JP2007239089A - High grade platinum alloy and product thereof - Google Patents

High grade platinum alloy and product thereof Download PDF

Info

Publication number
JP2007239089A
JP2007239089A JP2006120329A JP2006120329A JP2007239089A JP 2007239089 A JP2007239089 A JP 2007239089A JP 2006120329 A JP2006120329 A JP 2006120329A JP 2006120329 A JP2006120329 A JP 2006120329A JP 2007239089 A JP2007239089 A JP 2007239089A
Authority
JP
Japan
Prior art keywords
platinum
ingot
hardness
ring
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120329A
Other languages
Japanese (ja)
Inventor
Takeshi Takayanagi
猛 高柳
Nakamasa Seki
中正 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKI KK
Original Assignee
SEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKI KK filed Critical SEKI KK
Priority to JP2006120329A priority Critical patent/JP2007239089A/en
Publication of JP2007239089A publication Critical patent/JP2007239089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adornments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high grade platinum alloy which uses as a base, a high grade (purity) platinum having ≥99.7 wt.% purity capable of acquiring the hallmarks of Pt 1,000 and has excellent wear resistance and deformation resistance, and in which defects in casting are hard to be caused, and to provide a product thereof. <P>SOLUTION: In the high grade platinum alloy, by adding one or more selected from phosphorous, sulfur and beryllium by 0.002 to 1.0 wt.% to pure platinum, owing to the increase in the strength and hardness of platinum, the purity of platinum is regulated to 98.90 to 99.94 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Pt1000のホールマークを取得可能な白金の純度である99.70重量%以上の品位(純度)を含めた高品位白金合金であって、耐摩耗性及び耐変形性に優れ、鋳造加工での欠陥が発生しにくい高品位白金合金、及びその製品に関する。   The present invention is a high-grade platinum alloy including a grade (purity) of 99.70% by weight or more, which is the purity of platinum capable of obtaining a Pt1000 hole mark, and is excellent in wear resistance and deformation resistance, and casting. The present invention relates to a high-grade platinum alloy that is less prone to processing defects and a product thereof.

貴金属宝飾品(指輪、ペンダント、ピアス等)は白金(プラチナ)、金、銀のいずれかを基本元素としているが、この中でも白金製品は独特のプラチナホワイトの輝きそして重量感、高級感から我が国では特に好まれている。
白金系宝飾品は白金の純度によって4品位に区分けされ、白金の純度が99.70〜99.90重量%の白金製品はPt1000、そして白金の純度が95.0重量%のものはPt950、白金の純度が90重量%のものはPt900、白金の純度が85.0重量%のものはPt850等のホールマークが刻印される。
Precious metal jewelery (rings, pendants, earrings, etc.) uses platinum, gold, or silver as the basic element, but platinum products are unique in Japan due to their unique platinum white shine, weight, and luxury. Especially preferred.
Platinum jewelry is classified into four grades according to the purity of platinum, platinum products with a platinum purity of 99.70-99.90 wt% are Pt1000, and those with a platinum purity of 95.0 wt% are Pt950, platinum A hole mark such as Pt900 is used when the purity is 90% by weight, and Pt850 is used when the platinum is 85.0% by weight.

純白金(Pt=99.95重量%)は柔らかい(ビッカース硬度、Hv=40)ため、この製品では表面が傷つきやすく、また変形もしやすいので、このことに起因して実用面でのトラブルが起きやすい。そのため、白金製品の多くはパラジウム、イリジウム、ルテニウム、金、銅、コバルト、タングステンの添加により前記の欠点を改善したPt950、Pt900、Pt850の宝飾品市場で多く取り扱われている。これらの品位についての合金例は非特許文献1に記載されており、パラジウム添加のPt950,Pt900,Pt850、イリジウム添加のPt950,Pt900,Pt850、ルテニウム添加のPt950,Pt900、金を添加したPt950,Pt900、銅を添加したPt950、コバルト添加のPt950、タングステン添加のPt950、コバルトとパラジウムを添加したPt900及びPt850等が開示されている。   Pure platinum (Pt = 99.95% by weight) is soft (Vickers hardness, Hv = 40), so the surface of this product is easily scratched and deforms easily, which causes practical problems. Cheap. For this reason, many platinum products are handled in the Pt950, Pt900, and Pt850 jewelery markets in which the above disadvantages are improved by the addition of palladium, iridium, ruthenium, gold, copper, cobalt, and tungsten. Non-patent literature 1 describes examples of alloys of these grades, including Pt950, Pt900, and Pt850 added with palladium, Pt950, Pt900, and Pt850 added with iridium, Pt950 and Pt900 added with ruthenium, and Pt950 and Pt900 added with gold. Pt950 added with copper, Pt950 added with cobalt, Pt950 added with tungsten, Pt900 and Pt850 added with cobalt and palladium, and the like are disclosed.

白金製品では最上級のPt1000のホールマークが取得可能な白金の純度は99.70〜99.94重量%以上とされているが、この基準により高硬度化を図った高品位白金合金としては、例えば特許文献1には白金にインジウムを加えた合金が開示され、特許文献2には白金にホウ素を加えた合金が開示され、特許文献3には白金にホウ素とカルシウム、ジルコニウム、マグネシウム、アルミニウム、けい素等から選ばれる元素を加えた合金が開示されている。
しかし、これらの合金を鋳造加工によって製品化した場合、組織が粗くなったり、鋳巣の発生等の問題点が見られるものであった。
In platinum products, the purity of platinum that can be obtained with the highest grade Pt1000 hole mark is 99.70 to 99.94% by weight or more. However, as a high-grade platinum alloy that achieves high hardness according to this standard, For example, Patent Document 1 discloses an alloy obtained by adding indium to platinum, Patent Document 2 discloses an alloy obtained by adding boron to platinum, and Patent Document 3 discloses boron and calcium, zirconium, magnesium, aluminum, platinum, An alloy to which an element selected from silicon or the like is added is disclosed.
However, when these alloys are commercialized by casting, problems such as a roughened structure and occurrence of a cast hole have been observed.

特開平7−289324号公報JP 7-289324 A 特開平7−150271号公報JP-A-7-150271 特開平8−311583号公報JP-A-8-311583 諏訪小丸著「ジュエリーキャスティングの基本と実際」柏書店 松原出版 2001年1月,P90〜91Suwa Komaru "Jewelry Casting Basics and Practice" Tsubaki Shoten Matsubara Publishing January 2001, P90-91

そこで、本発明は、前記の文献などに見られる高品位白金合金の硬度特性に匹敵、もしくはそれ以上の硬さと美しい輝きを有し、表面の耐摩耗性及び耐変形性に優れ、鋳造加工での欠陥が発生しにくい新たな高硬度の高品位白金合金製品を宝飾市場へ提供することを目的とする。
より詳しくは、従来使用されてきた白金(Pt1000)の高強度、高硬度化の目的に使われる合金化元素により発生していた凝固組織の粗大化、鋳巣の発生等の欠点を回避するため、従来の高品位白金合金には含まれない新たな元素を合金化することによって高強度、高硬度で、耐摩耗性に優れ、表面損傷や変形に対する抵抗(耐変形性)にも優れた高品位白金合金とそれによる新規製品の提供を目標とした。
Therefore, the present invention has a hardness and a beautiful brightness comparable to or higher than the hardness characteristics of high-grade platinum alloys found in the above-mentioned documents, etc., excellent in surface wear resistance and deformation resistance, The purpose is to provide the jewelry market with new high-hardness, high-grade platinum alloy products that are less likely to cause defects.
More specifically, in order to avoid defects such as coarsening of a solidified structure and occurrence of a cast hole, which have been generated by an alloying element used for the purpose of increasing the strength and hardness of platinum (Pt1000) that has been conventionally used. By alloying new elements not included in conventional high-grade platinum alloys, high strength, high hardness, excellent wear resistance, and excellent resistance to surface damage and deformation (deformation resistance) The goal was to provide high-grade platinum alloys and new products.

本発明は、上記に鑑み提案されたもので、純白金に燐(P)、硫黄(S)、ベリリウム(Be)から選ばれる一種以上を0.002〜1.0重量%添加し、白金の純度は98.90〜99.94重量%に保持したことを特徴とする高品位白金合金に関するものである。   The present invention has been proposed in view of the above, and at least one selected from phosphorus (P), sulfur (S), and beryllium (Be) is added to pure platinum in an amount of 0.002 to 1.0% by weight. The purity relates to a high-grade platinum alloy characterized in that the purity is maintained at 98.90 to 99.94% by weight.

また、本発明は、上記高品位白金合金において、純白金に燐、硫黄、ベリリウムから選ばれる一種以上を0.005〜0.3重量%添加することにより、白金の純度を99.70〜99.94重量%に調整したことを特徴とする高品位白金合金をも提案する。   In the high-grade platinum alloy according to the present invention, the purity of platinum is 99.70 to 99 by adding 0.005 to 0.3% by weight of one or more selected from phosphorus, sulfur and beryllium to pure platinum. Also proposed is a high-grade platinum alloy characterized by being adjusted to .94% by weight.

さらに、本発明は、前記高品位白金合金を用いて鋳造加工して製品としたことを特徴とする高品位白金合金製品をも提案するものである。   Furthermore, the present invention also proposes a high-grade platinum alloy product characterized in that it is cast into a product using the high-grade platinum alloy.

