JP2007240424A5 - - Google Patents

Download PDF

Info

Publication number
JP2007240424A5
JP2007240424A5 JP2006065742A JP2006065742A JP2007240424A5 JP 2007240424 A5 JP2007240424 A5 JP 2007240424A5 JP 2006065742 A JP2006065742 A JP 2006065742A JP 2006065742 A JP2006065742 A JP 2006065742A JP 2007240424 A5 JP2007240424 A5 JP 2007240424A5
Authority
JP
Japan
Prior art keywords
fluorescence
information
molecule
fret
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065742A
Other languages
Japanese (ja)
Other versions
JP4365380B2 (en
JP2007240424A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006065742A priority Critical patent/JP4365380B2/en
Priority claimed from JP2006065742A external-priority patent/JP4365380B2/en
Publication of JP2007240424A publication Critical patent/JP2007240424A/en
Publication of JP2007240424A5 publication Critical patent/JP2007240424A5/ja
Application granted granted Critical
Publication of JP4365380B2 publication Critical patent/JP4365380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (22)

第1分子および第2分子で標識された測定対象サンプルにレーザ光を照射し、このとき測定対象サンプルが発する蛍光を受光することによって、第1分子のエネルギーが第2分子に移動するFRET(Fluorescence Resonance Energy Transfer)を検出するFRET検出方法であって、
レーザ光の強度を所定の周波数で時間変調して前記測定対象サンプルに照射し、このときの前記測定対象サンプルの発する蛍光を受光波長帯域の異なる複数の検出センサで受光することにより、前記測定対象サンプルの蛍光の蛍光強度情報および位相情報を含む検出値を収集するステップと、
予め記憶手段に記憶されている情報であって、前記測定対象サンプルの前記蛍光のうち前記第1分子が発する第1分子蛍光成分の、前記受光波長帯域における蛍光強度の比を表す第1の強度比率と前記レーザ光の時間変調に対する前記第1分子蛍光成分の位相情報と、前記蛍光のうち前記第2分子が発する第2分子蛍光成分の、前記受光波長帯域の蛍光強度の比を表す第2の強度比率と前記レーザ光の時間変調に対する前記第2分子蛍光成分の位相情報と、レーザ光によって励起された第1分子が発する蛍光が1次遅れ系の緩和応答であるとしたとき定義される寿命であって前記FRETが発生しない状態における前記第1分子蛍光成分の非FRET蛍光寿命と、を少なくとも含むキャリブレーション情報を読み出して取得するステップと、
各検出センサから収集された前記検出値から、前記受光波長帯域毎に、前記測定対象サンプルの蛍光の蛍光強度情報および位相情報を求めて、求めた前記蛍光強度情報および前記位相情報と、前記第1の強度比率と、前記第1分子蛍光成分の前記位相情報と、前記第2の強度比率と、前記第2分子蛍光成分の前記位相情報と、を用いて、レーザ光によって励起された第1分子が発する蛍光が1次遅れ系の緩和応答であるとしたとき定義される前記第1分子蛍光成分のFRET蛍光寿命を求めるステップと、
前記第1分子蛍光成分のFRET蛍光寿命と、前記第1分子蛍光成分の前記非FRET蛍光寿命との比を用いてFRET発生情報を求めるステップと、を有することを特徴とするFRET検出方法。
FRET (Fluorescence) in which the energy of the first molecule is transferred to the second molecule by irradiating the measurement target sample labeled with the first molecule and the second molecule with laser light and receiving the fluorescence emitted from the measurement target sample at this time A FRET detection method for detecting (Resonance Energy Transfer),
The intensity of the laser beam is time-modulated at a predetermined frequency to irradiate the sample to be measured, and the fluorescence emitted from the sample to be measured at this time is received by a plurality of detection sensors having different light receiving wavelength bands, thereby the object to be measured Collecting detected values including fluorescence intensity information and phase information of the fluorescence of the sample;
A information stored in advance in the storage unit, a first intensity representing the first molecule fluorescence component emitted by the first molecule of the fluorescence, the ratio of the fluorescence intensity at the light receiving wavelength range of the measurement target sample The ratio , the phase information of the first molecule fluorescence component with respect to the time modulation of the laser light, and the ratio of the fluorescence intensity in the light receiving wavelength band of the second molecule fluorescence component emitted by the second molecule of the fluorescence . Defined when the intensity ratio of 2, the phase information of the second molecular fluorescent component with respect to the time modulation of the laser beam, and the fluorescence emitted by the first molecule excited by the laser beam are relaxation responses of the first-order lag system obtaining by reading the calibration information including non-FRET fluorescence lifetime of the first molecule fluorescence component in a state in which the FRET does not occur a lifetime that is at least ,
From the detection values collected from each detection sensor, the fluorescence intensity information and the phase information of the fluorescence of the measurement target sample are obtained for each of the light reception wavelength bands, the obtained fluorescence intensity information and the phase information, and the first The first intensity excited by laser light using the intensity ratio of 1, the phase information of the first molecular fluorescent component, the second intensity ratio, and the phase information of the second molecular fluorescent component. Determining the FRET fluorescence lifetime of the first molecule fluorescence component defined when the fluorescence emitted by the molecule is a first order lag relaxation response;
FRET generation information is obtained by using the ratio of the FRET fluorescence lifetime of the first molecule fluorescence component to the non-FRET fluorescence lifetime of the first molecule fluorescence component.
前記FRET発生情報を求めるステップでは、前記非FRET蛍光寿命をτd、前記FRET蛍光寿命をτd *とするとき
前記FRET発生情報として、1−(τd */τd)で表されるFRET効率Etを求める請求項1に記載のFRET検出方法。
Wherein in the step of determining a FRET occurrence information, the non-FRET fluorescence lifetime tau d, wherein when the the FRET fluorescence lifetime tau d *,
The FRET as occurrence information, FRET detection method according to claim 1 for obtaining a FRET efficiency E t represented by 1- (τ d * / τ d ).
