JP2007240445A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2007240445A
JP2007240445A JP2006066284A JP2006066284A JP2007240445A JP 2007240445 A JP2007240445 A JP 2007240445A JP 2006066284 A JP2006066284 A JP 2006066284A JP 2006066284 A JP2006066284 A JP 2006066284A JP 2007240445 A JP2007240445 A JP 2007240445A
Authority
JP
Japan
Prior art keywords
band
frequency
reception
signal
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066284A
Other languages
Japanese (ja)
Other versions
JP4967384B2 (en
Inventor
Tomohiro Nagai
智浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006066284A priority Critical patent/JP4967384B2/en
Publication of JP2007240445A publication Critical patent/JP2007240445A/en
Application granted granted Critical
Publication of JP4967384B2 publication Critical patent/JP4967384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and inexpensive radar system having desired detection precision, without worsening a reception characteristic. <P>SOLUTION: A transmission antenna 1 transmits a transmission signal with a frequency modulated by a chopping wave. Reception antennas 2A-2N are arrayed along a prescribed direction, and receives a reflected wave. The respective reception antennas 2A-2N output respectively the reception signals to respective band-pass filter parts 3A-3N of a multiplexer 30. Frequency bands different each other are set as passing bands to be allocated sequentially by dividing a substantially full frequency band of the frequency-modulated band of the transmission signal with the number of antennas, in the respective band-pass filter parts 3A-3N. A composition output signal output from the multiplexer 30 is brought into a signal arrayed time-serially with the reception signals output sequentially from the band-pass filter parts 3A-3N, by this constitution. This manner brings the same situation as the time-serial selective output of the reception signals of the band-pass filter parts 3A-3N, without using a switching circuit. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車の衝突防止用等に用いられるFM−CW方式のレーダ装置、特にアレイアンテナを用いたホログラフィックレーダ装置に関するものである。   The present invention relates to an FM-CW radar device used for preventing collision of an automobile, and more particularly to a holographic radar device using an array antenna.

従来、ミリ波帯の高周波信号を用いて物体の方位を検出する自動車搭載型のレーダ装置として、周波数変調した連続波を用い、配列された複数の受信アンテナで連続波の反射波を受信して方位を検出するFM−CW方式のレーダ装置が各種考案されている。例えば、特許文献1のレーダ装置は、1つの送信アンテナを備えた1つの送信機と、それぞれに1つの受信アンテナを備えた複数の受信機とを備えるものである。そして、特許文献1のレーダ装置は、各受信機による受信信号の位相差から検知物体の方位を検出している。   Conventionally, as an automobile-mounted radar device that detects the orientation of an object using millimeter-wave band high-frequency signals, continuous waves that are frequency-modulated are used, and continuous reflected waves are received by a plurality of arranged receiving antennas. Various FM-CW radar devices for detecting the azimuth have been devised. For example, the radar apparatus of Patent Document 1 includes one transmitter having one transmission antenna and a plurality of receivers each having one reception antenna. And the radar apparatus of patent document 1 has detected the azimuth | direction of the detection object from the phase difference of the received signal by each receiver.

また、特許文献2のレーダ装置は、1つの送信アンテナを備えた1つの送信機と、複数の受信アンテナを備えた1つの受信機とを備える。そして、特許文献2のレーダ装置は、複数の受信アンテナをスイッチで高速に切り替えて、各受信アンテナより得られる受信信号の位相差から検知物体の方位を検出している。
特許第3498624号公報 特許第3622565号公報
The radar device disclosed in Patent Document 2 includes one transmitter having one transmission antenna and one receiver having a plurality of reception antennas. And the radar apparatus of patent document 2 switches several receiving antennas at high speed with a switch, and detects the azimuth | direction of a detection object from the phase difference of the received signal obtained from each receiving antenna.
Japanese Patent No. 3498624 Japanese Patent No. 3622565

特許文献1のレーダ装置は受信アンテナ数に応じた受信機数を必要とする。ところが、FM−CW方式のようなミリ波帯高周波信号の受信機は非常に高価なものである。このため、検知精度を向上しようと受信アンテナ数を増加させれば、比例して受信機数も増加するので、非常に高価なレーダ装置となってしまう。また、受信機数が増加することで、単にアンテナ数を増加させた場合よりもレーダ装置の構成要素数がより増加して小型化することが難しくなる。   The radar apparatus of Patent Document 1 requires the number of receivers corresponding to the number of reception antennas. However, a millimeter-wave band high-frequency signal receiver such as the FM-CW system is very expensive. For this reason, if the number of receiving antennas is increased in order to improve the detection accuracy, the number of receivers also increases in proportion, so that the radar apparatus becomes very expensive. In addition, the increase in the number of receivers makes it difficult to reduce the size by increasing the number of components of the radar apparatus more than simply increasing the number of antennas.

また、特許文献2のレーダ装置は、スイッチを利用することで受信機数を1台にすることができるが、ミリ波帯の高周波スイッチも高価なものであり、特許文献1と同様に低コスト化することが難しい。特に、1入力8出力(8入力1出力)のような分岐(結合)数の多いスイッチは特に高価であり、さらに容易に入手することができない。このため、SPDTのような1入力2出力(2入力1出力)のスイッチを多段に用いることになるが、各スイッチでの損失が大きいので、検知精度を求めて多段にするほど受信損失が大幅に増加してしまう。   In addition, the radar apparatus of Patent Document 2 can use one switch to reduce the number of receivers. However, a millimeter-wave high-frequency switch is also expensive, and the cost is low as in Patent Document 1. It is difficult to make. In particular, a switch having a large number of branches (couplings) such as 1 input 8 outputs (8 inputs 1 output) is particularly expensive and cannot be easily obtained. For this reason, switches with one input and two outputs (two inputs and one output) such as SPDT are used in multiple stages. However, since the loss in each switch is large, the reception loss increases as the detection accuracy is increased and the number of stages is increased. Will increase.

したがって、本発明の目的は、受信特性を劣化させることなく所望の検知精度を有するレーダ装置を小型で且つ安価に実現することである。   Therefore, an object of the present invention is to realize a radar apparatus having a desired detection accuracy in a small size and at a low cost without deteriorating reception characteristics.

この発明は、送信アンテナを備えて周波数変調された連続波を前記送信アンテナから送信する送信手段と、配列された複数の受信アンテナを備えて送信された連続波の反射波を受信して受信信号を出力する受信手段と、受信信号に基づいて検知物体の方位を検出する検出手段と、を備えたレーダ装置に関するものである。そして、受信手段は、変調周波数帯域に対応する受信周波数帯域を分割して成る複数の分割周波数帯域をそれぞれ複数の受信アンテナに設定し、複数の分割周波数帯域成分の受信信号を時分割された連続期間毎に出力することを特徴としている。   According to the present invention, a transmitting means for transmitting a continuous wave frequency-modulated by a transmitting antenna from the transmitting antenna and a reflected wave of a continuous wave transmitted by a plurality of arranged receiving antennas are received and received signals The present invention relates to a radar apparatus comprising: a receiving unit that outputs a signal; and a detecting unit that detects the orientation of a detected object based on a received signal. The receiving means sets a plurality of divided frequency bands obtained by dividing the reception frequency band corresponding to the modulation frequency band to a plurality of receiving antennas, respectively, and continuously receives the reception signals of the plurality of divided frequency band components. It is characterized by outputting every period.

