において、抵抗値R00、R01、R10、R11は分割領域a00
01、a10、a11の値として既に求まっており、[数3]式、[数4]式の行列式の値は「0」ではないので、[数3]式、[数4]式を用いて、分割領域a00h0、a01h0
00h1、a01h1、a10h0、a11h0、a10h1、a11h1の各抵抗値R00h0、R01h0、R00h1、R01h1、R10h0、R11h0、R10h1、R11h1が求められる。
In [Expression 3] and [Expression 4], the resistance values R 00 , R 01 , R 10 , and R 11 are divided regions a 00 ,
Since the values of a 01 , a 10 , and a 11 have already been obtained and the values of the determinants of [Expression 3] and [Expression 4] are not “0”, [Expression 3], [Expression 4] Using the formula, the divided areas a 00h0 , a 01h0 ,
a 00h1, a 01h1, a 10h0 , a 11h0, a 10h1, a respective resistance values of 11h1 R 00h0, R 01h0, R 00h1, R 01h1, R 10h0, R 11h0, R 10h1, R 11h1 is obtained.

同様にして、図7に示すように、分割領域a00、a01を左右に二分割すると共に、分割領域a10、分割領域a11を左右に二分割する。この分割領域を符号a00v0、a00v1
01v0、a01v1、a10v0、a10v1、a11v0、a11v1で表す。
Similarly, as shown in FIG. 7, the divided areas a 00 and a 01 are divided into left and right parts, and the divided areas a 10 and a 11 are divided into right and left parts. This divided area is designated as a 00v0 , a 00v1 ,
a 01v0 , a 01v1 , a 10v0 , a 10v1 , a 11v0 , a 11v1 .

分割領域a00v0、a00v1、a10v0、a10v1のグループと分割領域a01v0、a01v1
11v0、a11v1のグループとに分けて考え、縦配列12の2本の導電性繊維毎に抵抗値を測定する。
Divided areas a 00v0, a 00v1, a 10v0 , groups and divided areas of a 10v1 a 01v0, a 01v1,
The resistance value is measured for each of the two conductive fibers in the longitudinal array 12 in consideration of a group of a 11v0 and a 11v1 .

その際、分割領域a10v1の物理量(抵抗値又は圧力)及び分割領域a11v1の物理量(抵抗値又は圧力)を測定するときに、分割領域a10、a11内の横配列11の4本の導電性高分子繊維115〜118に通電して分割領域a10v1、a11v1の感度を変化させる。 At that time, when measuring the physical quantity of the divided regions a 10v1 (resistance or pressure) and the physical size of the divided region a 11v1 (resistance or pressure), four lateral array 11 in the divided region a 10, a 11 The conductive polymer fibers 11 5 to 11 8 are energized to change the sensitivity of the divided regions a 10v1 and a 11v1 .

このようにして、分割領域a00v0、a10v0内の2本の導電性高分子繊維(121、122)、分割領域a00v1、a10v1内の2本の導電性高分子繊維(123、124)、
分割領域a01v0、a11v0内の2本の導電性高分子繊維(125、126)、分割領域a01v1、a11v1内の2本の導電性高分子繊維(127、128)の抵抗値を求める。これらの値をそれぞれ、Rv00、Rv01、Rv10、Rv11とする。
In this way, two conductive polymer fibers in the divided regions a 00v0, a 10v0 (12 1 , 12 2), divided areas a 00V1, two conductive polymer fibers in a 10v1 (12 3 , 12 4 )
Two conductive polymer fibers in the divided regions a 01v0, a 11v0 (12 5 , 12 6), 2 pieces of the conductive polymer fibers in the divided regions a 01v1, a 11v1 (12 7, 12 8) Find the resistance value. These values are R v00 , R v01 , R v10 , and R v11 , respectively.

また、各分割領域a00v0、a10v0、a00v1、a10v1、a01v0、a11v0、a01v1、a11v1の抵抗値をR00v0、R10v0、R00v1、R10v1、R01v0、R11v0、R01v1、R11v1とする。 Further , the resistance values of the divided areas a 00v0 , a 10v0 , a 00v1 , a 10v1 , a 01v0 , a 11v0 , a 01v1 , a 11v1 are set to R 00v0 , R 10v0 , R 00v1 , R 10v1 , R 01v0 , R 11v0 , Let R01v1 and R11v1 .