前記検出値を収集するステップでは、複数の前記測定対象サンプルに前記レーザ光を照射し、前記センサにて複数の前記測定対象サンプルそれぞれについて前記検出値を収集し、
前記FRET蛍光寿命を求めるステップでは、各検出値に基づいて、前記測定対象サンプルそれぞれの蛍光強度情報および位相情報を求め、求めた複数の蛍光強度情報および位相情報から前記FRET蛍光寿命を求める請求項1または2に記載のFRET検出方法。
In the step of collecting the detection value, irradiating the laser light into a plurality of the measuring sample, collects the detection values for the plurality of the measurement target sample, respectively in the sensor,
The step of obtaining the FRET fluorescence lifetime includes obtaining fluorescence intensity information and phase information of each measurement target sample based on each detection value, and obtaining the FRET fluorescence lifetime from the obtained plurality of fluorescence intensity information and phase information. 3. The FRET detection method according to 1 or 2.
前記FRET蛍光寿命を求めるステップでは、前記受光波長帯域毎に前記検出値から求めた前記蛍光強度および位相情報をベクトルで表し、このベクトル前記第1の強度比率および前記第2の強度比率とを、前記受光波長帯域毎に用いて、FRETが生じた状態における前記第1分子蛍光成分の蛍光強度情報および位相情報と、前記第2分子蛍光成分のうちFRETが生じることで発するFRET成分の蛍光強度情報および位相情報とを求め、求めた情報を用いて、前記FRET蛍光寿命を求める請求項1〜3のいずれかに記載のFRET検出方法。 In the step of determining the FRET fluorescence lifetime represents the fluorescence intensity and phase information obtained from the detection value for each of the light receiving wavelength band vector, and this vector, and the first intensity ratio and the second intensity ratio For each light receiving wavelength band, the fluorescence intensity information and phase information of the first molecule fluorescence component in the state where FRET has occurred, and the fluorescence of the FRET component emitted by the occurrence of FRET out of the second molecule fluorescence component The FRET detection method according to claim 1, wherein intensity information and phase information are obtained, and the FRET fluorescence lifetime is obtained using the obtained information. 前記受光波長帯域は、前記第1分子蛍光成分の蛍光強度が最大となるピーク波長を中心とした第1波長帯域と、前記第2分子蛍光成分の蛍光強度が最大となるピーク波長を中心とした第2波長帯域とを有し
前記FRET蛍光寿命を求めるステップでは、
前記第1波長帯域の前記検出センサにて収集される検出値によって表される第1波長帯域における前記ベクトルと前記第2の強度比率とを少なくとも用いて、前記FRETが生じた状態における前記第1分子蛍光成分の蛍光強度情報および位相情報を求め、
前記第2波長帯域の前記検出センサにより収集される検出値によって表される第2波長帯域における前記ベクトルと前記第1の強度比率とを少なくとも用いて、前記FRET成分の蛍光強度情報および位相情報を求める請求項4に記載のFRET検出方法。
The light receiving wavelength band is centered on a first wavelength band centered on a peak wavelength at which the fluorescence intensity of the first molecule fluorescent component is maximized and a peak wavelength at which the fluorescence intensity of the second molecule fluorescence component is maximized. and a second wavelength band,
In the step of obtaining the FRET fluorescence lifetime,
The first in a state where the FRET has occurred using at least the vector in the first wavelength band represented by the detection value collected by the detection sensor in the first wavelength band and the second intensity ratio . Obtain fluorescence intensity information and phase information of molecular fluorescent components,
Using at least the vector in the second wavelength band represented by the detection value collected by the detection sensor in the second wavelength band and the first intensity ratio, the fluorescence intensity information and phase information of the FRET component The FRET detection method according to claim 4 to be obtained.
前記記憶手段には、前記第2分子蛍光成分のうち前記レーザ光によって第2分子が直接励起されることで発生する直接励起蛍光成分の蛍光強度情報および位相情報があらかじめ記憶されており、
前記キャリブレーション情報を取得するステップでは、前記記憶手段に記憶されている前記直接励起蛍光成分の蛍光強度情報および位相情報を呼び出して、直接励起蛍光成分の情報ベクトルで表し
前記FRET蛍光寿命を求めるステップでは、前記直接励起蛍光成分の前記ベクトル、前記第2波長帯域における前記ベクトルとを少なくとも用いて、前記FRETが生じた状態における前記第2分子蛍光成分の蛍光強度情報および位相情報を求める請求項5に記載のFRET検出方法。
The storage means stores in advance fluorescence intensity information and phase information of a directly excited fluorescence component generated by the second molecule being directly excited by the laser light in the second molecule fluorescence component,
In the step of acquiring the calibration information, the fluorescence intensity information and the phase information of the directly excited fluorescence component stored in the storage unit are called, and the information of the directly excited fluorescence component is represented by a vector,
Wherein in the step of determining a FRET fluorescence lifetime, and the vector of the direct excitation fluorescence component, with at least the said vector in said second wavelength band, the fluorescence intensity information of the second molecule fluorescence component in a state in which the FRET occurs The FRET detection method according to claim 5, wherein the phase information is obtained.
