JP2007240289A - High frequency carrier type thin film magnetic field sensor - Google Patents
High frequency carrier type thin film magnetic field sensor Download PDFInfo
- Publication number
- JP2007240289A JP2007240289A JP2006062002A JP2006062002A JP2007240289A JP 2007240289 A JP2007240289 A JP 2007240289A JP 2006062002 A JP2006062002 A JP 2006062002A JP 2006062002 A JP2006062002 A JP 2006062002A JP 2007240289 A JP2007240289 A JP 2007240289A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic field
- magnetic
- field sensor
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
本発明は、高周波キャリア型薄膜磁界センサに関するものである。 The present invention relates to a high frequency carrier type thin film magnetic field sensor.
高度情報化の急速な進展にともない、コンピュータ、情報通信機器、医療機器やメカトロニクス機器などでは、機器の小形化・軽量化、インテリジェント化が精力的に進められている。これら機器の情報入力部、情報記録部、電源部、制御部では、多数の磁気デバイスが主要な役割を演じており、その中で大きな注目を集めているものの一つにマイクロ磁気センサがある。
磁気センサとは、磁界、応力・歪、温度や光などに起因する磁性体の磁気特性の変化を、電気信号に変換して検出するものであり、感温フェライト温度センサや、磁気ひずみ効果を利用した応力センサおよびトルクセンサなどが、従来から広く用いられ普及している。また、磁気センサは磁界および磁束計測用にも広く使用され、特に磁界検出感度が高く、磁束や磁界強度あるいはその方位測定用のセンサとして使用されている。
一般に磁気センサは、被測定物に対して非破壊で信号の検出が可能であり、汚染されている、雑音が多いなどの劣悪な環境下においても十分信頼性をもって動作し、耐衝撃性、耐温度変動に優れ、寿命も長いことなどの利点を有している。これら磁気センサは、通常は前述のような電子機器内に組み込んで使用され、また微小空間領域における物理量の変化でも高感度・高速応答が必要とされるため、その小形・軽量化、さらに高速度・高感度化が強く望まれている。
With the rapid development of advanced information technology, computers, information communication equipment, medical equipment, mechatronic equipment, etc. are energetically progressing in downsizing, weight reduction, and intelligentization of equipment. In the information input unit, information recording unit, power supply unit, and control unit of these devices, a large number of magnetic devices play a major role, and one of the devices that has attracted a great deal of attention is a micro magnetic sensor.
A magnetic sensor detects changes in the magnetic properties of a magnetic material caused by magnetic fields, stress / strain, temperature, light, etc., by converting them into electrical signals. The stress sensors and torque sensors that have been used have been widely used and have been widely used. Magnetic sensors are also widely used for magnetic field and magnetic flux measurement, and particularly have high magnetic field detection sensitivity, and are used as sensors for measuring magnetic flux and magnetic field strength or their orientation.
In general, a magnetic sensor can detect a non-destructive signal with respect to an object to be measured, and can operate with sufficient reliability even in a poor environment such as being contaminated or noisy. It has advantages such as excellent temperature fluctuation and long life. These magnetic sensors are usually used by being incorporated in electronic devices as described above, and because they require high sensitivity and high speed response even when physical quantities change in a microscopic space, they are small and light, and have a high speed.・ High sensitivity is strongly desired.
磁性体に高周波キャリア電流を通電し、さらに外部磁界を印加した場合に磁界の関数として透磁率、表皮効果が変化し、その結果、抵抗、インダクタンスおよびインピーダンスが変化する現象を利用した高周波キャリア型薄膜磁界センサが着目されている。このセンサは巻線無しで実現できるため小形化に向いている。また、MRセンサ(抵抗変化率2〜3%)やGMRセンサ(抵抗変化率10%程度)と比較して非常に高感度であり、かつ動作周波数が高く高速応答可能である等の理由により、次世代の磁気ヘッドや高精度制御用エンコーダの検出ヘッドや医療分野における生体磁気応用、近傍磁界計測等様々な分野において応用が期待されている。
高周波キャリア型薄膜センサの原理図を図1に示す。センサ素子100は短冊あるいはミアンダ形状としており、軟磁性膜の磁化容易軸は短冊の幅方向へ磁界中で熱処理を行うことによって付与する。バイアス磁界Hdcおよび交流磁界(測定磁界)Hacは短冊長手方向へ印加する。搬送波電流は短冊長手方向へ通電される。図1に示すように、外部からの印加磁界によって軟磁性膜で構成されている素子幅方向の磁化が回転し、透磁率及びインピーダンスが変化する。このインピーダンスの変化を検出して磁界検出を行う。
図2は微小交流磁界の計測回路を概念的に示したものである。搬送波電流はシグナル・ジェネレータ120によりセンサ素子100へ加えられ、出力信号はスペクトラム・アナライザ130等の測定装置で計測される。センサ素子100には、直流バイアス磁界をインピーダンス変化率が最大となるように印加している。計測される交流磁界は振幅変調され、磁界強度は側波帯に比例する。信号強度は線形領域での励振であれば、振幅変調波の側波帯として以下の式で近似できる。
一般に、軟磁性薄膜の外部磁界による透磁率の変化は、面内一軸磁気異方性の大きさと方向により決定される。このことは、一軸異方性を有する軟磁性薄膜にバイアス磁界を印加した場合の透磁率が、微小交流励磁方向およびバイアス磁界印加方向の組み合わせによって定まるというバイアス磁化率の理論としてよく知られている。
この磁界センサ素子の検出感度の限界は磁化の熱ゆらぎで決定されると考えられ、その値は室温で10−9Oe(7.95×10−8A/m)台に達するとの報告がある(非特許文献2参照)。
A high-frequency carrier-type thin film that utilizes the phenomenon that the magnetic permeability and skin effect change as a function of the magnetic field when a high-frequency carrier current is passed through the magnetic material and an external magnetic field is applied, resulting in changes in resistance, inductance, and impedance. Magnetic field sensors are attracting attention. Since this sensor can be realized without winding, it is suitable for miniaturization. Also, because it is very sensitive compared to MR sensor (resistance change rate 2 to 3%) and GMR sensor (resistance change rate about 10%), and the operating frequency is high, it can respond at high speed. Applications are expected in various fields such as next-generation magnetic heads, detection heads for high-precision control encoders, biomagnetic applications in the medical field, and near magnetic field measurement.