すると、分割領域a00v0、a00v1、a10v0、a10v1のグループと分割領域a01v0
01v1、a11v0、a11v1のグループとについて、
Then, a group of divided areas a 00v0 , a 00v1 , a 10v0 , a 10v1 and divided areas a 01v0 ,
About a 01v1 , a 11v0 and a 11v1 groups

[数5]式、[数6]式が得られる。 [Expression 5] and [Expression 6] are obtained.

Figure 2007240475
Figure 2007240475

Figure 2007240475
Figure 2007240475

[数5]式、[数6]式において、抵抗値R00、R01、R10、R11は分割領域a00
01、a10、a11の値として既に求まっており、[数5]式、[数6]式の行列式の値は「0」ではないので、[数5]式、[数6]式を用いて、各分割領域a00v0、a10v0、a00v1、a10v1、a01v0、a11v0、a01v1、a11v1の抵抗値をR00v0、R10v0、R00v1、R10v1、R01v0、R11v0、R01v1、R11v1が得られる。
In [Expression 5] and [Expression 6], the resistance values R 00 , R 01 , R 10 , and R 11 are divided areas a 00 ,
Since the values of a 01 , a 10 , and a 11 have already been obtained and the values of the determinants of [Formula 5] and [Formula 6] are not “0”, [Formula 5], [Formula 6] Using the equation, the resistance values of the divided areas a 00v0 , a 10v0 , a 00v1 , a 10v1 , a 01v0 , a 11v0 , a 01v1 , a 11v1 are set to R 00v0 , R 10v0 , R 00v1 , R 10v1 , R 01v0 , R 11v0 , R 01v1 and R 11v1 are obtained.

各導電性高分子繊維1本当たりの交差領域(i,j)の抵抗値Rijを求めるには、分割領域a00、分割領域a01、分割領域a10、分割領域a11をそれぞれ4分割して、これを繰り返し行う。 In order to obtain the resistance value Rij of the intersecting region (i, j) per each conductive polymer fiber, the divided region a 00 , the divided region a 01 , the divided region a 10 , and the divided region a 11 are each divided into four. Repeat this.

図8はその一例として、分割領域a00を4分割した例が示されており、この図8において、符号a000、a001、a010、a011は分割領域a00の小分割領域を示し、符号R000
001、R010、R011は各分割領域における導電性高分子繊維の2本毎の抵抗値を示している。
FIG. 8 shows an example in which the divided area a 00 is divided into four as an example. In FIG. 8, reference numerals a 000 , a 001 , a 010 , and a 011 denote small divided areas of the divided area a 00. , R 000 ,
R 001 , R 010 , and R 011 indicate resistance values for every two conductive polymer fibers in each divided region.

この抵抗値は、図4に示す4分割領域の各分割領域の抵抗値を用いたと同様の手順で求めることができる。   This resistance value can be obtained in the same procedure as the resistance value of each divided region of the four divided regions shown in FIG.

この場合、図7、図8に示す分割で得られた抵抗値を演算に用いることができ、従って、分割領域a011について縦配列12の2本の導電性高分子繊維の抵抗値R011を求める際に、分割領域a010、a011内の横配列11の2本の導電性高分子繊維113、114に通電して縦配列12の2本の導電性高分子繊維(123、124)の抵抗値Rv01のみを計測する。 In this case, the resistance values obtained by the division shown in FIGS. 7 and 8 can be used for the calculation. Therefore, the resistance values R 011 of the two conductive polymer fibers in the longitudinal array 12 with respect to the divided region a 011 are obtained. When the two conductive polymer fibers 11 3 and 11 4 in the horizontal array 11 in the divided regions a 010 and a 011 are energized to obtain the two conductive polymer fibers (12 3 , Only the resistance value R v01 of 12 4 ) is measured.

すると、下記の[数7]式が得られる。   Then, the following [Expression 7] is obtained.

Figure 2007240475
なお、感度αは通電される導電性高分子繊維の本数によらない係数である。
Figure 2007240475
The sensitivity α is a coefficient that does not depend on the number of conductive polymer fibers to be energized.

この[数7]式を解くことにより、各小分割領域a000、a001、a010、a011についての分割抵抗R000、R001、R010、R011が得られる。 By solving this [Equation 7], the division resistances R 000 , R 001 , R 010 , and R 011 for each of the small division regions a 000 , a 001 , a 010 , and a 011 can be obtained.

この図5〜図8に示す分割を繰り返すと、最終的に、導電性高分子繊維各1本当たりの交差領域(i、j)についての抵抗、すなわち、圧力を求めることができる。   When the division shown in FIGS. 5 to 8 is repeated, finally, the resistance, i.e., the pressure, for the crossing region (i, j) per each conductive polymer fiber can be obtained.