前記記憶手段には、前記第2分子蛍光成分のうち前記レーザ光によって第2分子が直接励起されることで発生する直接励起蛍光成分の蛍光強度情報および位相情報があらかじめ記憶されており、
前記キャリブレーション情報を取得するステップでは、前記第2分子蛍光成分のうち、前記レーザ光によって第2分子が直接励起されることで発生する直接励起蛍光成分の蛍光強度情報および位相情報を呼び出して前記直接励起蛍光成分ベクトルで表し
前記FRET蛍光寿命を求めるステップでは、前記第1分子蛍光成分のFRET寿命を前記キャリブレーション情報を用いて求めるのに加えて、前記第2波長帯域における前記ベクトル前記第1の強度比率とを少なくとも用いて前記FRET成分の位相情報を求め、
求めた前記FRET成分の位相情報と前記直接励起蛍光成分の前記ベクトルとを用いて、前記FRETが生じた状態における前記第2分子蛍光成分のFRET蛍光寿命と、前記FRETが生じない状態における前記第2分子蛍光成分の非FRET蛍光寿命とを求め、
前記第2分子蛍光成分のFRET蛍光寿命と、前記第2分子蛍光成分の前記非FRET蛍光寿命とを用いて、前記第1分子蛍光成分のFRET蛍光寿命を求める請求項5に記載のFRET検出方法。
The storage means stores in advance fluorescence intensity information and phase information of a directly excited fluorescence component generated by the second molecule being directly excited by the laser light in the second molecule fluorescence component,
In the step of acquiring the calibration information, the fluorescence intensity information and the phase information of the directly excited fluorescence component generated by the second molecule being directly excited by the laser light among the second molecule fluorescence components are called up , It represents a vector of the direct excitation fluorescence component,
In the step of obtaining the FRET fluorescence lifetime, in addition to obtaining the FRET lifetime of the first molecular fluorescence component using the calibration information, the vector in the second wavelength band and the first intensity ratio are obtained. Using at least the phase information of the FRET component,
Using the phase information of the FRET components obtained with the said vector of the direct excitation fluorescence component, and FRET fluorescence lifetime of the second molecule fluorescence component in a state in which the FRET occurs, the in state in which the FRET does not occur first Obtaining the non-FRET fluorescence lifetime of the bimolecular fluorescent component,
6. The FRET detection method according to claim 5, wherein the FRET fluorescence lifetime of the first molecule fluorescence component is obtained using the FRET fluorescence lifetime of the second molecule fluorescence component and the non-FRET fluorescence lifetime of the second molecule fluorescence component. .
前記測定対象サンプルは、前記レーザ光によって励起されて自家蛍光を発する自家蛍光サンプル体に、前記第1分子および前記第2分子で標識されたサンプルであって、
前記記憶手段には、前記自家蛍光サンプル体に前記レーザ光を照射することにより発する前記自家蛍光サンプル体の蛍光の、前記受光波長帯域毎の蛍光強度情報および位相情報が予め記憶されており、
前記キャリブレーション情報を取得するステップでは、前記記憶手段に記憶されている、前記自家蛍光サンプル体の蛍光の前記受光波長帯域の蛍光強度情報および位相情報を呼び出して前記自家蛍光サンプル体の蛍光をベクトルで表し
前記FRET蛍光寿命を求めるステップでは、前記受光波長帯域毎の前記測定対象サンプルの前記ベクトルそれぞれから、前記自家蛍光サンプル体の蛍光の前記ベクトルを減算し、この減算で得られたベクトルを用いて、前記FRET蛍光寿命を求める請求項4〜7のいずれかに記載のFRET検出方法。
The sample to be measured is a sample labeled with the first molecule and the second molecule on an autofluorescent sample body that emits autofluorescence when excited by the laser beam,
In the storage means, fluorescence intensity information and phase information for each light receiving wavelength band of fluorescence of the autofluorescence sample body emitted by irradiating the autofluorescence sample body with the laser light is stored in advance,
In the step of obtaining the calibration information, the fluorescence intensity information and the phase information for each light receiving wavelength band of the fluorescence of the autofluorescence sample body, which is stored in the storage means, are called to obtain the fluorescence of the autofluorescence sample body . Represented as a vector ,
In the step of determining the FRET fluorescence lifetime, from said each of said vector of said measuring sample of each photosensitive wavelength range, said subtracting the vector of fluorescence autofluorescence sample material, using a vector obtained by the subtraction The FRET detection method according to claim 4, wherein the FRET fluorescence lifetime is obtained.
前記キャリブレーション情報を取得するステップでは、自家蛍光キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記自家蛍光キャリブレーションでは、
前記自家蛍光サンプル体を測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集して、前記自家蛍光サンプル体の蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶する請求項8に記載のFRET検出方法。
In the step of acquiring the calibration information, the information obtained by autofluorescence calibration is called from the storage means and acquired,
In the autofluorescence calibration,
By irradiating laser light that is time-modulated at a predetermined frequency with the autofluorescence sample body as a measurement object, detection values including fluorescence intensity information and phase information for each light reception wavelength band are collected from each detection sensor. 9. The FRET detection method according to claim 8, wherein fluorescence intensity information and phase information of the fluorescence of the autofluorescence sample body for each light receiving wavelength band are obtained, and the obtained information is stored in the storage means.
前記キャリブレーション情報を取得するステップでは、non−FRETキャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記non−FRETキャリブレーションでは、
前記第1分子および前記第2分子がサンプルに付着されて、FRETが生じない処理がなされたnon−FRETサンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集して、前記non−FRETサンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、
求めた前記受光波長帯域の蛍光強度情報および位相情報と、前記記憶手段に予め記憶された前記第1の強度比率と、前記第1分子蛍光成分の位相情報、前記記憶手段に予め記憶された前記第2の強度比率と、前記第2分子蛍光成分の位相情報とを用いて、レーザ光によって第2分子が直接励起される直接励起蛍光成分の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶する請求項1〜9のいずれかに記載のFRET検出方法。
In the step of acquiring the calibration information, the information obtained by non-FRET calibration is retrieved from the storage means and acquired.