本発明の高品位白金合金は、Pt1000のマーキングが可能な品位(Pt=99.70重量%以上)を含め、98.90重量%までの白金の純度を保持するものであり、耐摩耗性及び耐変形性に優れ、鋳造加工での欠陥が発生し難い新規の白金合金である。   The high-grade platinum alloy of the present invention retains the purity of platinum up to 98.90 wt%, including the grade (Pt = 99.70 wt% or more) that can be marked with Pt1000. It is a new platinum alloy that has excellent deformation resistance and is less prone to defects during casting.

そのため、この白金合金による製品としての宝飾品は、表面損傷に対する抵抗及び耐変形性に極めて優れ、従来のインジウムやホウ素などを加えた高品位白金合金に比べ、凝固組織が粗くなったり鋳巣の発生が生ずることがないため、デザインや鋳造加工等において多大な効用を発揮することが期待され、今後のジュエリー市場で高い評価が得られることが見込まれる。   Therefore, jewelry as a product made of this platinum alloy is extremely excellent in resistance to surface damage and resistance to deformation, and the solidification structure becomes rougher or the casting cavity becomes rougher than conventional high-grade platinum alloys added with indium, boron, etc. Since no occurrence occurs, it is expected to exert great utility in design, casting processing, etc., and it is expected that high evaluation will be obtained in the future jewelry market.

本発明にて使用される燐(P)、硫黄(S)、ベリリウム(Be)は、何れも単体で添加することは通常では困難であるため、燐化物、硫化物、他金属との合金を用いれば添加しやすくなり、合金化の手法については公知の手法でよい。
上記した燐化物、硫黄物、ベリリウム母合金の中で特に好適なものとしては、後述の実施例に用いたものが挙げられ、燐化鉄、燐化銅、燐化ガリウム、燐化インジウム、燐化コバルト、燐化マンガン、銅ベリリウム合金、コバルト・銅ベリリウム合金、硫化鉄、硫化マンガン、硫化銀、硫化白金、硫化パラジウム等の一種又は二種以上を組み合わせて用いることが好ましい。
Phosphorus (P), sulfur (S), and beryllium (Be) used in the present invention are usually difficult to add alone, so phosphides, sulfides, and alloys with other metals are used. If it uses, it will become easy to add and the method of alloying may be a known method.
Among the phosphides, sulfurs, and beryllium master alloys described above, those used in the examples described later are exemplified, and iron phosphide, copper phosphide, gallium phosphide, indium phosphide, phosphorus Cobalt phosphide, manganese phosphide, copper beryllium alloy, cobalt-copper beryllium alloy, iron sulfide, manganese sulfide, silver sulfide, platinum sulfide, palladium sulfide and the like are preferably used alone or in combination.

燐(P)、硫黄(S)、ベリリウム(Be)は、一種のみで含まれていても、二種以上含まれていてもよく、純白金に前記の化合物あるいは合金を0.002〜1.0重量%、好ましくは0.005〜0.3重量%添加して白金合金とすればよい。この添加量が上記の範囲である場合には、従来のインジウムやホウ素等を加えた高品位白金合金に比べ、凝固組織の粗大化、鋳巣の発生等の欠点を回避して、表面の耐摩耗性及び耐変形性に優れ、鋳造加工での欠陥が発生しにくいという特性を得ることができる。この添加量が0.002重量%に満たない場合には上述の特性が得られず、また添加量が1.0重量%を越える場合には、Pt1000の認定基準から判定すれば低品位のものとなり、高品位白金合金としては商品価値の低いものとなる。   Phosphorus (P), sulfur (S), and beryllium (Be) may be contained singly or in combination of two or more, and the above compound or alloy is added to pure platinum in an amount of 0.002-1. A platinum alloy may be added by adding 0% by weight, preferably 0.005 to 0.3% by weight. When this addition amount is in the above range, it is possible to avoid defects such as coarsening of the solidified structure and formation of cast holes, compared to conventional high-grade platinum alloys with addition of indium, boron, etc. It is excellent in wear and deformation resistance, and it is possible to obtain characteristics that defects in casting are less likely to occur. If this addition amount is less than 0.002% by weight, the above-mentioned characteristics cannot be obtained. If the addition amount exceeds 1.0% by weight, it is of low quality as judged from the certification standard of Pt1000. Thus, the high-grade platinum alloy has a low commercial value.

そして、本発明の高品位白金合金は、前述のように強度、硬度等の機械的特性に優れると共に、白金の純度を98.90〜99.94重量%の高品位に調整したものであり、特に99.70〜99.94重量%に調整維持することによりPt1000のホールマークが取得可能な白金合金とすることができる。   The high-grade platinum alloy of the present invention is excellent in mechanical properties such as strength and hardness as described above, and the purity of platinum is adjusted to a high grade of 98.90 to 99.94% by weight, In particular, by adjusting and maintaining 99.70 to 99.94% by weight, a platinum alloy capable of obtaining a Pt1000 hole mark can be obtained.

以下に本発明の実施例を示すが、本発明は、これらの実施例に限定するものではなく、特許請求の範囲に準ずる限り、どのように実施してもよい。尚、前述のように燐(P)、硫黄(S)、ベリリウム(Be)は、何れも単体で添加することは通常では困難であるため、以下の実施例では、燐化物、硫化物、ベリリウム銅などを用いた。   Examples of the present invention are shown below, but the present invention is not limited to these examples, and may be implemented in any way as long as it conforms to the scope of the claims. As described above, since it is usually difficult to add phosphorus (P), sulfur (S), and beryllium (Be) alone, in the following examples, phosphide, sulfide, beryllium are used. Copper or the like was used.

〔実施例1〕
純白金 50g
燐化鉄 0.05g
純白金(Pt=99.95重量%,以下同様)50gへ粒状の燐化鉄(P=26重量%)0.05gを配合したものをタングステン・アーク溶解炉内にセットしたボタンインゴット作成用水冷銅るつぼ内へ装入した後、溶解炉を一旦真空に引いてからアルゴンガスを導入し、その雰囲気下で溶解を行い、上記配合比の合金インゴットを作成した。溶解作業時には、溶解室外にあるレバーの操作によってるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内を冷却後取り出して分析したところ、白金の含有量は99.80重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=83であり、実用面から良好な硬度の高品位白金合金が得られた。さらにこのインゴットを用いて高周波溶解遠心鋳造機により平丸指輪の鋳造を行い、その指輪の硬度を測定したところ、ボタンインゴットとほぼ同様の硬度であった。
本鋳造品におけるHv=83は、これとほぼ同様の添加量である従来のインジウム0.1重量%添加の白金合金鋳造品では硬度がHv=59である。したがって、インジウム添加の場合に比べればはるかに高い硬度の高品位白金合金といえる。また、本実施例の鋳造品を輪切りにして指輪断面部を鏡面研磨して光学顕微鏡により観察した結果からは鋳巣はほとんど見られず、結晶組織もかなり緻密なものであった。
[Example 1]
50g of pure platinum
Iron phosphide 0.05g
Water cooling for button ingot preparation in which 50 g of pure platinum (Pt = 99.95% by weight) and 0.05 g of granular iron phosphide (P = 26% by weight) are mixed in a tungsten arc melting furnace. After charging into the copper crucible, the melting furnace was once evacuated and then introduced with argon gas and melted in that atmosphere to prepare an alloy ingot having the above blending ratio. During the melting operation, the button ingot in the crucible was inverted three times by operating the lever outside the melting chamber, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charging material. When the obtained ingot was cooled and taken out from the furnace and analyzed, the platinum content was 99.80% by weight. Further, when Vickers hardness was measured at three points on the surface, the average value of the measured values was Hv. = 83, and a high-grade platinum alloy having good hardness in practical use was obtained. Further, when this ingot was used to cast a flat round ring with a high frequency melting centrifugal casting machine and the hardness of the ring was measured, the hardness was almost the same as that of a button ingot.
Hv = 83 in the cast product has a hardness of Hv = 59 in the conventional platinum alloy cast product with 0.1% by weight of indium, which is almost the same addition amount. Therefore, it can be said that it is a high-grade platinum alloy having much higher hardness than the case of adding indium. Further, from the result of observing with an optical microscope after mirror-polishing the cross-section portion of the ring with the cast product of this example cut as a ring, the cast hole was hardly seen, and the crystal structure was quite dense.

〔実施例2〕
純白金 50g
燐化鉄 0.1g
はじめに、純白金30gへ粒状の燐化鉄(P=26重量%)0.1gを配合したものをアルゴン雰囲気としたアーク溶解炉で溶融し、一次のボタンインゴットとした。次に、この一次インゴットへ残りの純白金20gを加えて再度溶解し、所定配合比のインゴットを作製した。得られたインゴットの白金の含有量は99.80重量%であった。そして、このインゴットを用い、遠心鋳造機により甲丸指輪の鋳造を行った。得られた指輪の硬度を指輪表面部の3ヶ所について硬度測定を行ったところ、測定値の平均値はHv=95であり、前記実施例1よりも良好な硬度の高品位白金合金が得られた。
[Example 2]
50g of pure platinum
Iron phosphide 0.1g
First, a mixture of 30 g of pure platinum and 0.1 g of granular iron phosphide (P = 26 wt%) was melted in an arc melting furnace in an argon atmosphere to obtain a primary button ingot. Next, 20 g of the remaining pure platinum was added to the primary ingot and dissolved again to prepare an ingot having a predetermined blending ratio. The obtained ingot had a platinum content of 99.80% by weight. Then, using this ingot, a round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface of the ring, the average value of the measured values was Hv = 95, and a high-grade platinum alloy with better hardness than that of Example 1 was obtained. It was.