この構成では、送信手段は、周波数が経時的に変化する連続波を送信する。受信手段の各受信アンテナは送信された連続波の反射波を受信する。そして、受信手段は、各受信アンテナが受信する反射波に対して、それぞれに異なる周波数帯域を通過させる。それぞれの受信アンテナに対応する受信信号は、互いに異なる周波数帯域成分のみで形成されており、且つ経時的に並ぶので、これらが時分割で連続的に出力されることで、受信アンテナをスイッチで切り替えて受信信号を出力する処理と等価になる。   In this configuration, the transmission means transmits a continuous wave whose frequency changes with time. Each receiving antenna of the receiving means receives the reflected wave of the transmitted continuous wave. And a receiving means passes a different frequency band, respectively with respect to the reflected wave which each receiving antenna receives. The received signals corresponding to the respective receiving antennas are formed with only frequency band components different from each other and are arranged with time. This is equivalent to the process of outputting the received signal.

また、この発明のレーダ装置の受信手段は、複数の受信アンテナにそれぞれ接続し、受信アンテナ毎に異なる通過帯域を有する複数のフィルタと当該複数のフィルタの出力信号を合成する合成部とを有するマルチプレクサを備えたことを特徴としている。   Further, the receiving means of the radar apparatus of the present invention is a multiplexer having a plurality of filters each connected to a plurality of receiving antennas, each having a different pass band for each receiving antenna, and a combining unit for combining the output signals of the plurality of filters. It is characterized by having.

この構成では、マルチプレクサの各フィルタの通過帯域を異ならせることで、全ての受信アンテナで連続して反射波を受信しても、対応する周波数帯域の受信信号のみが出力される。すなわち、送信される連続波の周波数変化に応じて、その時点の周波数に対応したフィルタに接続された受信アンテナによる受信信号のみが出力される。これにより、複数の受信アンテナをスイッチ等で切り替えながら受信信号を出力するのと等価になる。   In this configuration, by changing the pass band of each filter of the multiplexer, even if the reflected wave is continuously received by all the receiving antennas, only the received signal in the corresponding frequency band is output. That is, only the reception signal from the reception antenna connected to the filter corresponding to the frequency at that time is output according to the frequency change of the transmitted continuous wave. This is equivalent to outputting a reception signal while switching a plurality of reception antennas with a switch or the like.

また、この発明のレーダ装置の複数の受信アンテナは、それぞれに異なる受信周波数帯域を有することを特徴としている。   Further, the plurality of receiving antennas of the radar apparatus according to the present invention are characterized by having different receiving frequency bands.

この構成では、各受信アンテナが対応する周波数帯域の反射波のみを受信する。すなわち、送信される連続波の周波数変化に応じて、その時点の周波数に対応した受信アンテナによる受信信号のみが出力される。これにより、複数の受信アンテナをスイッチ等で切り替えたり、複数のフィルタで分離しながら受信信号を出力するのと等価になる。   In this configuration, each receiving antenna receives only the reflected wave in the corresponding frequency band. That is, according to the frequency change of the transmitted continuous wave, only the received signal from the receiving antenna corresponding to the current frequency is output. This is equivalent to switching a plurality of receiving antennas with a switch or the like or outputting a received signal while separating them with a plurality of filters.

また、この発明のレーダ装置の検知手段は、時分割された各受信信号で検出した方位と複数の受信アンテナの間隔とに基づいて位相調整して少なくとも変調周期の一周期分に亘り受信信号の位相を一致させ、該位相を一致させた少なくとも一変調周期分の受信信号から検知物体の距離を検出することを特徴としている。   Further, the detection means of the radar apparatus according to the present invention adjusts the phase based on the azimuth detected by each time-divided reception signal and the interval between the plurality of reception antennas, and at least for one period of the modulation period. The phase is matched, and the distance of the sensing object is detected from the received signal for at least one modulation period in which the phases are matched.

この構成では、各受信アンテナに対応する受信信号は、変調周期を分割してなる分割周期にしか対応しないが、この分割周期毎の受信信号を一周期分連続して出力すれば、変調周期の一周期分の受信信号が得られる。この際、各受信アンテナの受信信号は、検出した方位と受信アンテナの間隔とに応じて位相差が存在するので、この位相差を補正して一致させることで、変調周期の一周期に亘って連続する受信信号が得られる。このような一周期分の連続する受信信号を用いることで、ビート信号周波数の観測期間が長くなり、距離および速度の検出精度が向上する。   In this configuration, the reception signal corresponding to each reception antenna corresponds only to the division period obtained by dividing the modulation period, but if the reception signal for each division period is continuously output for one period, the modulation period A reception signal for one period is obtained. At this time, the received signal of each receiving antenna has a phase difference according to the detected azimuth and the interval between the receiving antennas. A continuous received signal is obtained. By using such a continuous reception signal for one period, the observation period of the beat signal frequency is lengthened, and the distance and speed detection accuracy is improved.

また、この発明のレーダ装置の検知手段は、時分割された各期間の受信信号強度を検出して、受信周波数帯域の端部に通過周波数が設定された受信アンテナに対応する受信信号強度が他の受信アンテナに対応する受信信号強度よりも低いことを検出すると、送信手段に周波数変調帯域の中心周波数を変更させる指示を行うことを特徴としている。   In addition, the detection means of the radar apparatus according to the present invention detects the received signal strength of each time-divided period, and the received signal strength corresponding to the receiving antenna whose pass frequency is set at the end of the received frequency band is different. When it is detected that the received signal strength is lower than that of the receiving antenna, the transmitting unit is instructed to change the center frequency of the frequency modulation band.

この構成では、送信される連続波の周波数帯域がずれると、これに応じて反射波の周波数帯域がずれることを利用する。これにより、受信周波数帯域の端部が通過帯域に設定された受信アンテナの受信信号強度が他の受信アンテナの受信信号強度よりも低くなることを検出することで、周波数変調の帯域が変化したことを検出する。そして、検知手段はこの周波数のズレ量を送信手段に出力し、送信手段はこのズレ量に応じて変調周波数の中心周波数の補正を行う。   In this configuration, when the frequency band of the transmitted continuous wave is shifted, the frequency band of the reflected wave is shifted correspondingly. As a result, the frequency modulation band has changed by detecting that the received signal strength of the receiving antenna whose end of the receiving frequency band is set to the passband is lower than the received signal strength of other receiving antennas. Is detected. Then, the detection means outputs the amount of frequency deviation to the transmission means, and the transmission means corrects the center frequency of the modulation frequency according to the amount of deviation.

この発明によれば、各受信アンテナの受信信号毎に周波数帯域を設定することで、スイッチを用いることなく、変調周期よりも短い分割周期毎にそれぞれに異なる周波数帯域の受信信号を切り替えながら取得することができる。これにより、各分割周期に対応する受信信号同士の位相差による方位検出が可能となる。この結果、高価な回路素子であるスイッチ回路を用いることなく、低受信損失で所望の方位検出精度を有するレーダ装置を小型で安価に構成することができる。   According to the present invention, by setting a frequency band for each reception signal of each reception antenna, it is obtained by switching received signals in different frequency bands for each division period shorter than the modulation period without using a switch. be able to. As a result, it is possible to detect the azimuth by the phase difference between the received signals corresponding to each division period. As a result, a radar apparatus having a small reception loss and a desired azimuth detection accuracy can be made small and inexpensive without using a switch circuit that is an expensive circuit element.

また、この発明によれば、前記受信アンテナの切り替えにマルチプレクサを用いることで、入手しやすく、比較的安価で低損失な回路素子の追加のみで、低受信損失で所望の方位検出精度を有する小型のレーダ装置を安価に実現することができる。   Further, according to the present invention, by using a multiplexer for switching the receiving antenna, it is easy to obtain, and a small size having a desired azimuth detection accuracy with a low receiving loss, only by adding a relatively inexpensive and low-loss circuit element. Can be realized at low cost.