In the non-FRET calibration,
Each detection is performed by irradiating the first-molecule and the second molecule attached to the sample and irradiating the non-FRET sample, which has been processed so as not to generate FRET, with time-modulated laser light at a predetermined frequency. from the sensor, said by collecting detected values including the fluorescence intensity information and phase information of each light-receiving wavelength band, of the fluorescence of the non-FRET sample, determine the fluorescence intensity information and phase information of each of the light receiving wavelength bands,
The obtained fluorescence intensity information and phase information for each received wavelength band, the first intensity ratio stored in advance in the storage means, the phase information of the first molecular fluorescence component, and stored in the storage means in advance. said second intensity ratio was using, and phase information of the second molecule fluorescence component, determine the fluorescence intensity information and phase information of the direct excitation fluorescence component second molecule is excited directly by the laser beam, determined The FRET detection method according to claim 1, wherein the stored information is stored in the storage unit.
前記non−FRETサンプルは、前記レーザ光によって励起されて自家蛍光を発する自家蛍光サンプル体に、前記第1分子および前記第2分子で標識されたサンプルであって、
前記キャリブレーション情報を取得するステップでは、自家蛍光キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記自家蛍光キャリブレーションは、前記non−FRETキャリブレーションに先がけて行われるキャリブレーションであって、前記自家蛍光サンプル体を測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集して、前記自家蛍光サンプル体の蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶し、
前記non−FRETキャリブレーションでは、前記non−FRETサンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報をベクトルで表したnon−FRETサンプルベクトルから、前記自家蛍光キャリブレーションで求められた前記自家蛍光の情報をベクトルで表した自家蛍光ベクトルを減算し、この減算で得られたベクトルと、前記記憶手段に予め記憶された前記第1の強度比率と、前記第1分子蛍光成分の位相情報と、前記記憶手段に予め記憶された前記第2の強度比率と、前記第2分子蛍光成分の位相情報とを用いて前記直接励起蛍光成分ベクトルを導出し、導出した結果を前記記憶手段に記憶する請求項10に記載のFRET検出方法。
The non-FRET sample is a sample labeled with the first molecule and the second molecule on an autofluorescent sample body that emits autofluorescence when excited by the laser beam,
In the step of acquiring the calibration information, the information obtained by autofluorescence calibration is called from the storage means and acquired,
The autofluorescence calibration is a calibration performed prior to the non-FRET calibration, and each of the autofluorescence calibrations is irradiated with laser light that is time-modulated at a predetermined frequency using the autofluorescence sample body as a measurement object. from the detection sensor, collects the detection values including fluorescence intensity information and phase information of each of the light receiving wavelength band, of the fluorescence of the autofluorescence sample material, determine the fluorescence intensity information and phase information of each of the light receiving wavelength band, determined Information stored in the storage means,
In the non-FRET calibration , the auto-fluorescence calibration was obtained from the non-FRET sample vector in which the fluorescence intensity information and phase information for each light receiving wavelength band of the fluorescence of the non-FRET sample were expressed as vectors . Subtracting the autofluorescence vector representing the autofluorescence information as a vector, the vector obtained by this subtraction, the first intensity ratio stored in advance in the storage means, and the phase of the first molecular fluorescence component information and the previously stored second intensity ratio in the memory means, the second and the phase information of the molecule fluorescence component, and deriving the direct excitation fluorescence component vector using said storage means the derived results The FRET detection method according to claim 10, wherein the FRET detection method is stored .
前記キャリブレーション情報を取得するステップでは、第1分子キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記第1分子キャリブレーションでは、
前記第1分子のみで標識された第1分子サンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集して、前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、
前記第1の強度比率として、前記第1分子サンプルの、前記受光波長帯域の蛍光強度の比を求め、
求めた前記第1の強度比率と求めた前記位相情報を前記記憶手段に記憶する請求項1〜11のいずれかに記載のFRET検出方法。
In the step of obtaining the calibration information, the information obtained by the first molecule calibration is retrieved from the storage means and obtained,
In the first molecule calibration,
By irradiating a first molecular sample labeled only with the first molecule with a laser beam time-modulated at a predetermined frequency using the first molecular sample as a measurement object, the light receiving wavelength of the fluorescence of the first molecular sample is detected from each detection sensor. Collecting detection values including fluorescence intensity information and phase information for each band, and obtaining fluorescence intensity information and phase information for each light receiving wavelength band of the fluorescence of the first molecule sample,
As the first intensity ratio , the ratio of the fluorescence intensity of the light reception wavelength band of the first molecular sample is obtained,
FRET detection method according to any one of claims 1 to 11 for storing said phase information obtained from the first intensity ratio obtained in the memory means.
前記第1分子サンプルは、前記レーザ光によって励起されて自家蛍光を発する自家蛍光サンプル体に、前記第1分子で標識されたサンプルであって、
前記キャリブレーション情報を取得するステップでは、自家蛍光キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記自家蛍光キャリブレーションは、前記第1分子キャリブレーションに先がけて行われるキャリブレーションであって、前記自家蛍光サンプル体を測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域毎に蛍光強度情報および位相情報を含む検出値を収集して、前記自家蛍光サンプル体の蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶し、
前記第1分子キャリブレーションでは、前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報をベクトルで表した第1分子サンプルベクトルから、前記自家蛍光キャリブレーションで求められた前記自家蛍光サンプル体の蛍光の情報をベクトルで表した自家蛍光ベクトルを減算し、この減算で得られたベクトルを用いて、前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶する請求項12に記載のFRET検出方法。
The first molecule sample is a sample labeled with the first molecule on an autofluorescence sample body that emits autofluorescence when excited by the laser beam,
In the step of acquiring the calibration information, the information obtained by autofluorescence calibration is called from the storage means and acquired,
The autofluorescence calibration is a calibration performed prior to the first molecule calibration, and each autoirradiation sample is irradiated with a laser beam time-modulated at a predetermined frequency with the autofluorescence sample body as a measurement object. By collecting detection values including fluorescence intensity information and phase information for each light reception wavelength band from a detection sensor , the fluorescence intensity information and phase information for each light reception wavelength band of the fluorescence of the autofluorescence sample body is obtained and obtained. Information stored in the storage means,
In the first molecule calibration, the fluorescence of the first molecule sample was obtained by the autofluorescence calibration from the first molecule sample vector representing the fluorescence intensity information and the phase information for each light receiving wavelength band as vectors . Subtracting the autofluorescence vector representing the fluorescence information of the autofluorescence sample body as a vector, and using the vector obtained by this subtraction, fluorescence intensity information of the fluorescence of the first molecule sample for each light receiving wavelength band 13. The FRET detection method according to claim 12, wherein phase information is obtained and the obtained information is stored in the storage means .