The principle diagram of the high-frequency carrier type thin film sensor is shown in FIG. The sensor element 100 has a strip or meander shape, and the easy magnetization axis of the soft magnetic film is applied by heat treatment in a magnetic field in the width direction of the strip. A bias magnetic field H dc and an alternating magnetic field (measurement magnetic field) H ac are applied in the longitudinal direction of the strip. The carrier current is energized in the longitudinal direction of the strip. As shown in FIG. 1, the magnetization in the element width direction formed of the soft magnetic film is rotated by an externally applied magnetic field, and the magnetic permeability and impedance change. Magnetic field detection is performed by detecting this change in impedance.
FIG. 2 conceptually shows a measurement circuit for a minute alternating magnetic field. The carrier current is applied to the sensor element 100 by the signal generator 120, and the output signal is measured by a measuring device such as a spectrum analyzer 130. A DC bias magnetic field is applied to the sensor element 100 so that the impedance change rate is maximized. The AC magnetic field to be measured is amplitude-modulated, and the magnetic field strength is proportional to the sideband. If the signal intensity is excitation in a linear region, it can be approximated by the following equation as a sideband of an amplitude-modulated wave.
The limit of the detection sensitivity of this magnetic field sensor element is considered to be determined by the thermal fluctuation of magnetization, and it has been reported that the value reaches the 10 −9 Oe (7.95 × 10 −8 A / m) level at room temperature. Yes (see Non-Patent Document 2).
図3に、色々な磁気センサの磁界検出感度と検出磁界周波数を示す。図3に示されているように、高周波キャリア型薄膜磁界センサは、SQUID磁束計にせまる磁界検出感度と周波数を有している。
しかしながら、超電導を用いたSQUID磁束計は10−14Tの分解能を持つが、低温にしなければ動作しないこと、被測定物に近接させることが不可能(低温を維持しなければ超電導状態でいられないため)であることなどから、室温で動作する磁界センサが求められている。
室温で作動する高周波キャリア型薄膜磁界センサを高感度化するには、センサ素子自体の感度を高めるとともに、信号検出時のノイズの抑制が重要となる。この磁界センサでは、ノイズレベルは主として位相雑音と熱雑音で決まることが報告されている(非特許文献1参照)。また、高いSN比を得るためにセンサへの投入パワーを増加させることによる、SN比の悪化およびノイズレベルの上昇についても報告されている(非特許文献3参照)。
FIG. 3 shows the magnetic field detection sensitivity and detection magnetic field frequency of various magnetic sensors. As shown in FIG. 3, the high-frequency carrier type thin film magnetic field sensor has a magnetic field detection sensitivity and a frequency that are confined to a SQUID magnetometer.
However, although the SQUID magnetometer using superconductivity has a resolution of 10 −14 T, it cannot operate unless the temperature is lowered, and cannot be brought close to the object to be measured (the superconducting state can be maintained unless the low temperature is maintained). Therefore, there is a need for a magnetic field sensor that operates at room temperature.
In order to increase the sensitivity of a high-frequency carrier type thin film magnetic field sensor operating at room temperature, it is important to increase the sensitivity of the sensor element itself and to suppress noise during signal detection. In this magnetic field sensor, it has been reported that the noise level is mainly determined by phase noise and thermal noise (see Non-Patent Document 1). In addition, it has been reported that the SN ratio is deteriorated and the noise level is increased by increasing the input power to the sensor in order to obtain a high SN ratio (see Non-Patent Document 3).
本発明の目的は、高感度な高周波キャリア型薄膜磁界センサを得ることである。 An object of the present invention is to obtain a high-sensitivity high-frequency carrier type thin film magnetic field sensor.
上述の目的を達成するために、本発明は、磁性薄膜と、前記磁性薄膜の近傍に設けた搬送波電流を流す、共振周波数を有する伝送線路とを備えた高周波キャリア型薄膜磁界センサであって、前記伝送線路に流す搬送波電流の周波数は、前記伝送線路の共振周波数であり、前記高周波キャリア型薄膜磁界センサのインピーダンス変化により磁界を測定することを特徴とする。
前記伝送線路は、グランドプレーンと導電体とで構成され、前記磁性薄膜は前記導電体の上に、絶縁して配置してもよい。また、前記磁性薄膜は2つの層であって、その間に前記導電体を挟む構成とするとよい。
前記磁性薄膜は、前記導電体に面した側を高電気抵抗磁性膜で構成するとよい。
In order to achieve the above object, the present invention is a high frequency carrier type thin film magnetic field sensor comprising a magnetic thin film and a transmission line having a resonance frequency for flowing a carrier current provided in the vicinity of the magnetic thin film, The frequency of the carrier current flowing through the transmission line is the resonance frequency of the transmission line, and the magnetic field is measured by a change in impedance of the high-frequency carrier type thin film magnetic field sensor.