〔実施例3〕
純白金 50g
燐化鉄 0.13g
はじめに、純白金30gへ粒状の燐化鉄(P=26重量%)0.13gを配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で大気下で溶解し、一次インゴットとした。次に、この一次インゴットへ残りの純白金20gを追加装入して再度溶解し、所定配合比の合金として凝固させ、直ちにるつぼごと水中へ投入して急冷した。得られたインゴットの白金の含有量は99.72重量%であった。また、そのインゴットの表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=101であり、実用上必要とされるに十分な硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪表面の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
従来のインジウム添加では、インジウム0.3重量%添加でHv=81であり、本実施例でのインゴットは、これとほぼ同様な添加量でHv=101であり、実施例1と同様にインジウム添加の場合よりもはるかに高い硬度が得られている。従来のホウ素添加による高品位白金合金の場合では0.011重量%添加でHv=147と、かなり少ない添加量で高い硬度が得られているが、この合金を鋳造した場合には鋳造品に鋳巣の発生が起こりやすく、結晶組織が粗くなりやすいとの指摘がある。
本実施例で得られた遠心鋳造による指輪の鋳造品につきX線透過によって内部欠陥についても調べたところ鋳巣はほとんど見受けられなかった。これは燐がもつ強い脱酸効果によるものと考えられる。また、平丸指輪を輪切りにしてその指輪断面の光学顕微鏡による組織の観察から結晶組織も緻密なものが得られていた。
Example 3
50g of pure platinum
Iron phosphide 0.13g
First, 30 g of pure platinum and 0.13 g of granular iron phosphide (P = 26% by weight) were charged into a fused quartz crucible and melted in the atmosphere in a transistor-inverter type high frequency melting furnace. A primary ingot was used. Next, 20 g of the remaining pure platinum was additionally charged into this primary ingot and melted again, solidified as an alloy with a predetermined blending ratio, and immediately put into the water together with the crucible and rapidly cooled. The obtained ingot had a platinum content of 99.72% by weight. Further, when Vickers hardness was measured at three places on the surface of the ingot, the average value of the measured values was Hv = 101, and a high-grade platinum alloy having a hardness sufficient for practical use was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface of the ring, the average value thereof was almost the same as that of the ingot.
In conventional indium addition, Hv = 81 when 0.3% by weight of indium is added, and the ingot in this example is Hv = 101 with almost the same addition amount, and indium addition is the same as in Example 1. A much higher hardness is obtained than in the case of. In the case of a conventional high-grade platinum alloy with boron addition, Hv = 147 is obtained with 0.011% by weight addition, and a high hardness is obtained with a considerably small addition amount, but when this alloy is cast, it is cast into a cast product. It is pointed out that nest formation is likely to occur and the crystal structure tends to be rough.
When an internal defect was examined by X-ray transmission for the cast product of the ring by centrifugal casting obtained in this example, almost no casting hole was found. This is thought to be due to the strong deoxidation effect of phosphorus. Further, a fine crystal structure was obtained by observing the structure of the ring section with an optical microscope by cutting a flat round ring.

〔実施例4〕
純白金 50g
燐化銅 0.13g
純白金50gを高周波溶解炉で溶解し、溶融状態の白金中へ粒状の燐銅(P=15重量%)0.13gを投入して溶融状態を2分間保持して装入材の均一化を図った後、凝固させ、溶融石英るつぼごと水中へ投入して急冷した。得られたインゴットの白金含有量は99.70重量%であった。また、そのインゴットの表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=85.3であり、良好な硬度を持つ高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪の硬度を指輪表面の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
Example 4
50g of pure platinum
Copper phosphide 0.13g
50g of pure platinum is melted in a high-frequency melting furnace, 0.13g of granular phosphoric copper (P = 15wt%) is put into the molten platinum, and the molten state is maintained for 2 minutes to make the charging material uniform. After being solidified, the molten quartz crucible was poured into water and rapidly cooled. The platinum content of the obtained ingot was 99.70% by weight. Further, when Vickers hardness was measured at three places on the surface of the ingot, the average value of the measured values was Hv = 85.3, and a high-grade platinum alloy having good hardness was obtained. Furthermore, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface of the ring, the average value thereof was almost the same as that of the ingot.

〔実施例5〕
純白金 50g
銅ベリリウム母合金 0.1g
はじめに、純白金30gへ銅ベリリウム母合金チップ(Be=4重量%)0.1gを配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦凝固させた後、残りの純白金20gを追加装入して再度溶解し、凝固後直ちにるつぼごと水中へ投入して急冷した。得られたインゴットの白金含有量は99.74重量%であった。また、そのインゴットの表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=85.7であり、良好な硬度を有する高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪周辺の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
Example 5
50g of pure platinum
Copper beryllium master alloy 0.1g
First, a mixture of 30 g of pure platinum and 0.1 g of copper beryllium mother alloy chip (Be = 4 wt%) was placed in a fused quartz crucible and melted in a transistor-inverter type high frequency melting furnace. After solidifying as it was, 20 g of the remaining pure platinum was additionally charged and dissolved again. Immediately after solidification, the crucible and the crucible were poured into water and rapidly cooled. The platinum content of the obtained ingot was 99.74% by weight. Further, when Vickers hardness was measured at three locations on the surface of the ingot, the average value of the measured values was Hv = 85.7, and a high-grade platinum alloy having good hardness was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations around the ring, the average value thereof was almost the same as that of the ingot.

〔実施例6〕
純白金 50g
銅ベリリウム母合金 0.13g
純白金50gへ粒状の銅ベリリウム母合金0.13gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、溶解室を一旦真空に引いてからアルゴンガスを導入し、その雰囲気下で溶解して上記配合比の合金インゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作によってるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.70重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=91.2であり、良好な硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により甲丸指輪(マリッジリング)の鋳造を行った。得られた指輪の硬度を指輪表面の3ヶ所で測定したところ、それらの平均値はHv=87.2でボタンインゴットに近い硬度であった。ベリリウム添加の場合は、燐添加の場合ほどの硬度はないが、白金合金の溶融時におけるベリリウムの優れた脱酸効果のためか、鋳造品での鋳巣の発生が著しく少なかった。
Example 6
50g of pure platinum
Copper beryllium master alloy 0.13g
50g of pure platinum is mixed with 0.13g of granular copper beryllium master alloy and charged into a water-cooled copper crucible in an arc melting furnace. The melting chamber is once evacuated and then introduced with argon gas. It melt | dissolved and the alloy ingot of the said compounding ratio was produced. During the melting operation, the button ingot in the crucible was inverted three times by operating the lever outside the melting chamber, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charging material. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.70% by weight. Further, when Vickers hardness was measured at three points on the surface, the average value of the measured values was Hv = 91. And a high-grade platinum alloy with good hardness was obtained. Furthermore, using this ingot, a round ring (marriage ring) was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the ring surface, the average value thereof was Hv = 87.2, which was a hardness close to a button ingot. In the case of beryllium addition, the hardness was not as high as in the case of phosphorus addition, but the occurrence of pits in the cast product was remarkably small due to the excellent deoxidation effect of beryllium when the platinum alloy was melted.

〔実施例7〕
純白金 50g
コバルト・銅ベリリウム母合金 0.13g
はじめに、純白金30gへ粒状のコバルト・銅ベリリウム0.13gを配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で大気溶解した。一旦凝固させた後、残りの純白金20gを装入して再度溶解し、凝固後直ちにインゴットが入ったままのるつぼを水中へ投入して急冷した。得られたインゴットの白金含有量は99.70重量%であった。また、そのインゴットの表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=89.1であり、実用上好ましい硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪周辺の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
Example 7
50g of pure platinum
Cobalt / copper beryllium master alloy 0.13g
First, 30 g of pure platinum and 0.13 g of granular cobalt / copper beryllium were charged into a fused quartz crucible and dissolved in the atmosphere in a transistor-inverter type high-frequency melting furnace. After coagulation, 20 g of the remaining pure platinum was charged and dissolved again. Immediately after coagulation, the crucible containing the ingot was put into water and rapidly cooled. The platinum content of the obtained ingot was 99.70% by weight. Further, when the Vickers hardness was measured at three places on the surface of the ingot, the average value of the measured values was Hv = 89.1, and a high-grade platinum alloy having a practically preferable hardness was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations around the ring, the average value thereof was almost the same as that of the ingot.

〔実施例8〕
純白金 50g
硫化鉄 0.1g
純白金50gへ粒状の硫化鉄(FeS)0.1gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、溶解室をアルゴンガス雰囲気としてから溶解を行い、上記配合比のボタンインゴットを作製した。溶解作業時には、室外にあるレバーの操作によってるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。インゴットは炉内冷却後取り出して分析したところ、白金含有量は99.74重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=90であり、実用上好ましい硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪周辺の3ヶ所で測定したところ、それらの平均値はHv=88.7でボタンインゴットに近い硬度であった。
Example 8
50g of pure platinum
Iron sulfide 0.1g
Blending 0.1 g of granular iron sulfide (FeS) into 50 g of pure platinum, charging it into a water-cooled copper crucible in an arc melting furnace, melting the atmosphere after setting the melting chamber to an argon gas atmosphere, and a button ingot having the above mixing ratio Was made. During the melting operation, the button ingot in the crucible was inverted three times by operating the lever outside the room, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charging material. The ingot was taken out and analyzed after cooling in the furnace. The platinum content was 99.74% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 90. A high-grade platinum alloy having a practically preferable hardness was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations around the ring, the average value thereof was Hv = 88.7, which was a hardness close to a button ingot.

