JP2007240212A - Material test piece and method of manufacturing same - Google Patents

Material test piece and method of manufacturing same Download PDF

Info

Publication number
JP2007240212A
JP2007240212A JP2006060027A JP2006060027A JP2007240212A JP 2007240212 A JP2007240212 A JP 2007240212A JP 2006060027 A JP2006060027 A JP 2006060027A JP 2006060027 A JP2006060027 A JP 2006060027A JP 2007240212 A JP2007240212 A JP 2007240212A
Authority
JP
Japan
Prior art keywords
test piece
tube
environmental
fluid
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060027A
Other languages
Japanese (ja)
Other versions
JP4696272B2 (en
Inventor
Toshio Ogata
俊夫 緒形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006060027A priority Critical patent/JP4696272B2/en
Publication of JP2007240212A publication Critical patent/JP2007240212A/en
Application granted granted Critical
Publication of JP4696272B2 publication Critical patent/JP4696272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material test piece making it possible to measure the characteristics of a material under various environmental atmospheres by controlling the environmental atmospheres only in the gaps provided to the test piece and constituted so as to perform the evaluation test of the mechanical strength characteristics or environment-resistant characteristics of a structural material even under a usual environment so as to obtain the same result as the evaluation test performed under a peculiar and severe environment, and to provide a method of manufacturing the same. <P>SOLUTION: Constitution characterized in that an environment constituting fluid is enclosed in the fine gaps formed in the test piece is employed in the test piece. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属、合金、セラミックス、樹脂等の各種材料の特殊な環境下での材料の特性を調べるための試験方法に使用する試験片及びその製造方法に関するものである。   The present invention relates to a test piece used in a test method for examining the characteristics of various materials such as metals, alloys, ceramics, and resins under special circumstances, and a method for manufacturing the same.

新しい材料が開発された場合、または既存の材料であっても特殊な環境下で用いられる場合には、その特有の環境雰囲気下での材料の特性を正確に評価することは不可欠である。特に、高度な機械的強度特性や耐環境特性が要求される構造材料である場合には、様々な条件での環境下において優れた特性を有することが求められ、たとえば、その部材の目的、用途、種類に応じて引張特性、疲労特性、疲労亀裂進展特性、クリープ特性、破壊靭性特性、衝撃特性等の機械的強度特性だけでなく、耐酸性、耐アルカリ性、耐酸化性、耐腐食性等の耐環境特性も優れていることが求められる。しかも、構造用材料に対してはこれらの特性は常温や常圧というような温和な環境だけではなく、高温から低温、あるいは高圧から低圧、さらには酸性やアルカリ性等の過酷な環境においても同様に優れた特性を有することが求められる。このため、特有の、そして様々な条件下の環境雰囲気下での材料特性の評価が是非とも必要になる。   When new materials are developed or when existing materials are used in a special environment, it is essential to accurately evaluate the properties of the material under its specific environmental atmosphere. In particular, in the case of a structural material that requires high mechanical strength characteristics and environmental resistance characteristics, it is required to have excellent characteristics under an environment under various conditions. For example, the purpose and use of the member Depending on the type, not only mechanical strength properties such as tensile properties, fatigue properties, fatigue crack growth properties, creep properties, fracture toughness properties, impact properties, but also acid resistance, alkali resistance, oxidation resistance, corrosion resistance, etc. Excellent environmental resistance is also required. Moreover, for structural materials, these characteristics are not limited to mild environments such as normal temperature and normal pressure, but also in harsh environments such as high temperature to low temperature, high pressure to low pressure, and even acidic and alkaline environments. It is required to have excellent characteristics. For this reason, it is necessary to evaluate the characteristics of the material in an environmental atmosphere under specific and various conditions.

従来では、特許文献1〜4に示すように、材料の機械的強度特性や耐環境特性の試験を過酷な環境下で行なうに際しては、試験片を温度や圧力が任意に調整できる密閉された空間内に試験装置を設置し、その空間に特殊な環境を構成する流体(例えば、高圧ガス、高圧液、高温ガス、高温液など、これらを総称して環境構成流体という。)を外部から送り込み、試験を行うことしかできなかった。   Conventionally, as shown in Patent Documents 1 to 4, when testing mechanical strength characteristics and environmental resistance characteristics of materials in a harsh environment, a sealed space in which the temperature and pressure of the test piece can be arbitrarily adjusted. A test apparatus is installed in the space, and a fluid that constitutes a special environment in the space (for example, high pressure gas, high pressure liquid, high temperature gas, high temperature liquid, etc., these are collectively referred to as environment constituent fluid) is sent from the outside. I could only do the test.

このような方法では、測定に必要な環境を創出して保持するために多大な設備と費用を必要とするだけでなく試験のための荷重や試薬を正確に付与することが難しく、環境によっては未だ有効なデータを得る方法として確立されていないのが実情である。
: 特開平09−196844号公報 : 特開2004−132752号公報 : 特開2001−208675号公報 : 特開2004−077230号公報
Such a method not only requires a large amount of equipment and cost to create and maintain the environment necessary for measurement, but also it is difficult to accurately apply the load and reagent for the test. The fact is that it has not yet been established as a method for obtaining valid data.
: JP 09-196844 A : JP 2004-132752 A : JP 2001-208675 A : JP 2004-072230 A

そこで、本発明は、上記のとおりの背景から、大きな負担を要することなく、構造材料の機械的強度特性や耐環境特性を特有の、さらには過酷な環境下で行なうのと同様な結果を通常の環境下でも評価試験が行えるようにした試験片とその製造方法を提供することを課題とする。   In view of the above, the present invention usually achieves the same results as those performed in a harsh environment that is specific to the mechanical strength characteristics and environmental resistance characteristics of structural materials without requiring a large burden. It is an object of the present invention to provide a test piece and a method for manufacturing the same, which can perform an evaluation test even in an environment of the above.

本第一の発明の試験片は、その内部に形成した微細空隙内に環境構成流体を封じ込めたことを特徴とする構成を採用した。 The test piece according to the first aspect of the present invention employs a configuration characterized in that an environmental constituent fluid is enclosed in a fine gap formed therein.

本第二発明は、前記第1発明の材料試験片に環境構成流体を封じ込める方法において、前記微細空隙に繋がるチューブ内に可塑性材を前記チューブ内に流通路を形成する形で入れておき、次に、外部の環境構成流体供給構造の供給口と前記チューブ入口を接続し、前記微細空隙内に環境構成流体を注入し、前記入口と供給口との接続状態を維持したまま、前記チューブを加圧塑性材と共に圧迫変形してチューブ内を前記可塑性金属体にて密封し、この密封箇所より入口側を切断して、環境構成流体供給構造と分離することを特徴とする構成を採用した。 According to the second aspect of the present invention, in the method of enclosing the environmental constituent fluid in the material test piece of the first aspect, a plastic material is placed in the tube connected to the fine gap in a form that forms a flow path in the tube. In addition, the supply port of the external environmental component fluid supply structure is connected to the tube inlet, the environmental component fluid is injected into the fine gap, and the tube is added while the connection state between the inlet and the supply port is maintained. A configuration was adopted in which the inside of the tube is sealed with the plastic metal body together with the pressure plastic material, and the inlet side is cut from the sealed portion to be separated from the environmental fluid supply structure.

本第三発明は、前記第1発明の材料試験片に環境構成流体を封じ込める方法において、前記微細空隙に繋がるチューブ内に熱溶融性材を流通路を形成する形で入れておき、次に、外部の環境構成流体供給構造の供給口と前記チューブ入口を接続し、前記微細空隙内に環境構成流体を注入し、前記入口と供給口との接続状態を維持したまま、前記チューブを加熱して熱溶融性材を溶融して、チューブ内をこの熱溶融性材にて密封し、この密封箇所より入口側を切断して、環境構成流体供給構造と分離することを特徴とする構成を採用した。 The third aspect of the present invention is the method of enclosing the environmental constituent fluid in the material test piece of the first aspect of the present invention, in which a hot melt material is put in a form that forms a flow path in a tube connected to the fine gap, Connecting the supply port of the external environmental component fluid supply structure and the tube inlet, injecting the environmental component fluid into the fine gap, and heating the tube while maintaining the connection state between the inlet and the supply port Adopted a structure characterized by melting the heat-meltable material, sealing the inside of the tube with this heat-meltable material, cutting the inlet side from this sealed portion, and separating it from the environmental component fluid supply structure .

前記第二、第三の発明において、試験片を冷却した状態で環境構成流体を注入し、密封後に常温に戻すことにより前記微細空隙内の流体圧力を高めたことを特徴とする構成を採用した。 In the second and third inventions, a configuration is adopted in which the fluid pressure in the fine gap is increased by injecting an environmental constituent fluid in a cooled state and returning to ambient temperature after sealing. .

本第一発明により、試験片には所望の環境条件を構成する流体が封入されているので、従来より一般に使用されている状態での試験装置を使用して各種試験を行っても、特殊環境下で行ったのと同様の評価を行うことが出来た。 According to the first aspect of the present invention, since the fluid constituting the desired environmental condition is sealed in the test piece, even if various tests are performed by using a test apparatus in a state generally used conventionally, a special environment is used. We were able to make the same evaluation as we did below.

本第二発明により、所望の環境構成流体を試験片内に詰めるに当たり、圧力などの条件をその供給構造により設定した条件で封じ込めることができた。
また、その封入に当たり、熱を使用しないので、熱にて変性するような特殊な環境構成流体を封じ込めることができた。
According to the second aspect of the present invention, when the desired environmental constituent fluid is packed in the test piece, the pressure and other conditions can be contained under the conditions set by the supply structure.
In addition, since no heat is used for the sealing, a special environmental constituent fluid that is denatured by heat can be contained.

本第三発明により、所望の環境構成流体を試験片内に詰めるに当たり、圧力などの条件をその供給構造により設定した条件で封じ込めることができた。 According to the third aspect of the present invention, when the desired environmental fluid is packed in the test piece, the pressure and other conditions can be contained under the conditions set by the supply structure.

本発明は、上記のとおりの特徴を有するものであって、以下にその実施の形態について説明する。   The present invention has the features as described above, and an embodiment thereof will be described below.

図1は本発明の一例である棒状引張試験片を示す縦断側面図である。
試験片(11)は、引張試験機に取り付けるための上下ネジ部(12)(13)が形成してあり、その中心には、微細なパイプ状の空隙(15)が形成してある。
この空隙(15)の下端は、チューブ(20)が密封接続してあり、このチューブ(20)内は加圧塑性材の一例である金属棒(21)が詰められた状態となっている。
このようにして、前記空隙(15)内に封じ込めた環境構成流体、例えば高圧水素ガス、高圧ガスや高圧水などの高圧液体を、設定した圧力のままで封じ込めてある。
FIG. 1 is a longitudinal side view showing a rod-shaped tensile test piece as an example of the present invention.
The test piece (11) has upper and lower screw parts (12) and (13) for attachment to a tensile tester, and a fine pipe-shaped gap (15) is formed at the center thereof.
A tube (20) is hermetically connected to the lower end of the gap (15), and the inside of the tube (20) is packed with a metal rod (21) which is an example of a pressure plastic material.
In this way, the environmental constituent fluid, for example, high-pressure liquid such as high-pressure hydrogen gas, high-pressure gas or high-pressure water, sealed in the gap (15) is sealed at the set pressure.

このように環境構成流体を試験片(11)に封じ込める方法を、図3、図4、図5を参照して説明する。
図3に示すように試験片(11)に一端を接続したチューブ(20)内に、その内径より小さい小径の金属棒(21)を入れておく。
次に、このチューブ(20)の遊端に、管継手(250)の袋ナット(250b)を通して、そのジョイント(250c)を固定する。
前記管継手(250)のコネクタ(250a)は、図10、図11に示す環境構成流体の供給構造のメイン流路(201)の先端に固定してある。
このようにして、前記チューブ(20)を管継手(250)を介して、環境構成流体の供給構造に接続し、所望の環境構成流体を前記空隙(15)に送り込む。
所望の状態になったら、図5に示すように圧迫機(25)により、チュープ(20)と金属棒(21)とを共に圧迫して封じ込める。
その後、管継手(250)を解除(図5の状態)し、前記チューブ(20)の余分な箇所を切り捨てれば、図1に示す試験片(11)が得られる。
なお、環境構成流体の圧力などの条件によっては、軟質なチューブ(20)を使用できる場合があるが、このような場合は、図6に示すように金属棒(21)を使用せずに、チューブ(20)の塑性変形(20‘)のみで、封じ込めることができる。
A method for containing the environmental constituent fluid in the test piece (11) in this way will be described with reference to FIGS.
As shown in FIG. 3, a metal rod (21) having a smaller diameter than the inner diameter is placed in a tube (20) having one end connected to the test piece (11).
Next, the joint (250c) is fixed to the free end of the tube (20) through the cap nut (250b) of the pipe joint (250).
The connector (250a) of the pipe joint (250) is fixed to the distal end of the main flow path (201) of the environment constituent fluid supply structure shown in FIGS.
In this way, the tube (20) is connected to the structure for supplying environmental constituent fluid via the pipe joint (250), and the desired environmental constituent fluid is fed into the gap (15).
When the desired state is reached, the tube (20) and the metal rod (21) are pressed together and sealed by the pressing machine (25) as shown in FIG.
Thereafter, the pipe joint (250) is released (the state shown in FIG. 5), and the excess portion of the tube (20) is cut off to obtain the test piece (11) shown in FIG.
Depending on conditions such as the pressure of the environmental constituent fluid, a soft tube (20) may be used. In such a case, as shown in FIG. 6, without using the metal rod (21), It can be contained only by plastic deformation (20 ′) of the tube (20).

本実施例は、チューブ(30)を熱溶融性材の一例である溶融金属棒(31)にて封じ込めた例である。
この封じ込め方法を以下に説明する。
Uの字状の一端を空隙(15)に接続したチューブ(30)ないに、このチューブ(30)より小径の溶融金属棒(31)を入れ、その他端を管継手(250)を介して環境構成流体の供給構造に接続する。
所定の状態になるまで環境構成流体を供給したら、前記チューブ(30)の屈曲部分をバーナ(35)にて加熱して前記溶融金属棒(31)を溶融し、この屈曲部分に流して冷やし、当該部分を封止する。
その他の点は、前記実施例1と同様なので説明を省略する。
なお、図10に示す例では、溶融金属棒(31)の溶融時の試験片(11)の傾斜角度を30°程度にしたが、この傾斜角を75°程度にして溶融すると、図11に示すように、空隙(15)の一部にまで金属(31)を流し込むことができ、チューブ(30)の試験片(11)から突出している部分をほとんど切除しても、封じ込めを十分行えた。
この傾斜角については、30°から80°程度の範囲で設定するのが良い。
また、溶融状態の粘性が空隙(15)の奥にまで流れ込まない程度であるなら、傾斜角を90°にして作業することも可能である。
また、加熱手段は、バーナに限らず、熱風機、電熱器などが適宜使用可能である。
In this embodiment, the tube (30) is sealed with a molten metal rod (31) which is an example of a heat-meltable material.
This containment method will be described below.
Instead of the tube (30) having one end of the U-shape connected to the gap (15), a molten metal rod (31) having a smaller diameter than this tube (30) is inserted, and the other end is connected to the environment via the pipe joint (250). Connect to the fluid supply structure.
When the environmental constituent fluid is supplied until a predetermined state is reached, the bent portion of the tube (30) is heated by a burner (35) to melt the molten metal rod (31), and is cooled by flowing through the bent portion. The part is sealed.
Since the other points are the same as those of the first embodiment, description thereof is omitted.
In the example shown in FIG. 10, the inclination angle of the test piece (11) at the time of melting the molten metal rod (31) is set to about 30 °. As shown, the metal (31) could be poured into a part of the gap (15), and the tube (30) could be sufficiently contained even if the portion protruding from the test piece (11) was almost excised. .
The inclination angle is preferably set in a range of about 30 ° to 80 °.
Further, if the melted viscosity is such that it does not flow deep into the gap (15), it is possible to work with an inclination angle of 90 °.
Further, the heating means is not limited to a burner, and a hot air machine, an electric heater, or the like can be used as appropriate.

本実施例は、前記両実施例において使用した環境構成流体(高圧ガス)の供給構造の例を示す。
前記環境流体の供給構造は、ガスボンベ(202)と前記管継手(250)と、これらを繋ぐメイン流路(201)とより構成されている。
前記メイン流路(201)には、余剰ガス排気管(204)が分岐されている。
また、配管内の気体を置換するための真空タンク(208)へ繋がる流路も分岐され、いずれの分岐流路にも、開閉弁(205)(207)が設けてある。
また、メイン流路(201)中の前記分岐箇所の上手と下手にも開閉弁(203)(206)が設けてある。
下手側の開閉弁(206)は、その近くに設けた圧力センサー(209)による圧力測定の結果が、急速な減圧を示したとき、自動的に閉止するように設定してある。
この圧力センサー(209)よりも下手側には、メイン流路(201)内を流れる流体の温度を調整する温度調整装置(256)が設けてある。
さらに、下手には、手元開閉弁(255)が設けてある。
このようにして、開閉弁(203)(206)(255)を開くことにより、ガスボンベ(202)に詰められたガス(例えば、高圧水素、高圧酸素など)を管継手(250)から前記空隙(15)内に流れ込み、試験片(11)の空隙(15)内面を所望の環境に暴露されているのと同様な状態にすることができた。
なお、レギュレター等の圧力調整機構がガスボンベ(202)に設置されているが、これらは従来周知の事項であるから説明を省略する。
The present embodiment shows an example of a structure for supplying an environmental constituent fluid (high pressure gas) used in both embodiments.
The environmental fluid supply structure includes a gas cylinder (202), the pipe joint (250), and a main flow path (201) connecting them.
An excess gas exhaust pipe (204) is branched into the main flow path (201).
In addition, a flow path leading to a vacuum tank (208) for replacing the gas in the pipe is also branched, and an open / close valve (205) (207) is provided in each branch flow path.
In addition, on-off valves (203) (206) are also provided on the upper and lower sides of the branch portion in the main channel (201).
The lower-side on-off valve (206) is set to automatically close when the result of pressure measurement by the pressure sensor (209) provided nearby indicates a rapid pressure reduction.
A temperature adjustment device (256) for adjusting the temperature of the fluid flowing in the main flow path (201) is provided on the lower side of the pressure sensor (209).
Further, a hand opening / closing valve (255) is provided on the lower side.
In this way, by opening the on-off valves (203) (206) (255), the gas (for example, high-pressure hydrogen, high-pressure oxygen, etc.) packed in the gas cylinder (202) is discharged from the pipe joint (250) to the gap ( 15), the void (15) inner surface of the test piece (11) could be brought into a state similar to that exposed to the desired environment.
Note that a pressure adjusting mechanism such as a regulator is installed in the gas cylinder (202), but these are well-known items and will not be described.

本実施例は、前記両実施例において使用した環境構成流体(高圧ガス)の供給構造の別例を示す。
貯留タンク(202a)の出口に設けた吐出ポンプ(202b)から管継手(250)に至るメイン流路(201)の途中に開閉弁(206)と圧力センサー(209)が設けてある。
また、圧力センサー(209)より下手側に、温度調整装置(256)と手元開閉弁(255)が設けてある。
このようにして、貯留タンク(202a)に入れた水、酸、水酸化物、塩水などの流体を、吐出ポンプ(202b)により所定の圧力で空隙に供給し、手元開閉弁(255)の操作で、空隙内に特殊な環境を作り得るようにした。
This embodiment shows another example of the supply structure of the environmental constituent fluid (high pressure gas) used in both the above embodiments.
An on-off valve (206) and a pressure sensor (209) are provided in the middle of the main flow path (201) from the discharge pump (202b) provided at the outlet of the storage tank (202a) to the pipe joint (250).
Further, a temperature adjusting device (256) and a hand opening / closing valve (255) are provided on the lower side of the pressure sensor (209).
In this way, fluid such as water, acid, hydroxide, salt water, etc., stored in the storage tank (202a) is supplied to the gap with a predetermined pressure by the discharge pump (202b), and the on-off valve (255) is operated. So we can create a special environment in the gap.

なお、実施例3、4において、試験片を液化窒素などで冷却しながら、環境構成流体を空隙に供給した場合は、高密度でガスを供給することができるようになる。
その結果、常温に戻したときは、供給時の圧力に比べ非常に高圧な環境を試験片内部に作ることが可能になった。
In Examples 3 and 4, when the environmental constituent fluid is supplied to the air gap while cooling the test piece with liquefied nitrogen or the like, the gas can be supplied at high density.
As a result, when it was returned to room temperature, it became possible to create an extremely high pressure environment inside the test piece compared to the pressure at the time of supply.

本実施例は、3個の空隙(15a)(15b)(15c)に形成し、それぞれを実施例2と同様なチューブ(30a)(30b)(30c)に接続して、それぞれを実施例2と同様にして封止したものである。
その他の点は実施例2と同様なので説明を省略する。
この場合、3本の空隙(15a)(15b)(15c)をそれぞれ異なる環境構成流体を封じ込めることもできる。
In the present embodiment, three gaps (15a), (15b) and (15c) are formed and connected to the same tubes (30a), (30b) and (30c) as in the second embodiment. And sealed in the same manner.
Since other points are the same as those of the second embodiment, description thereof is omitted.
In this case, it is also possible to contain different environmental constituent fluids in the three gaps (15a) (15b) (15c).

本実施例は、パイプ状の試験片(11a)に空隙(15a)(15b)(15c)を形成したもので、その他は実施例5と同様なので説明を省略する。   In the present example, voids (15a), (15b), and (15c) are formed in a pipe-shaped test piece (11a), and the others are the same as those in Example 5, and therefore the description thereof is omitted.

本実施例は、角柱状の試験片(11b)に空隙(15a)(15b)(15c)(15d)を形成したもので、その他は実施例5と同様なので説明を省略する。   In this example, voids (15a), (15b), (15c), and (15d) are formed in a prismatic test piece (11b).

本実施例は、衝撃試験用の試験機に使用する試験片(511)に空隙(515)を設け、この空隙に対し、実施例1に示すチューブと同様なチュープ(20)を接続し、金属棒(21)で封止したものである。
その他は実施例1と同様なので説明を省略する。
In this example, a test piece (511) used in a test machine for impact test is provided with a gap (515), and a tube (20) similar to the tube shown in Example 1 is connected to the gap to form a metal. It is sealed with a stick (21).
Others are the same as those in the first embodiment, and the description is omitted.

本実施例は、破壊靱性・疲労亀裂進展試験用の試験片の例を示す。
試験片(411)は、破壊靱性・疲労亀裂進展試験用の試験片であって、その亀裂起点用溝(412)に平行にして、亀裂予定箇所の上下にパイプ状の空隙(415a)(415b)が形成してある。
この空隙(415a)(415b)の一端部には、それぞれ実施例2と同様なチューブ(31a)(31b)が設けてある。
その他は、実施例2と同様なので説明を省略する。
このようにして、破壊靱性・疲労亀裂進展試験においても本発明を実施可能にした。
This example shows an example of a test piece for fracture toughness / fatigue crack growth test.
The test piece (411) is a test piece for fracture toughness / fatigue crack propagation test, and is parallel to the crack starting groove (412), and pipe-shaped voids (415a) (415b) above and below the planned crack location. ) Is formed.
Tubes (31a) and (31b) similar to those of the second embodiment are provided at one end portions of the gaps (415a) and (415b), respectively.
Others are the same as those in the second embodiment, and a description thereof will be omitted.
In this way, the present invention can be implemented even in fracture toughness / fatigue crack growth tests.

その他の実施例Other examples

以上の実施例の他、平板試験片、曲げ試験片などの試験片においても、同様な構成を採用することで、特殊環境下での試験を行えるようにすることができる。   In addition to the above-described embodiments, test pieces such as flat plate test pieces and bending test pieces can be used in a special environment by adopting the same configuration.

また、試験片の設ける空隙の数も1、2,3,4本あるいはそれ以上に形成しても良い。   Further, the number of voids provided in the test piece may be 1, 2, 3, 4 or more.

圧迫にて変形させられるチューブ(20)の材質としては、以下のようなものが、高圧に耐えながら、圧迫機による圧迫により容易に変形することができる点で適当である。
SUS304またはSUS316のステンレス鋼管、銅管、真鍮管あるいは、硬質の樹脂管など。
As the material of the tube (20) that can be deformed by compression, the following materials are suitable in that they can be easily deformed by compression with a compression machine while withstanding high pressure.
SUS304 or SUS316 stainless steel pipe, copper pipe, brass pipe or hard resin pipe.

また、前記チューブ(20)内に入れる加圧塑性材(21)としては、以下のようなものが適当である。
インジウム、軟銅、銀または鉛など。
Further, as the pressure plastic material (21) put in the tube (20), the following is suitable.
Indium, annealed copper, silver or lead.

加熱に耐える耐熱性を有するチューブ(30)の材質としては、以下のようなものが適当である。
SUS304またはSUS316ステンレス鋼管、鋼管、銅管、真鍮管、アルミ管など。
The following materials are suitable as the material of the tube (30) having heat resistance that can withstand heating.
SUS304 or SUS316 stainless steel pipe, steel pipe, copper pipe, brass pipe, aluminum pipe, etc.

また、前記チューブ(30)内に入れる熱溶融性材(31)としては、以下のようなものが適当である。
ハンダ合金、ウッドメタル、銀ろうあるいは熱溶融性の樹脂など。
Further, as the heat-meltable material (31) to be put in the tube (30), the following is suitable.
Solder alloy, wood metal, silver solder or heat-meltable resin.

空隙(15)の直径(d)は、2mm以下で、試験片の断面積(実施例1ではπ×D×D÷4)の十分の1以下の断面積とするのが、試験結果に大きな誤差を生じさせず、かつ安全に試験する上で好ましい。   The diameter (d) of the air gap (15) is 2 mm or less, and the cross-sectional area of the test piece (π × D × D ÷ 4 in Example 1) is sufficiently 1 or less. It is preferable for safe testing without causing errors.

前記環境構成流体としては、技術試験片に対しての腐蝕、脆化、劣化等の作用を及ぼしかねないものとして考慮される。たとえば、気体では、水素、酸素、ハロゲン(フッ素、塩素、臭素、ヨウ素)ガス、酸性気体、塩基性気体、水蒸気、SF6、硫黄化合物、あるいはこれらの混合物等が例示される。また、液体では、酸、アルカリ、塩化物、海水、体液、水、液体と気体との各種の混合物(ミスト)が例示される。   The environmental constituent fluid is considered as a material that may exert effects such as corrosion, embrittlement, and deterioration on the technical test piece. Examples of the gas include hydrogen, oxygen, halogen (fluorine, chlorine, bromine, iodine) gas, acidic gas, basic gas, water vapor, SF6, sulfur compound, or a mixture thereof. Examples of the liquid include acids, alkalis, chlorides, seawater, body fluids, water, and various mixtures (mists) of liquid and gas.

このような環境構成流体に与える温度範囲としては、たとえば−269℃〜1000℃の範囲が、圧力範囲は、300MPa〜10−10Paの範囲が例示される。
もちろん以上の例示に限定されることはない。
また空隙内に上記の液体や気体を注入、排出させ、その環境雰囲気を経時的に変化させながら各種試験を行なうことで、様々な環境雰囲気下、特に過酷な環境雰囲気下での材料特性を測定することも可能とする。
As a temperature range given to such an environmental constituent fluid, for example, a range of −269 ° C. to 1000 ° C. and a pressure range of 300 MPa to 10 −10 Pa are exemplified.
Of course, the present invention is not limited to the above examples.
In addition, by injecting and discharging the above liquids and gases into the voids and performing various tests while changing the environmental atmosphere over time, the material properties under various environmental atmospheres, especially in severe environmental atmospheres, are measured. It is also possible to do.

そして、材料試験片に対しては外部より、力学的な試験荷重、たとえば引張力、圧縮力、曲げ、衝撃等が加えられるようにする。
なお、試験の目的によっては、空隙内の環境のみならず、試験片の外部における温度などの影響を考慮する必要が有る場合は、試験片外部から加熱・冷却することを本発明は妨げるものではない。
A mechanical test load such as tensile force, compressive force, bending, impact, etc. is applied to the material test piece from the outside.
Depending on the purpose of the test, the present invention does not prevent heating / cooling from the outside of the test piece when it is necessary to consider not only the environment in the gap but also the temperature outside the test piece. Absent.

圧迫機としては、図22、23に示すように、チューブ(20)の径を収縮させ、内部の金属(21)に押しつけて密封するものでもよい。
具体的には、チュープ(20)を挿通する孔を有する袋ナット(601)とチューブ(20)を通し前記袋ナット側の口が円錐状に広がった挿通孔(602a)を有するフランジ(602)と、表面を前記挿通孔(602a)の内面に沿うテーパー面にした円錐状駒(603)とよりなり、この駒(603)の中心には前記チューブ(20)を挿通する孔を有している。
そして、前記袋ナット(601)とフランジ(602)は硬い工具鋼で形成され、前記駒(603)は前記チューブ(20)よりも硬いステンレス鋼で形成されている。
このようにして、前記実施例1と同様にして、ガス供給を行い、その後、前記袋ナット(601)を締め付けると、円錐状駒(603)が縮小され、これにとれ、これより柔いチューブ(20)も縮径する。
この結果前記チューブ(20)の内面が内部の金属棒(21)に圧接されいて、封入が完了する。
このようにすることで、金属棒(21)に加圧塑性を有することのないものを用いることができるようになった。
As a compression machine, as shown in FIGS. 22 and 23, the diameter of the tube (20) may be contracted and pressed against the internal metal (21) to be sealed.
Specifically, a cap nut (601) having a hole through which the tube (20) is inserted, and a flange (602) having an insertion hole (602a) in which the port on the cap nut side extends in a conical shape through the tube (20). And a conical piece (603) whose surface is a tapered surface along the inner surface of the insertion hole (602a), and a hole through which the tube (20) is inserted at the center of the piece (603). Yes.
The cap nut (601) and the flange (602) are made of hard tool steel, and the piece (603) is made of stainless steel harder than the tube (20).
In this way, in the same manner as in Example 1, when the gas is supplied and then the cap nut (601) is tightened, the conical piece (603) is reduced, and the tube is softer than this. (20) also reduces the diameter.
As a result, the inner surface of the tube (20) is pressed against the internal metal rod (21), and the encapsulation is completed.
By doing in this way, what has no pressure plasticity can be used for a metal rod (21).

本発明の利用分野Field of application of the present invention

このように、本発明の方法では試験片に設けられた空隙内だけの環境雰囲気を制御することで様々な環境雰囲気下での材料の特性を測定することが可能となる。しかも、この試験片に設けられた空隙にのみガスや液体を充填するため、管理と処理に対する負担がきわめて少ないという優れた特徴を有している。   Thus, in the method of the present invention, it is possible to measure the characteristics of materials under various environmental atmospheres by controlling the environmental atmosphere only in the voids provided in the test piece. In addition, since the gas or liquid is filled only in the gap provided in the test piece, it has an excellent feature that the burden on management and processing is extremely small.

実施例1の引張り試験片を示す縦断正面図Longitudinal front view showing the tensile test piece of Example 1 図1のA=A断面図A = A sectional view of FIG. 実施例1の試験片に環境構成流体注入中の縦断正面図Longitudinal front view during injection of environmental constituent fluid into the test piece of Example 1 図3のA−A断面図AA sectional view of FIG. 実施例1の試験片に環境構成流体を封じ込めている状態を示す縦断正面図Longitudinal front view showing a state in which an environmental constituent fluid is contained in the test piece of Example 1 実施例1において、可塑性の良好なチューブを使用できる場合の例を示す縦断正面図In Example 1, a longitudinal front view showing an example in which a tube with good plasticity can be used 実施例2の引張り試験片を示す縦断正面図Longitudinal front view showing a tensile test piece of Example 2 実施例2の試験片に環境構成流体注入中の縦断正面図Longitudinal front view during injection of environmental constituent fluid into the test piece of Example 2 図7のA−A断面図AA sectional view of FIG. 実施例2の試験片に環境構成流体を封じ込めている状態を示す縦断正面図Longitudinal front view showing a state in which an environmental constituent fluid is contained in the test piece of Example 2 実施例2において、チューブを残さない例を示す縦断正面図In Example 2, the longitudinal front view which shows the example which does not leave a tube 実施例3の概要を示す配管図Piping diagram showing the outline of Example 3 実施例4の概要を示す配管図Piping diagram showing the outline of Example 4 実施例5の試験片の横断平面図Cross-sectional plan view of the test piece of Example 5 実施例5の底面図Bottom view of Example 5 実施例6の試験片の横断平面図Cross-sectional plan view of the test piece of Example 6 実施例6の底面図Bottom view of Example 6 実施例7の試験片の横断平面図Cross-sectional plan view of the test piece of Example 7 実施例7の底面図Bottom view of Example 7 実施例8の縦断正面図Longitudinal front view of Example 8 実施例9の縦断正面図Vertical front view of Example 9 縮径式圧迫機とその使用状態を示す縦断正面図Longitudinal front view showing reduced diameter compression machine and its usage 縮径式圧迫機によりチューブを圧縮して状態を示す縦断正面図Longitudinal front view showing the compressed state of the tube with a reduced diameter compression machine

符号の説明Explanation of symbols

(11)(11a)(411)(511) 試験片
(12)(13) ネジ部
(15)(15a)(15b)(15c)(15d)(415a)(415b)(515) 空隙
(201) メイン流路
(202) ガスボンベ
(202a) 貯留タンク
(202b) 吐出ポンプ
(203)(206)(255)(205)(207) 開閉弁
(204) 余剰ガス排気管
(208) 真空タンク
(209) 圧力センサー
(20)(30)(30a)(30b)(30c)(31a)(31b) チューブ
(21) 金属棒(加圧塑性材)
(25) 圧迫機
(31) 溶融金属棒(加熱溶融材)
(35) バーナ
(250) 管継手
(250a) コネクタ
(250b) 袋ナット
(250c) ジョイント
(255) 手元開閉弁
(256) 温度調整装置
(412) 亀裂起点用溝
(600) 縮径式圧迫器
(601) 袋ナット
(602) フランジ
(602a) 管挿入孔
(603) 円錐駒
(11) (11a) (411) (511) Test piece (12) (13) Screw part (15) (15a) (15b) (15c) (15d) (415a) (415b) (515) Air gap (201) Main channel (202) Gas cylinder (202a) Storage tank (202b) Discharge pump (203) (206) (255) (205) (207) On-off valve (204) Surplus gas exhaust pipe (208) Vacuum tank (209) Pressure Sensor (20) (30) (30a) (30b) (30c) (31a) (31b) Tube (21) Metal rod (pressure plastic material)
(25) Pressure machine (31) Molten metal rod (heated molten material)
(35) Burner (250) Pipe joint (250a) Connector (250b) Cap nut (250c) Joint (255) Hand on-off valve (256) Temperature control device (412) Crack starting groove (600) Reduced diameter type compression device ( 601) Cap nut (602) Flange (602a) Pipe insertion hole (603) Cone piece

Claims (4)

材料の特性を評価するための荷重負荷試験に使用する材料試験片において、その内部に形成した微細空隙内に環境構成流体を封じ込めたことを特徴とする材料試験片。 A material test piece used for a load test for evaluating the characteristics of a material, wherein an environmental constituent fluid is enclosed in a fine void formed in the test piece. 請求項1に記載の材料試験片に環境構成流体を封じ込める方法において、前記微細空隙に繋がるチューブ内に加圧塑性材を前記チューブ内に流通路を形成する形で入れておき、次に、外部の環境構成流体供給構造の供給口と前記チューブ入口を接続し、前記微細空隙内に環境構成流体を注入し、前記入口と供給口との接続状態を維持したまま、前記チューブを加圧塑性材と共に圧迫変形してチューブ内を前記可塑性金属体にて密封し、この密封箇所より入口側を切断して、環境構成流体供給構造と分離することを特徴とする材料試験片の製造方法 2. The method of enclosing environmental constituent fluid in the material test piece according to claim 1, wherein a pressurized plastic material is placed in a tube connected to the fine gap in a form to form a flow passage in the tube, and then externally. Connecting the supply port of the environmental component fluid supply structure and the tube inlet, injecting the environmental component fluid into the fine gap, and maintaining the connected state between the inlet and the supply port, the tube is compressed plastic material And the tube is sealed with the plastic metal body, and the inlet side is cut from the sealed portion to separate from the environmental fluid supply structure. 請求項1に記載の材料試験片に環境構成流体を封じ込める方法において、前記微細空隙に繋がるチューブ内に熱溶融性材を流通路を形成する形で入れておき、次に、外部の環境構成流体供給構造の供給口と前記チューブ入口を接続し、前記微細空隙内に環境構成流体を注入し、前記入口と供給口との接続状態を維持したまま、前記チューブを加熱して熱溶融性材を溶融して、チューブ内をこの熱溶融性材にて密封し、この密封箇所より入口側を切断して、環境構成流体供給構造と分離することを特徴とする材料試験片の製造方法 2. A method for enclosing an environmental constituent fluid in a material test piece according to claim 1, wherein a hot-melt material is placed in a tube connected to the fine gap in the form of a flow passage, and then an external environmental constituent fluid is used. Connecting a supply port of the supply structure and the tube inlet, injecting an environmental constituent fluid into the fine gap, and heating the tube while maintaining a connection state between the inlet and the supply port, thereby producing a heat-meltable material. Melting and sealing the inside of the tube with this hot-melt material, cutting the inlet side from the sealed portion, and separating it from the environmental fluid supply structure, 請求項2又は3に記載の材料試験片の製造方法において、試験片を冷却した状態で環境構成流体を注入し、密封後に常温に戻すことにより前記微細空隙内の流体圧力を高めたことを特徴とする材料試験片の製造方法 The method for producing a material test piece according to claim 2 or 3, wherein the fluid pressure in the fine gap is increased by injecting an environmental constituent fluid with the test piece cooled and returning to normal temperature after sealing. Method for manufacturing material specimens
JP2006060027A 2006-03-06 2006-03-06 Material test piece and manufacturing method thereof Active JP4696272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060027A JP4696272B2 (en) 2006-03-06 2006-03-06 Material test piece and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060027A JP4696272B2 (en) 2006-03-06 2006-03-06 Material test piece and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007240212A true JP2007240212A (en) 2007-09-20
JP4696272B2 JP4696272B2 (en) 2011-06-08

Family

ID=38585901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060027A Active JP4696272B2 (en) 2006-03-06 2006-03-06 Material test piece and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4696272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece
CN104807698A (en) * 2015-04-29 2015-07-29 山东大学 Test method for poisson ratio of continuous fiber enhanced resin-based composite material
JP2016001132A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Break determination method and flexure test device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548716B (en) * 2018-04-02 2019-07-30 北京航空航天大学 A kind of pole test specimen high temperature push-pull fatigue test cramp and test method
JP6983483B1 (en) * 2020-09-16 2021-12-17 幸福の科学 Sample sealing assembly manufacturing method, sample sealing assembly, and sample physical property measurement method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123352U (en) * 1982-02-15 1983-08-22 三菱重工業株式会社 Corrosion material testing equipment
JPS6228148U (en) * 1985-08-02 1987-02-20
JPS6388739U (en) * 1986-11-28 1988-06-09
JPH0815112A (en) * 1994-06-24 1996-01-19 Mitsubishi Heavy Ind Ltd Stress corrosion crack monitor
JPH09196844A (en) * 1996-01-18 1997-07-31 Kubota Corp Method and device for testing high temperature oxidation/corrosion
JP2001208675A (en) * 2000-01-26 2001-08-03 Toyota Central Res & Dev Lab Inc Accelerated exposure testing method and apparatus
JP2004077230A (en) * 2002-08-14 2004-03-11 Hitachi Zosen Corp Corrosion fatigue test apparatus
JP2004132752A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Actual environmental simulation atmospheric corrosion testing device
JP2007199024A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Method for delayed fracture test on ferrous material, method for delayed fracture of bolt and fixture for delayed fracture test
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123352U (en) * 1982-02-15 1983-08-22 三菱重工業株式会社 Corrosion material testing equipment
JPS6228148U (en) * 1985-08-02 1987-02-20
JPS6388739U (en) * 1986-11-28 1988-06-09
JPH0815112A (en) * 1994-06-24 1996-01-19 Mitsubishi Heavy Ind Ltd Stress corrosion crack monitor
JPH09196844A (en) * 1996-01-18 1997-07-31 Kubota Corp Method and device for testing high temperature oxidation/corrosion
JP2001208675A (en) * 2000-01-26 2001-08-03 Toyota Central Res & Dev Lab Inc Accelerated exposure testing method and apparatus
JP2004077230A (en) * 2002-08-14 2004-03-11 Hitachi Zosen Corp Corrosion fatigue test apparatus
JP2004132752A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Actual environmental simulation atmospheric corrosion testing device
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece
JP2007199024A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Method for delayed fracture test on ferrous material, method for delayed fracture of bolt and fixture for delayed fracture test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece
JP2016001132A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Break determination method and flexure test device
CN104807698A (en) * 2015-04-29 2015-07-29 山东大学 Test method for poisson ratio of continuous fiber enhanced resin-based composite material

Also Published As

Publication number Publication date
JP4696272B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4817253B2 (en) Material testing equipment and material specimens
JP4696272B2 (en) Material test piece and manufacturing method thereof
Freire et al. Part 3: Burst tests of pipeline with extensive longitudinal metal loss
US20120227467A1 (en) Device for testing pressure resistance of vessel and method for testing pressure resistance of vessel by using the device
KR102044375B1 (en) Small Punch Test Apparatus Capable of Quantitatively Evaluating Materials Embrittlement Behaviors under Various Gas Hydrogen Environments
JP4775706B2 (en) Environmental resistance characteristic evaluation tester with pressure chamber and test method using the same
US7832617B2 (en) Adapter assembly and method of manufacture
CN103308192A (en) Device for temperature measurement in metal melts
CN106855483B (en) Hydrogen pressure fatigue fracture and hydrogen induced hysteresis fracture sensitivity test device and method
KR102513693B1 (en) Tensile test apparatus for quantitative evaluation of embrittlement behaviors in hydrogen gas environments and test specimens used therefor
JP6953798B2 (en) Material strength test equipment
JP5610715B2 (en) Pipe welding method and shielding gas filling foaming agent
CN107798392A (en) The determination method and apparatus in the working service time limit of pipeline corrosion default
Kirk et al. Practical application of low constraint SENT fracture toughness testing for pipeline girth welds
Kim et al. Effects of solder ball geometry on lap shear creep rate
JP3156596U (en) Water cooling structure
Huizinga et al. Experiences with qualification of weldable martensitic stainless steel pipe
Benzing et al. Fracture Toughness Tests at 77 K and 4 K on 316L Stainless Steel Welded Plates
Ortolani et al. High Strength Ferritic Steels for Hydrogen Service
JPS5842924Y2 (en) Corrosion test equipment for tubular materials
Zhu Methods to determine low-constraint fracture toughness: review and progress
Widenmaier et al. The practical application of fracture control to natural gas pipelines
Rhode Reliable hydrogen determination in metallic materials and their weld joints: Parameters and challenges
JP2001159578A (en) Method and device for diagnosing remaining service life
Colwell et al. Evaluation of full-scale sections of bimetallic tubing in simulated production environments

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

R150 Certificate of patent or registration of utility model

Ref document number: 4696272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250