The transmission line may be composed of a ground plane and a conductor, and the magnetic thin film may be insulated from the conductor. The magnetic thin film may be composed of two layers, with the conductor sandwiched between them.
The magnetic thin film may be formed of a high electrical resistance magnetic film on the side facing the conductor.
本発明の高周波キャリア型薄膜磁界センサは、磁性薄膜への直接の通電を避けて、磁性薄膜の近傍に伝送線路を配置した構成とし、ノイズの発生を防ぐために磁化が飽和しにくい構造としたのである。さらに、伝送線路の形状によるLC共振を利用して、急峻なインピーダンス変化を得ることでセンサ素子自体の感度向上を目指した。
また、磁性薄膜で搬送波電流が流れる導電体を挟んだり、磁性薄膜の伝送体に面した側を高電気抵抗の磁性膜で構成することで、さらなる感度向上を図った。
The high-frequency carrier type thin film magnetic field sensor of the present invention has a structure in which a transmission line is disposed in the vicinity of the magnetic thin film while avoiding direct conduction to the magnetic thin film, and a structure in which the magnetization is not easily saturated to prevent noise generation. is there. Furthermore, we aimed to improve the sensitivity of the sensor element itself by using the LC resonance due to the shape of the transmission line to obtain a steep impedance change.
Further, the sensitivity was further improved by sandwiching a conductor through which a carrier current flows between the magnetic thin films, or by configuring the magnetic thin film on the side facing the transmission body with a magnetic film having a high electrical resistance.
図面を参照して、本発明の実施形態を詳しく説明する。
本発明は、高いSN比を得るようにセンサへの投入パワーを増加させるため、搬送波電流を大きくした場合、ノイズレベル増大の緩和を目的として、磁性薄膜への直接の通電を避け、磁生体近傍に伝送線路を配置した構成として、高感度な高周波キャリア型薄膜磁界センサを提案するものである。
センサへの投入パワーを増大させたときのノイズ上昇の原因は、磁化の大振幅励磁により磁性薄膜の一部が飽和しているためであると考えられる。そこで、磁化が飽和しにくい構造として、磁性薄膜への直接の通電を避けて、磁生体近傍に伝送線路を配置した構成としたのである。
また、伝送線路の形状によるLC共振を利用して、急峻なインピーダンス変化を得ることでセンサ素子自体の感度向上を目指した。
さらに、磁性薄膜の一部に高電気抵抗の磁性薄膜を使用することにより、ノイズを防ぎ、感度を高めた。
Embodiments of the present invention will be described in detail with reference to the drawings.
The present invention increases the input power to the sensor so as to obtain a high signal-to-noise ratio. Therefore, when the carrier current is increased, in order to mitigate an increase in noise level, direct conduction to the magnetic thin film is avoided, and the vicinity of the magnetic body A high-sensitivity high-frequency carrier-type thin-film magnetic field sensor is proposed as a configuration in which a transmission line is arranged on the top.
The cause of the noise increase when the input power to the sensor is increased is considered to be because a part of the magnetic thin film is saturated due to the large amplitude excitation of magnetization. Therefore, the structure in which the magnetization is difficult to saturate has a configuration in which a transmission line is arranged in the vicinity of the magnetic living body while avoiding direct conduction to the magnetic thin film.
In addition, we aimed to improve the sensitivity of the sensor element itself by using LC resonance due to the shape of the transmission line to obtain a steep impedance change.
Furthermore, by using a magnetic thin film with high electrical resistance as part of the magnetic thin film, noise was prevented and sensitivity was increased.
図4(a)に、本発明である伝送線路型の高周波キャリア型薄膜磁界センサ250の構成を示す。グランドプレーン256上の高周波を通電させる導電体254で伝送線路を構成する。その上に磁性薄膜252を載せることにより、直接磁性薄膜252に通電して起こる磁化の飽和を回避しながら、表皮効果を利用した磁気検出が行える。伝送線路は、ここではミヤンダ型(ミャンダー型ともいう。ジグザグになったストリップ構造の意味)のマイクロストリップライン(プリント基板の片面がグランドパターン、上面が信号ライン)を用いており、このマイクロストリップラインで、長さと線間の距離によって共振の周波数を決定することができる。また、マイクロストリップラインを共振させることにより、インピーダンスの急激な変化が観測される。
使用する磁性薄膜252としては、軟磁性膜(透磁率μが大きい、異方性分散が少ない膜)であればよい。例えば、CoNbZr、NiFeなどの軟磁性膜がよい。伝送線路としては、マイクロストリップライン、トリプレート、コプレーナ等がある。伝送線路の導体パターンとしては、ミアンダ型、スパイラル型等の共振回路が得られる形状であればよい。
図4(b)は、このセンサ250を用いた測定系の構成を示す。制御解析装置210には、図2に示すような回路系が組み込まれているとともにX−Yステージ230の制御系も組み込まれている。また、制御回析装置210は制御解析用コンピュータ220に接続され、全体の制御を行うとともに、測定結果の解析・表示等も行う。
FIG. 4A shows a configuration of a transmission line type high frequency carrier type thin film magnetic field sensor 250 according to the present invention. A transmission line is constituted by a conductor 254 for energizing a high frequency on the ground plane 256. By placing the magnetic thin film 252 thereon, magnetic detection using the skin effect can be performed while avoiding the saturation of magnetization caused by energizing the magnetic thin film 252 directly. Here, the transmission line uses a microstrip line (also referred to as a meander type, meaning a zigzag strip structure) microstrip line (one side of the printed circuit board is a ground pattern and the upper side is a signal line). Thus, the resonance frequency can be determined by the length and the distance between the lines. Further, when the microstrip line is resonated, an abrupt change in impedance is observed.