また、この発明によれば、各受信アンテナに帯域通過フィルタの機能を備えることで、さらにマルチプレクサをも必要としなくなり、低受信損失で所望の方位検出精度を有する小型のレーダ装置をさらに簡素な構造で実現することができる。   In addition, according to the present invention, each receiving antenna is provided with a band-pass filter function, so that a multiplexer is not required, and a small radar device having a low reception loss and a desired direction detection accuracy is further simplified. Can be realized.

また、この発明によれば、変調周期の一周期分の受信信号が得られることにより、ビート信号周波数の観測期間が長くなり、より高精度に検知物体の距離および速度を検出することができる。   Further, according to the present invention, since the reception signal for one modulation period is obtained, the observation period of the beat signal frequency is extended, and the distance and speed of the detected object can be detected with higher accuracy.

また、この発明によれば、受信周波数帯域の端に対応する受信信号強度から、常時周波数変調帯域のずれを検出して送信信号の周波数変調帯域を補正することができる。   Also, according to the present invention, it is possible to always detect a shift of the frequency modulation band from the received signal intensity corresponding to the end of the reception frequency band and correct the frequency modulation band of the transmission signal.

本発明の第1の実施形態に係るレーダ装置について図1〜図4を参照して説明する。
図1(A)は、本実施形態のレーダ装置の主要部を示すブロック図であり、図1(B)は(A)に示すマルチプレクサ30の各フィルタ部3A〜3Nの通過帯域と周波数変調帯域との関係を示す図である。
A radar apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1A is a block diagram showing a main part of the radar apparatus of the present embodiment, and FIG. 1B is a passband and frequency modulation band of each filter unit 3A-3N of the multiplexer 30 shown in FIG. It is a figure which shows the relationship.

本実施形態のレーダ装置は、送信アンテナ1、受信アンテナ2A〜2N、マルチプレクサ30、信号処理回路4、VCO5、分岐回路6、LNA7、ミキサ8、IFアンプ9を備える。   The radar apparatus according to the present embodiment includes a transmission antenna 1, reception antennas 2A to 2N, a multiplexer 30, a signal processing circuit 4, a VCO 5, a branch circuit 6, an LNA 7, a mixer 8, and an IF amplifier 9.

送信アンテナ1は、マイクロストリップアンテナ等の平板状アンテナや、導波管アンテナであり、アンテナの正面方向を含む所定の検知領域に向けて送信信号である電磁波を放射する。例えば、このレーダ装置を自動車に搭載し、前方検知を行う場合であれば、自動車前方の所定幅の検知領域に対して送信信号を放射する。ここで送信信号としては、例えば、図1(B)に示すように、周波数が経時的に三角形状に変化する連続波が用いられる。   The transmission antenna 1 is a flat antenna such as a microstrip antenna or a waveguide antenna, and radiates an electromagnetic wave as a transmission signal toward a predetermined detection region including the front direction of the antenna. For example, if this radar apparatus is mounted on an automobile and forward detection is performed, a transmission signal is radiated to a detection area having a predetermined width in front of the automobile. Here, as the transmission signal, for example, as shown in FIG. 1B, a continuous wave whose frequency changes in a triangular shape with time is used.

受信アンテナ2A〜2Nは、それぞれ送信アンテナ1と同様に平板状アンテナや導波管アンテナ等からなり、検知領域からの反射波を受信する。これら受信アンテナ2A〜2Nは直線状で一列に配置された受信アンテナアレイからなり、受信アンテナ2A〜2Nは等間隔dで配置されている。   The reception antennas 2A to 2N are each formed of a flat antenna, a waveguide antenna, or the like, similar to the transmission antenna 1, and receives a reflected wave from the detection region. These receiving antennas 2A to 2N are composed of a receiving antenna array arranged in a straight line and the receiving antennas 2A to 2N are arranged at equal intervals d.

マルチプレクサ30は、受信アンテナ2A〜2Nに一方端がそれぞれに接続する帯域通過フィルタ部3A〜3Nを備え、これら帯域通過フィルタ部3A〜3Nの他方端は合成回路に接続する。帯域通過フィルタ3A〜3Nは、図1に示すように、それぞれ異なる周波数帯域を通過帯域とするように形成されている。具体的には、周波数変調帯域全体をN分割して、それぞれに同じ周波数幅からなり、それぞれの中心周波数がf1,f2,f3,・・・,fN(f1<f2<f3<・・・<fN)の分割周波数帯域を設定する。そして、これら中心周波数f1,f2,f3,・・・,fNの分割周波数帯域がそれぞれの通過帯域となるような帯域通過フィルタ部3A〜3Nを形成する。ここで、周波数変調帯域とは、前述のように送信信号の周波数変調帯域を示すが、受信信号の取り得る周波数帯域は、検知物体の相対速度が対向して走行する自動車同士の相対速度程度であれば、送信信号の周波数変調帯域と殆ど変化しないので、前記周波数変調帯域は、受信周波数の取り得る周波数帯域を等価として取り扱うことができる。   The multiplexer 30 includes band-pass filter units 3A to 3N whose one ends are connected to the receiving antennas 2A to 2N, respectively, and the other ends of these band-pass filter units 3A to 3N are connected to a synthesis circuit. As shown in FIG. 1, the bandpass filters 3 </ b> A to 3 </ b> N are formed so that different frequency bands are used as passbands. Specifically, the entire frequency modulation band is divided into N, each having the same frequency width, and the respective center frequencies are f1, f2, f3,..., FN (f1 <f2 <f3 <... < fN) is set. Then, band pass filter units 3A to 3N are formed such that the divided frequency bands of these center frequencies f1, f2, f3,..., FN become the respective pass bands. Here, the frequency modulation band indicates the frequency modulation band of the transmission signal as described above, but the frequency band that can be taken by the reception signal is about the relative speed between vehicles that run with the relative speed of the sensing object facing each other. If there is, the frequency modulation band hardly changes with the frequency modulation band of the transmission signal, so that the frequency modulation band can be treated as equivalent to the frequency band that the reception frequency can take.

ここで、周波数変調帯域と分割された周波数帯域(分割周波数帯域)の具体的な一例として、76GHz−77GHz帯で動作するFM−CW方式前方監視用車載ミリ波レーダの一例で説明すると、周波数変調帯域全体を300MHzとして、受信アンテナ数をN=10とすると、各帯域通過フィルタ部3A〜3Nに対して30MHzの分割周波数帯域が設定される。そして、各帯域通過フィルタ部3A〜3Nの中心周波数のシフト量を30MHzとすることで、それぞれに異なる30MHz幅の分割周波数帯域を通過帯域とする帯域通過フィルタ部3A〜3Nが形成される。なお、帯域通過フィルタ部3A〜3Nの通過特性は、互いの通過帯域の端が重なり合うように設定しても良いし、全く重ならないようにしても良く、これらの設定は装置の仕様に応じて適宜設定すれば良い。   Here, as a specific example of the frequency modulation band and the divided frequency band (divided frequency band), an example of the in-vehicle millimeter wave radar for FM-CW forward monitoring that operates in the 76 GHz-77 GHz band will be described. Assuming that the entire band is 300 MHz and the number of receiving antennas is N = 10, a divided frequency band of 30 MHz is set for each of the bandpass filter units 3A to 3N. Then, by setting the shift amount of the center frequency of each of the band pass filter units 3A to 3N to 30 MHz, band pass filter units 3A to 3N having pass frequency bands of different divided frequency bands are formed. Note that the pass characteristics of the bandpass filter units 3A to 3N may be set so that the ends of the passbands overlap each other, or may not be overlapped at all, and these settings depend on the specifications of the apparatus. What is necessary is just to set suitably.

