JP2007240249A - Evaluating method of breakage caused by cutting processing of concrete, and cutting method of concrete based on the evaluation method - Google Patents

Evaluating method of breakage caused by cutting processing of concrete, and cutting method of concrete based on the evaluation method Download PDF

Info

Publication number
JP2007240249A
JP2007240249A JP2006060996A JP2006060996A JP2007240249A JP 2007240249 A JP2007240249 A JP 2007240249A JP 2006060996 A JP2006060996 A JP 2006060996A JP 2006060996 A JP2006060996 A JP 2006060996A JP 2007240249 A JP2007240249 A JP 2007240249A
Authority
JP
Japan
Prior art keywords
cutting
concrete
existing
crack
existing concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060996A
Other languages
Japanese (ja)
Other versions
JP4904071B2 (en
Inventor
Yusuke Fujikura
裕介 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2006060996A priority Critical patent/JP4904071B2/en
Publication of JP2007240249A publication Critical patent/JP2007240249A/en
Application granted granted Critical
Publication of JP4904071B2 publication Critical patent/JP4904071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluating method that can quantitatively evaluate the degree of breakage by cutting, and can serve as a useful basis for selecting an appropriate cutting method according to the strength and property of concrete. <P>SOLUTION: The characteristic amount of a crack of a concrete cut part and the adhesion strength of repair/reinforcement material constructed in this cut part establish an associated relation, depending on the strength or material (mixed component) of the concrete. Therefore, data for evaluation where the characteristic amount of the crack generated by cutting is matched with the adhesion strength is previously stored, the surface of existing concrete is cut by repair/reinforcement engineering work, then a sample in the cut part is extracted, the characteristic amount of a crack existing in a smooth observation surface formed by cutting the existing concrete in the depth direction is measured, and the breakage by cutting the existing concrete is quantitatively evaluated by collating the measured data with the data for evaluation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コンクリート構造物の補修・補強工事などで行われる切削処理よって発生した損傷の度合いを定量的に評価する方法、及びその評価結果に基づいたコンクリートの切削方法に関する。   The present invention relates to a method for quantitatively evaluating the degree of damage caused by a cutting process performed in repair / reinforcement work of a concrete structure, and a concrete cutting method based on the evaluation result.

トンネル構造物、橋梁の床版や橋脚、杭基礎、地下構造物、桟橋や護岸、ダムや堤防等、コンクリート構造物を補修・補強する方法として、コンクリートの劣化部分をはつり(切削)によって除去し、新たに健全なコンクリートや、補修・補強材料を打継ぐといった方法が知られている。前記切削処理には、水圧により切削するウォータージェット工法や、大型の機械に切削装置を取り付けて切削するブレーカ工法やスパイキーハンマー工法、あるいは電動のピックなどを用いた人力による切削作業が採用されている。   As a method of repairing and reinforcing concrete structures such as tunnel structures, bridge slabs and piers, pile foundations, underground structures, piers and revetments, dams and embankments, etc., the deteriorated parts of concrete are removed by cutting (cutting). Newly known methods such as transferring concrete and repairing / reinforcing materials are known. For the cutting process, a water jet method for cutting by water pressure, a breaker method or a spiky hammer method for cutting by attaching a cutting device to a large machine, or a manual cutting operation using an electric pick is adopted. .

上述のような、切削処理の方法いかんによっては、既設のコンクリート構造物にクラックなどの損傷が発生し、既設コンクリート構造物と打ち継いだコンクリートとの付着性状に悪影響を与えてしまう問題が指摘されている(例えば特許文献1参照)。しかし、切削処理により発生した損傷の程度を把握し、打ち継ぎ後の付着性状への影響を定量的に評価することは行われていないのが現状である。
特開2002−121901号公報
Depending on the method of cutting treatment as described above, there is a problem that the existing concrete structure may be damaged, such as cracks, adversely affecting the adhesive properties between the existing concrete structure and the concrete that has been handed over. (For example, refer to Patent Document 1). However, at present, it is not performed to grasp the degree of damage caused by the cutting process and quantitatively evaluate the influence on the adhesion property after joining.
JP 2002-121901 A

