JP2007239060A - Surface hardened ferritic stainless steel sheet - Google Patents

Surface hardened ferritic stainless steel sheet Download PDF

Info

Publication number
JP2007239060A
JP2007239060A JP2006065546A JP2006065546A JP2007239060A JP 2007239060 A JP2007239060 A JP 2007239060A JP 2006065546 A JP2006065546 A JP 2006065546A JP 2006065546 A JP2006065546 A JP 2006065546A JP 2007239060 A JP2007239060 A JP 2007239060A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel sheet
surface layer
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065546A
Other languages
Japanese (ja)
Other versions
JP4987326B2 (en
Inventor
Satoshi Suzuki
聡 鈴木
Sadayuki Nakamura
定幸 中村
Seiji Mitsunaga
聖二 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006065546A priority Critical patent/JP4987326B2/en
Publication of JP2007239060A publication Critical patent/JP2007239060A/en
Application granted granted Critical
Publication of JP4987326B2 publication Critical patent/JP4987326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel sheet which is improved in slidability and flawing resistance while maintaining its satisfactory workability. <P>SOLUTION: The surface hardened ferritic stainless steel sheet has a hard surface layer including a martensitic phase, and in which the inside in the sheet thickness direction therefrom has a ferritic phase, surface hardness is ≥250 HV, and the hardness at the central part in the sheet thickness is ≤230 HV. The ferritic structure has a composition containing, by mass, 0.005 to 0.1% C, <0.5% Si, 0.1 to 1% Mn, 11 to 25% Cr, ≤0.1% N, and the balance substantially Fe, and in which γmax defined by formula: γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189 is -5 to 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、摺動性、耐疵付き性が要求される物品への加工に適した表面硬化フェライト系ステンレス鋼板に関する。   The present invention relates to a surface-hardened ferritic stainless steel sheet suitable for processing into articles that require slidability and scratch resistance.

SUS430やSUS304に代表されるステンレス鋼は、不働体皮膜による優れた耐食性を活かして厨房機器や各種器物等の加工用素材として幅広く使用されている。家電製品や業務用電気・電子機器の外板等には従来、塗装鋼板が多く使用されているが、耐食性を重視する用途ではステンレス鋼の使用も増えている。   Stainless steel typified by SUS430 and SUS304 is widely used as a processing material for kitchen equipment and various items by utilizing the excellent corrosion resistance due to the passive film. Conventionally, many coated steel sheets have been used for the outer panels of household electrical appliances and commercial electric / electronic equipment, but stainless steel is also increasingly used in applications that emphasize corrosion resistance.

近年、物品の外観部分を構成する上記のような部材では、単に耐食性のみならず「摺動性」や「耐疵付き性」にも配慮した材料の要求が高まっている。ところが、SUS430やSUS304等のステンレス鋼では良好な加工性を確保するために軟質に仕上げる必要がある。軟質に仕上げられたステンレス鋼では摺動性および耐疵付き性が低下してしまう。   In recent years, in the above-mentioned members constituting the appearance part of articles, there has been an increasing demand for materials that take into consideration not only corrosion resistance but also “slidability” and “scratch resistance”. However, in stainless steel such as SUS430 and SUS304, it is necessary to finish softly in order to ensure good workability. In the case of stainless steel that has been finished to be soft, slidability and scratch resistance are reduced.

摺動性や耐疵付き性を改善するには、表面の硬さを増大することが有効である。その意味で、例えばSUS301やSUS630等の高強度ステンレス鋼を使用することが有利である。またSUS430やSUS304等の汎用ステンレス鋼でも加工硬化を利用して高強度化することにより、摺動性や耐疵付き性をある程度改善することは可能である。しかし、このような高強度化したステンレス鋼材料では、加工性が犠牲となってしまい、所定形状の物品への加工が困難になる場合がある。また摺動性や耐疵付き性自体に関しても、単に高強度化するだけでは必ずしも十分なレベルの改善が達成できるとは限らない。   Increasing the surface hardness is effective in improving the slidability and scratch resistance. In that sense, it is advantageous to use high-strength stainless steel such as SUS301 or SUS630. Further, even with general-purpose stainless steels such as SUS430 and SUS304, it is possible to improve slidability and scratch resistance to some extent by increasing the strength using work hardening. However, such a high-strength stainless steel material sacrifices workability and may make it difficult to process an article having a predetermined shape. Further, with regard to slidability and scratch resistance itself, it is not always possible to achieve a sufficient level of improvement simply by increasing the strength.