〔実施例9〕
純白金 50g
硫化鉄 0.13g
はじめに、純白金30gへ粒状の硫化鉄(FeS)0.13gを配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で溶解した。次に、残りの純白金20gを追加装入して再度溶解し、凝固後にインゴットの入ったるつぼを水中へ投入して急冷した。得られたインゴットの白金含有量は99.70重量%であった。また、その表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=103であり、実用上必要とされるに十分な硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪周辺の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
Example 9
50g of pure platinum
Iron sulfide 0.13g
First, 30 g of pure platinum and 0.13 g of granular iron sulfide (FeS) were charged into a fused quartz crucible and melted in a transistor-inverter type high-frequency melting furnace. Next, the remaining 20 g of pure platinum was added and dissolved again, and after solidification, the crucible containing the ingot was put into water and rapidly cooled. The platinum content of the obtained ingot was 99.70% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 103, and a high-grade platinum alloy having a hardness sufficient for practical use was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations around the ring, the average value thereof was almost the same as that of the ingot.

〔実施例10〕
純白金 50g
硫化マンガン 0.13g
純白金50gを溶融石英るつぼ内に装入して高周波溶解炉で溶解し、溶融状態の白金中へ粒状の硫化マンガン(MnS)0.13を投入して装入材の均一化を図った後、凝固させ、上記配合比のインゴットを作製した。得られたインゴットの白金含有量は99.70重量%であった。また、そのインゴットの表面3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=105であり、実用上必要とされるに十分な硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪の硬度を指輪表面の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。X線透過試験、光学顕微鏡観察結果による鋳造品の検査結果から鋳巣の発生も少なく、また鋳造品の硬度も硫黄の効果にマンガンの高硬度化効果が重畳され、高硬度の高品位白金合金が得られた。
Example 10
50g of pure platinum
Manganese sulfide 0.13g
After charging 50 g of pure platinum into a molten quartz crucible and melting it in a high-frequency melting furnace, and introducing granular manganese sulfide (MnS) 0.13 into the molten platinum to make the charging material uniform Then, the mixture was solidified to produce an ingot having the above blending ratio. The platinum content of the obtained ingot was 99.70% by weight. Further, when Vickers hardness was measured at three places on the surface of the ingot, the average value of the measured values was Hv = 105, and a high-grade platinum alloy having a hardness sufficient for practical use was obtained. Furthermore, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface of the ring, the average value thereof was almost the same as that of the ingot. The result of casting inspection by X-ray transmission test and optical microscope observation results that the occurrence of cast holes is small, and the hardness of the casting is superimposed on the effect of increasing the hardness of manganese on the effect of sulfur. was gotten.

〔実施例11〕
純白金 50g
硫化鉄 0.05g
はじめに、純白金30gへ粒状の硫化鉄(FeS)0.05gを配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で溶解した。一旦凝固させた後、残りの純白金20gを追加装入して再度溶解し、凝固後直ちにインゴットが入ったままのるつぼを水中へ投入して急冷した。得られたインゴットの白金含有量は99.81重量%であり、また、そのインゴットの表面5ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=81であり、実用上好ましい硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪周辺の3ヶ所で測定したところ、それらの平均値はインゴットとほぼ同様な硬度であった。
Example 11
50g of pure platinum
Iron sulfide 0.05g
First, 30 g of pure platinum and 0.05 g of granular iron sulfide (FeS) were charged into a fused quartz crucible and melted in a transistor-inverter type high-frequency melting furnace. After coagulation, 20 g of the remaining pure platinum was additionally charged and dissolved again. Immediately after coagulation, the crucible with the ingot was put into water and rapidly cooled. The platinum content of the obtained ingot was 99.81% by weight, and when Vickers hardness was measured at five locations on the surface of the ingot, the average value of the measured values was Hv = 81, which was a practically preferable hardness. A high-grade platinum alloy was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations around the ring, the average value thereof was almost the same as that of the ingot.

〔実施例12〕
純白金 50g
硫化鉄 0.03g
硫化マンガン 0.02g
燐化銅 0.05g
純白金50gへ粒状の硫化鉄(FeS)0.03g、硫化マンガン(MnS)0.02g、燐化銅(P=15重量%)0.05gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.72重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定した。測定値の平均値はHv=90であり、実用上好ましい硬度の高品位白金合金が得られた。
Example 12
50g of pure platinum
Iron sulfide 0.03g
Manganese sulfide 0.02g
Copper phosphide 0.05g
Mixing 0.03 g of granular iron sulfide (FeS), 0.02 g of manganese sulfide (MnS), 0.05 g of copper phosphide (P = 15 wt%) into 50 g of pure platinum, and inside the water-cooled copper crucible in the arc melting furnace And dissolved in an argon gas atmosphere to produce a button ingot having the above blending ratio. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.72% by weight, and Vickers hardness was measured at three points on the surface. The average value of the measured values was Hv = 90, and a high-grade platinum alloy having a practically preferable hardness was obtained.

〔実施例13〕
純白金 50g
硫化鉄 0.03g
燐化鉄 0.06g
銅ベリリウム 0.02g
純白金50gへ粒状の硫化鉄(FeS)0.03g、燐化鉄(P=26重量%)0.06g、銅ベリリウム(Be=4重量%)0.02gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比の合金インゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.72重量%であり、またその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=103であり、実用面で十分な硬度の高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機により平丸指輪の鋳造を行った。得られた指輪の硬度を指輪表面の3ヶ所で測定したところ、それらの平均値はHv=102でボタンインゴットに近い硬度であった。
Example 13
50g of pure platinum
Iron sulfide 0.03g
Iron phosphide 0.06g
Copper beryllium 0.02g
In an arc melting furnace, 0.03 g of granular iron sulfide (FeS), 0.06 g of iron phosphide (P = 26 wt%) and 0.02 g of copper beryllium (Be = 4 wt%) are blended into 50 g of pure platinum. The mixture was charged into a water-cooled copper crucible and dissolved in an argon gas atmosphere to produce an alloy ingot having the above blending ratio. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.72% by weight, and when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 103. Thus, a high-grade platinum alloy with sufficient hardness in practical use was obtained. Further, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface of the ring, the average value thereof was Hv = 102, which was a hardness close to a button ingot.

〔実施例14〕
純白金 50g
硫化銀 0.13g
純白金50gへ粒状の硫化銀(AgS)0.13gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.70重量%であり、さらにそのその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=87であり、実用上好ましい硬度の高品位白金合金が得られた。
Example 14
50g of pure platinum
Silver sulfide 0.13g
A granular silver sulfide (AgS) 0.13 g was blended into 50 g of pure platinum, charged into a water-cooled copper crucible in an arc melting furnace, and melted in an argon gas atmosphere to prepare a button ingot having the above blending ratio. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.70% by weight, and when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = Thus, a high-grade platinum alloy having a practically preferable hardness was obtained.

〔実施例15〕
純白金 50g
硫化白金 0.8g
純白金50gへ粒状の硫化白金(PtS)0.8gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.34重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=125であり、Pt1000のマーキングが可能な品位には達していないが、極めて高い硬度の高品位白金合金が得られた。
Example 15
50g of pure platinum
Platinum sulfide 0.8g
0.8 g of granular platinum sulfide (PtS) was blended into 50 g of pure platinum, charged into a water-cooled copper crucible in an arc melting furnace, and melted in an argon gas atmosphere to produce a button ingot having the above blending ratio. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.34% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 125. Although it did not reach the grade that can be marked with Pt1000, a high grade platinum alloy with extremely high hardness was obtained.

〔実施例16〕
純白金 50g
硫化パラジウム 0.5g
純白金50gへ粒状の硫化パラジウム(PdS)0.5gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は98.93重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=107であり、Pt1000のマーキングが可能な品位には達していないが、高硬度の高品位白金合金が得られた。
Example 16
50g of pure platinum
Palladium sulfide 0.5g
0.5 g of granular palladium sulfide (PdS) was blended into 50 g of pure platinum, charged into a water-cooled copper crucible in an arc melting furnace, and melted in an argon gas atmosphere to produce a button ingot having the above blending ratio. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. The obtained ingot was taken out and analyzed after cooling in the furnace. As a result, the platinum content was 98.93% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 107. Thus, although it did not reach the grade that can be marked with Pt1000, a high-grade platinum alloy with high hardness was obtained.

〔実施例17〕
純白金 50g
燐化鉄 0.5g
純白金50gへ粒状の燐化鉄(P=26重量%)0.5gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は98.91重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=140であり、Pt1000のマーキングが可能な品位には達していないが、極めて硬度の高い高品位白金合金が得られた。
Example 17
50g of pure platinum
Iron phosphide 0.5g
50g of pure platinum is mixed with 0.5g of granular iron phosphide (P = 26% by weight), charged into a water-cooled copper crucible in an arc melting furnace, melted in an argon gas atmosphere, and a button with the above mixing ratio. An ingot was produced. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 98.91% by weight, and when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 140. Thus, although it did not reach the grade that can be marked with Pt1000, a high-grade platinum alloy with extremely high hardness was obtained.