本発明は、以上のような問題に鑑みてなされたもので、その技術的課題とするところは、切削による損傷の程度を定量的に評価することができ、ひいては、コンクリートの強度や性質に応じた適切な切削工法を選択するのに有用な根拠となり得る評価方法を提供すると共に、その評価結果に基づいて、損傷の少ないコンクリートの切削方法を提供することにある。   The present invention has been made in view of the problems as described above, and the technical problem is that the degree of damage due to cutting can be quantitatively evaluated, and depending on the strength and properties of the concrete. It is another object of the present invention to provide an evaluation method that can be a useful basis for selecting an appropriate cutting method, and to provide a method for cutting concrete with less damage based on the evaluation result.

上述の技術的課題を有効に解決するための手段として、本発明の、コンクリートの切削処理により発生した損傷の評価方法は、既設コンクリートの表面を切削した後、この既設コンクリートの切削箇所のサンプルを採取し、このサンプルを前記既設コンクリートの深さ方向へ切断して形成した平滑な観察面に存在するクラックの特徴量を測定し、その測定データを、評価用データと照合することによって、既設コンクリートの切削による損傷を定量的に評価し、前記評価用データが、上記と同様にして測定されたコンクリート切削箇所のクラックの特徴量と、この切削箇所に打ち継いだ補修・補強材料との付着強度を対応付けて蓄積したものであることを特徴とする。なお、前記補修・補強材料は、例えばコンクリートやモルタルである。   As a means for effectively solving the technical problems described above, the method for evaluating damage caused by the concrete cutting process of the present invention is to cut a surface of the existing concrete, and then sample a sample of the cut portion of the existing concrete. By collecting the sample and measuring the feature quantity of cracks existing on a smooth observation surface formed by cutting the sample in the depth direction of the existing concrete, and comparing the measurement data with the evaluation data, Quantitatively evaluate the damage caused by cutting, and the data for evaluation is the characteristic amount of cracks in the concrete cutting part measured in the same manner as described above, and the adhesion strength between the repaired / reinforcing material inherited in this cutting part. Are stored in association with each other. The repair / reinforcement material is, for example, concrete or mortar.

すなわち、コンクリート切削箇所のクラックの特徴量と、この切削箇所に打ち継いだ補修・補強材料の付着強度は、コンクリートの強度や材質(配合成分)等により、対応関係にある。このため、切削により発生するクラックの特徴量と付着強度を対応付けた評価用データを蓄積してデータベース化しておけば、既設コンクリート構造物を補修・補強する工事において、コンクリートの劣化部分を切削除去する際に、まず一部を試験的に切削して、その切削箇所のサンプルを採取し、このサンプルを前記既設コンクリートの深さ方向へ切断して形成した平滑な観察面に存在するクラックの特徴量を測定し、前記評価用データの検索・照合によって、コンクリート表層部の損傷の程度を付着強度との対応関係で定量的に把握できるので、要求される付着強度等を考慮した適切な切削工法を選定するための根拠とすることができる。   That is, the feature amount of the crack at the concrete cutting location and the adhesion strength of the repair / reinforcement material inherited to this cutting location have a corresponding relationship depending on the strength and material (mixing component) of the concrete. For this reason, if database for evaluation is created by associating the characteristics of the cracks generated by cutting with the bond strength, a database will be created, and in the construction of repairing / reinforcing existing concrete structures, the degraded parts of the concrete will be removed. When cutting, a part of it is first cut experimentally, a sample of the cut portion is taken, and the characteristics of cracks existing on the smooth observation surface formed by cutting this sample in the depth direction of the existing concrete Since the amount of damage can be measured and the degree of damage to the concrete surface layer part can be quantitatively grasped by the correspondence with the adhesion strength by searching and collating the data for evaluation, an appropriate cutting method considering the required adhesion strength, etc. Can be used as a basis for selecting

本発明の評価方法において、測定するクラックの特徴量は、本数、密度、幅、及び長さのうち1以上とする。また、サンプルの採取は、既設コンクリートの切削面に保護モルタルを塗布して硬化させてから行えば、サンプルの採取、加工、鏡面研磨の際に新たなクラックが発生するのを未然に防止することができ、クラックを測定する際には、観察面を鏡面研磨し、また、観察面に探傷液を塗布することが好ましい。   In the evaluation method of the present invention, the feature amount of the crack to be measured is at least one of the number, density, width, and length. In addition, if the sample is collected after applying protective mortar on the cut surface of the existing concrete and curing it, new cracks can be prevented from occurring during sample collection, processing, and mirror polishing. When the crack is measured, it is preferable that the observation surface is mirror-polished and a flaw detection liquid is applied to the observation surface.