The magnetic thin film 252 to be used may be a soft magnetic film (a film having a large magnetic permeability μ and a small anisotropic dispersion). For example, a soft magnetic film such as CoNbZr or NiFe is preferable. Examples of the transmission line include a microstrip line, a triplate, and a coplanar. The conductor pattern of the transmission line may be any shape that can provide a resonance circuit such as a meander type or a spiral type.
FIG. 4B shows the configuration of a measurement system using this sensor 250. The control analysis device 210 incorporates a circuit system as shown in FIG. 2 and a control system for the XY stage 230. The control diffractometer 210 is connected to a control analysis computer 220 to perform overall control and to analyze and display measurement results.
図5は、実際に作成した高周波キャリア型薄膜磁界センサの図である。
作成したセンサ素子は、マイクロストリップライン(伝送線路)上にCo85Nb12Zr3の磁性薄膜を乗せた構造となっている。Co85Nb12Zr3薄膜はアモルファスであり、磁歪はほぼ0である。
マイクロストリップラインは、厚さ500μmのテフロン基板(プリント基板:テフロンは登録商標)のウェットエッチングで作製した。伝送線路部分は幅0.8mm,長さ10mm,厚さ18μm,3ターンのミアンダ形状とした。
Co85Nb12Zr3薄膜はRFスパッタ法で作成した。投入電力は200W,Arガス圧は20mTorrの条件でガラス基板に約4μm成膜し、リフトオフにより微細加工を施した。その後、静磁界中で熱処理を施し、短冊の幅方向に磁界を印加しながら異方性を付与した。
伝送線路上にのせるCo85Nb12Zr3薄膜は、一辺25mmの正方形,厚さ4μm,静磁界中熱処理温度150℃とした。なお、磁性薄膜の導電体に接する面には、絶縁のためにレジストを塗布している。
FIG. 5 is a diagram of a high-frequency carrier-type thin film magnetic field sensor actually produced.
The created sensor element has a structure in which a magnetic thin film of Co 85 Nb 12 Zr 3 is placed on a microstrip line (transmission line). The Co 85 Nb 12 Zr 3 thin film is amorphous and the magnetostriction is almost zero.
The microstrip line was produced by wet etching of a 500 μm thick Teflon substrate (printed circuit board: Teflon is a registered trademark). The transmission line portion has a meander shape with a width of 0.8 mm, a length of 10 mm, a thickness of 18 μm, and 3 turns.
The Co 85 Nb 12 Zr 3 thin film was prepared by RF sputtering. About 4 μm of a film was formed on a glass substrate under the conditions of an input power of 200 W and an Ar gas pressure of 20 mTorr, and fine processing was performed by lift-off. Thereafter, heat treatment was performed in a static magnetic field, and anisotropy was imparted while applying a magnetic field in the width direction of the strip.
The Co 85 Nb 12 Zr 3 thin film placed on the transmission line was a square with a side of 25 mm, a thickness of 4 μm, and a heat treatment temperature of 150 ° C. in a static magnetic field. Note that a resist is applied to the surface of the magnetic thin film in contact with the conductor for insulation.
<共振周波数>
さて、伝送線路を設けたセンサに外部磁界を印加すると、磁性膜の透磁率が変化し、その影響で伝送線路のインダクタンスおよび抵抗が変化する。このとき、LC共振が発生するとセンサ素子のインピーダンスが大きく変化する。
図6は、図5に示した高周波キャリア型薄膜磁界センサの搬送波電流の外部磁界によるインピーダンス変化を示すグラフである。センサ素子のインピーダンスは、素子長手方向に直流磁界Hdcをヘルムホルツコイルで印加しながら、ネットワーク・アナライザを用いて測定し算出した。
図6に示すように、搬送波電流の交流周波数600MHz,印加磁界68A/mのとき、LC共振によってセンサ素子のインピーダンスが大きく変化した。このときインピーダンス変化率の最大値は約41000Ω/Oe(515.3 Ω/(A/m))を得た。LC共振が発生する条件は、素子構造や磁性膜の磁気特性によって決定されるため、それらの関係で、任意の条件でLC共振が発生するセンサ素子の作製が可能となる。
<Resonance frequency>
Now, when an external magnetic field is applied to the sensor provided with the transmission line, the magnetic permeability of the magnetic film changes, and the inductance and resistance of the transmission line change due to the influence. At this time, when LC resonance occurs, the impedance of the sensor element changes greatly.
FIG. 6 is a graph showing an impedance change due to an external magnetic field of the carrier current of the high-frequency carrier type thin film magnetic field sensor shown in FIG. The impedance of the sensor element was measured and calculated using a network analyzer while applying a DC magnetic field H dc with a Helmholtz coil in the longitudinal direction of the element.
As shown in FIG. 6, when the carrier wave current has an AC frequency of 600 MHz and an applied magnetic field of 68 A / m, the impedance of the sensor element greatly changed due to LC resonance. At this time, the maximum value of the impedance change rate was about 41000Ω / Oe (515.3Ω / (A / m)). Since the conditions for generating the LC resonance are determined by the element structure and the magnetic characteristics of the magnetic film, it is possible to manufacture a sensor element that generates the LC resonance under an arbitrary condition.