前記キャリブレーション情報を取得するステップでは、第2分子キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記第2分子キャリブレーションでは、
前記第2分子のみで標識された第2分子サンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集して、前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、
前記第2の強度比率として、前記第2分子サンプルの、前記受光波長帯域の蛍光強度の比を求め、
求めた前記第2の強度比率および求めた前記位相情報を前記記憶手段に記憶する請求項1〜13のいずれかに記載のFRET検出方法。
In the step of acquiring the calibration information, the information obtained by the second molecule calibration is called from the storage means and acquired,
In the second molecule calibration,
By irradiating a second molecular sample labeled only with the second molecule with a laser beam time-modulated at a predetermined frequency using the second molecular sample as a measurement object, the light receiving wavelength of the fluorescence of the second molecular sample is detected from each detection sensor. Collecting detection values including fluorescence intensity information and phase information for each band, and obtaining fluorescence intensity information and phase information for each light receiving wavelength band of the fluorescence of the second molecule sample,
As the second intensity ratio , the ratio of the fluorescence intensity of the light receiving wavelength band of the second molecular sample is obtained,
The FRET detection method according to claim 1, wherein the obtained second intensity ratio and the obtained phase information are stored in the storage unit.
前記第2分子サンプルは、前記レーザ光によって励起されて自家蛍光を発する自家蛍光サンプル体に、前記第2分子で標識されたサンプルであって、
前記キャリブレーション情報を取得するステップでは、自家蛍光キャリブレーションによって得られた情報を前記記憶手段から呼び出して取得し、
前記自家蛍光キャリブレーションは、前記第2分子キャリブレーションに先がけて行われるキャリブレーションであって、前記自家蛍光サンプル体を測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域毎に蛍光強度情報および位相情報を含む検出値を収集して、前記自家蛍光サンプル体の蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶し、
前記第2分子キャリブレーションでは、前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報をベクトルで表した第2分子サンプルベクトルから、前記自家蛍光サンプル体キャリブレーションで求められた前記自家蛍光サンプルの蛍光の情報をベクトルで表した自家蛍光ベクトルを減算し、この減算で得られたベクトルを用いて、前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた情報を前記記憶手段に記憶する請求項14に記載のFRET検出方法。
The second molecule sample is a sample labeled with the second molecule on an autofluorescent sample body that emits autofluorescence when excited by the laser beam,
In the step of acquiring the calibration information, the information obtained by autofluorescence calibration is called from the storage means and acquired,
The autofluorescence calibration is a calibration performed prior to the second molecule calibration, and each autoirradiation sample is irradiated with laser light that is time-modulated at a predetermined frequency with the autofluorescence sample body as a measurement object. By collecting detection values including fluorescence intensity information and phase information for each light reception wavelength band from a detection sensor , the fluorescence intensity information and phase information for each light reception wavelength band of the fluorescence of the autofluorescence sample body is obtained and obtained. Information stored in the storage means,
In the second molecule calibration, the fluorescence of the second molecule sample, the second molecule sample vector representing the fluorescence intensity information and phase information of each of the light receiving wavelength band vector, determined by the autofluorescence sample material calibration The autofluorescence vector representing the fluorescence information of the autofluorescence sample obtained as a vector is subtracted, and using the vector obtained by this subtraction, the fluorescence intensity of the fluorescence of the second molecule sample for each light receiving wavelength band 15. The FRET detection method according to claim 14, wherein information and phase information are obtained , and the obtained information is stored in the storage means .