合成回路はLNA7に接続し、帯域通過フィルタ部3A〜3Nの出力信号を合成してLNA7に出力する。
なお、マルチプレクサ30は、このように10個の帯域通過フィルタと1個の合成回路とで形成してもよく、3個の帯域通過フィルタと1個の合成回路とからなる3−1のマルチプレクサや、2個の帯域通過フィルタと1個の合成回路とからなる2−1のマルチプレクサを適宜組み合わせて形成しても良い。
The synthesis circuit is connected to the LNA 7 and synthesizes the output signals of the band pass filter units 3A to 3N and outputs the synthesized signals to the LNA 7.
Note that the multiplexer 30 may be formed of 10 bandpass filters and one synthesis circuit as described above, or a 3-1 multiplexer comprising three bandpass filters and one synthesis circuit, You may form combining suitably the 2-1 multiplexer which consists of two band pass filters and one synthetic | combination circuit.

LNA7は、入力された合成後の受信信号を増幅してミキサ8に出力し、ミキサ8は、LNA7からの受信信号と分岐回路6からのローカル信号とをミキシングして、IFビート信号を生成する。IFアンプ9は、IFビート信号を増幅して信号処理回路4に出力する。信号処理回路4は、入力したIFビート信号と受信アンテナ2A〜2Nの間隔dから得られる位相差とに基づいて既知のホログラフィックレーダの原理を用いて検知物体の方位を検出する。また、信号処理回路4は、既知のFM−CW方式の演算を用いて検知物体の距離、速度等を算出する。   The LNA 7 amplifies the received combined received signal and outputs it to the mixer 8. The mixer 8 mixes the received signal from the LNA 7 and the local signal from the branch circuit 6 to generate an IF beat signal. . The IF amplifier 9 amplifies the IF beat signal and outputs it to the signal processing circuit 4. The signal processing circuit 4 detects the azimuth of the detected object using the known holographic radar principle based on the input IF beat signal and the phase difference obtained from the interval d between the receiving antennas 2A to 2N. Further, the signal processing circuit 4 calculates the distance, speed, and the like of the detected object using a known FM-CW method calculation.

また、VCO5は、信号処理回路4から与えられる変調電圧に応じて、例えば、76GHz帯の送信信号を発生する。この際、VCO5には、所定周期で電圧値が変動する変調電圧、例えば、所定周期で三角波状に変動する変調電圧が与えられる。VCO5は、この変調電圧に応じて、前記所定周期にて、所定周波数範囲内で周波数変調する送信信号、例えば、前述の図1(B)に示すような三角波状に周波数変調する送信信号を発生する。   The VCO 5 generates a transmission signal in the 76 GHz band, for example, according to the modulation voltage given from the signal processing circuit 4. At this time, the VCO 5 is supplied with a modulation voltage whose voltage value fluctuates in a predetermined cycle, for example, a modulation voltage that fluctuates in a triangular wave shape in a predetermined cycle. The VCO 5 generates a transmission signal that is frequency-modulated within a predetermined frequency range, for example, a transmission signal that is frequency-modulated in a triangular wave shape as shown in FIG. To do.

分岐回路6は、VCO5から出力された送信信号を、送信アンテナ1に与えるとともに、その一部をローカル信号としてミキサ8に与える。   The branch circuit 6 supplies the transmission signal output from the VCO 5 to the transmission antenna 1 and a part of the transmission signal to the mixer 8 as a local signal.

次に、本実施形態のレーダ装置による検知動作について具体的に説明する。なお、以下の説明では、図1(B)に示すような三角波状の送信信号を送信するレーダ装置について説明する。   Next, the detection operation by the radar apparatus of this embodiment will be specifically described. In the following description, a radar apparatus that transmits a triangular wave transmission signal as shown in FIG. 1B will be described.

図2(A)は、相対速度が「0」の物体に対して、送信アンテナ1から送信される送信信号と受信アンテナ2A,2B,2C,・・・,2Nで受信されるアンテナ受信信号Sa,Sb,Sc,Snとを示した一例の図であり、(B)、(C)、(D)、(E)はそれぞれ帯域通過フィルタ3A,3B,3C,3Nから出力された帯域分割受信信号Saf,Sbf,Scf,・・・,Snfを示す図である。また、図3は送信信号とマルチプレクサ30の合成出力信号Srとを示す図である。なお、図2、図3において、太破線は送信信号波形を示し、太実線は各種受信信号を示す。   2A shows a transmission signal transmitted from the transmission antenna 1 and an antenna reception signal Sa received by the reception antennas 2A, 2B, 2C,..., 2N with respect to an object having a relative speed of “0”. , Sb, Sc, and Sn, (B), (C), (D), and (E) are band division receptions output from the bandpass filters 3A, 3B, 3C, and 3N, respectively. It is a figure which shows signal Saf, Sbf, Scf, ..., Snf. FIG. 3 is a diagram showing the transmission signal and the combined output signal Sr of the multiplexer 30. 2 and 3, a thick broken line indicates a transmission signal waveform, and a thick solid line indicates various received signals.

検知動作が開始されると、信号処理回路4は、経時的に電圧が三角波状に変化する変調電圧をVCO5へ与える。この後の検知動作中においては、信号処理回路4は、連続してVCO5に同様の変調電圧を与える。VCO5は時間軸において連続的に三角波状に周波数が変化する送信信号(周波数変調送信信号)を生成する。周波数変調送信信号は、分岐回路6を介して送信アンテナ1に伝送され、送信アンテナ1から検知領域に放射される。   When the detection operation is started, the signal processing circuit 4 gives a modulation voltage whose voltage changes in a triangular wave shape with time to the VCO 5. During the subsequent detection operation, the signal processing circuit 4 continuously applies the same modulation voltage to the VCO 5. The VCO 5 generates a transmission signal (frequency modulation transmission signal) whose frequency continuously changes in a triangular wave shape on the time axis. The frequency-modulated transmission signal is transmitted to the transmission antenna 1 via the branch circuit 6 and radiated from the transmission antenna 1 to the detection area.

受信アンテナアレイを構成する受信アンテナ2A〜2Nは、周波数変調送信信号(連続送信波)が検知領域内に存在する物体(ターゲット)で反射した反射波を受信して、アンテナ受信信号Sa〜Snをそれぞれマルチプレクサ30の各帯域通過フィルタ部3A〜3Nに出力する。ここで、アンテナ受信信号Sa〜Snは検知物体の方位と受信アンテナ間隔dとに応じて、所定の位相関係が成り立つ。具体的には、アンテナ正面方向(受信アンテナアレイの配列方向に垂直で且つ放射方向)を基準として方位角θを設定する、例えば、正面左手方向をθの正方向とし、正面右手方向をθの負方向とすると、方位角θ方向に存在する物体からの反射波は、間隔dで配置された各受信アンテナにて、順にexp((j2π・d・sinθ)/λ)の位相差で受信される。   The receiving antennas 2A to 2N constituting the receiving antenna array receive the reflected wave reflected by the object (target) in which the frequency modulation transmission signal (continuous transmission wave) exists in the detection region, and receive the antenna reception signals Sa to Sn. Each is output to each of the bandpass filter units 3A to 3N of the multiplexer 30. Here, the antenna reception signals Sa to Sn have a predetermined phase relationship according to the orientation of the sensing object and the reception antenna interval d. Specifically, the azimuth angle θ is set with reference to the antenna front direction (perpendicular to the arrangement direction of the receiving antenna array and the radiation direction). For example, the front left-hand direction is the positive direction of θ, and the front right-hand direction is the θ direction. Assuming a negative direction, the reflected wave from the object existing in the azimuth angle θ direction is sequentially received with a phase difference of exp ((j2π · d · sin θ) / λ) at each receiving antenna arranged at the interval d. The

マルチプレクサ30の各帯域通過フィルタ部3A〜3Nは、入力されたアンテナ受信信号Sa〜Snに対してそれぞれに異なる通過帯域からなる帯域通過フィルタリング処理を行い、図2(B)〜(E)に示すような帯域分割受信信号Saf〜Snfを出力する。   Each of the band-pass filter units 3A to 3N of the multiplexer 30 performs band-pass filtering processing having different pass bands on the input antenna reception signals Sa to Sn, as shown in FIGS. Such band division reception signals Saf to Snf are output.