<センサの計測性能>
図7は、図5に示した伝送線路を設けたセンサのノイズレベルの搬送波電流密度依存性を示すグラフを示す。センサには、上述で分かったセンサの共振周波数である600MHzの搬送波を通電した。計測対象の交流周波数Hacとして501kHzをセンサに印加したときのノイズレベルと信号レベルとを測定した。図7により、この構造のセンサは、搬送波電流密度を大きくすると、信号レベルの上昇と比較してノイズレベルの上昇が少ないことが確認できた。
また、図8は、作成したセンサ素子の分解能を調べるために、外部から印加した501kHzの交流磁界の強さを変化させて計測した結果を示したものである。なお、501kHzを用いたのは、50Hzの交流電源あるいは周辺の電子機器の高調波ノイズを避けるためである。このグラフから分かるように、作成したセンサ素子により測定した場合、雑音に埋もれる限界は、7×10−9Oe(エスルテッド)である。正確には、7.6×10−9Oe/Hz1/2である。従って、このセンサは10−12T(テスラ)以下の分解能を持つ。
図9は、作成したセンサ素子の、計測対象の交流磁界Hacの周波数と分解能との関係を計測した結果のグラフである。生体の磁気計測を行うためには、1kHz以下の周波数で高い分解能が必要になる。この計測結果では、980Hz(約1kHz)に対して2.1×10−12T,45Hzの周波数で7.3×10−11Tの分解能が得られている。
<Measurement performance of sensor>
FIG. 7 is a graph showing the carrier current density dependence of the noise level of the sensor provided with the transmission line shown in FIG. The sensor was energized with a carrier of 600 MHz, which is the resonance frequency of the sensor found above. It was measured and the noise level and the signal level at the time of applying a 501kHz to the sensor as AC frequency H ac is the measurement object. From FIG. 7, it was confirmed that when the carrier current density is increased, the sensor having this structure has a small increase in noise level compared with an increase in signal level.
FIG. 8 shows the result of measurement by changing the strength of the AC magnetic field of 501 kHz applied from the outside in order to examine the resolution of the created sensor element. The reason for using 501 kHz is to avoid harmonic noise of 50 Hz AC power supply or peripheral electronic equipment. As can be seen from this graph, the limit buried in noise when measured with the created sensor element is 7 × 10 −9 Oe (Esluted). To be exact, it is 7.6 × 10 −9 Oe / Hz 1/2 . Therefore, this sensor has a resolution of 10 −12 T (Tesla) or less.
FIG. 9 is a graph showing the result of measuring the relationship between the frequency of the alternating magnetic field Hac to be measured and the resolution of the created sensor element. In order to perform magnetic measurement of a living body, high resolution is required at a frequency of 1 kHz or less. In this measurement result, a resolution of 7.3 × 10 −11 T is obtained at a frequency of 2.1 × 10 −12 T and 45 Hz with respect to 980 Hz (about 1 kHz).
<2枚の磁性薄膜を用いる実施形態>
上述では、伝送線路の近傍(例えば上側)に磁性薄膜を設置する構成を説明したが、磁性膜で伝送線路を挟む構成とすると上下にある磁性膜との相互作用により、高感度なセンサを得ることができる。この構成を図10に示す。図10(a)は、導電体322の上下に、磁性薄膜体310,330を配置した、伝送線路型の高周波キャリア型薄膜磁界センサ300を示している。磁性薄膜体310,330は、それぞれ、ガラス板312,336の上に磁性薄膜(例えば、Co85Nb12Zr3)314,334を貼り付け、絶縁のためにレジスト316,332を塗っている。導電体322は絶縁膜324上に作成され、例えばミヤンダ型の伝送線路をグランドプレーン342と形成している。グランドプレーンは例えば絶縁膜344上に作成されている。図10(b)は図10(a)の積層の状態を示している。
<Embodiment using two magnetic thin films>
In the above description, the configuration in which the magnetic thin film is installed in the vicinity (for example, the upper side) of the transmission line has been described. However, when the transmission line is sandwiched between the magnetic films, a highly sensitive sensor is obtained by interaction with the upper and lower magnetic films. be able to. This configuration is shown in FIG. FIG. 10A shows a transmission line type high frequency carrier type thin film magnetic field sensor 300 in which magnetic thin film bodies 310 and 330 are arranged above and below a conductor 322. In the magnetic thin film bodies 310 and 330, magnetic thin films (for example, Co 85 Nb 12 Zr 3 ) 314 and 334 are attached on glass plates 312 and 336, respectively, and resists 316 and 332 are applied for insulation. The conductor 322 is formed on the insulating film 324, and for example, a transmission line of the middle type is formed with the ground plane 342. For example, the ground plane is formed on the insulating film 344. FIG. 10B shows the stacked state of FIG.