また、本発明によるコンクリートの切削方法は、既設コンクリートの表面を、上述した評価方法による評価結果に基づいて選択された機械切削工法により適当な深さまで切削し、その後所定の深さまでウォータージェット工法により切削するものである。なお、この場合、選択可能な機械切削工法としてはブレーカ工法、スパイキーハンマー工法、人力による切削工法が挙げられる。また、各工法による切削深さは、クラックの分布状況、数、長さ、進展の程度、影響範囲や、粗骨材の最大寸法などのデータを考慮して算出される。   Further, the concrete cutting method according to the present invention cuts the surface of existing concrete to an appropriate depth by a mechanical cutting method selected based on the evaluation result by the above-described evaluation method, and then by a water jet method to a predetermined depth. To cut. In this case, examples of the machine cutting method that can be selected include a breaker method, a spiky hammer method, and a manual cutting method. In addition, the cutting depth by each method is calculated in consideration of data such as crack distribution, number, length, degree of progress, influence range, and maximum size of coarse aggregate.

本発明の評価方法によれば、切削により発生したコンクリート表層部の損傷の程度を、補修・補強材料との付着強度と対応付けて定量的に把握できるので、所望の付着強度を確保するための適切な切削工法、ひいては、既設コンクリートの強度や施工部位、施工コストに合わせた合理的な切削工法を選定することができる。   According to the evaluation method of the present invention, the degree of damage of the concrete surface layer portion caused by cutting can be quantitatively grasped in association with the adhesion strength with the repair / reinforcement material, so that the desired adhesion strength can be ensured. It is possible to select an appropriate cutting method and, in turn, a rational cutting method that matches the strength, construction site, and construction cost of the existing concrete.

本発明の切削方法によれば、まず既設コンクリートに与える損傷は大きいが低コストである機械切削を行った後で、高コストではあるが既設コンクリートへの損傷が小さいウォータージェット工法を採用することによって、最終的に切削面の損傷を少なくし、しかも工期の長期化やコストの高騰を抑えることができる。   According to the cutting method of the present invention, first, after performing mechanical cutting that is large in damage to the existing concrete but low in cost, by adopting a water jet method that is high in cost but small in damage to the existing concrete. Finally, damage to the cutting surface can be reduced, and further, the construction period can be prolonged and the cost can be prevented from rising.

以下、本発明の好ましい実施の形態について、図面を参照しながら説明する。図1は、本発明における作業の流れを示すフローチャート、図2は、既設のコンクリート構造物の一部を示す断面図、図3は、既設のコンクリート構造物の表面を切削(はつり)処理した状態を示す断面図、図4は、既設のコンクリート構造物の切削箇所から採取したサンプルを示す断面図、図5は、図4のサンプルを示す斜視図、図6は、既設のコンクリート構造物の切削面に補修・補強材料を打ち継いだ状態を示す断面図、図7は、付着強度の測定方法を示す説明図、図8は、切削工法を選択する方法を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a work flow in the present invention, FIG. 2 is a cross-sectional view showing a part of an existing concrete structure, and FIG. 3 is a state in which the surface of the existing concrete structure is cut (suspended). FIG. 4 is a sectional view showing a sample taken from a cutting point of an existing concrete structure, FIG. 5 is a perspective view showing the sample of FIG. 4, and FIG. 6 is a cutting of the existing concrete structure. FIG. 7 is an explanatory view showing a method for measuring the adhesion strength, and FIG. 8 is an explanatory view showing a method for selecting a cutting method.