一方、表面に塗装等を施した表面処理鋼板では、その表面処理層が厳しい加工に耐えられない場合が多く、一般に加工度の高い物品に成形することは難しい。また、無垢の金属表面が呈する独特の金属感が損なわれる。   On the other hand, in a surface-treated steel sheet having a surface coated or the like, the surface-treated layer often cannot withstand severe processing, and it is generally difficult to form an article with a high degree of processing. In addition, the unique metallic feeling exhibited by the solid metal surface is impaired.

高強度と高延性を同時に実現したステンレス鋼として、特許文献1に示されるようなマルテンサイト+フェライト複相組織ステンレス鋼が開発されている。しかし、この鋼は表面の摺動性・耐疵付き性を改善することを意図したものではない。この複相化の手法を用いて十分な摺動性・耐疵付き性が得られるまでに高強度化すると、やはり加工性の方が犠牲になってしまう。   As a stainless steel that simultaneously realizes high strength and high ductility, martensite + ferrite dual phase stainless steel as disclosed in Patent Document 1 has been developed. However, this steel is not intended to improve the slidability and scratch resistance of the surface. If the strength is increased before sufficient slidability and wrinkle resistance can be obtained using this multiphase technique, the workability is still sacrificed.

特開平7−138704号公報Japanese Patent Laid-Open No. 7-138704

このように、ステンレス鋼材料において良好な加工性と、摺動性・耐疵付き性を高レベルで両立させることは難しい。本発明はこのような現状に鑑み、厨房機器、家電製品、業務用電気・電子機器等の外板や、各種器物、内装建材等に十分加工可能な良好な加工性を有するステンレス鋼板において、優れた摺動性・耐疵付き性を付与したものを開発し提供しようというものである。   Thus, it is difficult to achieve both good workability, slidability and scratch resistance at a high level in a stainless steel material. In view of such a current situation, the present invention is excellent in stainless steel sheets having good workability that can be sufficiently processed into outer plates of kitchen equipment, home appliances, commercial electric / electronic equipment, various kinds of equipment, interior building materials, etc. It is intended to develop and provide products with added slidability and scratch resistance.

発明者らは種々検討の結果、上記目的は、フェライト系ステンレス鋼板の表面にマルテンサイト相を含む硬質表層を形成することによって実現できることを知見した。
すなわち本発明では、マルテンサイト相を含む硬質表層を有し、それより板厚方向内部はフェライト組織であり、表面硬さが250HV以上、板厚中央部の硬さが230HV以下であり、前記フェライト組織は質量%でC:0.005〜0.1%、Si:0.5%未満、Mn:0.1〜1%、Cr:11〜25%、N:0.1%以下を含み、さらに必要に応じてNi:1%以下、Cu:1.5%以下、Nb:0.5%以下、Ti:0.5%以下、Al:0.5%以下、Mo:1.5%以下の1種または2種以上を含み、残部が実質的にFeで、かつ下記(1)式で定義されるγmaxが−5〜30の組成を有している表面硬化フェライト系ステンレス鋼板が提供される。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 ……(1)
As a result of various studies, the inventors have found that the above object can be realized by forming a hard surface layer containing a martensite phase on the surface of a ferritic stainless steel sheet.
That is, in the present invention, it has a hard surface layer containing a martensite phase, the inside of the plate thickness direction is a ferrite structure, the surface hardness is 250 HV or more, the hardness of the plate thickness center is 230 HV or less, and the ferrite The structure contains, in mass%, C: 0.005-0.1%, Si: less than 0.5%, Mn: 0.1-1%, Cr: 11-25%, N: 0.1% or less, Further, if necessary, Ni: 1% or less, Cu: 1.5% or less, Nb: 0.5% or less, Ti: 0.5% or less, Al: 0.5% or less, Mo: 1.5% or less There is provided a surface-hardened ferritic stainless steel sheet that includes one or more of the following, the balance being substantially Fe, and having a composition of γmax defined by the following formula (1) of −5 to 30: The
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (1)