図11は、実際に作成した、上述の構成の伝送線路型の高周波キャリア型薄膜磁界センサの写真を示す。図11(a)は、伝送線路をみせるために磁性薄膜体を置かないで写したものである。図11(b)は、磁性薄膜体をつけたセンサを示している。作成した高周波キャリア型薄膜磁界センサの導電体は、線幅:0.6mm,厚さ:18μm,4ターンであり、ポリアミド(絶縁体)上の銅の薄膜をウェットエッチングして作成した。2枚の磁性薄膜は、CoNbZr膜で、大きさ:25mm×25mm,厚さ;4μm,静磁界中熱処理温度は150℃であり、レジスト膜厚:4.8μmである。グランドプレーンは厚さ500μmのテフロン基板(テフロンは登録商標)のものを用いた。
図11に示した高周波キャリア型薄膜磁界センサの共振周波数を測定するために、外部磁界を印加しながら、搬送波電流の周波数を変えて測定した。測定結果は図12に示す。図12は、高周波キャリア型薄膜磁界センサの搬送波電流の外部磁界によるインピーダンス変化を示すグラフである。センサ素子のインピーダンスZは、直流磁界Hをヘルムホルツコイルで印加しながら測定した。このグラフから、図11の磁界センサの共振周波数は、570MHzである。
図13は、搬送波電流570MHzにおける搬送波電流密度Jと信号レベル,ノイズレベルのグラフを示している。印加した外部交流磁界の周波数は、501kHzである。これにより、この磁界センサの分解能は7.4×10−9Oe/Hz1/2である。この分解能は、図5に示した磁界センサより向上している。
FIG. 11 shows a photograph of a transmission line type high-frequency carrier-type thin film magnetic field sensor having the above-described configuration actually created. FIG. 11 (a) is a photograph taken without placing the magnetic thin film to show the transmission line. FIG. 11B shows a sensor with a magnetic thin film. The conductor of the produced high-frequency carrier type thin film magnetic field sensor has a line width of 0.6 mm, a thickness of 18 μm, and 4 turns, and was produced by wet etching a copper thin film on polyamide (insulator). The two magnetic thin films are CoNbZr films, size: 25 mm × 25 mm, thickness: 4 μm, heat treatment temperature in static magnetic field is 150 ° C., and resist film thickness is 4.8 μm. The ground plane used was a 500 μm thick Teflon substrate (Teflon is a registered trademark).
In order to measure the resonance frequency of the high-frequency carrier type thin film magnetic field sensor shown in FIG. 11, the frequency of the carrier current was changed while applying an external magnetic field. The measurement results are shown in FIG. FIG. 12 is a graph showing an impedance change due to an external magnetic field of a carrier current of a high-frequency carrier type thin film magnetic field sensor. The impedance Z of the sensor element was measured while applying a DC magnetic field H with a Helmholtz coil. From this graph, the resonance frequency of the magnetic field sensor of FIG. 11 is 570 MHz.
FIG. 13 shows a graph of carrier current density J, signal level, and noise level at a carrier current of 570 MHz. The frequency of the applied external AC magnetic field is 501 kHz. Thus, the resolution of this magnetic field sensor is 7.4 × 10 −9 Oe / Hz 1/2 . This resolution is improved over the magnetic field sensor shown in FIG.
<他の実施形態>
上述した磁性薄膜の表面と裏面の両側に高電気抵抗膜(抵抗率ρが高い、透磁率μが大きい)をつけることにより、更に高感度のセンサとなる。
高電気抵抗膜を磁性薄膜(CoNbZr,NiFeなど)の両側に配置することにより、磁性薄膜の表面で起こる過度の電流集中および大きな磁束密度を緩和することができる。所謂表皮効果を緩和するのである。
これを図14で説明する。この図では、磁性膜に搬送波電流を流した場合で説明している。図14(a−1),(a−2)は、図1のような従来の低電気抵抗率・高透磁率である磁性薄膜に搬送波電流を流した場合を図示している。図14(b−1),(b−2)は、磁性薄膜の上面・下面に高電気抵抗率で高透磁率の磁性薄膜を貼り付けた場合に、搬送波電流を流した場合を図示している。
表皮深さδ(電界・磁界が1/eに減少する長さ)は、√{(2ρ)/(μω)}と表される(ρ:抵抗率,μ:透磁率,ω:角周波数)ため、電気抵抗率を上げることで、表皮深さを大きくすることができる。それぞれの場合の搬送波電流密度は、図14(a−2),(b−2)の左側に示している。
<Other embodiments>
By attaching high electrical resistance films (high resistivity ρ and high magnetic permeability μ) on both sides of the magnetic thin film described above, a sensor with higher sensitivity can be obtained.
By disposing the high electrical resistance film on both sides of the magnetic thin film (CoNbZr, NiFe, etc.), excessive current concentration and large magnetic flux density occurring on the surface of the magnetic thin film can be alleviated. The so-called skin effect is alleviated.
This will be described with reference to FIG. In this figure, the case where a carrier current is passed through the magnetic film is described. FIGS. 14A-1 and 14A-2 illustrate a case where a carrier current is passed through a conventional magnetic thin film having a low electrical resistivity and a high magnetic permeability as shown in FIG. FIGS. 14B-1 and 14B-2 illustrate the case where a carrier current is passed when a magnetic thin film having a high electrical resistivity and a high permeability is attached to the upper and lower surfaces of the magnetic thin film. Yes.
The skin depth δ (the length at which the electric and magnetic fields are reduced to 1 / e) is expressed as √ {(2ρ) / (μω)} (ρ: resistivity, μ: permeability, ω: angular frequency) Therefore, the skin depth can be increased by increasing the electrical resistivity. The carrier current density in each case is shown on the left side of FIGS. 14 (a-2) and (b-2).
これらの図から分かるように、磁性薄膜の上面・下面に高電気抵抗率で高透磁率の磁性薄膜を貼り付けた場合、従来の磁性膜と比較すると、表皮効果を緩和し、過度の電流集中によるカオス発生を原因とするノイズの増加を抑えることが可能になる。
使用する高電気抵抗薄膜としては、高周波用のインダクタの鉄心で、グラニューラ薄膜(セラミック中に磁性体が分散しているもの)などが候補として挙げられる。もともと、セラミックで抵抗が高く、磁性体が分散していることで、透磁率が高い特徴を持つ。また磁性体部分がそれぞれはなれているために、渦電流が流れにくい特徴を持つ。このような磁性膜を計測に用いる低電気抵抗磁性膜上に貼り付けるのである。
As can be seen from these figures, when a magnetic thin film with high electrical resistivity and high permeability is attached to the top and bottom surfaces of the magnetic thin film, the skin effect is reduced and excessive current concentration is observed compared to conventional magnetic films. It is possible to suppress an increase in noise caused by the occurrence of chaos due to.