具体的には、帯域通過フィルタ部3Aは、アンテナ受信信号Saに対して中心周波数f1とする所定幅の周波数帯域のみを通過させるフィルタ処理を行い、図2(B)に示す帯域分割受信信号Safを出力する。同様に、帯域通過フィルタ部3Bは、アンテナ受信信号Sbに対して中心周波数f2とする所定幅の周波数帯域のみからなる図2(C)に示す帯域分割受信信号Sbfを出力する。帯域通過フィルタ部3Cは、アンテナ受信信号Scに対して中心周波数f3とする所定幅の周波数帯域のみからなる図2(D)に示す帯域分割受信信号Sbcを出力する。帯域通過フィルタ部3Nは、アンテナ受信信号Snに対して中心周波数fNとする所定幅の周波数帯域のみからなる図2(E)に示す帯域分割受信信号Snfを出力する。   Specifically, the band-pass filter unit 3A performs a filter process for allowing only the frequency band of a predetermined width having the center frequency f1 to pass through the antenna reception signal Sa, and performs the band division reception signal Saf shown in FIG. Is output. Similarly, the band pass filter unit 3B outputs the band division reception signal Sbf shown in FIG. 2 (C) that includes only a frequency band having a predetermined width with the center frequency f2 as to the antenna reception signal Sb. The band pass filter unit 3C outputs the band division reception signal Sbc shown in FIG. 2 (D), which includes only a frequency band having a predetermined width with the center frequency f3 as to the antenna reception signal Sc. The band pass filter unit 3N outputs the band division reception signal Snf shown in FIG. 2 (E), which consists only of a frequency band of a predetermined width having a center frequency fN with respect to the antenna reception signal Sn.

マルチプレクサ30は、合成回路でこれら帯域分割受信信号Saf〜Snfを合成して図3に示すような合成出力信号を出力する。この際、各帯域通過フィルタ部3A〜3Nが異なる通過帯域を備えるので、帯域分割受信信号Safが出力されているタイミングでは、帯域分割受信信号Sbf〜Snfは略0になる。同様に、帯域分割受信信号Sbfが出力されているタイミングでは、帯域分割受信信号Saf,Scf〜Snfは略0になり、帯域分割受信信号Scfが出力されているタイミングでは、帯域分割受信信号Saf,Sbf,Sdf〜Snfは略0になり、帯域分割受信信号Snfが出力されているタイミングでは、帯域分割受信信号Saf〜S(n−1)fは略0になる。したがって、合成出力信号は、実質的には、受信アンテナ2Aに対応する中心周波数f1の周波数帯域では帯域分割受信信号Safにより構成され、受信アンテナ2Bに対応する中心周波数f2の周波数帯域では帯域分割受信信号Sbfにより構成される。同様に、受信アンテナ2Cに対応する中心周波数f3の周波数帯域では帯域分割受信信号Scfにより構成され、受信アンテナ2Nに対応する中心周波数fNの周波数帯域では帯域分割受信信号Snfにより構成される。これにより、マルチプレクサ30からの合成出力信号Srは、時分割された所定のサンプリング時間長毎に帯域分割受信信号Saf〜Snfを順次出力してなる信号と同等になる。   The multiplexer 30 combines these band division reception signals Saf to Snf by a combining circuit and outputs a combined output signal as shown in FIG. At this time, since each of the band-pass filter units 3A to 3N has a different pass band, the band-divided received signals Sbf to Snf become substantially 0 at the timing when the band-divided received signal Saf is output. Similarly, at the timing when the band division reception signal Sbf is output, the band division reception signals Saf and Scf to Snf become substantially zero, and at the timing when the band division reception signal Scf is output, the band division reception signal Saf, Sbf, Sdf to Snf are substantially zero, and the band division reception signals Saf to S (n−1) f are substantially zero at the timing when the band division reception signal Snf is output. Therefore, the combined output signal is substantially composed of the band division reception signal Saf in the frequency band of the center frequency f1 corresponding to the reception antenna 2A, and the band division reception in the frequency band of the center frequency f2 corresponding to the reception antenna 2B. It is constituted by a signal Sbf. Similarly, the frequency band of the center frequency f3 corresponding to the reception antenna 2C is configured by the band division reception signal Scf, and the frequency band of the center frequency fN corresponding to the reception antenna 2N is configured by the band division reception signal Snf. As a result, the combined output signal Sr from the multiplexer 30 is equivalent to a signal obtained by sequentially outputting the band-divided reception signals Saf to Snf for each predetermined sampling time length obtained by time division.

信号処理回路4は、合成出力信号Srすなわち所定のサンプリング時間長毎に所得した帯域分割受信信号Saf〜Snf群を用いて、既知のFM−CW方式による距離算出方法で距離を算出するとともに、各帯域分割受信信号Saf〜Snfの位相差を算出する。そして、信号処理回路4は、算出した位相差と前述のexp((j・2π・d・sinθ)/λ)とから方位θを算出する。   The signal processing circuit 4 calculates a distance by a known FM-CW distance calculation method using the combined output signal Sr, that is, the band division reception signals Saf to Snf group obtained for each predetermined sampling time length, The phase difference between the band division received signals Saf to Snf is calculated. Then, the signal processing circuit 4 calculates the azimuth θ from the calculated phase difference and the aforementioned exp ((j · 2π · d · sin θ) / λ).

また、信号処理回路4は、算出された位相差に基づいて、少なくとも1変調周期分の全ての帯域分割受信信号Saf〜Snfの位相を一致させる処理を行う。これにより、実際にはそれぞれに異なる受信アンテナ2A〜2Nで受信した1変調周期よりも短い時間長の受信信号の群が、1つの受信アンテナで1変調周期分連続して受信した受信信号と等価になる。信号処理回路4は、この1変調周期分の時間長の受信信号を用いて、既知のFM−CW方式の距離・速度算出方法で、検知物体の距離および速度を算出する。このように、1変調周期分の受信信号を用いて距離を算出することで、各帯域分割受信信号により算出される距離よりも高精度な結果を得ることができる。   Further, the signal processing circuit 4 performs a process of matching the phases of all the band division reception signals Saf to Snf for at least one modulation period based on the calculated phase difference. As a result, a group of reception signals having a time length shorter than one modulation period actually received by different reception antennas 2A to 2N is equivalent to reception signals continuously received by one reception antenna for one modulation period. become. The signal processing circuit 4 calculates the distance and speed of the detected object by the known FM-CW distance / speed calculation method using the reception signal having a time length corresponding to one modulation period. Thus, by calculating the distance using the reception signal for one modulation period, it is possible to obtain a result with higher accuracy than the distance calculated by each band division reception signal.

例えば、具体的に周波数変調帯域の全幅を300MHzとし、アンテナ数Nを10とする場合、各アンテナに対しては30MHzが割り当てられる。すなわち、各帯域分割受信信号に対する送信信号の周波数帯域はそれぞれ30MHzが与えられる。このように、30MHzの周波数帯域があれば或る程度の距離測定は可能である。しかしながら、全ての帯域分割受信信号に対応する300MHzの周波数帯域を用いることで、10倍の周波数帯域および観測時間による観測が可能となり、より高精度に距離を算出することができる。   For example, when the total width of the frequency modulation band is specifically 300 MHz and the number N of antennas is 10, 30 MHz is assigned to each antenna. That is, the frequency band of the transmission signal for each band division reception signal is given 30 MHz. Thus, if there is a frequency band of 30 MHz, a certain amount of distance measurement is possible. However, by using a 300 MHz frequency band corresponding to all band division received signals, observation can be performed with a frequency band 10 times as long as the observation time, and the distance can be calculated with higher accuracy.