第1分子および第2分子で標識された測定対象サンプルにレーザ光を照射し、このとき測定対象サンプルが発する蛍光を受光することによって、第1分子のエネルギーが第2分子に移動するFRET(Fluorescence Resonance Energy Transfer)を検出するFRET検出装置であって、
レーザ光の強度を所定の周波数で時間変調して前記測定対象サンプルについて照射し、このときの前記測定対象サンプルの蛍光を受光波長帯域の異なる複数の検出センサで受光することにより、前記測定対象サンプルの蛍光の蛍光強度情報および位相情報を含む検出値を取得する検出情報取得部と、
前記測定対象サンプルの前記蛍光のうち前記第1分子が発する第1分子蛍光成分の、前記受光波長帯域の蛍光強度の比を表す第1の強度比率と、前記第1分子蛍光成分の位相情報と、前記第2分子が発する第2分子蛍光成分の、前記受光波長帯域の蛍光強度の比を表す第2の強度比率と、前記第2分子蛍光成分の位相情報と、レーザ光によって励起された第1分子が発する蛍光が1次遅れ系の緩和応答であるとしたときに定義される寿命であって、前記FRETが発生しない状態における前記第1分子蛍光成分の非FRET蛍光寿命と、を少なくとも含むキャリブレーション情報を予め記憶しておく記憶手段と、
前記検出情報取得部が取得した前記検出値から、前記受光波長帯域それぞれについて、前記測定対象サンプルの蛍光の蛍光強度情報および位相情報を求めて、求めた前記蛍光強度情報および前記位相情報と、前記記憶手段から読み出した前記第1の強度比率と、前記第1分子蛍光成分の前記位相情報と、前記第2の強度比率と、前記第2分子蛍光成分の前記位相情報と、を用いて、レーザ光によって励起された第1分子が発する蛍光が1次遅れ系の緩和応答であるとしたときに定義される前記第1分子蛍光成分のFRET蛍光寿命を求めるFRET蛍光寿命算出部と、
前記第1分子蛍光成分のFRET蛍光寿命と、前記第1分子蛍光成分の前記非FRET蛍光寿命との比を用いて表されるFRET発生情報を求めるFRET発生情報算出部と、を有することを特徴とするFRET検出装置。
The sample to be measured labeled with the first molecule and the second molecule is irradiated with laser light, and at this time, the fluorescence emitted from the sample to be measured is received, thereby transferring the energy of the first molecule to the second molecule. A FRET detection device for detecting (Resonance Energy Transfer),
The measurement target sample is irradiated with the measurement target sample after time-modulating the intensity of the laser beam at a predetermined frequency, and the fluorescence of the measurement target sample at this time is received by a plurality of detection sensors having different reception wavelength bands. A detection information acquisition unit for acquiring a detection value including fluorescence intensity information and phase information of the fluorescence of
Of the fluorescence of the sample to be measured, a first intensity ratio representing a ratio of fluorescence intensity of the light reception wavelength band of a first molecule fluorescence component emitted by the first molecule, and phase information of the first molecule fluorescence component The second intensity ratio representing the ratio of the fluorescence intensity of the light receiving wavelength band of the second molecule fluorescence component emitted by the second molecule, the phase information of the second molecule fluorescence component, and the first excited by laser light A lifetime defined when the fluorescence emitted from one molecule is a relaxation response of a first-order lag system, and includes at least the non-FRET fluorescence lifetime of the first molecule fluorescence component in a state where the FRET does not occur Storage means for storing calibration information in advance;
From the detection value acquired by the detection information acquisition unit, for each of the light receiving wavelength bands, to obtain fluorescence intensity information and phase information of the fluorescence of the measurement target sample, the obtained fluorescence intensity information and the phase information, Using the first intensity ratio read from the storage means, the phase information of the first molecule fluorescence component, the second intensity ratio, and the phase information of the second molecule fluorescence component, a laser is obtained. A FRET fluorescence lifetime calculation unit for obtaining a FRET fluorescence lifetime of the first molecule fluorescence component defined when the fluorescence emitted by the first molecule excited by light is a relaxation response of a first-order lag system;
A FRET generation information calculation unit that obtains FRET generation information expressed by using a ratio between the FRET fluorescence lifetime of the first molecule fluorescence component and the non-FRET fluorescence lifetime of the first molecule fluorescence component. FRET detection device.
前記FRET蛍光寿命算出部では、前記検出値それぞれから求めた前記蛍光強度および位相情報をベクトルで表し、それぞれのベクトル前記第1の強度比率と、前記第1分子蛍光成分の前記位相情報、前記第2分子蛍光成分の前記第2の強度比率と、前記第2分子蛍光成分の前記位相情報とを用いて、FRETが生じた状態における前記第1分子蛍光成分の蛍光強度情報および位相情報と、前記第2分子蛍光成分のうちFRETが生じることで発するFRET成分の蛍光強度情報および位相情報とを求め、求めたこれらの情報を用いて、前記FRET蛍光寿命を求める請求項16に記載のFRET検出装置。 Wherein the FRET fluorescence lifetime calculating unit, represents the fluorescence intensity and phase information obtained from the detected value, respectively a vector, and each vector, and the first intensity ratio, and the phase information of the first molecule fluorescence component the said second intensity ratio of the second molecule fluorescence component, using said phase information of said second molecule fluorescence component, the fluorescence intensity information and phase information of the first molecule fluorescence component in a state where FRET occurs The fluorescence intensity information and phase information of the FRET component emitted when FRET occurs among the second molecular fluorescence components, and using the obtained information, the FRET fluorescence lifetime is obtained. FRET detection device. 前記センサの各受光波長帯域は、前記第1分子蛍光成分の蛍光強度が最大となるピーク波長を中心とした第1波長帯域と、前記第2分子蛍光成分の蛍光強度が最大となるピーク波長を中心とした第2波長帯域であり、
前記FRET蛍光寿命算出部では、
前記第1波長帯域の検出センサによる前記検出値から求められる第1波長帯域におけるベクトルと、前記第2の強度比率とを少なくとも用いて、前記FRETが生じた状態における前記第1分子蛍光成分の蛍光強度情報および位相情報を求め、
前記第2波長帯域の前記検出センサによる前記検出値によって表される第2波長帯域におけるベクトルと、前記第1の強度比率とを少なくとも用いて、前記FRET成分の蛍光強度情報および位相情報を求める請求項16または17に記載のFRET検出装置。
Each light receiving wavelength band of the sensor has a first wavelength band centered on a peak wavelength at which the fluorescence intensity of the first molecule fluorescence component is maximized, and a peak wavelength at which the fluorescence intensity of the second molecule fluorescence component is maximized. The second wavelength band in the center,
In the FRET fluorescence lifetime calculation unit,
A vector in the first wavelength band obtained from the value detected by the detection sensor of the first wavelength band, said second intensity ratio and using at least a fluorescence of said first molecule fluorescence component in a state in which the FRET occurs Find intensity information and phase information,
Wherein a vector in a second wavelength band represented by said value detected by said detection sensor of the second wavelength band, with at least a first intensity ratio, determining the fluorescence intensity information and phase information of the FRET component according Item 18. The FRET detection device according to Item 16 or 17.