すなわち、導電性高分子繊維配列組織10のそれぞれに圧力が加わったとき、各交差領域(i、j)毎に圧力を計測できることになり、圧力分布の高分解能化を図ることができる。   That is, when a pressure is applied to each of the conductive polymer fiber array structures 10, the pressure can be measured for each intersection region (i, j), and the resolution of the pressure distribution can be increased.

演算部40には、上記の処理手順を繰り返し実行するプログラムが組み込まれている。   The arithmetic unit 40 incorporates a program that repeatedly executes the above processing procedure.

次に、この演算部40による処理手順を図9に示すフローチャートを用いて説明する。   Next, the processing procedure by the calculation unit 40 will be described with reference to the flowchart shown in FIG.

まず、図5に示すように、領域を縦横に2分割して合計4分割の分割領域についての抵抗値をそれぞれ求める(S.1)。ついで、図6に示すように、分割領域を上下に2分割して各分割領域の抵抗値を求める(S.2)。次に、図7に示すように、分割領域を左右に2分割して各分割領域の抵抗値を求める(S.3)。ついで、各導電性高分子繊維の1本当たりの交差領域(i,j)について、抵抗が求まったか否かを判断する(S.4)。   First, as shown in FIG. 5, the region is divided into two vertically and horizontally, and the resistance values for the divided regions in total are obtained (S.1). Next, as shown in FIG. 6, the divided region is divided into two in the vertical direction, and the resistance value of each divided region is obtained (S.2). Next, as shown in FIG. 7, the divided area is divided into left and right parts, and the resistance value of each divided area is obtained (S.3). Next, it is determined whether or not resistance has been obtained for each crossing region (i, j) of each conductive polymer fiber (S.4).

S.4において、イエスの場合には、S.5に移行し、抵抗値と圧力との関数関係を用いて、抵抗値を圧力に換算する。S.4において、ノーの場合、各導電性高分子繊維の1本当たりの交差領域(i,j)について、抵抗値が求まるまでS.1〜S.4を繰り返す。   S. 4, in the case of yes, S. The process proceeds to 5, and the resistance value is converted into pressure using the functional relationship between the resistance value and the pressure. S. 4, in the case of No, S.D. is obtained until the resistance value is obtained for the crossing region (i, j) per one of the conductive polymer fibers. 1-S. Repeat 4

そして、S.5における圧力値への換算後、所定時間が経過するまで待機し(S.6)、所定時間経過後、再び、S.1〜S.5の処理を繰り返す。これにより、一定時間間隔で、導電性高分子繊維配列組織10に加わる圧力の分布を計測できる。   And S. 5 until the predetermined time has elapsed after conversion to the pressure value (S.6). 1-S. Repeat step 5. Thereby, the distribution of the pressure applied to the conductive polymer fiber array structure 10 can be measured at regular time intervals.

本発明の圧力分布検出方法は、互いに平行に延びる導電性高分子繊維の配列とこの配列と交差する方向に互いに平行に延びる導電性高分子繊維の配列とから構成され、各導電性高分子繊維に加わる圧力から互いに交差する方向に延びる導電性高分子繊維の各交差領域の物理量の分布を感知する物理量感知手段として用いることが可能な導電性高分子繊維配列組織の少なくとも一方の配列に通電して他方の配列に加わる圧力に基づく抵抗値の変化を検出することにより、各交差領域毎の圧力を求めて導電性高分子繊維配列組織に加わる圧力分布を検出するのに用いることができる。   The pressure distribution detection method of the present invention comprises an array of conductive polymer fibers extending in parallel to each other and an array of conductive polymer fibers extending in parallel to each other in a direction crossing the array, and each conductive polymer fiber Energizing at least one array of conductive polymer fiber arrays that can be used as a physical quantity sensing means for sensing the distribution of physical quantities in each crossing region of conductive polymer fibers extending in a direction crossing each other from the pressure applied to the conductive polymer fibers. By detecting a change in resistance value based on the pressure applied to the other array, the pressure for each crossing region can be obtained and used to detect the pressure distribution applied to the conductive polymer fiber array structure.