以上のような構成を用いることで、スイッチ回路を設置しなくても物体の方位検出および距離・速度検出を行うことができる。さらに、スイッチ回路を設けないことで、スイッチ損失が発生せず、受信損失を大幅に抑圧することができる。また、従来技術で説明したような複雑な構成のスイッチ回路を用いる必要がないので、より簡素な構造で且つ小型にレーダ装置を構成することができる。   By using the configuration as described above, it is possible to detect the azimuth and distance / speed of an object without installing a switch circuit. Furthermore, by not providing a switch circuit, no switch loss occurs and reception loss can be greatly suppressed. Further, since it is not necessary to use a switch circuit having a complicated configuration as described in the prior art, a radar device can be configured with a simpler structure and a smaller size.

なお、本実施形態では、アレイ化された受信アンテナ2A〜2Nに対して、配列の一方端の受信アンテナから順に低い周波数の分割周波数帯域を設定した例を示したが、図4に示すように、受信アンテナの配列順と分割周波数帯域の中心周波数の推移の方向とを一致させずに設定することもできる。   In the present embodiment, an example is shown in which divided frequency bands of lower frequencies are set in order from the receiving antennas at one end of the array for the receiving antennas 2A to 2N arranged in an array, but as shown in FIG. The arrangement order of the receiving antennas and the direction of transition of the center frequency of the divided frequency band can be set without matching.

図4は、無作為に各受信アンテナ2A〜2Nの通過帯域(中心周波数)を設定した場合の通過帯域(中心周波数)の分布を示した図である。なお、図中のf1〜fNは、それぞれ帯域通過フィルタ部3A〜3Nの中心周波数を示している。   FIG. 4 is a diagram showing a distribution of passbands (center frequencies) when the passbands (center frequencies) of the receiving antennas 2A to 2N are randomly set. In addition, f1-fN in a figure has shown the center frequency of bandpass filter part 3A-3N, respectively.

図4では、帯域通過フィルタ部3Cの通過帯域(中心周波数f3)を、周波数変調帯域全体の内の最も低い周波数帯域に設定し、次に帯域通過フィルタ部3Nの通過帯域(中心周波数fN)を設定して、さらに帯域通過フィルタ3Aの通過帯域(中心周波数f1)を設定し、帯域通過フィルタ部3Bの通過帯域(中心周波数f2)を最も高い周波数帯域に設定している。このような設定であっても前述のような動作、処理を実行することができる。そして、このような無作為に周波数帯域の分割を行うことで、前述のように順次分割周波数帯域を設定する場合よりも、高速移動する物体の検知をより高精度に行うことができる。これは、高速に移動する物体では、分割周波数帯域を一方端の受信アンテナから他方端の受信アンテナに移行する場合に、物体の移動により低い周波数帯域の時点での物体位置と高い周波数帯域の時点での物体位置とのズレが生じるからである。一方で、無作為に分割周波数帯域を設定する場合には低周波数帯域と高周波数帯域とが時系列でランダムに現れるので、このズレの影響を受け難いからである。   In FIG. 4, the pass band (center frequency f3) of the band pass filter unit 3C is set to the lowest frequency band in the entire frequency modulation band, and then the pass band (center frequency fN) of the band pass filter unit 3N is set. In addition, the pass band (center frequency f1) of the band pass filter 3A is set, and the pass band (center frequency f2) of the band pass filter unit 3B is set to the highest frequency band. Even with such settings, the operations and processes described above can be executed. By randomly dividing the frequency band as described above, it is possible to detect an object that moves at a higher accuracy than when sequentially setting the divided frequency bands as described above. This is because the object position at the time of the lower frequency band and the time of the higher frequency band due to the movement of the object when the divided frequency band is shifted from the receiving antenna at one end to the receiving antenna at the other end of the object moving at high speed. This is because a deviation from the object position occurs. On the other hand, when the divided frequency band is set at random, the low frequency band and the high frequency band appear randomly in time series, and thus are not easily affected by this shift.

次に、第2の実施形態に係るレーダ装置について、図5を参照して説明する。
図5は、本実施形態の送信信号の周波数変調および各受信アンテナ2A〜2Nの通過帯域(中心周波数)の分布を示した図である。
本実施形態のレーダ装置の構成は、図1(A)に示した第1の実施形態のレーダ装置と同じであり、第1の実施形態のレーダ装置とは、送信信号の周波数変調方法が異なるのみである。
本実施形態のレーダ装置は、第1の実施形態と同様に周波数変調帯域をN分割して分割周波数帯域を設定する。そして、これら分割周波数帯域を各受信アンテナ2A〜2Nにそれぞれ接続する帯域通過フィルタ部3A〜3Nの通過帯域に設定する。この際、本実施形態では、図5に示すように、各分割周波数帯域にて経時的に周波数を三角波状に変化させて送信信号を出力する。
Next, a radar apparatus according to the second embodiment will be described with reference to FIG.
FIG. 5 is a diagram illustrating the frequency modulation of the transmission signal and the distribution of the passbands (center frequencies) of the reception antennas 2A to 2N according to the present embodiment.
The configuration of the radar apparatus of the present embodiment is the same as that of the radar apparatus of the first embodiment shown in FIG. 1A, and the frequency modulation method of the transmission signal is different from the radar apparatus of the first embodiment. Only.
The radar apparatus according to the present embodiment sets the divided frequency band by dividing the frequency modulation band into N as in the first embodiment. Then, these divided frequency bands are set to pass bands of the band pass filter units 3A to 3N connected to the receiving antennas 2A to 2N, respectively. At this time, in the present embodiment, as shown in FIG. 5, the transmission signal is output by changing the frequency into a triangular wave shape with time in each divided frequency band.

このような構成とすることにより、各分割周波数帯域にて物体の距離および速度を検知することができる。また、周波数変調帯域全体で徐々に上り変調して下り変調する第1の実施形態に示したような三角波状の送信信号を用いる場合よりも、変調周期が短くなるので、物体の距離および速度をより高速に算出することができる。さらには、各分割周波数帯域の上り変調のみを用いても距離は算出することが可能であるので、物体の距離をさらに高速に算出することができる。   With such a configuration, the distance and speed of the object can be detected in each divided frequency band. In addition, since the modulation period is shorter than in the case of using a triangular wave-like transmission signal as shown in the first embodiment in which the entire frequency modulation band is gradually up-modulated and down-modulated, the object distance and speed are reduced. It is possible to calculate at higher speed. Furthermore, since the distance can be calculated using only the uplink modulation of each divided frequency band, the distance of the object can be calculated at a higher speed.