A candidate for a high electrical resistance thin film to be used is an iron core of a high frequency inductor, a granular thin film (a magnetic material dispersed in a ceramic), or the like. Originally, it has a high magnetic permeability due to its high resistance and ceramic dispersion. In addition, since the magnetic parts are separated from each other, the eddy current hardly flows. Such a magnetic film is stuck on a low electric resistance magnetic film used for measurement.
図14(b−1)のような構成の磁性膜は、図1に示した従来の磁性膜内に搬送波電流を流して磁界を測定する高周波キャリア型薄膜磁界センサに対して適用すると、効果が大きいが、上述の図4(a)や図10で示した伝送線路に搬送波電流を流す構成のセンサ素子に適用しても、その効果が期待できる。この高電気抵抗膜により、導電体に流れる搬送波電流により磁性膜に誘起される渦電流が小さくなり、これによる磁性膜内の磁界が少なくなる結果として、ノイズが減少し感度がよくなるからである。この場合は、導電体に面する側に高電気抵抗の磁性膜をつけるとよい。
図15は、図10で示した、磁性薄膜で伝送線路を挟んだ構成のものを示している。このように、図14(b−1)に示した磁性膜で高周波電流を流す電導路を挟んだ構成とすることで、さらに高感度な高周波キャリア型薄膜磁界センサを得ることができる。
図15において、上側磁性薄膜451と下側磁性薄膜453で、共振周波数を定めるスパイラル状の導電体454を絶縁して挟んでおり、各磁性薄膜の高電気抵抗磁性膜は、導電体の側につけている構成である。下側磁性薄膜453の下には絶縁膜455を介してグランドプレーン456があり、導電体454とともに伝送線路を形成している。
The magnetic film configured as shown in FIG. 14B-1 is effective when applied to a high-frequency carrier type thin film magnetic field sensor that measures a magnetic field by flowing a carrier current in the conventional magnetic film shown in FIG. Although it is large, the effect can be expected even if it is applied to a sensor element having a configuration in which a carrier current flows through the transmission line shown in FIG. 4A and FIG. This is because the high electric resistance film reduces the eddy current induced in the magnetic film due to the carrier current flowing in the conductor, thereby reducing the magnetic field in the magnetic film, thereby reducing noise and improving sensitivity. In this case, a high electric resistance magnetic film may be provided on the side facing the conductor.
FIG. 15 shows the configuration shown in FIG. 10 with a transmission line sandwiched between magnetic thin films. In this way, by adopting a configuration in which the conductive path for passing a high-frequency current is sandwiched between the magnetic films shown in FIG. 14 (b-1), a more sensitive high-frequency carrier type thin film magnetic field sensor can be obtained.
In FIG. 15, the upper magnetic thin film 451 and the lower magnetic thin film 453 insulate and sandwich a spiral conductor 454 that determines the resonance frequency, and the high electric resistance magnetic film of each magnetic thin film is attached to the conductor side. It is the composition which is. Under the lower magnetic thin film 453, a ground plane 456 is interposed via an insulating film 455, and forms a transmission line together with the conductor 454.
<応用例>
上述した高周波キャリア型薄膜磁界センサの応用としては、生体の磁気計測(心磁図,脳磁図など),非破壊検査(鉄筋、構造材のクラックなどの検出),局部近傍磁界計測,マーカー等の位置検出などがある。
<Application example>
Applications of the above-described high-frequency carrier-type thin-film magnetic field sensor include magnetic measurement of a living body (such as magnetocardiogram and magnetoencephalogram), nondestructive inspection (detection of cracks in reinforcing bars, structural materials, etc.) There is detection.
Claims (4)
前記磁性薄膜の近傍に設けた搬送波電流を流す、共振周波数を有する伝送線路と
を備えた高周波キャリア型薄膜磁界センサであって、
前記伝送線路に流す搬送波電流の周波数は、前記伝送線路の共振周波数であり、
前記高周波キャリア型薄膜磁界センサのインピーダンス変化により磁界を測定することを特徴とする高周波キャリア型薄膜磁界センサ。 A magnetic thin film;
A high-frequency carrier-type thin-film magnetic field sensor including a transmission line having a resonance frequency for flowing a carrier current provided in the vicinity of the magnetic thin film,
The frequency of the carrier current flowing through the transmission line is the resonance frequency of the transmission line,
A high frequency carrier type thin film magnetic field sensor, wherein a magnetic field is measured by an impedance change of the high frequency carrier type thin film magnetic field sensor.
前記伝送線路は、グランドプレーンと導電体とで構成され、
前記磁性薄膜は前記導電体の上に、絶縁して配置していることを特徴とする高周波キャリア型薄膜磁界センサ。 In the high frequency carrier type thin film magnetic field sensor according to claim 1,
The transmission line is composed of a ground plane and a conductor,
The high-frequency carrier type thin film magnetic field sensor, wherein the magnetic thin film is disposed on the conductor so as to be insulated.
前記伝送線路は、グランドプレーンと導電体とで構成され、
前記磁性薄膜は2つの層であって、その間に前記導電体を挟んで絶縁して配置していることを特徴とする高周波キャリア型薄膜磁界センサ。 In the high frequency carrier type thin film magnetic field sensor according to claim 1,
The transmission line is composed of a ground plane and a conductor,
The high-frequency carrier-type thin-film magnetic field sensor, wherein the magnetic thin film is composed of two layers and is insulated and sandwiched between the conductors.