〔実施例18〕
純白金 50g
銅ベリリウム 0.5g
純白金50gへ粒状の銅ベリリウム(Be=4重量%)0.5gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は98.90重量%であった。さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=135であり、Pt1000のマーキングが可能な品位には達していないが、極めて硬度の高い高品位白金合金が得られた。
Example 18
50g of pure platinum
Copper beryllium 0.5g
50 g of pure platinum is mixed with 0.5 g of granular copper beryllium (Be = 4% by weight), charged into a water-cooled copper crucible in an arc melting furnace, dissolved in an argon gas atmosphere, and a button ingot having the above mixing ratio. Was made. During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 98.90% by weight. Furthermore, when the Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 135, which did not reach the quality that can be marked with Pt1000, but an extremely high-quality platinum alloy was obtained. It was.

〔実施例19〕
純白金 50g
燐化ガリウム 0.1g
純白金50gへ粒状の燐化ガリウム(GaP)0.1gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.73重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=132であり、Pt1000のマーキングが可能な添加量で極めて硬度の高い高品位白金合金が得られた。この合金を用いて遠心鋳造機により平丸指輪の鋳造を行って、得られた指輪の硬度を測定したところ、ボタンインゴットにほぼ近い硬度であった。これだけ高い硬度が得られたのは燐の高硬度化効果にガリウムがもつ同様の効果が加わったためと考えられる。また、X線透過試験及び指輪の輪切り断面の光学顕微鏡観察結果から鋳巣はほとんど見られなかった。
Example 19
50g of pure platinum
Gallium phosphide 0.1g
A granular platinum gallium phosphide (GaP) 0.1 g was mixed with 50 g of pure platinum, charged into a water-cooled copper crucible in an arc melting furnace, and melted in an argon gas atmosphere to produce a button ingot having the above mixing ratio. . During the melting operation, the lever outside the melting chamber was operated to invert the button ingot in the crucible three times, and an arc was applied to the upper and lower surfaces of the ingot three times to achieve uniform alloying of the charge. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.73% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 132. Thus, a high-grade platinum alloy with extremely high hardness was obtained with an addition amount capable of marking Pt1000. When this alloy was used to cast a flat round ring with a centrifugal casting machine and the hardness of the obtained ring was measured, the hardness was almost similar to that of a button ingot. The reason why such a high hardness was obtained is thought to be because the same effect of gallium was added to the effect of increasing the hardness of phosphorus. Further, almost no burrs were observed from the results of X-ray transmission tests and optical microscope observations of the ring sections of the rings.

〔実施例20〕
純白金 50g
燐化インジウム 0.13g
純白金50gへ粒状の燐化インジウム(InP)0.13gを配合してアーク溶解炉内の水冷銅るつぼ内へ装入し、アルゴンガス雰囲気下で溶解し、上記配合比のボタンインゴットを作製した。溶解作業時には、溶解室外にあるレバーの操作してるつぼ内のボタンインゴットの反転を3回繰り返し、インゴ0ットの上下面にそれぞれ3回ずつアークをあて、装入材の均一な合金化を図った。得られたインゴットは炉内冷却後取り出して分析したところ、白金含有量は99.70重量%であり、さらにその表面の3ヶ所についてビッカース硬度を測定したところ、測定値の平均値はHv=135であり、Pt1000のマーキングが可能な添加量で極めて硬度の高い高品位白金合金が得られた。
Example 20
50g of pure platinum
Indium phosphide 0.13g
A granular indium phosphide (InP) 0.13 g was blended into 50 g of pure platinum, charged into a water-cooled copper crucible in an arc melting furnace, and melted in an argon gas atmosphere to produce a button ingot having the above blending ratio. . During melting, the lever outside the melting chamber is operated to invert the button ingot in the crucible three times, and an arc is applied to the upper and lower surfaces of the ingot 0 three times to uniformly alloy the charge. planned. When the obtained ingot was taken out and analyzed after cooling in the furnace, the platinum content was 99.70% by weight. Further, when Vickers hardness was measured at three locations on the surface, the average value of the measured values was Hv = 135. Thus, a high-grade platinum alloy with extremely high hardness was obtained with an addition amount capable of marking Pt1000.

〔実施例21〕
純白金 50g
燐化コバルト 0.13g
はじめに、純白金30gへ粉末状の燐化コバルト(Co2P)0.13gを配合したものをボタンアーク溶解炉中の水冷銅るつぼ中へ入れ、炉内をアルゴン雰囲気として溶融し、一次のボタンインゴットとした。次に、この一次インゴットへ残りの純白金20gを加えて再度溶解し、上記配合比のボタンインゴットを溶製した。このインゴットを用いて高周波溶解・遠心鋳造機により甲丸指輪の鋳造を行った。その工程はインゴットを溶融石英るつぼへ入れ、高周波溶解を行い、溶湯の温度を1900℃近くまで上昇させた後、るつぼの注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へ遠心力を加えて白金合金溶湯を注湯した。注湯後は暫く待って白金合金溶湯が凝固した後、直ちにこの鋳型を水中へ投入して急冷した。冷却後の鋳型を崩壊して得られた甲丸指輪についてまず目視で鋳肌の状況を調べた後、これを切断して甲丸断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。鋳肌は極めて良好で、硬度は何れの個所においてもHv=86でかなり良好な値で、甲丸断面の顕微鏡観察結果からは結晶組織も緻密な高品位白金合金であった。
甲丸指輪を切断して得た指輪の一片につき原子吸光分析法によって分析を行った結果、コバルト(Co)は0.2重量%であり、燐(P)は0.04重量%、そしてSiが0.002重量%であり、白金含有量としては99.70重量%でPt1000の認定許可の範囲内であった。
Example 21
50g of pure platinum
Cobalt phosphide 0.13g
First, 30g of pure platinum mixed with 0.13g of powdered cobalt phosphide (Co 2 P) is put into a water-cooled copper crucible in a button arc melting furnace, and the furnace is melted in an argon atmosphere to form a primary button. Ingot. Next, 20 g of the remaining pure platinum was added to the primary ingot and dissolved again to prepare a button ingot having the above blending ratio. Using this ingot, a round ring was cast by a high-frequency melting / centrifugal casting machine. In that process, the ingot is put into a fused quartz crucible, high-frequency melting is performed, the temperature of the molten metal is raised to nearly 1900 ° C., and then the molten metal is centrifuged into a fused quartz mold set so that the mold spout contacts the pouring spout of the crucible. The platinum alloy melt was poured by applying force. After the pouring, the platinum alloy melt solidified after waiting for a while, and immediately the mold was poured into water and rapidly cooled. First of all, the state of the cast skin was visually inspected with respect to the round ring obtained by collapsing the mold after cooling, and then cut at both ends and the middle part of the round cross section, that is, near the surface of the ring and the middle of the inside. The Vickers hardness (Hv) was measured and the structure was observed at three locations near the part. The casting surface was extremely good, the hardness was quite good at Hv = 86 at any location, and it was a high-grade platinum alloy with a fine crystal structure from the results of microscopic observation of the instep cross section.
As a result of analysis by atomic absorption spectrometry on a piece of the ring obtained by cutting the round ring, cobalt (Co) was 0.2% by weight, phosphorus (P) was 0.04% by weight, and Si Was 0.002% by weight, and the platinum content was 99.70% by weight, which was within the scope of Pt1000 certification.

〔実施例22〕
純白金 50g
燐化鉄 0.07g
燐化コバルト 0.065g
純白金30gへ粒状の燐化鉄(P=26重量%)0.07g、粉末状の燐化コバルト(Co2P)を0.065g配合したものを溶融石英るつぼ内へ装入し、トランジスタ−インバータ方式の高周波溶解炉で大気下で溶解し、一次インゴットとした。次いで、この一次インゴットへ残りの純白金20gを追加装入して再度溶解し、上記配合比のインゴットとした。このインゴットを用い、アルゴン加圧式鋳造機で甲丸指輪の鋳造を行った。その工程はインゴットを溶融石英るつぼへ入れ、高周波溶解を行い、溶湯の温度を1900℃近くまで上昇させた後、るつぼ底部の注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へアルゴンガスで加圧して白金合金溶湯を注湯した。注湯後はそのまま白金合金溶湯の凝固まで時間をおき、直ちにこの鋳型を水中へ投入して急冷した。冷却後の鋳型を崩壊して得られた甲丸指輪はまず目視で鋳肌の状況をチェックした後、これを切断して甲丸断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。鋳肌は極めて良好で、硬度は何れの個所においてもHv=102でかなりの高硬度であった。また、甲丸断面の顕微鏡観察結果からは結晶組織も緻密で、鋳巣欠陥、ミクロポロシティ欠陥等は見られず、優れた高品位白金合金の甲丸指輪の鋳造品であった。この鋳造品の化学分析を行って白金含有量を調べたところ、その含有量は99.72重量%であり、Pt1000の認定許容の範囲内であった。
[Example 22]
50g of pure platinum
Iron phosphide 0.07g
Cobalt phosphide 0.065g
A mixture of 0.07 g of granular iron phosphide (P = 26 wt%) and 0.065 g of powdered cobalt phosphide (Co 2 P) in 30 g of pure platinum was charged into a fused quartz crucible, and transistor- It was melted in the air in an inverter type high frequency melting furnace to make a primary ingot. Next, 20 g of the remaining pure platinum was additionally charged into this primary ingot and dissolved again to obtain an ingot having the above blending ratio. The ingot was used to cast a round ring with an argon pressure casting machine. In the process, an ingot is put into a fused quartz crucible, subjected to high-frequency melting, the temperature of the molten metal is raised to near 1900 ° C., and then the molten quartz mold is set so that the casting gate of the mold is in contact with the pouring gate at the bottom of the crucible. The platinum alloy melt was poured by pressurizing with argon gas. After pouring, it took time to solidify the molten platinum alloy as it was, and the mold was immediately put into water and rapidly cooled. First, the mold ring obtained by collapsing the mold after cooling was first visually checked for the condition of the cast skin, then cut and cut at both ends and the center of the shell cross section, that is, near the ring surface and in the middle of the inside. The Vickers hardness (Hv) was measured and the structure was observed at three locations near the part. The casting surface was very good, and the hardness was Hv = 102 at any location, which was quite high. Further, from the result of microscopic observation of the instep cross section, the crystal structure was dense, and there were no casting hole defects, microporosity defects, etc., and it was an excellent high quality platinum alloy shell ring casting. When this cast product was subjected to chemical analysis and the platinum content was examined, the content was 99.72% by weight, which was within the allowable range of Pt1000.