前記FRET検出装置は、さらに、自家蛍光キャリブレーション部を有し、
前記自家蛍光キャリブレーション部は、前記レーザ光によって励起されて自家蛍光を発する自家蛍光を測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、前記検出センサそれぞれから、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集し、前記自家蛍光サンプル体の蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求めて、前記記憶手段に記憶し
前記FRET蛍光寿命算出部では、前記受光波長帯域の前記測定対象サンプルの蛍光の情報をベクトルで表し、このベクトルから、前記自家蛍光サンプル体の前記蛍光強度情報および前記位相情報を表したベクトルを減算し、減算して得られたベクトルを用いて、前記FRET蛍光寿命を求める請求項16〜18のいずれかに記載のFRET検出装置。
The FRET detection device further includes an auto fluorescence calibration unit,
The autofluorescence calibration unit, by irradiating a laser beam temporal modulation at a predetermined frequency autofluorescence emits autofluorescence being excited by the laser beam as a measuring object, from each of the detecting sensor, the light receiving wavelength Collecting detection values including fluorescence intensity information and phase information of the band, obtaining fluorescence intensity information and phase information of the fluorescence of the autofluorescence sample body for each of the reception wavelength bands , and storing them in the storage means ,
In the FRET fluorescence lifetime calculation unit, the fluorescence information of the measurement target sample for each light reception wavelength band is represented by a vector, and from this vector, the fluorescence intensity information and the phase information of the autofluorescence sample body are represented. The FRET detection apparatus according to any one of claims 16 to 18, wherein the FRET fluorescence lifetime is obtained using a vector obtained by subtraction and subtraction.
前記FRET検出装置は、さらに、non−FRETキャリブレーション部を有し、
前記non−FRETキャリブレーション部は、
前記第1分子および前記第2分子がサンプルに付着されて、FRETが生じない処理がなされたnon−FRETサンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集した際、
前記non−FRETサンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、求めた蛍光強度情報および位相情報と、前記第1の強度比率と、前記第1分子蛍光成分の前記位相情報前記第2の強度比率と、前記第2分子蛍光成分の前記位相情報とを用いて、前記レーザ光によって第2分子が直接励起されることで発生する直接励起蛍光成分の蛍光強度情報および位相情報を求め、これらの情報をベクトルで表した直接励起蛍光成分ベクトルを導出し、この導出結果を前記記憶手段に記憶し
前記FRET蛍光寿命算出部は、前記直接励起蛍光成分ベクトルを用いて前記FRET蛍光寿命を求める請求項16〜19のいずれかに記載のFRET検出装置。
The FRET detection device further includes a non-FRET calibration unit,
The non-FRET calibration unit is
Each detection is performed by irradiating the first-molecule and the second molecule attached to the sample and irradiating the non-FRET sample, which has been processed so as not to generate FRET, with time-modulated laser light at a predetermined frequency. When collecting detection values including fluorescence intensity information and phase information for each light receiving wavelength band from the sensor,
Fluorescence intensity information and phase information of the fluorescence of the non-FRET sample for each light receiving wavelength band is obtained, the obtained fluorescence intensity information and phase information, the first intensity ratio, and the first molecular fluorescence component by using the phase information, and the second intensity ratio, and a said phase information of said second molecule fluorescence component, fluorescence directly excited fluorescence component second molecule occurs by being excited directly by the laser beam Obtaining intensity information and phase information , deriving a direct excitation fluorescence component vector representing these information as vectors, storing the derivation result in the storage means ,
The FRET detection apparatus according to any one of claims 16 to 19, wherein the FRET fluorescence lifetime calculation unit calculates the FRET fluorescence lifetime using the direct excitation fluorescence component vector.
前記FRET検出装置は、さらに、第1分子キャリブレーション部を有し、
前記第1分子キャリブレーション部は、
前記第1分子のみで標識された第1分子サンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集した際、
前記第1分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、前記第1の強度比率として、前記第1分子サンプルの、前記受光波長帯域の蛍光強度の比を求め、求めた前記第1の強度比率及び求めた前記第1分子サンプルの蛍光の前記位相情報を前記記憶手段に記憶する請求項16〜20のいずれかに記載のFRET検出装置。
The FRET detection apparatus further includes a first molecule calibration unit,
The first molecule calibration unit includes:
By irradiating a first molecular sample labeled only with the first molecule with a laser beam time-modulated at a predetermined frequency using the first molecular sample as a measurement object, the light receiving wavelength of the fluorescence of the first molecular sample is detected from each detection sensor. When collecting detection values including fluorescence intensity information and phase information for each band,
Fluorescence intensity information and phase information of the fluorescence of the first molecule sample for each light reception wavelength band is obtained, and a ratio of the fluorescence intensity of the light reception wavelength band of the first molecule sample is obtained as the first intensity ratio. 21. The FRET detection apparatus according to claim 16, wherein the obtained first intensity ratio and the obtained phase information of the fluorescence of the first molecule sample are stored in the storage means .
前記FRET検出装置は、さらに、第2分子キャリブレーション部を有し、
前記第2分子キャリブレーション部は、
前記第2分子のみで標識された第2分子サンプルを測定対象物として所定の周波数で時間変調したレーザ光を照射することにより、各検出センサから、前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を含む検出値を収集した際、
前記第2分子サンプルの蛍光の、前記受光波長帯域の蛍光強度情報および位相情報を求め、前記第2の強度比率として、前記第2分子サンプルの、前記受光波長帯域の蛍光強度の比を求め、求めた前記第2の強度比率及び求めた前記第2分子サンプルの蛍光の前記位相情報を前記記憶手段に記憶する請求項16〜21のいずれかに記載のFRET検出装置。
The FRET detection apparatus further includes a second molecular calibration unit,
The second molecule calibration unit includes:
By irradiating a second molecular sample labeled only with the second molecule with a laser beam time-modulated at a predetermined frequency using the second molecular sample as a measurement object, the light receiving wavelength of the fluorescence of the second molecular sample is detected from each detection sensor. When collecting detection values including fluorescence intensity information and phase information for each band,
Fluorescence intensity information and phase information of the fluorescence of the second molecule sample for each light reception wavelength band is obtained, and a ratio of the fluorescence intensity of the second molecule sample in the light reception wavelength band is obtained as the second intensity ratio. The FRET detection device according to any one of claims 16 to 21, wherein the obtained second intensity ratio and the obtained phase information of the fluorescence of the second molecular sample are stored in the storage means .