まず図2において、参照符号1は、セメント及び砂によるコンクリートペースト11と粗骨材12からなる修復対象の既設コンクリート構造物、11aは、コンクリートペースト11の表層部に生じた劣化又は損傷による不健全部である。   First, in FIG. 2, reference numeral 1 is an existing concrete structure to be repaired consisting of cement and sand concrete paste 11 and coarse aggregate 12, and 11 a is unhealthy due to deterioration or damage occurring in the surface layer of concrete paste 11. Part.

この既設コンクリート構造物1の表層部における不健全部11aは、まずウォータージェット工法、ブレーカ工法、スパイキーハンマー工法等から任意に選択された工法により切削(はつり)し、除去する(ステップS1)。そしてこのような切削処理によって、コンクリート構造物1の表層部には、図3に示されるように、切削面1aから、クラック1bが発生している。   The unhealthy portion 11a in the surface layer portion of the existing concrete structure 1 is first cut (suspended) by a method arbitrarily selected from a water jet method, a breaker method, a spiky hammer method, and the like (step S1). And by such a cutting process, as shown in FIG. 3, the crack 1b has generate | occur | produced in the surface layer part of the concrete structure 1 from the cutting surface 1a.

次に、コンクリート構造物1の切削面1aに保護モルタル13を塗布する(ステップS2)。この保護モルタル13は、後述のサンプル採取、加工、鏡面研磨の際に新たなクラック等の損傷が発生するのを未然に防止する目的で塗布するものである。また、この保護モルタル13を使って、後述の付着強度試験を実施することも可能である。   Next, the protective mortar 13 is applied to the cutting surface 1a of the concrete structure 1 (step S2). The protective mortar 13 is applied for the purpose of preventing damage such as new cracks from occurring during sample collection, processing, and mirror polishing described later. Moreover, it is also possible to perform the below-mentioned adhesion strength test using this protective mortar 13.

次に、切削によるコンクリート表層部の損傷の程度を把握するため、切削後のコンクリート表層部の一部を図3に破線で示されるように切断して、図4に示されるようなサンプル10を採取する(ステップS3)。この場合、コアボーリングによって、φ100mm程度の円柱状のコアサンプルや、コンクリートカッタにより一辺が100mm程度の立方体状のサンプルを採取することが望ましい。なお、切削面1aには、上述のようにあらかじめ保護モルタル13を塗布してあるが、サンプル10を採取するためのコンクリート表層部の切断作業に際しては、これによる新たなクラックが発生するようなことのないように、切断速度等を適切に設定することが望ましい。   Next, in order to grasp the degree of damage of the concrete surface layer portion due to the cutting, a part of the concrete surface layer portion after the cutting is cut as shown by a broken line in FIG. 3, and the sample 10 as shown in FIG. Collect (step S3). In this case, it is desirable to collect a cylindrical core sample with a diameter of about 100 mm by core boring or a cubic sample with a side of about 100 mm by a concrete cutter. The cutting surface 1a is preliminarily coated with the protective mortar 13 as described above. However, when the concrete surface layer for cutting the sample 10 is cut, a new crack is generated. It is desirable to set the cutting speed and the like appropriately so that there is no problem.

採取したサンプル10は、図5に示されるように半割り(割裂)することによって、平坦な観察面10aを形成する(ステップS4)。なお、図5は、円柱状のコアサンプルを半割りしたものである。サンプル10の観察面10aは、観察が容易なように鏡面研磨し、表面凹凸をなくす(ステップS5)。観察面10aの鏡面研磨は、観察精度や信頼性を向上させるのにきわめて有効である。なお、前記半割り作業や、研磨作業の際にも、観察面10aに損傷を与えないように注意し、切断速度や研磨速度を適切に設定することは勿論である。   The collected sample 10 is divided into half (split) as shown in FIG. 5 to form a flat observation surface 10a (step S4). FIG. 5 shows a half-cut columnar core sample. The observation surface 10a of the sample 10 is mirror-polished so as to be easily observed to eliminate surface irregularities (step S5). Mirror polishing of the observation surface 10a is extremely effective for improving observation accuracy and reliability. Of course, care should be taken not to damage the observation surface 10a during the halving operation or polishing operation, and the cutting speed and polishing speed should be set appropriately.