〔実施例23〕
純白金 50g
燐化鉄 0.09g
燐化コバルト 0.05g
はじめに、純白金30gへ粒状の燐化鉄(P=26重量%)0.09gと粉末状の燐化コバルト(Co2P)0.05gを配合したものを溶融石英るつぼ内へ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。この白金合金インゴットを溶融石英るつぼへ入れ、高周波溶解を行い、1900℃まで加熱後、この合金溶湯の表面をアルゴンガスで加圧してるつぼ底部の注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へ白金合金溶湯を注湯した。注湯後は白金合金溶湯の凝固まで時間をおき、その後は直ちにこの鋳型を水中へ投入して急冷した。鋳型の崩壊後に得られた甲丸指輪はまず目視で鋳肌の状況をチェックした後、指輪の甲丸断面が出るように切断し、その断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。鋳肌は極めて良好で、硬度は何れの個所においてもHv=111でかなりの高硬度であった。また、甲丸断面の顕微鏡観察結果からは結晶組織も緻密で、鋳巣欠陥、ミクロポロシティ欠陥等は見られず、優れた高品位白金合金であった。
また、甲丸指輪について原子吸光分析法により白金以外の元素について分析を行い、それらの値から白金含有量を算出したところ99.71重量%であった。
Example 23
50g of pure platinum
Iron phosphide 0.09g
Cobalt phosphide 0.05g
First, a mixture of 30 g of pure platinum and 0.09 g of granular iron phosphide (P = 26 wt%) and 0.05 g of powdered cobalt phosphide (Co 2 P) is put in a fused quartz crucible, and transistor- It was melted in an inverter type high frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. This platinum alloy ingot was put into a fused quartz crucible, melted at high frequency, heated to 1900 ° C., and then the surface of the molten alloy was pressurized with argon gas, and the molten metal set so that the mold spout was in contact with the pouring spout at the bottom of the crucible. A platinum alloy melt was poured into a quartz mold. After pouring, it took time to solidify the molten platinum alloy, and then the mold was immediately poured into water and rapidly cooled. The round ring obtained after the mold collapses is first visually checked for the condition of the cast skin, then cut so that the round cross section of the ring comes out, and both ends and the center of the cross section, that is, near and inside the ring surface. The Vickers hardness (Hv) was measured and the structure was observed at three locations near the center of the film. The casting surface was very good, and the hardness was Hv = 111 at any location and was quite high. Further, from the result of microscopic observation of the instep cross section, the crystal structure was dense, and no defects in the cast hole, microporosity, etc. were observed, and it was an excellent high quality platinum alloy.
In addition, the element of the round ring was analyzed for elements other than platinum by atomic absorption spectrometry, and the platinum content was calculated from those values, and it was 99.71% by weight.

〔実施例24〕
純白金 50g
燐化鉄 0.05g
燐化コバルト 0.09g
最初に、純白金30gへ粒状の燐化鉄(P=26重量%)0.05gと粉末状の燐化コバルト(Co2P)0.09gを配合したものを溶融石英るつぼ内へ入れし、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを溶融石英るつぼへ入れ、高周波溶解を行い、1900℃まで加熱後、るつぼ内の溶湯面へアルゴンガスで加圧してるつぼ底部の注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へ白金合金溶湯を注湯した。注湯後は白金合金溶湯の凝固まで待ってから、直ちにこの鋳型を水中へ投入して急冷した。鋳型崩壊後に得られた甲丸指輪はまず目視で鋳肌の状況をチェックした後、これを切断して甲丸断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。この指輪のバフ研磨面は光沢も良く優れた輝きを示して艶があり、硬度は何れの個所においてもHv=122でかなりの高硬度であった。また、甲丸断面の顕微鏡観察結果からは結晶組織も緻密で、鋳巣欠陥、ミクロポロシティ欠陥等は見られず、優れた高品位白金合金として高い評価が得られるものと判定されるものであった。
この甲丸指輪について化学分析を行って白金含有量を調べたところ、その含有量は99.71重量%であり、Pt1000の認定が得られる範囲内のものであった。
Example 24
50g of pure platinum
Iron phosphide 0.05g
Cobalt phosphide 0.09g
First, a mixture of 0.05 g of granular iron phosphide (P = 26 wt%) and 0.09 g of powdered cobalt phosphide (Co 2 P) into 30 g of pure platinum was put into a fused quartz crucible, It was melted in a transistor-inverter type high frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. This ingot is put into a fused quartz crucible, melted at high frequency, heated to 1900 ° C., and pressurized with argon gas to the molten metal surface in the crucible, and set in such a manner that the mold gate contacts the pouring port at the bottom of the crucible. The molten platinum alloy was poured into the mold. After pouring, after waiting for solidification of the molten platinum alloy, this mold was immediately put into water and rapidly cooled. First of all, the round ring obtained after the mold collapse was visually checked for the condition of the cast skin, and then cut into three parts at both ends and the center of the round cross section, ie, near the surface of the ring and near the center of the inside. The Vickers hardness (Hv) was measured and the structure was observed. The buffed surface of this ring was glossy and glossy with excellent shine, and the hardness was extremely high at Hv = 122 at any location. Further, from the results of microscopic observation of the instep cross section, the crystal structure is also dense, and there are no defects in the casting cavity and microporosity, and it is judged that high evaluation is obtained as an excellent high-grade platinum alloy. It was.
When this platinum ring was subjected to chemical analysis and the platinum content was examined, the platinum content was 99.71% by weight, which was within the range where Pt1000 certification was obtained.

〔実施例25〕
純白金 50g
燐化鉄 0.02g
燐化コバルト 0.12g
はじめに、純白金30gへ燐化鉄(P=26重量%)0.02gと燐化コバルト(Co2P)0.12gを配合したものを溶融石英るつぼ内へ入れし、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを溶融石英るつぼへ入れ、高周波溶解を行い、1900℃まで加熱後、るつぼ底部の注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へアルゴンガスで加圧して白金合金溶湯を注湯した。注湯後は白金合金溶湯の凝固まで時間をおいてから、その後、直ちにこの鋳型を水中へ投入して急冷した。鋳型崩壊後に得られた甲丸指輪はまず目視で鋳肌の状況をチェックした後、これを切断して甲丸断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。その結果、鋳肌は極めて良好で、硬度は何れの個所においてもHv=125で前記実施例24よりもさらに高い値であった。この値について従来法による高品位白金合金と比較すれば、実施例3にも記載したように、インジウム0.3重量%添加ではHv=81であり、インジウム添加の場合よりもはるかに高い硬度値である。また、ホウ素添加による場合ではホウ素0.011重量%の添加でHV=147と本実施例よりも高い値が得られているが、ホウ素を添加した高品位白金合金では鋳巣の発生が起こりやすく、結晶組織も粗くなりやすいという欠点がある。この点、本実施例の高品位白金は硬度値こそホウ素添加のものに比べて低いが、本実施例で得られた甲丸指輪の断面の顕微鏡観察結果から結晶組織は緻密であり、鋳巣欠陥、ミクロポロシティ欠陥等は見られず、指輪のバフ研磨後の仕上げ面の光沢、輝き共に白金(プラチナホワイト)独自の優れたものであった。
指輪の白金含有量について化学分析により調べた結果、その含有量は99.71重量%であり、Pt1000の認定許容範囲内の高品位白金合金であった。
Example 25
50g of pure platinum
Iron phosphide 0.02g
Cobalt phosphide 0.12g
First, a mixture of 0.02 g of iron phosphide (P = 26 wt%) and 0.12 g of cobalt phosphide (Co 2 P) into 30 g of pure platinum is placed in a fused quartz crucible, and a transistor-inverter type high frequency device is used. Melting was performed in a melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. This ingot is put into a fused quartz crucible, melted at high frequency, heated to 1900 ° C., and then pressurized with argon gas to a fused quartz mold set so that the mold spout is in contact with the pouring spout at the bottom of the crucible, and the platinum alloy melt The hot water was poured. After pouring, it took time to solidify the molten platinum alloy, and then the mold was immediately poured into water and rapidly cooled. First of all, the round ring obtained after the mold collapse was visually checked for the condition of the cast skin, and then cut into three parts at both ends and the center of the round cross section, ie, near the surface of the ring and near the center of the inside. The Vickers hardness (Hv) was measured and the structure was observed. As a result, the casting surface was extremely good, and the hardness was Hv = 125 at any location, which was higher than that of Example 24. Compared with the high-grade platinum alloy by the conventional method for this value, as described in Example 3, Hv = 81 when 0.3% by weight of indium is added, which is a much higher hardness value than when adding indium. It is. Further, when boron is added, HV = 147, which is higher than that of the present example, is obtained by adding 0.011% by weight of boron. However, in a high-grade platinum alloy to which boron is added, the formation of a cast hole is likely to occur. However, there is a drawback that the crystal structure tends to be coarse. In this regard, the high-grade platinum of this example has a lower hardness value than that of boron addition, but the crystal structure is dense from the microscopic observation results of the cross-section of the round ring obtained in this example. There were no defects, microporosity defects, etc., and both the gloss and brightness of the finished surface after buffing of the ring were excellent in platinum (platinum white).
As a result of investigating the platinum content of the ring by chemical analysis, the content was 99.71% by weight, and it was a high-grade platinum alloy within the Pt1000 approved allowable range.