ここで、表面硬さはマイクロビッカース硬度計を用いて0.98Nで鋼板表面にコーンを押し込む方法で測定した値が採用できる。板厚中央部の硬さは、圧延方向および板厚方向に平行な断面(L断面)の板厚中央部について上記と同様の方法で測定した値が採用できる。上記(1)式の元素記号の箇所には質量%で表された当該各元素の含有量の値(無添加の元素については0%)が代入される。「残部が実質的にFe」とは、本発明の効果を阻害しない範囲で上記規定以外の元素の混入が許容されることを意味し、「残部がFeおよび不可避的不純物からなる」場合を含む。   Here, as the surface hardness, a value measured by a method in which a cone is pushed into the steel plate surface at 0.98 N using a micro Vickers hardness meter can be adopted. As the hardness of the central portion of the plate thickness, a value measured by the same method as described above for the central portion of the plate thickness having a cross section (L cross section) parallel to the rolling direction and the plate thickness direction can be adopted. The value of the content of each element expressed in mass% (0% for an additive-free element) is substituted for the element symbol in the above formula (1). “The balance is substantially Fe” means that elements other than those specified above are allowed within the range that does not impair the effects of the present invention, and includes the case where the balance is made of Fe and inevitable impurities. .

硬質表層を構成するマルテンサイト相としては、焼鈍時に雰囲気中の窒素を吸収することにより生成したオーステナイト相から変態したものが好適な対象となる。
このようなマルテンサイト相を含む硬質表層は、N2:15〜35体積%、H2:65〜85体積%の還元雰囲気中800〜1100℃で光輝(BA)焼鈍することにより形成することができる。
As the martensite phase constituting the hard surface layer, those transformed from the austenite phase generated by absorbing nitrogen in the atmosphere during annealing are suitable targets.
Such a hard surface layer containing a martensite phase may be formed by performing bright (BA) annealing at 800 to 1100 ° C. in a reducing atmosphere of N 2 : 15 to 35% by volume and H 2 : 65 to 85% by volume. it can.

本発明によれば、厨房機器、家電製品、業務用電気・電子機器等の外板や、各種器物、内装建材等に十分加工可能な良好な加工性を維持しながら、摺動性および耐疵付き性を安定して顕著に改善することができた。加工性と摺動性・耐疵付き性とは本来トレードオフの関係にあり、ステンレス鋼においてその両立は従来極めて難しかったことである。本発明では光輝焼鈍を利用して表面から窒素を吸収させる手法が採用でき、既存設備を用いて実施化が比較的容易である。また、ベース鋼に安価なフェライト系鋼種が使用できるため、コスト増も抑制できる。   According to the present invention, slidability and weather resistance can be maintained while maintaining good processability that can be sufficiently processed into outer panels of kitchen equipment, home appliances, commercial electric / electronic equipment, various types of equipment, interior building materials, and the like. The sticking property was stably improved remarkably. Workability, slidability, and scratch resistance are inherently in a trade-off relationship, and it has been extremely difficult to achieve both in stainless steel. In the present invention, a method of absorbing nitrogen from the surface by using bright annealing can be adopted, and implementation is relatively easy using existing equipment. Further, since an inexpensive ferritic steel type can be used for the base steel, an increase in cost can be suppressed.

発明者らは、ステンレス鋼板の加工性を高く維持しながら摺動性および耐疵付き性を改善する方法について種々検討を重ねてきた。その結果、軟質で加工性の良い組織状態を基本とする鋼板において、表層部付近だけを硬質化する手法が有効であることがわかった。   The inventors have made various studies on methods for improving slidability and scratch resistance while maintaining high workability of the stainless steel sheet. As a result, it was found that a method of hardening only the vicinity of the surface layer portion is effective in a steel sheet based on a soft and good workability.