次に、観察面10aに探傷液を塗布する(ステップS6)。探傷液の塗布は、目視不可能な微細なひび割れ(マイクロクラック)にしみ込んで、このマイクロクラックを鮮明化させるので、観察精度や信頼性を向上させるのにきわめて有効である。   Next, a flaw detection liquid is applied to the observation surface 10a (step S6). The application of the flaw detection liquid soaks into fine cracks (microcracks) that cannot be visually observed and makes these microcracks clear, so that it is extremely effective in improving observation accuracy and reliability.

次に、観察面10aを、不図示の顕微鏡を用いて50〜100倍程度で観察し、切削面1a近傍に発生したクラック(マイクロクラックを含む)1bの本数、幅、長さ(進展深さ)を測定する(ステップS7)。   Next, the observation surface 10a is observed at a magnification of about 50 to 100 times using a microscope (not shown), and the number, width, and length (development depth) of cracks (including microcracks) 1b generated near the cutting surface 1a. ) Is measured (step S7).

さらに、図6に示されるように、既設コンクリート構造物1の切削面1aにモルタル等の補修・補強材料2を打ち継ぎ、所定の養生期間の経過後、既設コンクリート構造物1との付着強度を測定し(ステップS8)、ステップS7で測定したクラック1bの状況と付着強度とを対応付けた評価用データとして、不図示のパソコンのデータベースに蓄積する(ステップS9)。   Further, as shown in FIG. 6, the repair / reinforcement material 2 such as mortar is handed over to the cutting surface 1 a of the existing concrete structure 1, and after a predetermined curing period, the adhesion strength with the existing concrete structure 1 is increased. Measurement is performed (step S8), and the data is accumulated in a database of a personal computer (not shown) as evaluation data in which the state of the crack 1b measured in step S7 is associated with the adhesion strength (step S9).

既設コンクリート構造物1と、その切削面1aに打ち継いだモルタル等の補修・補強材料2の付着強度の測定方法としては、図7に示されるように、既設コンクリート構造物1から採取したサンプル10における切削面1aに、補修・補強材料2を適当な層厚で塗布し、これに鋼製の治具3を接合し、前記補修・補強材料2に、サンプル10の表層部に達する一定の大きさ(例えばφ40mm)の切り込みCを入れ、治具3を介して引張荷重Pを与える。   As a method of measuring the adhesion strength of the existing concrete structure 1 and the repair / reinforcing material 2 such as mortar that has been handed over to the cutting surface 1a, a sample 10 taken from the existing concrete structure 1 as shown in FIG. The repairing / reinforcing material 2 is applied to the cutting surface 1a with an appropriate layer thickness, and a steel jig 3 is joined thereto, and the repairing / reinforcing material 2 reaches a surface layer portion of the sample 10 with a certain size. A notch C having a thickness (for example, φ40 mm) is made, and a tensile load P is applied through the jig 3.

上述のようにして蓄積されたデータを分析すると、図8(A)に示されるように、どのような切削工法を採用するかによって、切削面の近傍に発生するクラック(マイクロクラックを含む)の本数(及び幅や進展深さ)が異なり、また、発生したクラックが多いほど、切削による損傷が大きく、すなわち補修・補強材料の打ち継ぎ後の付着強度は、クラックが多いほど低下し、既設コンクリート1の引張強度を下回る傾向にあることがわかる。また、クラックの幅や進展深さについても同様の傾向がある。   When the data accumulated as described above is analyzed, as shown in FIG. 8A, depending on what cutting method is adopted, cracks (including microcracks) generated in the vicinity of the cutting surface are detected. The more the number of cracks (and the width and depth of progress), the more cracks that have occurred, the greater the damage caused by cutting. It can be seen that it tends to be lower than the tensile strength of 1. Moreover, there is a similar tendency with respect to the width of cracks and the depth of progress.

したがって、図8(B)に示されるように、要求される付着強度sを確保するには、既設コンクリートへの損傷度合が小さい切削工法D又は切削工法Eを選択することが適切であると判断される。   Therefore, as shown in FIG. 8B, it is determined that it is appropriate to select the cutting method D or the cutting method E with a small degree of damage to the existing concrete in order to ensure the required adhesion strength s. Is done.