〔実施例26〕
純白金 50g
燐化鉄 0.065g
燐化銅 0.065g
純白金50gを溶融石英るつぼ内へ入れ高周波溶解炉で溶解し、溶融状態の白金中へ粒状の燐化鉄(P=35重量%)0.065gと粒状の燐化銅0.065gを投入し、溶融状態を2分間保持して装入材の均一化を図って凝固させた後、水中へ落下させて急冷し、上記配合比のインゴットとした。得られたインゴットの表面3ヶ所についてビッカース硬度(Hv)を測定した。測定値の平均値はHv=85であり、良好な硬度をもつ高品位白金合金が得られた。さらに、このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪の硬度を表面3ヶ所で測定したところ、それらの値はインゴットとほぼ同様であった。
また、平丸指輪について原子吸光分析法により白金以外の元素の分析を行って白金含有量を算定したところ99.73重量%であった。
Example 26
50g of pure platinum
Iron phosphide 0.065g
Copper phosphide 0.065g
50 g of pure platinum is put in a fused quartz crucible and melted in a high-frequency melting furnace, and 0.065 g of granular iron phosphide (P = 35 wt%) and 0.065 g of granular copper phosphide are charged into the molten platinum. The molten state was maintained for 2 minutes to make the charge material uniform and solidified, then dropped into water and rapidly cooled to obtain an ingot having the above-mentioned blending ratio. Vickers hardness (Hv) was measured at three places on the surface of the obtained ingot. The average value of the measured values was Hv = 85, and a high-grade platinum alloy having good hardness was obtained. Furthermore, using this ingot, a flat round ring was cast by a centrifugal casting machine. When the hardness of the obtained ring was measured at three locations on the surface, the values were almost the same as those of the ingot.
Further, the platinum content of the flat round ring was determined to be 99.73% by weight by analyzing elements other than platinum by atomic absorption spectrometry.

〔実施例27〕
純白金 50g
燐化ガリウム 0.065g
燐化コバルト 0.07g
はじめに、純白金30gへ燐化ガリウム(GaP)0.065gと燐化コバルト(Co2P)0.07gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪を切断して断面の両端と中央部の3ヶ所においてビッカース硬度(Hv)を測定したところ、何れの個所においてもHv=105であり、高硬度の高品位白金合金として良好な値であった。また、断面の顕微鏡観察結果からは結晶組織も細かく緻密で、鋳巣、ミクロポロシティ等の欠陥は観察されなかった。
また、甲丸指輪について原子吸光分析法により白金以外の元素の分析を行い、白金含有量を求めたところ99.73重量%であった。
Example 27
50g of pure platinum
Gallium phosphide 0.065g
Cobalt phosphide 0.07g
First, a mixture of 30 g of pure platinum and 0.065 g of gallium phosphide (GaP) and 0.07 g of cobalt phosphide (Co 2 P) was placed in a fused quartz crucible and melted in a transistor-inverter type high-frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. Using this ingot, a flat round ring was cast by a centrifugal casting machine. When the obtained ring was cut and the Vickers hardness (Hv) was measured at three locations on both ends and the center of the cross section, Hv = 105 at any location, which is a good value for a high-quality, high-grade platinum alloy. Met. Further, from the result of microscopic observation of the cross section, the crystal structure was fine and dense, and defects such as a cast hole and microporosity were not observed.
Further, the element of the round ring was analyzed for elements other than platinum by atomic absorption spectrometry, and the platinum content was determined to be 99.73% by weight.

〔実施例28〕
純白金 50g
燐化インジウム 0.065g
燐化コバルト 0.065g
純白金30gへ燐化インジウム(InP)0.065gと燐化コバルト(Co2P)0.065gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを用い、アルゴン加圧鋳造機によって平丸指輪の鋳造を行った。得られた指輪のビッカース硬度(Hv)を指輪の平丸断面の両端、中央部の3ヶ所において測定したところ、何れの個所においてもHv=101であり、高硬度の高品位白金合金として良好な値であった。また指輪の平丸断面の顕微鏡観察結果から結晶組織も細かく緻密で、鋳巣、ミクロポロシティ等の欠陥は観察されなかった。
また、平丸指輪について原子吸光分析法により白金以外の元素の分析を行い、白金含有量を求めたところ99.71重量%であった。
Example 28
50g of pure platinum
Indium phosphide 0.065g
Cobalt phosphide 0.065g
A mixture of 30 g of pure platinum and 0.065 g of indium phosphide (InP) and 0.065 g of cobalt phosphide (Co 2 P) was put in a fused quartz crucible and melted in a transistor-inverter type high frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. Using this ingot, a flat round ring was cast by an argon pressure casting machine. When the Vickers hardness (Hv) of the obtained ring was measured at three locations on both ends and the center of the flat circular cross section of the ring, Hv = 101 at any location, which is a good value as a high-quality platinum alloy with high hardness. Met. Further, from the result of microscopic observation of the round cross section of the ring, the crystal structure was fine and dense, and defects such as a cast hole and microporosity were not observed.
Further, the element other than platinum was analyzed for the flat round ring by atomic absorption spectrometry, and the platinum content was determined to be 99.71% by weight.

〔実施例29〕
純白金 50g
燐化マンガン 0.065g
燐化コバルト 0.07g
はじめに、純白金30gへ燐化マンガン(Mn2P)0.065gと燐化コバルト(Co2P)0.07gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを溶融石英るつぼへ入れ、高周波溶解を行い、1900℃まで加熱後、るつぼ底部の注湯口に鋳型の湯口が接するようにセットした溶融石英製の鋳型へアルゴンガスで加圧して白金合金溶湯を注湯した。注湯後は白金合金溶湯の凝固を確認した後、直ちにこの鋳型を水中へ投入して急冷した。得られた甲丸指輪はまず目視で鋳肌の状況をチェックした後、これを切断して甲丸断面の両端と中央部、即ち指輪の表面近傍と内部の中央部近くの3ヶ所においてビッカース硬度(Hv)の測定と組織観察を行った。鋳肌は極めて良好で、硬度は何れの個所においてもHv=110であった。また、甲丸断面の顕微鏡観察結果からは結晶組織も緻密で、鋳巣欠陥、ミクロポロシティ等の欠陥は見られず、バフ研磨後の仕上げ後の指輪表面の輝きも優れ、高品位白金合金として満足できるものであった。
この甲丸指輪について化学分析した結果、白金の含有量は99.72重量%であり、Pt1000の認定許容範囲内の純度であった。
Example 29
50g of pure platinum
Manganese phosphide 0.065g
Cobalt phosphide 0.07g
First, a mixture of 0.065 g of manganese phosphide (Mn 2 P) and 0.07 g of cobalt phosphide (Co 2 P) into 30 g of pure platinum is placed in a fused quartz crucible and melted in a transistor-inverter type high-frequency melting furnace. did. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. This ingot is put into a fused quartz crucible, melted at high frequency, heated to 1900 ° C., and then pressurized with argon gas to a fused quartz mold set so that the mold spout is in contact with the pouring spout at the bottom of the crucible, and the platinum alloy melt The hot water was poured. After the pouring, the solidification of the molten platinum alloy was confirmed, and then this mold was immediately put into water and rapidly cooled. The obtained round ring is first visually checked for the condition of the cast skin, then cut, and cut at both ends and the center of the round cross section, that is, near the surface of the ring and near the center of the Vickers hardness. (Hv) was measured and the structure was observed. The casting surface was extremely good and the hardness was Hv = 110 at any location. In addition, from the microscopic observation results of the cross-section, the crystal structure is dense, defects such as cast defects and microporosity are not found, and the surface of the ring after finishing after buffing is excellent, making it a high-grade platinum alloy. It was satisfactory.
As a result of chemical analysis of this round ring, the platinum content was 99.72% by weight, and the purity was within the allowable range of Pt1000.