JP2006065742A 2006-03-10 2006-03-10 FRET detection method and apparatus Expired - Fee Related JP4365380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065742A JP4365380B2 (en) 2006-03-10 2006-03-10 FRET detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065742A JP4365380B2 (en) 2006-03-10 2006-03-10 FRET detection method and apparatus

Publications (3)

Publication Number Publication Date
JP2007240424A JP2007240424A (en) 2007-09-20
JP2007240424A5 true JP2007240424A5 (en) 2009-09-03
JP4365380B2 JP4365380B2 (en) 2009-11-18

Family

ID=38586101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065742A Expired - Fee Related JP4365380B2 (en) 2006-03-10 2006-03-10 FRET detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4365380B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236449B1 (en) 2008-09-19 2013-02-22 미쯔이 죠센 가부시키가이샤 Fluorescence detection device by means of intensity moludated laser light and method for detection fluorscence
US8330124B2 (en) 2008-09-19 2012-12-11 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device using intensity-modulated laser light and fluorescence detection method
US20110266462A1 (en) * 2009-01-09 2011-11-03 Mitsui Engineering & Shipbuilding Co., Ltd Fluorescence detecting device and fluorescence detecting method
JP4523673B1 (en) * 2009-01-22 2010-08-11 三井造船株式会社 Fluorescence detection apparatus and fluorescence detection method
EP2390652A1 (en) * 2009-01-23 2011-11-30 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
EP2397841A1 (en) * 2009-02-10 2011-12-21 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
JP4564567B2 (en) 2009-02-13 2010-10-20 三井造船株式会社 Fluorescence detection apparatus and fluorescence detection method
JP4564566B2 (en) 2009-02-13 2010-10-20 三井造船株式会社 Fluorescence detection apparatus and fluorescence detection method
EP2442094A1 (en) 2009-06-12 2012-04-18 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
EP2485040A1 (en) * 2009-09-29 2012-08-08 Mitsui Engineering & Shipbuilding Co., Ltd. Method and device for fret measurement
EP2527819A1 (en) * 2010-01-21 2012-11-28 Mitsui Engineering & Shipbuilding Co., Ltd. Method for detection of fluorescence, process for production of fluorescent beads, and fluorescent beads
JP4866964B2 (en) * 2010-05-12 2012-02-01 三井造船株式会社 FRET measuring method and FRET measuring apparatus
US20150044763A1 (en) * 2012-03-22 2015-02-12 Mitsui Engineering & Shipbuilding Co., Ltd. Fret measurement device and fret measurement method
US9291563B2 (en) 2012-03-22 2016-03-22 Mitsui Engineering & Shipbuilding FRET measurement device and FRET measurement method
JP6762703B2 (en) * 2015-11-10 2020-09-30 京都府公立大学法人 Method for discriminating tumor site, tumor site discriminating device
CN105842210B (en) * 2016-03-23 2018-08-24 南昌大学 Blood coagulation enzyme assay method based on biological quantum dot and Au NPs fluorescence resonance energy transfer
CN109073536B (en) 2016-05-06 2021-08-06 索尼公司 Information processing device, information processing method, program, and information processing system
CN106442455B (en) * 2016-11-23 2019-01-08 华南师范大学 A kind of method for fast measuring of the transferring efficiency of fluorescence resonance energy detected simultaneously based on binary channels fluorescence intensity

Similar Documents

Publication Publication Date Title
JP2007240424A5 (en)
JP4365380B2 (en) FRET detection method and apparatus
KR101152615B1 (en) Fret detection method and device
JP6301951B2 (en) Sample inspection method and system using thermography
JP4709947B2 (en) FRET measuring method and apparatus
CN102297856A (en) Raman spectrum detecting system and method for automatically calibrating Raman spectrum detecting system
JP2009098149A (en) Method and apparatus for measuring fluorescence lifetime
US20140306125A1 (en) Method and apparatus for determining a relaxation time dependent parameter related to a system
RU2008129064A (en) DETECTOR AND DETECTION METHOD
JP2008504517A5 (en)
KR102099230B1 (en) System for in vitro detection and/or quantification by fluorometry
CN103063648B (en) Method for detecting liquid preparation by utilizing Raman spectra
DE502006006238D1 (en) PROCESS FOR DETERMINATION OF BROOMS
CN109416344B (en) Soil analysis device and soil analysis method
US7531349B1 (en) Standoff bioagent-detection apparatus and method using multi-wavelength differential laser-induced fluorescence
JP6599173B2 (en) Photosynthesis sample evaluation system, photosynthesis sample evaluation method, and photosynthesis sample evaluation program
JP2004309391A (en) Method and detector for detecting gas concentration
JP2014055777A (en) Fret type bioprobe and fret measuring method
JPH0821878A (en) Laser surveying device
Enderlein Fluorescence correlation spectroscopy (IUPAC technical report)
KR20170062812A (en) Method for measuring fluorescence lifetime according to energy transfer
WO2015122237A1 (en) Spectroscopic analysis device and spectroscopic analysis method
JPH0961351A (en) Moisture content detecting device, moisture content measuring method, and its device
CN104020084A (en) Method for recognizing precious metal nano particles from dielectric medium scattering background
WO2020103695A1 (en) Detection method, related apparatus, and storage medium