しかしながら、例えばウォータージェット工法の場合、既設コンクリートに与える損傷が少ない点では優れているが、切削に大量の水を使用し、セメントを含む切削水の処理を行う必要があるなど、コストが著しく上昇する。したがって、切削深さに対して、損傷が大きくなると予想される部分以外については、容易かつ経済的な工法で切削を行い、残りの切削を、高コストであっても損傷の少ない工法で行う方法を採用する、というように、切削に必要なトータルコストを加味した合理的な切削工法の組み合わせを選択することが好ましい。   However, in the case of the water jet method, for example, it is excellent in that there is little damage to the existing concrete, but the cost is significantly increased, such as using a large amount of water for cutting and treating the cutting water containing cement. To do. Therefore, with the exception of the parts where damage is expected to increase with respect to the cutting depth, a method that performs cutting with an easy and economical method, and performs the remaining cutting with a method that has little damage even at high cost. It is preferable to select a combination of rational cutting methods in consideration of the total cost required for cutting.

下の表1は、既設コンクリートと補修・補強材料の付着強度を、先に説明した図7の方法で測定試験を行った結果の一例を、人力による切削作業のコストを1とした場合の比率と共に示すものである。

Figure 2007240249
Table 1 below shows an example of the result of measuring the bond strength between the existing concrete and the repair / reinforcement material using the method shown in FIG. It is shown together.
Figure 2007240249

したがって、上記試験結果から、切削による損傷を小さくして、高い付着強度を確保すると共に、コストを抑制するには、切削深さを100mmとした場合、例えば80mmまでをB工法により行い、残りの20mmをC工法で実施することが好適である。これは、一般に、粗骨材の最大寸法が約20mmで、マイクロクラックの発生が表面の粗骨材の近傍に限定されているからである。また、1.0N/mm以上の付着強度を確保する場合は、コストの抑制を考えなければ、切削深さ100mmをBの工法により実施することが好適である。 Therefore, from the above test results, in order to reduce damage caused by cutting and ensure high adhesion strength and to reduce costs, when the cutting depth is 100 mm, for example, up to 80 mm is performed by the B method, and the remaining It is preferable to carry out 20 mm by the C method. This is because the maximum size of the coarse aggregate is generally about 20 mm, and the occurrence of microcracks is limited to the vicinity of the coarse aggregate on the surface. In addition, when securing an adhesive strength of 1.0 N / mm 2 or more, it is preferable to implement a cutting depth of 100 mm by the B method unless cost reduction is considered.

本発明における作業の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation | work in this invention. 既設のコンクリート構造物の一部を示す断面図である。It is sectional drawing which shows a part of existing concrete structure. 既設のコンクリート構造物の表面を切削(はつり)処理した状態を示す断面図である。It is sectional drawing which shows the state which cut | disconnected (hanging) the surface of the existing concrete structure. 既設のコンクリート構造物の切削箇所から採取したサンプルを示す断面図である。It is sectional drawing which shows the sample extract | collected from the cutting location of the existing concrete structure. 図4のサンプルを示す斜視図である。It is a perspective view which shows the sample of FIG. 既設のコンクリート構造物の切削面に補修・補強材料を打ち継いだ状態を示す断面図である。It is sectional drawing which shows the state which handed over repair and reinforcement material to the cutting surface of the existing concrete structure. 付着強度の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of adhesion strength. 切削工法を選択する方法を示す説明図である。It is explanatory drawing which shows the method of selecting a cutting method.