〔実施例30〕
純白金 50g
燐化インジウム 0.065g
燐化コバルト 0.035g
燐化鉄 0.03g
純白金30gへ燐化インジウム(InP)0.065gと燐化コバルト(Co2P)0.035g、燐化鉄0.03gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪を切断して平丸断面の両端及び中央部の3ヶ所においてビッカース硬度(Hv)を測定したところ、何れの個所においてもHv=117であり、高い硬度を有する高品位白金合金の指輪であった。また指輪の平丸断面の顕微鏡観察結果から結晶組織も細かく緻密で、鋳巣、ミクロポロシティ等の欠陥は観察されなかった。
また、平丸指輪について原子吸光分析法により白金以外の元素の分析を行い、白金含有量を求めたところ99.72重量%であった。
Example 30
50g of pure platinum
Indium phosphide 0.065g
Cobalt phosphide 0.035g
Iron phosphide 0.03g
30 g of pure platinum mixed with 0.065 g of indium phosphide (InP), 0.035 g of cobalt phosphide (Co 2 P), and 0.03 g of iron phosphide are put into a fused quartz crucible, and the high-frequency melting of transistor-inverter system Melted in the furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. Using this ingot, a flat round ring was cast by a centrifugal casting machine. When the obtained ring was cut and Vickers hardness (Hv) was measured at three points at both ends and the center of the flat round cross section, Hv = 117 at any point and a high-grade platinum alloy ring having high hardness. Met. Further, from the result of microscopic observation of the round cross section of the ring, the crystal structure was fine and dense, and defects such as a cast hole and microporosity were not observed.
Further, the flat ring ring was analyzed for elements other than platinum by atomic absorption spectrometry, and the platinum content was determined to be 99.72% by weight.

〔実施例31〕
純白金 50g
燐化ガリウム 0.065g
燐化コバルト 0.035g
燐化鉄 0.03g
純白金30gへ燐化ガリウム(GaP)0.065gと燐化コバルト(Co2P)0.035g、燐化鉄(P=35重量%)0.03gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行い、得られた指輪を切断して平丸断面の両端、中央部の3ヶ所においてビッカース硬度(Hv)を測定したところ、いずれの個所においてもHv=108であり、高硬度の高品位白金合金の指輪が得られた。また指輪の平丸断面の顕微鏡観察結果から結晶組織も細かく緻密で、鋳巣、ミクロポロシティ等の欠陥は観察されなかった。
また、平丸指輪について原子吸光分析法により白金以外の元素の分析を行い、白金含有量を求めたところ99.72重量%であった。
Example 31
50g of pure platinum
Gallium phosphide 0.065g
Cobalt phosphide 0.035g
Iron phosphide 0.03g
30 g of pure platinum mixed with 0.065 g of gallium phosphide (GaP), 0.035 g of cobalt phosphide (Co 2 P) and 0.03 g of iron phosphide (P = 35 wt%) was put into a fused quartz crucible, It was melted in a transistor-inverter type high frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. Using this ingot, a flat round ring was cast by a centrifugal casting machine, and the obtained ring was cut, and the Vickers hardness (Hv) was measured at three points on both ends and the center of the flat round cross section. Hv = 108, and a high-quality platinum alloy ring with high hardness was obtained. Further, from the result of microscopic observation of the round cross section of the ring, the crystal structure was fine and dense, and defects such as a cast hole and microporosity were not observed.
Further, the flat ring ring was analyzed for elements other than platinum by atomic absorption spectrometry, and the platinum content was determined to be 99.72% by weight.

〔実施例32〕
純白金 50g
燐化マンガン 0.065g
燐化コバルト 0.04g
燐化鉄 0.03g
はじめに、純白金30gへ燐化マンガン(Mn2P)0.065gと燐化コバルト(Co2P)0.04g、燐化鉄(P=26重量%)0.03gを配合したものを溶融石英るつぼへ入れ、トランジスタ−インバータ方式の高周波溶解炉で溶解した。そのまま、一旦、凝固させた後、残りの純白金20gを追加装入して再度溶解して上記配合比のインゴットとした。このインゴットを用い、遠心鋳造機によって平丸指輪の鋳造を行った。得られた指輪を切断し、平丸断面の両端及び中央部の3ヶ所においてビッカース硬度(Hv)を測定したところ、いずれの個所においてもHv=113でかなり高い硬度であり、高硬度の高品位白金合金として優れたものであった。また、平丸断面の顕微鏡観察結果からは結晶組織は緻密で、鋳巣、ミクロポロシティ等の欠陥は観察されなかった。
また、平丸指輪の切断片について原子吸光分析法により白金以外の元素について分析し、白金含有量を算定した結果99.71重量%であった。
[Example 32]
50g of pure platinum
Manganese phosphide 0.065g
Cobalt phosphide 0.04g
Iron phosphide 0.03g
First, fused quartz containing 30 g of pure platinum and 0.065 g of manganese phosphide (Mn 2 P), 0.04 g of cobalt phosphide (Co 2 P), and 0.03 g of iron phosphide (P = 26 wt%). It was put into a crucible and melted in a transistor-inverter type high frequency melting furnace. As it was once solidified, 20 g of the remaining pure platinum was additionally charged and dissolved again to obtain an ingot having the above blending ratio. Using this ingot, a flat round ring was cast by a centrifugal casting machine. When the obtained ring was cut and Vickers hardness (Hv) was measured at three locations on both ends and the center of the flat round cross section, Hv = 113 at any location was quite high and high-quality platinum with high hardness. It was excellent as an alloy. Further, from the result of microscopic observation of the flat round cross section, the crystal structure was dense, and defects such as a cast hole and microporosity were not observed.
In addition, the flat circular ring cut piece was analyzed for elements other than platinum by atomic absorption spectrometry, and the platinum content was calculated to be 99.71% by weight.

Claims (3)

純白金に燐、硫黄、ベリリウムから選ばれる一種以上を0.002〜1.0重量%添加して白金の高強度、高硬度化のため白金の純度を98.90〜99.94重量%に調整したことを特徴とする高品位白金合金。   One or more selected from phosphorus, sulfur, and beryllium is added to pure platinum in an amount of 0.002 to 1.0% by weight, and the purity of platinum is increased to 98.90 to 99.94% by weight for high strength and hardness of platinum. A high-grade platinum alloy characterized by adjustment. 純白金に燐、硫黄、ベリリウムから選ばれる一種以上を0.005〜0.3重量%添加することによって白金の高強度、高硬度化のため、白金の純度を99.70〜99.94重量%に調整したことを特徴とする請求項1に記載の高品位白金合金。   By adding 0.005-0.3 wt% of one or more selected from phosphorus, sulfur, and beryllium to pure platinum, the purity of platinum is 99.70-99.94 wt% in order to increase the strength and hardness of platinum. The high-grade platinum alloy according to claim 1, wherein the high-grade platinum alloy is adjusted to%. 請求項1又は請求項2に記載の高品位白金合金を用いて鋳造加工により製品化したことを特徴とする高品位白金合金製品。   A high-grade platinum alloy product produced by casting using the high-grade platinum alloy according to claim 1 or 2.
JP2006120329A 2006-02-10 2006-04-25 High grade platinum alloy and product thereof Pending JP2007239089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120329A JP2007239089A (en) 2006-02-10 2006-04-25 High grade platinum alloy and product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006033533 2006-02-10
JP2006120329A JP2007239089A (en) 2006-02-10 2006-04-25 High grade platinum alloy and product thereof

Publications (1)

Publication Number Publication Date
JP2007239089A true JP2007239089A (en) 2007-09-20

Family

ID=38584910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120329A Pending JP2007239089A (en) 2006-02-10 2006-04-25 High grade platinum alloy and product thereof

Country Status (1)

Country Link
JP (1) JP2007239089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001605A (en) * 2009-06-18 2011-01-06 Seki:Kk High purity palladium product, and casting method thereof
CN105266291A (en) * 2014-07-14 2016-01-27 全球股份有限公司 Platinum alloy and manufacture method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001605A (en) * 2009-06-18 2011-01-06 Seki:Kk High purity palladium product, and casting method thereof
CN105266291A (en) * 2014-07-14 2016-01-27 全球股份有限公司 Platinum alloy and manufacture method thereof
JP2016020525A (en) * 2014-07-14 2016-02-04 株式会社グローバルコーポレーション 999 platinum alloy having high hardness and high compressive strength and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Li et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5 Si–0.5 Mg alloy
Lu et al. Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys
US20070134149A1 (en) Spheroidizing agent of graphite
Jablonski et al. Manufacturing of high entropy alloys
US8734564B2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
EP1266974B1 (en) Gold alloys and master alloys for obtaining them
Dobrzański et al. The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics
US20020000273A1 (en) Process for nodulizing silicon in casting aluminum silicon alloys
JP6177441B2 (en) Antibacterial white copper alloy
KR101402897B1 (en) Manufacturing method of alloys and alloys fabricated by the same
Lipiński et al. Modification of the hypo-eutectic Al-Si alloys with an exothermic modifier
EP1913168A1 (en) Platinum alloy and method of production thereof
JP2007239089A (en) High grade platinum alloy and product thereof
US6916356B2 (en) Method for preparing aluminum-silicon alloys
Mandal et al. Chemical modification of morphology of Mg2Si phase in hypereutectic aluminium–silicon–magnesium alloys
AU2018394138B2 (en) Aluminium alloy
JP2005528522A (en) Inoculated alloys to prevent micro sinkholes for casting pig iron processing
CA2618216A1 (en) Platinum alloy and method of production thereof
RU2439181C1 (en) Jewellery alloy based on platinum of rate 950
JPS643932B2 (en)
RU2405050C1 (en) Jewel alloy based on 585-standard gold
RU2349660C1 (en) Jewelry alloy on basis of palladium
Chanmuang et al. Influence of casting techniques on hardness, tarnish behavior and microstructure of Ag-Cu-Zn-Si sterling silver jewelry alloys
JP2011132569A (en) Platinum alloy and ornament using it
JP6302779B2 (en) Method for producing 999 platinum alloy having high hardness and high strength