次に、第3の実施形態に係るレーダ装置について、図6を参照して説明する。
図6(A)は本実施形態のレーダ装置の主要部を示すブロック図であり、(B)は各受信アンテナ2A〜2Nの帯域通過特性を示す図である。
本実施形態のレーダ装置は、図6(A)に示すように、マルチプレクサ30を用いず、単に合成回路31のみを用いたものであり、各受信アンテナ2A〜2Nのそれぞれが所定の受信帯域幅を有し、帯域通過フィルタの機能を兼ね備えたものである。各受信アンテナ2A〜2Nの受信帯域(通過帯域)は、各受信アンテナ2A〜2Nに割り当てられた分割周波数帯域に略一致するように設定されている。このような受信アンテナ2A〜2Nとしては、マイクロストリップアンテナや導波管スロットアンテナが元々狭帯域であることを利用し、例えば、図6(B)に示すような通過帯域を有するようにアンテナの形状を設計すれば、容易に実現することができる。
Next, a radar apparatus according to a third embodiment will be described with reference to FIG.
FIG. 6A is a block diagram showing the main part of the radar apparatus of this embodiment, and FIG. 6B is a diagram showing the band pass characteristics of the receiving antennas 2A to 2N.
As shown in FIG. 6A, the radar apparatus according to the present embodiment uses only the synthesis circuit 31 without using the multiplexer 30, and each of the reception antennas 2A to 2N has a predetermined reception bandwidth. It also has a function of a band pass filter. The reception bands (pass bands) of the reception antennas 2A to 2N are set so as to substantially match the divided frequency bands assigned to the reception antennas 2A to 2N. As such receiving antennas 2A to 2N, a microstrip antenna or a waveguide slot antenna is originally used in a narrow band. For example, the antenna antenna has a pass band as shown in FIG. It can be easily realized by designing the shape.

このような構成とすることで、第1、第2の実施形態に示したようなマルチプレクサをも用いる必要がなく、より安価に且つ小型のレーダ装置を実現することができる。   By adopting such a configuration, it is not necessary to use the multiplexer as shown in the first and second embodiments, and it is possible to realize a more compact and small radar device.

次に、第4の実施形態に係るレーダ装置について、図7を参照して説明する。
図7は信号処理回路4に出力される合成出力信号の信号強度の時間特性を示したものであり、(A)は定常状態、(B)は送信信号の中心周波数が低周波数側にシフトした状態、(C)は送信信号の中心周波数が高周波数側にシフトした状態を示すものである。
Next, a radar apparatus according to a fourth embodiment will be described with reference to FIG.
FIG. 7 shows the time characteristics of the signal strength of the combined output signal output to the signal processing circuit 4, where (A) is a steady state and (B) is the center frequency of the transmission signal shifted to the lower frequency side. State (C) shows a state in which the center frequency of the transmission signal is shifted to the high frequency side.

送信信号の中心周波数が予め設定した中心周波数と変わらない初期状態等では、周波数変調帯域のどの時点の送信信号であっても信号強度は殆ど変わらない。したがって、図7(A)に示すように、合成出力信号の信号強度は一定になる。   In an initial state where the center frequency of the transmission signal does not change from the preset center frequency, the signal strength hardly changes at any time in the frequency modulation band. Therefore, as shown in FIG. 7A, the signal intensity of the combined output signal is constant.

しかしながら、経時劣化等により送信信号の中心周波数が低周波数側にずれると、この中心周波数に応じた周波数変調幅により送信信号が形成されることから、予め設定された送信信号の高い周波数帯域が発生しなくなる。例えば、図7の例では、中心周波数fNの分割周波数帯域の送信信号が低くなり、図7(B)に示すように、受信アンテナ2Nで受信される受信信号の信号強度が低下する。一方、送信信号の中心周波数が高周波数側にずれると、この中心周波数に応じた低い周波数帯域が発生しなくなる。例えば、図7(C)に示すように、受信アンテナ2Aで受信される受信信号の信号強度が低下する。   However, if the center frequency of the transmission signal shifts to the low frequency side due to deterioration over time or the like, a transmission signal is formed with a frequency modulation width corresponding to this center frequency, so a high frequency band of a preset transmission signal is generated. No longer. For example, in the example of FIG. 7, the transmission signal of the division frequency band of the center frequency fN becomes low, and the signal strength of the reception signal received by the reception antenna 2N is lowered as shown in FIG. 7B. On the other hand, when the center frequency of the transmission signal is shifted to the high frequency side, a low frequency band corresponding to the center frequency is not generated. For example, as shown in FIG. 7C, the signal strength of the received signal received by the receiving antenna 2A decreases.

信号処理回路4は、このような合成出力信号の信号強度変化を検出する。そして、周波数帯域の両端部の信号強度のいずれか、すなわち、受信アンテナ2Aまたは受信アンテナ2Nに対応する周波数帯域の信号強度が、他の受信アンテナ2B〜2(N−1)の信号強度よりも約3dB以上低いことを検出すると、全ての周波数帯域での信号強度が一定になるように中心周波数のシフト設定を行う。例えば、受信アンテナ2Nに対応する高い周波数帯域の信号強度が低ければ、送信信号の中心周波数を高くするように設定して補正変調電圧をVCO5に与える。一方、受信アンテナ2Aに対応する低い周波数帯域の信号強度が低ければ、送信信号の中心周波数を低くするように設定して補正変調電圧をVCO5に与える。   The signal processing circuit 4 detects such a change in signal strength of the combined output signal. Then, one of the signal strengths at both ends of the frequency band, that is, the signal strength in the frequency band corresponding to the receiving antenna 2A or the receiving antenna 2N is higher than the signal strength of the other receiving antennas 2B to 2 (N-1). When it is detected that the frequency is lower than about 3 dB, the center frequency is shifted so that the signal intensity in all frequency bands is constant. For example, if the signal intensity in the high frequency band corresponding to the receiving antenna 2N is low, the correction modulation voltage is applied to the VCO 5 by setting the center frequency of the transmission signal to be high. On the other hand, if the signal strength in the low frequency band corresponding to the reception antenna 2A is low, the correction modulation voltage is applied to the VCO 5 by setting the center frequency of the transmission signal to be low.

このような構成とすることで、経時劣化等により発生する送信信号の中心周波数のズレを検知して、常時一定の中心周波数に補正・維持することができる。   By adopting such a configuration, it is possible to detect a shift in the center frequency of the transmission signal that occurs due to deterioration over time, etc., and to always correct and maintain the center frequency constant.

第1の実施形態のレーダ装置の主要部を示すブロック図、および、マルチプレクサの各フィルタ部の通過帯域と周波数変調帯域との関係を示す図である。It is a block diagram which shows the principal part of the radar apparatus of 1st Embodiment, and the figure which shows the relationship between the pass band of each filter part of a multiplexer, and a frequency modulation band. 相対速度が「0」の物体に対して、送信アンテナ1から送信される送信信号と各受信アンテナ2A〜2Nで受信されるアンテナ受信信号とを示した一例の図、および、それぞれ帯域通過フィルタ3A,3B,3C,3Nから出力された帯域分割受信信号を示す図である。A diagram of an example showing a transmission signal transmitted from the transmission antenna 1 and antenna reception signals received by the reception antennas 2A to 2N with respect to an object having a relative velocity of “0”, and a band-pass filter 3A, respectively. , 3B, 3C, 3N are diagrams showing band-division received signals output from. 送信信号とマルチプレクサ30の出力信号とを示す図である。It is a figure which shows a transmission signal and the output signal of the multiplexer. 無作為に各受信アンテナ2A〜2Nの通過帯域(中心周波数)を設定した場合の通過帯域(中心周波数)の分布を示した図である。It is the figure which showed distribution of the pass band (center frequency) at the time of setting the pass band (center frequency) of each receiving antenna 2A-2N at random. 第2の実施形態の送信信号の周波数変化および各受信アンテナ2A〜2Nの通過帯域(中心周波数)の分布を示した図である。It is the figure which showed frequency distribution of the transmission signal of 2nd Embodiment, and distribution of the pass band (center frequency) of each receiving antenna 2A-2N. 第3の実施形態のレーダ装置の主要部を示すブロック図、および、各受信アンテナ2A〜2Nの帯域通過特性を示す図である。It is the block diagram which shows the principal part of the radar apparatus of 3rd Embodiment, and the figure which shows the band pass characteristic of each receiving antenna 2A-2N. 信号処理回路4に出力される合成出力信号の信号強度の時間特性を示した図である。FIG. 6 is a diagram illustrating time characteristics of signal strength of a combined output signal output to the signal processing circuit 4;