符号の説明Explanation of symbols

1 既設コンクリート構造物
1a 切削面
1b クラック
10 サンプル
10a 観察面
11 コンクリートペースト
12 粗骨材
2 補修・補強材料
DESCRIPTION OF SYMBOLS 1 Existing concrete structure 1a Cutting surface 1b Crack 10 Sample 10a Observation surface 11 Concrete paste 12 Coarse aggregate 2 Repair and reinforcement material

Claims (6)

既設コンクリートの表面を切削した後、この既設コンクリートの切削箇所のサンプルを採取し、このサンプルを前記既設コンクリートの深さ方向へ切断して形成した平滑な観察面に存在するクラックの特徴量を測定し、その測定データを、評価用データと照合することによって、既設コンクリートの切削による損傷を定量的に評価し、前記評価用データが、上記と同様にして測定されたコンクリート切削箇所のクラックの特徴量と、この切削箇所に打ち継いだ補修・補強材料との付着強度を対応付けて蓄積したものであることを特徴とするコンクリートの切削処理により発生した損傷の評価方法。   After cutting the surface of the existing concrete, a sample of the cut portion of the existing concrete is collected, and the feature amount of the crack existing on the smooth observation surface formed by cutting the sample in the depth direction of the existing concrete is measured. Then, by collating the measurement data with the evaluation data, the damage due to the cutting of the existing concrete is quantitatively evaluated, and the evaluation data is characterized by the crack of the concrete cutting portion measured in the same manner as described above. A method for evaluating damage caused by a cutting process of concrete, characterized in that the amount and the adhesion strength of the repair / reinforcement material handed over to this cutting location are accumulated in association with each other. 測定するクラックの特徴量は、本数、密度、幅、及び長さのうち1以上であることを特徴とする請求項1に記載のコンクリートの切削処理により発生した損傷の評価方法。   The method for evaluating damage caused by a concrete cutting process according to claim 1, wherein the feature quantity of the crack to be measured is one or more of the number, density, width, and length. サンプルの採取を、既設コンクリートの切削面に保護モルタルを塗布して硬化させてから行うことを特徴とする請求項1に記載のコンクリートの切削処理により発生した損傷の評価方法。   2. The method for evaluating damage caused by a concrete cutting process according to claim 1, wherein the sample is collected after a protective mortar is applied to a cutting surface of existing concrete and cured. 観察面は、鏡面研磨を行うことを特徴とする請求項1に記載のコンクリートの切削処理により発生した損傷の評価方法。   The method for evaluating damage caused by the concrete cutting process according to claim 1, wherein the observation surface is mirror-polished. クラックを測定する際に、観察面に探傷液を塗布することを特徴とする請求項1に記載のコンクリートの切削処理により発生した損傷の評価方法。   2. The method for evaluating damage caused by a concrete cutting process according to claim 1, wherein a flaw detection liquid is applied to the observation surface when the crack is measured. 既設コンクリートの表面を、請求項1〜4のいずれかの方法による評価結果に基づいて選択された機械切削工法により適当な深さまで切削し、その後所定の深さまでウォータージェット工法により切削することを特徴とするコンクリートの切削方法。   The surface of the existing concrete is cut to an appropriate depth by a mechanical cutting method selected based on the evaluation result according to any one of claims 1 to 4, and then cut to a predetermined depth by a water jet method. And concrete cutting method.
JP2006060996A 2006-03-07 2006-03-07 Method for evaluating damage caused by cutting of concrete and method for cutting concrete by the evaluation Active JP4904071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060996A JP4904071B2 (en) 2006-03-07 2006-03-07 Method for evaluating damage caused by cutting of concrete and method for cutting concrete by the evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060996A JP4904071B2 (en) 2006-03-07 2006-03-07 Method for evaluating damage caused by cutting of concrete and method for cutting concrete by the evaluation

Publications (2)

Publication Number Publication Date
JP2007240249A true JP2007240249A (en) 2007-09-20
JP4904071B2 JP4904071B2 (en) 2012-03-28

Family

ID=38585936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060996A Active JP4904071B2 (en) 2006-03-07 2006-03-07 Method for evaluating damage caused by cutting of concrete and method for cutting concrete by the evaluation

Country Status (1)