前記磁性薄膜は、前記導電体に面した側を高電気抵抗磁性膜で構成することを特徴とする高周波キャリア型薄膜磁界センサ。 In the high frequency carrier type thin film magnetic field sensor according to claim 2 or 3,
The high frequency carrier type thin film magnetic field sensor characterized in that the magnetic thin film is formed of a high electric resistance magnetic film on a side facing the conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062002A JP2007240289A (en) | 2006-03-08 | 2006-03-08 | High frequency carrier type thin film magnetic field sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062002A JP2007240289A (en) | 2006-03-08 | 2006-03-08 | High frequency carrier type thin film magnetic field sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007240289A true JP2007240289A (en) | 2007-09-20 |
Family
ID=38585975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006062002A Pending JP2007240289A (en) | 2006-03-08 | 2006-03-08 | High frequency carrier type thin film magnetic field sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007240289A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163828A (en) * | 2013-02-26 | 2014-09-08 | Denso Corp | Auxiliary member and current sensor device having auxiliary member |
JP2015227866A (en) * | 2014-05-02 | 2015-12-17 | 学校法人東北学院 | Magnetic field sensor and manufacturing method therefor |
WO2020071511A1 (en) * | 2018-10-05 | 2020-04-09 | 横河電機株式会社 | Magnetism detection device, transmission line, and magnetism detection method |
JP2020060565A (en) * | 2018-10-05 | 2020-04-16 | 横河電機株式会社 | Magnetic detection apparatus, transmission line and magnetic detection method |
JP2023038717A (en) * | 2021-09-07 | 2023-03-17 | 株式会社東芝 | Sensor and detection device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1090382A (en) * | 1996-09-18 | 1998-04-10 | Tokin Corp | Magnetic detecting element |
-
2006
- 2006-03-08 JP JP2006062002A patent/JP2007240289A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1090382A (en) * | 1996-09-18 | 1998-04-10 | Tokin Corp | Magnetic detecting element |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163828A (en) * | 2013-02-26 | 2014-09-08 | Denso Corp | Auxiliary member and current sensor device having auxiliary member |
JP2015227866A (en) * | 2014-05-02 | 2015-12-17 | 学校法人東北学院 | Magnetic field sensor and manufacturing method therefor |
WO2020071511A1 (en) * | 2018-10-05 | 2020-04-09 | 横河電機株式会社 | Magnetism detection device, transmission line, and magnetism detection method |
JP2020060565A (en) * | 2018-10-05 | 2020-04-16 | 横河電機株式会社 | Magnetic detection apparatus, transmission line and magnetic detection method |
CN112805579A (en) * | 2018-10-05 | 2021-05-14 | 横河电机株式会社 | Magnetic detection device, transmission line, and magnetic detection method |
US11959981B2 (en) | 2018-10-05 | 2024-04-16 | Yokogawa Electric Corporation | Magnetic detector, transmission line and magnetic detection method |
JP2023038717A (en) * | 2021-09-07 | 2023-03-17 | 株式会社東芝 | Sensor and detection device |
JP7422709B2 (en) | 2021-09-07 | 2024-01-26 | 株式会社東芝 | Sensors and inspection equipment |
US11992320B2 (en) | 2021-09-07 | 2024-05-28 | Kabushiki Kaisha Toshiba | Sensor and inspection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5509208B2 (en) | Three-dimensional magnetic recording / reproducing device | |
JP2008197089A (en) | Magnetic sensor element and method for manufacturing the same | |
JP2008249406A (en) | Magnetic impedance effect element and its manufacturing method | |
Beato-López et al. | Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects | |
Mukherjee et al. | A self-biased, low-frequency, miniaturized magnetoelectric antenna for implantable medical device applications | |
Lee et al. | Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer | |
JP2007240289A (en) | High frequency carrier type thin film magnetic field sensor | |
Panina | Asymmetrical giant magneto-impedance (AGMI) in amorphous wires | |
Zhang et al. | Evaluation of Metglas/polyvinylidene fluoride magnetoelectric bilayer composites for flexible in-plane resonant magnetic sensors | |
PourhosseiniAsl et al. | Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite | |
WO2009102577A1 (en) | Electromagnetic wave detection methods and apparatus | |
Su et al. | Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors | |
Guo et al. | Enhanced magnetoelectric effect in Terfenol-D and flextensional cymbal laminates | |
Song et al. | Enhanced field sensitivity by strong mutual coupling and magnetoinduction in amorphous film/planar coil multilayers | |
Wang et al. | High sensitivity giant magnetoresistance magnetic sensor using oscillatory domain wall displacement | |
Buznikov et al. | A model for asymmetric magnetoimpedance effect in multilayered bimagnetic films | |
Zare et al. | Magnetoelectric sensor excitations in hexaferrite films | |
Yu et al. | Intrinsic noise in magnetic film/planar coil sensors | |
KR101233662B1 (en) | Flexible magnetoresistance sensor and manufacturing method thereof | |
JP2002084014A (en) | Tunnel magnetoresistive effect element and device using the same | |
Hashimoto et al. | Spin-valve giant magneto-resistance film with magnetostrictive FeSiB amorphous layer and its application to strain sensors | |
JP4418986B2 (en) | Magnetic field detection element and magnetic field detection method using the same | |
Zare et al. | Magnetoelectric sensor excitations in hexaferrite slabs | |
Fry et al. | Off-diagonal magnetoimpedance in NiFe-Au-NiFe layered film and its application to linear magnetic sensors | |
Sonehara et al. | Strain sensor using stress-magnetoresistance effect of Ni–Fe/Mn–Ir exchange-coupled magnetic film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110426 |