この圧力分布検出方法は、例えば、エアバッグの展開制御時に、乗員の怪我を防止するため、乗員の姿勢によりエアーバッグの展開強度を制御するに際して、乗員の姿勢を概略検出するのに用いられる。この場合、乗員姿勢の検出を座面圧力の重心位置を求めることにより行い、エアーバッグ展開時の乗員姿勢を求めるには、乗員の重心位置がシートの前後方向について概略求まれば良いので、導電性高分子繊維の各1本当たりの交差領域(i、j)について、圧力分布を求める必要はない。すなわち、圧力分布について、高分解能化を図る必要はない。また、シート左右方向についての圧力分布についても低分解能で十分である。   This pressure distribution detection method is used, for example, to roughly detect the occupant's posture when controlling the deployment strength of the airbag according to the occupant's posture in order to prevent injury to the occupant during airbag deployment control. In this case, the position of the center of gravity of the seat pressure is determined by detecting the position of the occupant, and the position of the center of gravity of the occupant can be roughly determined in the longitudinal direction of the seat in order to determine the position of the occupant when the airbag is deployed. It is not necessary to obtain the pressure distribution for the intersecting region (i, j) for each of the conductive polymer fibers. That is, it is not necessary to increase the resolution of the pressure distribution. Also, a low resolution is sufficient for the pressure distribution in the lateral direction of the seat.

これに対して、ドライバーポジションの最適化を図るためには、シートの高さや傾き、シートの前後位置の制御を必要とするため、シート面上での圧力分布の高分解能化を図る必要がある。   On the other hand, in order to optimize the driver position, it is necessary to control the height and inclination of the seat and the front and rear position of the seat, so it is necessary to increase the resolution of the pressure distribution on the seat surface. .

従って、この圧力分布検出方法は、用途に応じて分解能を変更して用いることもできる。   Therefore, this pressure distribution detection method can be used by changing the resolution according to the application.

本発明に係わる物理量分布検出装置のブロック回路図である。It is a block circuit diagram of the physical quantity distribution detection apparatus concerning this invention. 図1に示す通電部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the electricity supply part shown in FIG. 図1に示す電気的特性検出部のブロック図である。It is a block diagram of the electrical property detection part shown in FIG. 本発明の演算に用いる感度の求め方の一例を説明するための図であって、(a)は縦方向の導電性高分子繊維の抵抗値を求める際の横方向の導電性高分子繊維への非通電状態を示し、(b)は縦方向の導電性高分子繊維の抵抗値を求める際の横方向の導電性高分子繊維への通電状態を示す。It is a figure for demonstrating an example of how to obtain | require the sensitivity used for the calculation of this invention, Comprising: (a) is to the conductive polymer fiber of the horizontal direction at the time of calculating | requiring the resistance value of the conductive polymer fiber of the vertical direction. (B) shows the energized state of the conductive polymer fiber in the horizontal direction when the resistance value of the conductive polymer fiber in the vertical direction is determined. 縦横8本の導電性高分子繊維を縦2個、横2個に4分割して4分割領域を形成して抵抗値を求める場合の模式図である。It is a schematic diagram in the case where the resistance value is obtained by dividing the vertical and horizontal conductive polymer fibers into four vertically and two horizontally to form four divided regions. 図5に示す4分割領域を更に上下に2分割して8分割領域を形成して抵抗値を求める場合の模式図である。FIG. 6 is a schematic diagram when the resistance value is obtained by further dividing the four-divided region shown in FIG. 図5に示す4分割領域を更に左右に2分割して8分割領域を形成して抵抗値を求める場合の模式図である。FIG. 6 is a schematic diagram when the resistance value is obtained by further dividing the 4-divided region shown in FIG. 5 into left and right parts to form an 8-divided region. 図5に示す4分割領域のそれぞれを更に4分割して16分割領域を形成して抵抗値を求める場合の模式図である。FIG. 6 is a schematic diagram when a resistance value is obtained by further dividing each of the four divided regions shown in FIG. 5 into four to form sixteen divided regions. 本発明に係わる物理量分布検出装置のフローチャート図である。It is a flowchart figure of the physical quantity distribution detection apparatus concerning this invention.