符号の説明Explanation of symbols

1−送信アンテナ、2A〜2N−受信アンテナ、30−マルチプレクサ、3A〜3N−帯域通過フィルタ部、31−合成回路、4−信号処理回路、5−VCO、6−分岐回路、7−LNA、8−ミキサ、9−IFアンプ   1-transmission antenna, 2A-2N-reception antenna, 30-multiplexer, 3A-3N-bandpass filter unit, 31-synthesis circuit, 4-signal processing circuit, 5-VCO, 6-branch circuit, 7-LNA, 8 -Mixer, 9-IF amplifier

Claims (5)

送信アンテナを備え、周波数変調された連続波を前記送信アンテナから送信する送信手段と、
配列された複数の受信アンテナを備え、送信された連続波の反射波を各受信アンテナで受信して受信信号を出力する受信手段と、
各受信信号に基づいて検知物体の方位を検出する検出手段と、
を備えたレーダ装置において、
前記受信手段は、変調周波数帯域に対応する受信周波数帯域を分割して成る複数の分割周波数帯域をそれぞれ前記複数の受信アンテナに設定し、複数の分割周波数帯域成分の受信信号を時分割された連続期間毎に出力することを特徴とするレーダ装置。
A transmission means comprising a transmission antenna, and transmitting a frequency-modulated continuous wave from the transmission antenna;
Receiving means comprising a plurality of receiving antennas arranged, receiving a reflected wave of a transmitted continuous wave at each receiving antenna and outputting a received signal;
Detecting means for detecting the orientation of the sensing object based on each received signal;
In a radar apparatus equipped with
The reception means sets a plurality of divided frequency bands obtained by dividing a reception frequency band corresponding to a modulation frequency band to each of the plurality of reception antennas, and continuously receives a plurality of divided frequency band component received signals in a time-division manner. A radar apparatus that outputs the signal every period.
前記受信手段は、前記複数の受信アンテナにそれぞれ接続し、受信アンテナ毎に異なる通過帯域を有する複数のフィルタと当該複数のフィルタの出力信号を合成する合成部とを有するマルチプレクサを備えた請求項1に記載のレーダ装置。   2. The multiplexer according to claim 1, wherein the receiving means includes a multiplexer that is connected to each of the plurality of receiving antennas and includes a plurality of filters having different passbands for each of the receiving antennas and a combining unit that combines output signals of the plurality of filters. The radar device described in 1. 前記複数の受信アンテナは、それぞれに異なる受信周波数帯域を有する請求項1に記載のレーダ装置。   The radar apparatus according to claim 1, wherein the plurality of reception antennas have different reception frequency bands. 前記検知手段は、前記時分割された各受信信号で検出した方位と前記複数の受信アンテナの間隔とに基づいて位相調整して少なくとも変調周期の一周期分に亘り受信信号の位相を一致させ、該位相を一致させた少なくとも一変調周期分の受信信号から検知物体の距離を検出する請求項1〜3のいずれかに記載のレーダ装置。   The detection means adjusts the phase based on the azimuth detected in each time-divided reception signal and the interval between the plurality of reception antennas, and matches the phase of the reception signal over at least one modulation period, The radar apparatus according to any one of claims 1 to 3, wherein a distance of a sensing object is detected from a reception signal corresponding to at least one modulation period in which the phases are matched. 前記検知手段は、時分割された各期間の受信信号強度を検出して、前記受信周波数帯域の端部に通過周波数が設定された受信アンテナに対応する受信信号強度が他の受信アンテナに対応する受信信号強度よりも低いことを検出すると、前記送信手段に周波数変調帯域の中心周波数を変更させる指示を行う請求項1〜4のいずれかに記載のレーダ装置。   The detection means detects the received signal strength of each time-divided period, and the received signal strength corresponding to the receiving antenna whose pass frequency is set at the end of the receiving frequency band corresponds to the other receiving antenna. The radar apparatus according to any one of claims 1 to 4, wherein when detecting that the received signal strength is lower than the received signal strength, the transmitting unit is instructed to change a center frequency of a frequency modulation band.
JP2006066284A 2006-03-10 2006-03-10 Radar equipment Expired - Fee Related JP4967384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066284A JP4967384B2 (en) 2006-03-10 2006-03-10 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066284A JP4967384B2 (en) 2006-03-10 2006-03-10 Radar equipment

Publications (2)

Publication Number Publication Date
JP2007240445A true JP2007240445A (en) 2007-09-20
JP4967384B2 JP4967384B2 (en) 2012-07-04

Family

ID=38586118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066284A Expired - Fee Related JP4967384B2 (en) 2006-03-10 2006-03-10 Radar equipment

Country Status (1)

Country Link
JP (1) JP4967384B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148638A (en) * 2015-02-13 2016-08-18 三菱電機株式会社 Radar device
JPWO2018207288A1 (en) * 2017-05-10 2019-11-07 三菱電機株式会社 Radar equipment
WO2021182347A1 (en) * 2020-03-10 2021-09-16 株式会社 東芝 Radio wave emission source visualizing device, and bandwidth expansion method
CN117148288A (en) * 2023-10-27 2023-12-01 南京航天工业科技有限公司 Radar interference method and system based on frequency protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088944A (en) * 1998-09-14 2000-03-31 Toyota Central Res & Dev Lab Inc Holographic radar
JP2000284047A (en) * 1999-03-31 2000-10-13 Denso Corp Radar system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088944A (en) * 1998-09-14 2000-03-31 Toyota Central Res & Dev Lab Inc Holographic radar
JP2000284047A (en) * 1999-03-31 2000-10-13 Denso Corp Radar system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148638A (en) * 2015-02-13 2016-08-18 三菱電機株式会社 Radar device
JPWO2018207288A1 (en) * 2017-05-10 2019-11-07 三菱電機株式会社 Radar equipment
WO2021182347A1 (en) * 2020-03-10 2021-09-16 株式会社 東芝 Radio wave emission source visualizing device, and bandwidth expansion method
JP7362521B2 (en) 2020-03-10 2023-10-17 株式会社東芝 Radio wave emission source visualization device and band expansion method
CN117148288A (en) * 2023-10-27 2023-12-01 南京航天工业科技有限公司 Radar interference method and system based on frequency protection
CN117148288B (en) * 2023-10-27 2024-01-09 南京航天工业科技有限公司 Radar interference method and system based on frequency protection

Also Published As

Publication number Publication date
JP4967384B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP3988653B2 (en) Antenna arrangement method and radar apparatus
US20190004167A1 (en) Range Resolution in FMCW Radars
US10746848B2 (en) In-vehicle radar apparatus
US7525479B2 (en) Radar apparatus
US7148840B2 (en) Radar apparatus, radar apparatus controlling method
EP2463683B1 (en) Active radar system and method
US6859168B2 (en) Radar apparatus
JP4433085B2 (en) Radar target detection method and radar apparatus using the target detection method
JP2000258524A (en) Radar
US11959996B2 (en) Radar device
JP5655516B2 (en) Radar equipment
JP2014517253A (en) FMCW radar system with multiple transmitters and beat frequency multiplex
JP2013519096A (en) Radar sensor
US20210239822A1 (en) Radar Device
JP4967384B2 (en) Radar equipment
US10379216B2 (en) Positioning system
JP5653726B2 (en) Radar equipment
US20170176573A1 (en) Aperture coding for a single aperture transmit receive system
JP2022059316A (en) Radar device
US10935649B2 (en) Aperture coding for transmit and receive beamforming
WO2007032234A1 (en) Radar device
JP3988520B2 (en) Holographic radar
JP6330594B2 (en) Filter device and target detection device
JP3780904B2 (en) Radar equipment
JP2009109370A (en) Radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees