JP2007239641A - Canister - Google Patents

Canister Download PDF

Info

Publication number
JP2007239641A
JP2007239641A JP2006064078A JP2006064078A JP2007239641A JP 2007239641 A JP2007239641 A JP 2007239641A JP 2006064078 A JP2006064078 A JP 2006064078A JP 2006064078 A JP2006064078 A JP 2006064078A JP 2007239641 A JP2007239641 A JP 2007239641A
Authority
JP
Japan
Prior art keywords
chamber
canister
adsorbent
polarity
peltier element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006064078A
Other languages
Japanese (ja)
Inventor
Noboru Hirano
昇 平野
Nobuhiko Koyama
信彦 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006064078A priority Critical patent/JP2007239641A/en
Publication of JP2007239641A publication Critical patent/JP2007239641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a canister capable of improving performance and simplifying a configuration simultaneously. <P>SOLUTION: This canister 30 is provided with a flow-in port 32 for evaporation fuel, a canister case 31 forming a flow-out port 33 for evaporation fuel and an atmospheric air port 34 opened for the atmospheric air, a partitioning part 60 forming a suction chamber 35 on a flow-in port 32 side and a flow-out port 33 side and an atmospheric air chamber 36 on an atmospheric air port 34 side by partitioning the inside of the canister case 31 so as to communicate them mutually and having a Peltier element 61 for moving heat from either of the suction chamber 35 and the atmospheric air chamber 36 to the other of them by carrying current, and an adsorbent 70 filled into both of the suction chamber 35 and the atmospheric air chamber 36. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はキャニスタに関する。   The present invention relates to a canister.

従来、燃料タンク内で発生した蒸発燃料の大気中への流出を抑制するため、蒸発燃料を脱離可能に吸着する吸着材をキャニスタケース内に備えるキャニスタが知られている。
例えば特許文献1に開示のキャニスタでは、蒸発燃料が流入出するポートの側の吸着室と、大気開放された大気ポートの側の大気室とがキャニスタケース内に相互連通状態で形成され、それらの二室に吸着材が充填されている。そして、このキャニスタには、二室内の吸着材温度を調節して蒸発燃料の脱離性能を高めるために、ペルチェ素子が設けられている。
2. Description of the Related Art Conventionally, a canister that includes an adsorbent that removably adsorbs evaporated fuel in a canister case in order to suppress the outflow of evaporated fuel generated in a fuel tank to the atmosphere is known.
For example, in the canister disclosed in Patent Document 1, the adsorption chamber on the side of the port through which evaporated fuel flows in and out and the atmospheric chamber on the side of the atmospheric port opened to the atmosphere are formed in the canister case in an interconnected state. Two chambers are filled with adsorbent. The canister is provided with a Peltier element in order to adjust the temperature of the adsorbent in the two chambers and improve the desorption performance of the evaporated fuel.

特開2003−314384号公報JP 2003-314384 A

しかし、特許文献1に開示のキャニスタでは、吸着室内の吸着材温度を調節するペルチェ素子と、大気室内の吸着材温度を調節するペルチェ素子とを別々に設けている。そのため、キャニスタを構成する部品の点数が増加してキャニスタの構成が複雑になっている。
本発明は、上記問題に鑑みてなされたものであって、その目的は、性能の向上と構成の簡素化とを両立するキャニスタを提供することにある。
However, in the canister disclosed in Patent Document 1, a Peltier element for adjusting the adsorbent temperature in the adsorption chamber and a Peltier element for adjusting the adsorbent temperature in the atmospheric chamber are provided separately. For this reason, the number of parts constituting the canister increases and the configuration of the canister becomes complicated.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a canister that achieves both improved performance and simplified configuration.

請求項1に記載の発明によると、キャニスタケース内を仕切ることにより、流入ポート及び流出ポートの側の吸着室と、大気ポートの側の大気室とを相互連通状態に形成する仕切部は、通電により吸着室及び大気室の一方から他方へ熱を移動させるペルチェ素子を有する。これにより、吸着室内の吸着材温度と大気室内の吸着材温度とを共通のペルチェ素子により調節して、それら二室間に温度差を形成することができるので、キャニスタの構成を簡素にしつつ蒸発燃料の吸着性能及び脱離性能を向上することができる。
請求項2に記載の発明によると、仕切部は、吸着室と大気室とが並ぶ方向に積層された複数のペルチェ素子を有するので、それら二室間に大きな温度差を形成して蒸発燃料の吸着性能及び脱離性能の向上効果を高めることができる。
According to the first aspect of the present invention, by partitioning the inside of the canister case, the partition portion that forms the suction chamber on the inflow port and outflow port side and the air chamber on the air port side in an interconnected state is Has a Peltier element that moves heat from one of the adsorption chamber and the atmospheric chamber to the other. As a result, the adsorbent temperature in the adsorption chamber and the adsorbent temperature in the atmospheric chamber can be adjusted by a common Peltier element to form a temperature difference between the two chambers. Fuel adsorption performance and desorption performance can be improved.
According to the second aspect of the present invention, the partition portion has a plurality of Peltier elements stacked in the direction in which the adsorption chamber and the atmospheric chamber are aligned. The effect of improving the adsorption performance and desorption performance can be enhanced.

請求項3に記載の発明によると、制御手段がペルチェ素子への通電極性を、大気室から吸着室へ熱を移動させるための第一極性へ切換えることにより、流入ポート及び流出ポートの少なくとも一方からキャニスタケース内へ作用する圧力に応じて蒸発燃料が吸着室内の吸着材に吸着又は吸着材から脱離し易くなる。また、制御手段がペルチェ素子への通電極性を、吸着室から大気室へ熱を移動させるための第二極性へ切換えることにより、大気室側から吸着室側へ向かって低温となる温度勾配を形成して、吸着室側の流出ポートへ向かう気体流れを発生させることができる。   According to the third aspect of the present invention, the control means switches at least one of the inflow port and the outflow port by switching the energization polarity to the Peltier element to the first polarity for transferring heat from the atmospheric chamber to the adsorption chamber. The evaporated fuel is easily adsorbed to or desorbed from the adsorbent in the adsorption chamber according to the pressure acting on the canister case. In addition, the control means switches the polarity of energization to the Peltier element to the second polarity for transferring heat from the adsorption chamber to the atmospheric chamber, so that a temperature gradient that becomes lower from the atmospheric chamber side toward the adsorption chamber side. The gas flow toward the outflow port on the adsorption chamber side can be generated.

請求項4に記載の発明によると、蒸発燃料を吸着材から脱離させて流出ポートからキャニスタケース外へ流出させる脱離期間において、制御手段は、まず、ペルチェ素子への通電極性を第二極性へ切換える。これにより、吸着室側の流出ポートへ向かう気体流れが発生するので、吸着材から脱離した蒸発燃料を吸着室側の流出ポートへ向かって確実に導くことができるのみならず、当該脱離燃料が大気ポート側から大気中へ流出することを抑制できる。またこの後、制御手段は、ペルチェ素子への通電極性を第一極性へ切換えるので、流入ポート及び流出ポートの少なくとも一方からキャニスタケース内へ作用する圧力により吸着室内の吸着材から脱離する蒸発燃料量を増大することができる。   According to the fourth aspect of the present invention, in the desorption period in which the evaporated fuel is desorbed from the adsorbent and flows out of the canister case from the outflow port, the control means first sets the energization polarity to the Peltier element to the second. Switch to polarity. As a result, a gas flow toward the outflow port on the adsorption chamber side is generated, so that not only can the evaporated fuel desorbed from the adsorbent be guided to the outflow port on the adsorption chamber side, but also the desorbed fuel. Can be prevented from flowing out into the atmosphere from the atmosphere port side. After this, since the control means switches the energization polarity to the Peltier element to the first polarity, the evaporation that desorbs from the adsorbent in the adsorption chamber by the pressure acting in the canister case from at least one of the inflow port and the outflow port. The amount of fuel can be increased.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。
(第一実施形態)
本発明の第一実施形態によるキャニスタを適用した蒸発燃料処理装置を図2に示す。蒸発燃料処理装置10は、燃料タンク40内で発生した蒸発燃料を処理して内燃機関(図示しない)の吸気管20へ供給するものである。ここで吸気管20は、内燃機関へ吸気を送る吸気通路21を形成しており、スロットル弁22は、吸気通路21を流れる吸気の流量を調整する。吸気通路21は、キャニスタ30内にパージ通路23を通じて連通しており、このパージ通路23にパージ弁24が設置されている。大気に開放される大気通路50はキャニスタ30内に連通しており、この大気通路50に大気開放弁51が設置されている。燃料タンク40内は、タンク通路41を通じてキャニスタ30内に連通している。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment.
(First embodiment)
FIG. 2 shows an evaporative fuel processing apparatus to which the canister according to the first embodiment of the present invention is applied. The evaporative fuel processing device 10 processes evaporative fuel generated in the fuel tank 40 and supplies it to an intake pipe 20 of an internal combustion engine (not shown). Here, the intake pipe 20 forms an intake passage 21 for sending intake air to the internal combustion engine, and the throttle valve 22 adjusts the flow rate of intake air flowing through the intake passage 21. The intake passage 21 communicates with the canister 30 through a purge passage 23, and a purge valve 24 is installed in the purge passage 23. An air passage 50 that is open to the atmosphere communicates with the canister 30, and an air release valve 51 is installed in the air passage 50. The fuel tank 40 communicates with the canister 30 through a tank passage 41.

キャニスタ30は、キャニスタケース31、仕切部60及び吸着材70を備えている。
図1及び図2に示すようにキャニスタケース31は、樹脂等からなる複数の部材311,312が互いに接合されることにより、箱状に形成されている。尚、ここで図1の上下方向は、キャニスタ30の実使用状態での上下方向と略一致しており、以下では、部材311を上部材311、部材312を下部材312というものとする。上部材311の天壁部313には、タンク通路41と連通する流入ポート32、パージ通路23と連通する流出ポート33、大気通路50と連通する大気ポート34が形成されている。
The canister 30 includes a canister case 31, a partition 60, and an adsorbent 70.
As shown in FIGS. 1 and 2, the canister case 31 is formed in a box shape by joining a plurality of members 311 and 312 made of resin or the like. Here, the vertical direction in FIG. 1 substantially coincides with the vertical direction in the actual use state of the canister 30, and hereinafter, the member 311 is referred to as an upper member 311, and the member 312 is referred to as a lower member 312. The top wall 313 of the upper member 311 is formed with an inflow port 32 that communicates with the tank passage 41, an outflow port 33 that communicates with the purge passage 23, and an atmospheric port 34 that communicates with the atmospheric passage 50.

図1に示すように仕切部60は、上部材311の天壁部313に接合されることにより、キャニスタケース31内を、流入ポート32及び流出ポート33の側の吸気室35と、大気ポート34の側の大気室36とに仕切っている。また、仕切部60において下端部は下部材312の底壁部314から離間しており、それによって吸気室35と大気室36とが、仕切部60と底壁部314との間を通じて相互に連通している。そして、吸着室35及び大気室36の各々には、粒状の活性炭からなる吸着材70が充填されている。ここで本実施形態では、一対の孔あきプレート71,72が上下方向に間隔をあけてキャニスタケース31内に設置され、それら各孔あきプレート71,72が支持するフィルタ73,74間に各室35,36内の吸着材70が挟持されている。それに加えて本実施形態では、上側のプレート71が上部材311の側壁部315に接合されている一方、下側のプレート72が、仕切部60との間に吸着材70を挟んだ状態でスプリング75により上側へ押し付けられている。したがって、本実施形態では、吸着材70の崩れが防止されている。尚、図1では、各室35,36内の吸着材70の一部について図示を省略している。   As shown in FIG. 1, the partition portion 60 is joined to the top wall portion 313 of the upper member 311, so that the inside of the canister case 31 has an intake chamber 35 on the side of the inflow port 32 and the outflow port 33, and an atmospheric port 34. It is divided into an air chamber 36 on the side. Further, the lower end portion of the partition portion 60 is separated from the bottom wall portion 314 of the lower member 312, whereby the intake chamber 35 and the atmospheric chamber 36 communicate with each other through the partition portion 60 and the bottom wall portion 314. is doing. Each of the adsorption chamber 35 and the atmospheric chamber 36 is filled with an adsorbent 70 made of granular activated carbon. Here, in the present embodiment, a pair of perforated plates 71 and 72 are installed in the canister case 31 with a space in the vertical direction, and each chamber is provided between the filters 73 and 74 supported by the perforated plates 71 and 72. The adsorbent 70 in 35 and 36 is sandwiched. In addition, in the present embodiment, the upper plate 71 is joined to the side wall portion 315 of the upper member 311, while the lower plate 72 holds the adsorbent 70 between the partition portion 60 and the spring. 75 is pressed upward. Therefore, in this embodiment, collapse of the adsorbent 70 is prevented. In FIG. 1, a part of the adsorbent 70 in each of the chambers 35 and 36 is not shown.

本実施形態の仕切部60は、板状を呈する一つのペルチェ素子61からなるところに特徴がある。具体的にペルチェ素子61は、一方の面63が吸着室35に面し他方の面64が大気室36に面する形態で配置されており、以下では、面63を吸着室側面63、面64を大気室側面64という。ペルチェ素子61は、電源ドライバ66を介して電子制御ユニット(ECU)68と電気的に接続されており、当該ECU68は、電源ドライバ66によるペルチェ素子61への通電極性を切換制御する。ここで、ECU68がペルチェ素子61への通電極性を第一極性へ切換えるときには、ペルチェ素子61の大気室側面64が吸熱面となる一方、吸着室側面63が放熱面となる。故にこのときには、大気室36内の吸着材70から吸着室35内の吸着材70へペルチェ素子61を通じて熱が移動することになるため、大気室36内の吸着材70が冷却される一方、吸着室35内の吸着材70が加熱される。またこれに対し、ECU68がペルチェ素子61への通電極性を第二極性へ切換えるときには、吸着室側面63が吸熱面となる一方、ペルチェ素子61の大気室側面64が放熱面となる。故にこのときには、吸着室35内の吸着材70から大気室36内の吸着材70へ熱が移動することになるため、吸着室35内の吸着材70が冷却される一方、大気室36内の吸着材70が加熱される。   The partition part 60 of the present embodiment is characterized in that it consists of a single Peltier element 61 having a plate shape. Specifically, the Peltier element 61 is arranged in such a manner that one surface 63 faces the suction chamber 35 and the other surface 64 faces the air chamber 36. In the following description, the surface 63 is the suction chamber side surface 63 and the surface 64. Is referred to as the atmospheric chamber side surface 64. The Peltier element 61 is electrically connected to an electronic control unit (ECU) 68 through a power supply driver 66, and the ECU 68 switches and controls the energization polarity to the Peltier element 61 by the power supply driver 66. Here, when the ECU 68 switches the energization polarity to the Peltier element 61 to the first polarity, the air chamber side surface 64 of the Peltier element 61 becomes the heat absorption surface, and the adsorption chamber side surface 63 becomes the heat dissipation surface. Therefore, at this time, heat is transferred from the adsorbent 70 in the atmospheric chamber 36 to the adsorbent 70 in the adsorption chamber 35 through the Peltier element 61, so that the adsorbent 70 in the atmospheric chamber 36 is cooled, while the adsorption The adsorbent 70 in the chamber 35 is heated. On the other hand, when the ECU 68 switches the energization polarity to the Peltier element 61 to the second polarity, the adsorption chamber side surface 63 becomes the heat absorption surface, while the air chamber side surface 64 of the Peltier element 61 becomes the heat dissipation surface. Therefore, at this time, heat is transferred from the adsorbent 70 in the adsorbing chamber 35 to the adsorbent 70 in the atmospheric chamber 36, so that the adsorbent 70 in the adsorbing chamber 35 is cooled, while in the atmospheric chamber 36. The adsorbent 70 is heated.

尚、図2に示すように本実施形態のECU68は、弁24,51と電気的に接続されて、それら弁24,51を制御する機能を有しているが、そうした弁24,51の制御機能をECU68は有していなくてもよい。
以上、ECU68及び電源ドライバ66が共同して特許請求の範囲に記載の「制御手段」を構成している。
As shown in FIG. 2, the ECU 68 of the present embodiment is electrically connected to the valves 24 and 51 and has a function of controlling the valves 24 and 51. The ECU 68 may not have the function.
As described above, the ECU 68 and the power supply driver 66 jointly constitute “control means” described in the claims.

次に、蒸発燃料処理装置10の作動について説明する。
燃料タンク40内で発生した蒸発燃料をキャニスタケース31内の吸着材70により吸着する吸着期間では、ECU68がパージ弁24を閉じ且つ大気開放弁51を開いた状態下、蒸発燃料の発生により上昇した燃料タンク40の内圧によって蒸発燃料が、タンク通路41及び流入ポート32を通じて吸着室35内へ流入する。このとき、ECU68がペルチェ素子61への通電極性を第一極性とすると、大気室36内の吸着材温度が下降しつつ、吸着室35内の吸着材温度が上昇する。故に、各室35,36内の吸着材70のうち、燃料タンク40の内圧を受けると共に温度上昇した吸着室35内の吸着材70から順に、蒸発燃料が吸着されていく。
Next, the operation of the evaporated fuel processing apparatus 10 will be described.
In the adsorption period in which the evaporated fuel generated in the fuel tank 40 is adsorbed by the adsorbent 70 in the canister case 31, the ECU 68 is raised by the generation of evaporated fuel while the purge valve 24 is closed and the air release valve 51 is opened. Due to the internal pressure of the fuel tank 40, the evaporated fuel flows into the adsorption chamber 35 through the tank passage 41 and the inflow port 32. At this time, if the ECU 68 sets the energization polarity to the Peltier element 61 to the first polarity, the adsorbent temperature in the adsorption chamber 35 rises while the adsorbent temperature in the atmospheric chamber 36 falls. Therefore, of the adsorbents 70 in the chambers 35 and 36, the evaporated fuel is adsorbed in order from the adsorbent 70 in the adsorption chamber 35 that receives the internal pressure of the fuel tank 40 and rises in temperature.

また、吸着期間に吸着した蒸発燃料をキャニスタケース31内の吸着材70から脱離させる脱離期間では、まず、ECU68がペルチェ素子61への通電極性を第二極性とすると、大気室36内の吸着材温度が上昇しつつ、吸着室35内の吸着材温度が下降する。これにより、大気室36側から吸着室35側へ向かって低温となる温度勾配が形成されるため、大気室36側から吸着室35側の流出ポート33へ向かう気体流れが発生する。そして、この状態でECU68が大気開放弁51と共にパージ弁24を開くと、吸気通路21の負圧がパージ通路23及び流出ポート33を通じて吸着室35内へ作用する。このとき、ECU68がペルチェ素子61への通電極性を第一極性とすると、大気室36内の吸着材温度が下降しつつ、吸着室35内の吸着材温度が上昇する。故に、各室35,36内の吸着材70のうち、吸気通路21の負圧を受けると共に温度上昇した吸着室35内の吸着材70から順に、蒸発燃料が脱離していく。さらに、脱離した蒸発燃料は、吸気通路21の負圧によって流出ポート33からをキャニスタケース31外へ流出し、パージ通路23を通じて吸気通路21へパージされる。   Further, in the desorption period in which the evaporated fuel adsorbed during the adsorption period is desorbed from the adsorbent 70 in the canister case 31, first, if the electrification polarity to the Peltier element 61 is the second polarity, While the adsorbent temperature increases, the adsorbent temperature in the adsorption chamber 35 decreases. As a result, a temperature gradient is formed at a low temperature from the atmosphere chamber 36 side toward the adsorption chamber 35 side, so that a gas flow from the atmosphere chamber 36 side toward the outflow port 33 on the adsorption chamber 35 side is generated. In this state, when the ECU 68 opens the purge valve 24 together with the air release valve 51, the negative pressure in the intake passage 21 acts into the adsorption chamber 35 through the purge passage 23 and the outflow port 33. At this time, if the ECU 68 sets the energization polarity to the Peltier element 61 to the first polarity, the adsorbent temperature in the adsorption chamber 35 rises while the adsorbent temperature in the atmospheric chamber 36 falls. Therefore, among the adsorbents 70 in the chambers 35 and 36, the evaporated fuel is desorbed in order from the adsorbent 70 in the adsorption chamber 35 that receives the negative pressure of the intake passage 21 and rises in temperature. Further, the desorbed evaporated fuel flows out of the canister case 31 through the outflow port 33 due to the negative pressure of the intake passage 21 and is purged to the intake passage 21 through the purge passage 23.

以上説明した第一実施形態によると、吸着期間と脱離期間とでは、各室35,36内の吸着材温度を共通のペルチェ素子61により、相異なる方法にて調整することができる。したがって、第一実施形態によれば、キャニスタ30の構成を簡素にしつつ、蒸発燃料の吸着性能及び脱離性能をそれぞれ最適な方法により向上することができる。   According to the first embodiment described above, the adsorbent temperature in each of the chambers 35 and 36 can be adjusted by the common Peltier element 61 by different methods during the adsorption period and the desorption period. Therefore, according to the first embodiment, it is possible to improve the adsorption performance and the desorption performance of the evaporated fuel by an optimum method while simplifying the configuration of the canister 30.

(第二実施形態)
図3に示すように、本発明の第二実施形態は第一実施形態の変形例である。
第二実施形態のキャニスタ100において仕切部110は、板状を呈する二つのペルチェ素子111,112が積層されてなる。具体的に第一ペルチェ素子111は、一方の面113が吸着室35に面し他方の面114が第二ペルチェ素子112に面する形態で配置され、また第二ペルチェ素子112は、一方の面115が第一ペルチェ素子111に面し他方の面116が大気室36に面する形態で配置されている。このような配置形態により第一ペルチェ素子111と第二ペルチェ素子112とは、吸着室35と大気室36とが並ぶ略水平方向に積層された形となっている。尚、以下では、第一ペルチェ素子111の面113を吸着室側面113、第一ペルチェ素子111の面114を積層面114、第二ペルチェ素子112の面115を積層面115、第二ペルチェ素子112の面116を大気室側面116という。
(Second embodiment)
As shown in FIG. 3, the second embodiment of the present invention is a modification of the first embodiment.
In the canister 100 of the second embodiment, the partition 110 is formed by laminating two Peltier elements 111 and 112 having a plate shape. Specifically, the first Peltier element 111 is arranged such that one surface 113 faces the suction chamber 35 and the other surface 114 faces the second Peltier element 112, and the second Peltier element 112 has one surface. 115 is arranged such that 115 faces the first Peltier element 111 and the other surface 116 faces the air chamber 36. With such an arrangement, the first Peltier element 111 and the second Peltier element 112 are stacked in a substantially horizontal direction in which the adsorption chamber 35 and the atmospheric chamber 36 are arranged. In the following description, the surface 113 of the first Peltier element 111 is the suction chamber side surface 113, the surface 114 of the first Peltier element 111 is the stacked surface 114, the surface 115 of the second Peltier element 112 is the stacked surface 115, and the second Peltier element 112. This surface 116 is referred to as an atmospheric chamber side surface 116.

第一及び第二ペルチェ素子111,112は共に、電源ドライバ66を介してECU68と電気的に接続されており、当該ECU68が電源ドライバ66による各ペルチェ素子111,112への通電極性を切換制御する。ここで、ECU68が各ペルチェ素子111,112への通電極性を第一極性へ切換えるときには、第二ペルチェ素子112の大気室側面116及び第一ペルチェ素子111の積層面114が吸熱面となる一方、第一ペルチェ素子111の吸着室側面113及び第二ペルチェ素子112の積層面115が放熱面となる。故にこのときには、大気室36内の吸着材70から吸着室35内の吸着材70へ各ペルチェ素子111,112を通じて熱が移動することになるため、大気室36内の吸着材70が冷却される一方、吸着室35内の吸着材70が加熱される。またこれに対し、ECU68が各ペルチェ素子111,112への通電極性を第二極性へ切換えるときには、第一ペルチェ素子111の吸着室側面113及び第二ペルチェ素子112の積層面115が吸熱面となる一方、第二ペルチェ素子112の大気室側面116及び第一ペルチェ素子111の積層面114が放熱面となる。故にこのときには、吸着室35内の吸着材70から大気室36内の吸着材70へ各ペルチェ素子111,112を通じて熱が移動することになるため、吸着室35内の吸着材70が冷却される一方、大気室36内の吸着材70が加熱される。   Both the first and second Peltier elements 111 and 112 are electrically connected to the ECU 68 via the power supply driver 66, and the ECU 68 switches and controls the polarity of energization of the Peltier elements 111 and 112 by the power supply driver 66. To do. Here, when the ECU 68 switches the energization polarity to the Peltier elements 111 and 112 to the first polarity, the atmosphere chamber side surface 116 of the second Peltier element 112 and the laminated surface 114 of the first Peltier element 111 become heat absorption surfaces. The suction chamber side surface 113 of the first Peltier element 111 and the laminated surface 115 of the second Peltier element 112 serve as a heat radiating surface. Therefore, at this time, heat is transferred from the adsorbent 70 in the atmospheric chamber 36 to the adsorbent 70 in the adsorption chamber 35 through the Peltier elements 111 and 112, so that the adsorbent 70 in the atmospheric chamber 36 is cooled. On the other hand, the adsorbent 70 in the adsorption chamber 35 is heated. On the other hand, when the ECU 68 switches the energization polarity to the Peltier elements 111 and 112 to the second polarity, the adsorption chamber side surface 113 of the first Peltier element 111 and the laminated surface 115 of the second Peltier element 112 are the heat absorption surfaces. On the other hand, the atmosphere chamber side surface 116 of the second Peltier element 112 and the laminated surface 114 of the first Peltier element 111 are heat dissipation surfaces. Therefore, at this time, heat is transferred from the adsorbent 70 in the adsorbing chamber 35 to the adsorbent 70 in the atmospheric chamber 36 through the Peltier elements 111 and 112, so that the adsorbent 70 in the adsorbing chamber 35 is cooled. On the other hand, the adsorbent 70 in the atmospheric chamber 36 is heated.

このような第二実施形態の吸着期間では、ECU68がペルチェ素子61への通電極性を第一極性としたとき、大気室36内の吸着材70から吸着室35内の吸着材70への熱の移動量が第一実施形態の場合よりも増大する。故に、各室35,36内の吸着材70間に大きな温度差を形成して、蒸発燃料の吸着性能を向上することができる。   In such an adsorption period of the second embodiment, when the ECU 68 sets the energization polarity to the Peltier element 61 as the first polarity, the heat from the adsorbent 70 in the atmospheric chamber 36 to the adsorbent 70 in the adsorption chamber 35. The amount of movement increases compared to the case of the first embodiment. Therefore, a large temperature difference can be formed between the adsorbents 70 in the chambers 35 and 36, and the adsorption performance of the evaporated fuel can be improved.

また、第二実施形態の脱離期間では、ECU68がペルチェ素子61への通電極性を第二極性としたとき、吸着室35内の吸着材70から大気室36内の吸着材70への熱の移動量が第一実施形態の場合よりも増大する。故に、大気室36側から吸着室35側の流出ポート33へ向かう気体流れが確実に発生し、大気ポート34から蒸発燃料が流出することを抑制できる。また、ECU68がペルチェ素子61への通電極性を第二極性としたことにより吸着室35内の吸着材70が冷却された状態で、ECU68がペルチェ素子61への通電極性を第一極性とすると、吸着室35内の吸着材温度が大きく上昇することになる。故に、こうした温度上昇によれば、吸着室35内の吸着材70からは蒸発燃料の脱離量が増大するので、蒸発燃料の脱離性能を向上することができる。   In the desorption period of the second embodiment, when the ECU 68 sets the energization polarity to the Peltier element 61 to the second polarity, the heat from the adsorbent 70 in the adsorption chamber 35 to the adsorbent 70 in the atmospheric chamber 36. The amount of movement increases compared to the case of the first embodiment. Therefore, it is possible to reliably generate a gas flow from the atmosphere chamber 36 side to the outflow port 33 on the adsorption chamber 35 side and to prevent the evaporated fuel from flowing out from the atmosphere port 34. Further, the ECU 68 sets the energization polarity to the Peltier element 61 to the first polarity in a state where the adsorbent 70 in the adsorption chamber 35 is cooled by setting the energization polarity to the Peltier element 61 to the second polarity. Then, the adsorbent temperature in the adsorption chamber 35 is greatly increased. Therefore, according to such a temperature rise, the desorption amount of the evaporated fuel increases from the adsorbent 70 in the adsorption chamber 35, so that the evaporative fuel desorption performance can be improved.

ここまで、本発明の複数の実施形態について説明してきたが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用可能である。
例えば、吸着室35と大気室36とが並ぶ方向に積層された三つ以上のペルチェ素子から仕切部を形成してもよいし、吸着室35と大気室36とが並ぶ方向に垂直な略水平方向に配列された二つ以上のペルチェ素子から仕切部を形成してもよい。
A plurality of embodiments of the present invention have been described so far, but the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. is there.
For example, the partition portion may be formed from three or more Peltier elements stacked in the direction in which the adsorption chamber 35 and the atmospheric chamber 36 are arranged, or substantially horizontal perpendicular to the direction in which the adsorption chamber 35 and the atmospheric chamber 36 are arranged. You may form a partition part from two or more Peltier elements arranged in the direction.

本発明の第一実施形態によるキャニスタを示す断面図である。It is sectional drawing which shows the canister by 1st embodiment of this invention. 図1のキャニスタを適用した蒸発燃料処理装置を示す模式図である。It is a schematic diagram which shows the evaporative fuel processing apparatus to which the canister of FIG. 1 is applied. 本発明の第二実施形態によるキャニスタを示す断面図である。It is sectional drawing which shows the canister by 2nd embodiment of this invention.

符号の説明Explanation of symbols

30,100 キャニスタ、31 キャニスタケース、32 流入ポート、33 流出ポート、34 大気ポート、35 吸着室、36 大気室、60,110 仕切部、61 ペルチェ素子、66 電源ドライバ(制御手段)、68 ECU(制御手段)、70 吸着材、111 第一ペルチェ素子(ペルチェ素子)、112 第二ペルチェ素子(ペルチェ素子) 30, 100 canister, 31 canister case, 32 inlet port, 33 outlet port, 34 atmospheric port, 35 adsorption chamber, 36 atmospheric chamber, 60,110 partition, 61 Peltier element, 66 power driver (control means), 68 ECU ( Control means), 70 adsorbent, 111 first Peltier element (Peltier element), 112 second Peltier element (Peltier element)

Claims (4)

蒸発燃料が流入する流入ポートと、蒸発燃料が流出する流出ポートと、大気に開放される大気ポートとを形成するキャニスタケースと、
前記キャニスタケース内を仕切ることにより、前記流入ポート及び前記流出ポートの側の吸着室と、前記大気ポートの側の大気室とを相互連通状態に形成する仕切部であって、通電により前記吸着室及び前記大気室の一方から他方へ熱を移動させるペルチェ素子を有する仕切部と、
前記吸着室内及び前記大気室内の双方に充填される吸着材と、
を備えるキャニスタ。
A canister case forming an inflow port through which evaporative fuel flows in, an outflow port through which evaporative fuel flows out, and an atmospheric port opened to the atmosphere;
Partitioning the inside of the canister case to form an adsorbing chamber on the inflow port and outflow port side and an air chamber on the air port side in an interconnected state, and the adsorbing chamber is energized by energization. And a partition having a Peltier element for transferring heat from one of the atmospheric chambers to the other,
An adsorbent filled in both the adsorption chamber and the atmospheric chamber;
Canister equipped with.
前記仕切部は、前記吸着室と前記大気室とが並ぶ方向に積層された複数の前記ペルチェ素子を有する請求項1に記載のキャニスタ。   2. The canister according to claim 1, wherein the partition portion includes a plurality of the Peltier elements stacked in a direction in which the adsorption chamber and the atmospheric chamber are arranged. 前記ペルチェ素子への通電極性を、前記大気室から前記吸着室へ熱を移動させるための第一極性と、前記吸着室から前記大気室へ熱を移動させるための第二極性との間で切換制御する制御手段を備える請求項1又は2に記載のキャニスタ。   The energization polarity to the Peltier element is between a first polarity for transferring heat from the atmospheric chamber to the adsorption chamber and a second polarity for transferring heat from the adsorption chamber to the atmospheric chamber. The canister according to claim 1 or 2, further comprising control means for switching control. 蒸発燃料を前記吸着材から脱離させて前記流出ポートから前記キャニスタケース外へ流出させる脱離期間において、前記制御手段は、前記ペルチェ素子への通電極性を、前記第二極性へ切換えた後、前記第一極性へ切換える請求項3に記載のキャニスタ。




In the desorption period in which the evaporated fuel is desorbed from the adsorbent and flows out of the canister case from the outflow port, the control means switches the polarity of the current supplied to the Peltier element to the second polarity. The canister according to claim 3, wherein the canister is switched to the first polarity.




JP2006064078A 2006-03-09 2006-03-09 Canister Pending JP2007239641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064078A JP2007239641A (en) 2006-03-09 2006-03-09 Canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064078A JP2007239641A (en) 2006-03-09 2006-03-09 Canister

Publications (1)

Publication Number Publication Date
JP2007239641A true JP2007239641A (en) 2007-09-20

Family

ID=38585422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064078A Pending JP2007239641A (en) 2006-03-09 2006-03-09 Canister

Country Status (1)

Country Link
JP (1) JP2007239641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216078A (en) * 2008-02-12 2009-09-24 Aisan Ind Co Ltd Evaporated fuel processing device
DE102010006042A1 (en) 2010-01-28 2011-08-18 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Method for operating fuel evaporation restraint system, involves providing activated carbon filter, which adsorbs in loading phase of hydrocarbon vapors and desorbs by rinsing with fresh air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216078A (en) * 2008-02-12 2009-09-24 Aisan Ind Co Ltd Evaporated fuel processing device
DE102010006042A1 (en) 2010-01-28 2011-08-18 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Method for operating fuel evaporation restraint system, involves providing activated carbon filter, which adsorbs in loading phase of hydrocarbon vapors and desorbs by rinsing with fresh air

Similar Documents

Publication Publication Date Title
US9556830B2 (en) Vaporized fuel processing apparatus
JP5587217B2 (en) Canister
JP6017167B2 (en) Trap canister
JP2009144684A (en) Fuel vapor treatment apparatus
JP6597789B2 (en) Canister
KR20150005446A (en) Evaporated fuel processing device
JP2014234797A (en) Evaporative fuel treatment device
WO2014020865A1 (en) Fuel vapor processing apparatus
WO2017082053A1 (en) Canister
JP2010168908A (en) Fuel vapor treating device
JP2012225167A (en) Fuel vapor processing devices
JP6762689B2 (en) Evaporative fuel processing equipment
JP2013011249A (en) Fuel vapor processing apparatus
US9169810B2 (en) Fuel vapor processing apparatus
JP2017014996A (en) Evaporated fuel treatment device
JP2013053556A (en) Fuel vapor processing apparatus
JP2007239641A (en) Canister
JP5996446B2 (en) Evaporative fuel processing equipment
JP2019132190A (en) Canister
JP2009103088A (en) Evaporated fuel treatment equipment
JP2012031783A (en) Heating element unit and evaporated fuel treatment device
US9249762B2 (en) Evaporated fuel treatment apparatus
JP5626861B2 (en) Evaporative fuel processing equipment
JP2010031711A (en) Canister
JP2009127603A (en) Canister