符号の説明Explanation of symbols

10…導電性高分子繊維配列組織
11、12…配列
20…通電部
30…電気的特性検出部
40…演算部
DESCRIPTION OF SYMBOLS 10 ... Conductive polymer fiber arrangement | sequence structure 11, 12 ... Array 20 ... Current supply part 30 ... Electrical property detection part 40 ... Calculation part

Claims (5)

互いに平行に延びる導電性高分子繊維の配列と該配列と交差する方向に互いに平行に延びる導電性高分子繊維の配列とから構成され、前記各導電性高分子繊維に加わる物理量から互いに交差する方向に延びる導電性高分子繊維の各交差領域の物理量の分布を感知する物理量感知手段として用いることが可能な導電性高分子繊維配列組織と、
前記導電性繊維高分子繊維配列組織を構成する各導電性高分子繊維へ通電する通電部と、 前記導電性高分子繊維の各繊維1本毎の電気的特性をそれぞれ検出可能な電気的特性検出部と、
前記導電性高分子繊維配列組織を複数個の交差領域を含むn×mの分割領域に区画して該各分割領域毎の物理量をそれぞれ求めるために、該各分割領域毎の物理量をマトリックス構成要素と定義し、前記電気的特性検出部を用いて各導電性高分子繊維毎に検出された電気的特性値にマトリックス演算式を適用する演算部とを有し、
該演算部は前記マトリックス演算式の解を得るために、互いに交差する導電繊維の配列であって一方の導電性高分子繊維の配列を含む分割領域の物理量を求めるときに該一方の導電性高分子繊維の配列と交差する他方の導電性高分子繊維の配列に通電して当該分割領域の感度が変化するように前記通電部を制御することを特徴とする物理量分布測定装置。
ただし、n、mは正の整数である。
A direction composed of an array of conductive polymer fibers extending in parallel with each other and an array of conductive polymer fibers extending in parallel with each other in a direction crossing the array, and a direction intersecting with each other from a physical quantity applied to each of the conductive polymer fibers A conductive polymer fiber array structure that can be used as a physical quantity sensing means for sensing the distribution of the physical quantity of each crossing region of the conductive polymer fiber extending in
An energization section for energizing each conductive polymer fiber constituting the conductive fiber polymer fiber array structure, and an electrical characteristic detection capable of detecting the electrical characteristics of each of the conductive polymer fibers. And
In order to divide the conductive polymer fiber array structure into n × m divided regions including a plurality of intersecting regions and obtain physical quantities for each divided region, the physical quantities for each divided region are determined as matrix components. And an arithmetic unit that applies a matrix arithmetic expression to the electrical property value detected for each conductive polymer fiber using the electrical property detector.
In order to obtain the solution of the matrix calculation formula, the calculation unit calculates the physical quantity of one of the conductive fibers intersecting each other and including the one conductive polymer fiber, and determines the physical quantity of the one. An apparatus for measuring a physical quantity distribution, wherein the energization unit is controlled by energizing an array of other conductive polymer fibers intersecting with an array of molecular fibers to change the sensitivity of the divided region.
However, n and m are positive integers.
前記分割領域の個数が4個であり、前記演算部は4×4の正方行列を用いて前記各分割領域毎の物理量を演算することを特徴とする請求項1に記載の物理量分布測定装置。   2. The physical quantity distribution measuring apparatus according to claim 1, wherein the number of the divided areas is four, and the calculation unit calculates a physical quantity for each of the divided areas using a 4 × 4 square matrix. 前記演算部は、前記各分割領域毎に該分割領域を更に細かく4分割することを繰り返して各導電性高分子繊維の各1本毎の交差領域の物理量を求めることを特徴とする請求項2に記載の物理量分布測定装置。   The said calculating part calculates | requires the physical quantity of the cross | intersection area | region for each one of each each conductive polymer fiber by repeating dividing | segmenting this divided area further finely into 4 for every said divided area. The physical quantity distribution measuring device according to 1. 前記電気的特性値が、前記導電性高分子繊維の抵抗値であり、前記物理量が圧力であることを特徴とする請求項1〜請求項3のいずれか1項に記載の物理量分布測定装置。   The physical quantity distribution measuring apparatus according to any one of claims 1 to 3, wherein the electrical characteristic value is a resistance value of the conductive polymer fiber, and the physical quantity is a pressure. 互いに平行に延びる導電性高分子繊維の配列と該配列と交差する方向に互いに平行に延びる導電性高分子繊維の配列とから構成され、前記各導電性高分子繊維に加わる圧力から互いに交差する方向に延びる導電性高分子繊維の各交差領域の物理量の分布を感知する物理量感知手段として用いることが可能な導電性高分子繊維配列組織の少なくとも一方の配列に通電して他方の配列に加わる圧力に基づく抵抗値の変化を検出することにより、各交差領域毎の圧力を求めて導電性高分子繊維配列組織に加わる圧力分布を検出する圧力分布検出方法。   A direction composed of an array of conductive polymer fibers extending parallel to each other and an array of conductive polymer fibers extending parallel to each other in a direction crossing the array, and a direction crossing each other from the pressure applied to each of the conductive polymer fibers The pressure applied to the other array by energizing at least one array of conductive polymer fiber arrays that can be used as a physical quantity sensing means that senses the distribution of physical quantities in each crossing region of the conductive polymer fibers extending to A pressure distribution detection method for detecting a pressure distribution applied to a conductive polymer fiber array structure by obtaining a pressure for each crossing region by detecting a change in resistance value based on the resistance value.
JP2006066979A 2006-03-13 2006-03-13 Physical quantity distribution detector Pending JP2007240475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066979A JP2007240475A (en) 2006-03-13 2006-03-13 Physical quantity distribution detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066979A JP2007240475A (en) 2006-03-13 2006-03-13 Physical quantity distribution detector

Publications (1)

Publication Number Publication Date
JP2007240475A true JP2007240475A (en) 2007-09-20

Family

ID=38586147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066979A Pending JP2007240475A (en) 2006-03-13 2006-03-13 Physical quantity distribution detector

Country Status (1)

Country Link
JP (1) JP2007240475A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512334A (en) * 2015-04-10 2018-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Detection of occupant dimensions and posture by in-vehicle camera
JP2020010995A (en) * 2018-07-20 2020-01-23 ミネベアミツミ株式会社 Posture controller
JP2020078577A (en) * 2020-02-07 2020-05-28 ミネベアミツミ株式会社 Posture controller
JP7456333B2 (en) 2020-09-04 2024-03-27 株式会社豊田中央研究所 deformation sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512334A (en) * 2015-04-10 2018-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Detection of occupant dimensions and posture by in-vehicle camera
US10829072B2 (en) 2015-04-10 2020-11-10 Robert Bosch Gmbh Detection of occupant size and pose with a vehicle interior camera
JP2020010995A (en) * 2018-07-20 2020-01-23 ミネベアミツミ株式会社 Posture controller
WO2020017323A1 (en) * 2018-07-20 2020-01-23 ミネベアミツミ株式会社 Posture control device
US11262218B2 (en) 2018-07-20 2022-03-01 Minebea Mitsumi Inc. Posture adjusting device
JP2020078577A (en) * 2020-02-07 2020-05-28 ミネベアミツミ株式会社 Posture controller
JP7110255B2 (en) 2020-02-07 2022-08-01 ミネベアミツミ株式会社 Attitude control device
JP7456333B2 (en) 2020-09-04 2024-03-27 株式会社豊田中央研究所 deformation sensor

Similar Documents

Publication Publication Date Title
Xia et al. Quantitative damage detection in CFRP composites: coupled mechanical and electrical models
Slobodian et al. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane
CN101213425B (en) Interdigitated, full wheatstone bridge flow sensor transducer
EP2040053A1 (en) Torsion and/or tension and/or pressure textile sensor
US20070085553A1 (en) Method for using touch signals and a touch unit
EP1990612B1 (en) Device for two-dimensional measuring of the velocity field in flows
US8120483B2 (en) Electrostatic occupant detecting apparatus and method of adjusting electrostatic occupant detecting apparatus
JP2007240475A (en) Physical quantity distribution detector
US20030047983A1 (en) Seat occupation judging apparatus for a vehicle
EP3194918B1 (en) Sensing system including a sensing structure
JP6862134B2 (en) Sensor device
WO2005058653A1 (en) Device for the classification of seat occupancy
Xia et al. Modeling of mechanical damage detection in CFRPs via electrical resistance
JP2014529070A5 (en)
CN103917853A (en) Vehicle tyre pressure checking
US9243967B2 (en) Sensor for pressure measurements
US20090183577A1 (en) Two dimensional load distribution center position detection sensor and two dimensional load distribution center position detection device
CN112997055A (en) Addressing circuit for conductor array
US20170010130A1 (en) Pliable capacitive structure apparatus and methods
Haj-Ali et al. Piezoresistive fiber-reinforced composites: a coupled nonlinear micromechanical–microelectrical modeling approach
KR101467354B1 (en) Apparatus of measuring the vertical force and shearing force using polymer composites sheet, rehabilitation training device therewith, finger tip for robot therewith, and method of measuring the vertical force and shearing force using the same
Van Siclen Walker diffusion method for calculation of transport properties of composite materials
JP6190636B2 (en) Capacitive sensor
CN113203355A (en) Flexible strain sensor and manufacturing method thereof
JP2003033262A (en) Sensor sheet