Country Link
JP (1) JP4904071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215386A (en) * 2011-03-31 2012-11-08 Sumitomo Osaka Cement Co Ltd Microscopic observation method
JP2015183373A (en) * 2014-03-20 2015-10-22 新日鐵住金株式会社 Repair method for equipment foundation
WO2016013065A1 (en) * 2014-07-23 2016-01-28 中黒建設株式会社 Method for rehabilitating existing pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234505A (en) * 1999-12-17 2001-08-31 Mitsui Chemicals Inc Road reinforcing sheet, structure of asphalt-reinforced paved road, and method of paving road
JP2002121901A (en) * 2000-10-16 2002-04-26 Alpha Kogyo Kk Reinforcing/repairing method for concrete structure having cracks and infiltration type adhesive composition for it
JP2003149233A (en) * 2001-11-07 2003-05-21 Koji Otsuka Method for evaluation of deterioration degree of concrete by using x-ray contrast photographing
JP2005241250A (en) * 2004-02-24 2005-09-08 Shinko Kosan Kensetsu Kk Necessity determination method of apartment outer wall repair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234505A (en) * 1999-12-17 2001-08-31 Mitsui Chemicals Inc Road reinforcing sheet, structure of asphalt-reinforced paved road, and method of paving road
JP2002121901A (en) * 2000-10-16 2002-04-26 Alpha Kogyo Kk Reinforcing/repairing method for concrete structure having cracks and infiltration type adhesive composition for it
JP2003149233A (en) * 2001-11-07 2003-05-21 Koji Otsuka Method for evaluation of deterioration degree of concrete by using x-ray contrast photographing
JP2005241250A (en) * 2004-02-24 2005-09-08 Shinko Kosan Kensetsu Kk Necessity determination method of apartment outer wall repair

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215386A (en) * 2011-03-31 2012-11-08 Sumitomo Osaka Cement Co Ltd Microscopic observation method
JP2015183373A (en) * 2014-03-20 2015-10-22 新日鐵住金株式会社 Repair method for equipment foundation
WO2016013065A1 (en) * 2014-07-23 2016-01-28 中黒建設株式会社 Method for rehabilitating existing pipe

Also Published As

Publication number Publication date
JP4904071B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Bahmani et al. Fracture resistance of railway ballast rock under tensile and tear loads
Barbosa et al. Effect of high-strength reinforcement steel on shear friction behavior
Apostolopoulos et al. Assessment of the mechanical behavior in dual-phase steel B 400 C, B 450 C, and B 500 B in a marine environment
Roy et al. Enhancing fatigue strength by ultrasonic impact treatment
Courard et al. Recommendations for the repair, the lining or the strengthening of concrete slabs or pavements with bonded cement-based material overlays
Li et al. Structural renovation in concrete
JP4904071B2 (en) Method for evaluating damage caused by cutting of concrete and method for cutting concrete by the evaluation
Appalla et al. Assessing corrosion damage in posttensioned concrete structures using acoustic emission
Lanzoni et al. Concrete beams stiffened by polymer-based mortar layers: Experimental investigation and modeling
Kim et al. Cracking and failure of patch repairs in RC members subjected to bar corrosion
Guthrie et al. Vertical impedance testing for assessing protection from chloride-based deicing salts provided by an asphalt overlay system on a concrete bridge deck
Zhang Experimental study on shear-peeling bond strength between a CFRP plate and concrete
KR20190077834A (en) System for detecting grouting defection of psc (pre stressed concrete) bridge using power shutdown apparatus, and method for the same
CN107869147A (en) Super-length prestressed raft board construction method
Lopez et al. Composite strengthening technologies
JP6506113B2 (en) Repair method of reinforced concrete structure
Sangoju et al. Fire damage to concrete furnace-supporting structure and formulation of repair methodology
Manawadu Mechanical and long-term characterization of shotcrete-concrete interface bonds
Sangoju et al. Durability performance criteria for precast RC box units and repair measures based on nondestructive testing and evaluation
Belarbi et al. Synthesis of concrete bridge piles prestressed with CFRP systems.
Bateman Estimating Phase Durations for Chloride-Induced Corrosion Damage of Concrete Bridge Decks in Utah
Hussain et al. Induced macro-cell corrosion phenomenon in the simulated repaired reinforced concrete patch
Srinivasamurthy et al. Socketing of bored piles in rock
Charif et al. Side friction along drilled shafts in weak carbonate rocks
Li et al. Girder–deck interface: Partial debonding, deck replacement, and composite action

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250