従来、鋼の表層を硬質化する処理として、浸炭、窒化などの熱処理が知られている。これらは加工後の機械部品(例えば歯車)を特殊な雰囲気で熱処理して、表層部に焼入れ・焼戻し時に顕著に硬化する特性を付与したり(浸炭)硬質な窒化物を生成させたり(窒化)する手法である。しかし、本発明では製品に加工する前の「素材鋼板」の段階で、加工性を確保しながら表面硬化を図り、かつステンレス鋼に特有な美麗な光沢表面を維持することを狙う。このため、浸炭や窒化の手段は採用できない。   Conventionally, heat treatment such as carburizing and nitriding is known as a treatment for hardening the surface layer of steel. These heat-treat machine parts (such as gears) after processing in a special atmosphere to give the surface layer a characteristic that hardens and hardens during quenching and tempering (carburization), and generates hard nitrides (nitriding) It is a technique to do. However, in the present invention, at the stage of the “material steel plate” before being processed into a product, it is aimed to achieve surface hardening while ensuring processability and to maintain a beautiful glossy surface unique to stainless steel. For this reason, carburizing and nitriding means cannot be employed.

そこで本発明では、光輝焼鈍を利用してステンレス鋼板の表面付近に雰囲気ガス成分の窒素を吸収させる手法をとる。その際、基材鋼板(表面硬化層を形成する熱処理に供するための鋼板)の化学組成を予め厳密に調整して、焼鈍温度域において窒素濃度の上昇した表層部だけが常温より高温にMs点をもつオーステナイト相となり、窒素濃度の変わらない内部はフェライト相となるようにしておく。そうすると、当該光輝焼鈍の冷却過程で表層部だけをマルテンサイト変態を利用して硬質化することができるのである。内部は焼鈍された軟質なフェライト相となるので良好な加工性も確保される。しかも光輝焼鈍を採用するので美麗な金属光沢表面を得ることができる。   Therefore, in the present invention, a technique is adopted in which nitrogen as an atmospheric gas component is absorbed in the vicinity of the surface of the stainless steel plate using bright annealing. At that time, the chemical composition of the base steel plate (steel plate for heat treatment for forming the hardened surface layer) is strictly adjusted in advance, and only the surface layer portion where the nitrogen concentration has increased in the annealing temperature range is higher than the normal temperature at the Ms point. The austenite phase with a nitrogen concentration and the inside where the nitrogen concentration does not change should be a ferrite phase. If it does so, only the surface layer part can be hardened using a martensitic transformation in the cooling process of the bright annealing concerned. The inside becomes an annealed soft ferrite phase, so that good workability is also ensured. Moreover, since bright annealing is employed, a beautiful metallic gloss surface can be obtained.

基材鋼板(表面硬化層を形成する熱処理に供するための鋼板)の化学組成は以下のような範囲に調整する。なお、この基材鋼板の化学組成は、本発明鋼板において、硬化表層より板厚方向内部にあるフェライト組織の化学組成にそのまま反映されるものである。   The chemical composition of the base steel plate (steel plate for the heat treatment for forming the hardened surface layer) is adjusted to the following range. The chemical composition of the base steel sheet is directly reflected in the chemical composition of the ferrite structure in the thickness direction of the hardened surface layer in the steel sheet of the present invention.

Cは、フェライト系ステンレス鋼の強度を上昇させる元素であり、良好な加工性を確保する観点からは少ない方が望ましく、本発明では0.1質量%以下に制限される。ただしCはオーステナイト形成元素でもあり、熱処理時に窒素を吸収させた表層でオーステナイト相を十分生成させるには0.005質量%以上のCを含有させることが有利となる。0.01質量%以上とすることがより好ましい。   C is an element that increases the strength of the ferritic stainless steel, and is preferably smaller from the viewpoint of ensuring good workability, and is limited to 0.1% by mass or less in the present invention. However, C is also an austenite forming element, and it is advantageous to contain 0.005% by mass or more of C in order to sufficiently generate the austenite phase in the surface layer that has absorbed nitrogen during the heat treatment. More preferably, the content is 0.01% by mass or more.

Siは、鋼の脱酸元素として有効であるが、固溶強化作用を呈して鋼を硬質化するので、加工性を確保する観点から0.5質量%未満に制限される。   Although Si is effective as a deoxidizing element for steel, it exhibits a solid solution strengthening action and hardens the steel, so it is limited to less than 0.5% by mass from the viewpoint of ensuring workability.

Mnは、フェライト系ステンレス鋼を軟質に維持したまま後述のγmaxを調整するのに適した元素であり、0.1質量%以上の含有量を確保することが望ましい。ただし、多量のMn含有は耐食性の低下につながるので、Mn含有量は1質量%以下の範囲とする。   Mn is an element suitable for adjusting the later-described γmax while maintaining the ferritic stainless steel soft, and it is desirable to ensure a content of 0.1% by mass or more. However, since a large amount of Mn leads to a decrease in corrosion resistance, the Mn content is set to a range of 1% by mass or less.

Crは、ステンレス鋼に要求される耐食性を確保する上で必須の元素であり、少なくとも11質量%以上の含有が必要である。ただし、多量のCr含有は鋼を硬質化させ、加工性を維持する上で不利となる。またCrはフェライト形成元素であることから表層でのマルテンサイトの生成を阻害する要因にもなる。したがってCr含有量は25質量%以下に抑える。より好ましいCr含有量は13〜20質量%である。   Cr is an essential element for securing the corrosion resistance required for stainless steel, and it is necessary to contain at least 11% by mass or more. However, a large amount of Cr is disadvantageous in hardening the steel and maintaining workability. Further, since Cr is a ferrite forming element, it also becomes a factor that inhibits the formation of martensite on the surface layer. Therefore, the Cr content is suppressed to 25% by mass or less. A more preferable Cr content is 13 to 20% by mass.

Nは、Cと同様、フェライト系ステンレス鋼の強度を上昇させる元素であり、良好な加工性を確保する観点から本発明では0.1質量%以下に制限される。また、基材鋼板中のN含有量が0.1%以下の範囲で、光輝焼鈍時に吸収した窒素と併せて表層のオーステナイトバランスを適正化できる。   N, like C, is an element that increases the strength of ferritic stainless steel, and is limited to 0.1% by mass or less in the present invention from the viewpoint of ensuring good workability. In addition, when the N content in the base steel sheet is 0.1% or less, the austenite balance of the surface layer can be optimized together with nitrogen absorbed during bright annealing.

Niは、Mnと同様に鋼を軟質に維持したままγmaxを調整することのできる元素であり、必要に応じて含有させることができる。ただし多量のNi含有はコスト増を招くので、Niを含有させる場合は1質量%以下の範囲とすることが望ましく、0.5質量%以下が一層好ましい。   Ni, like Mn, is an element that can adjust γmax while keeping the steel soft, and can be contained as necessary. However, since a large amount of Ni causes an increase in cost, when Ni is contained, the content is desirably 1% by mass or less, and more preferably 0.5% by mass or less.

Cuは、Mn、Niと同様に鋼を軟質に維持したままγmaxを調整するのに適した元素であり、必要に応じて含有させることができる。ただし多量のCu含有は耐食性に不利となるので、Cuを含有させる場合は1.5質量%以下の範囲とすることが望ましく、0.7質量%以下が一層好ましい。   Cu, like Mn and Ni, is an element suitable for adjusting γmax while keeping the steel soft, and can be contained as required. However, since containing a large amount of Cu is disadvantageous for corrosion resistance, when Cu is contained, the content is desirably set to 1.5% by mass or less, and more preferably 0.7% by mass or less.

Nb、Tiは、固溶C、Nを固定する作用を有し、最終焼鈍状態でのC、N固溶量を低減させ加工性、耐食性を向上させるので、必要に応じて含有させることができる。しかし過剰に含有させると固溶Ti、Nbが多くなって製造性が低下するので、Nb、Tiの含有量はいずれも0.5質量%以下とする。   Nb and Ti have the effect of fixing solid solution C and N, and the amount of C and N solid solution in the final annealing state is reduced to improve workability and corrosion resistance. Therefore, Nb and Ti can be contained as necessary. . However, if excessively contained, solid solution Ti and Nb increase and productivity decreases, so the content of Nb and Ti is both 0.5% by mass or less.

Alは、鋼の脱酸元素として有効であり、必要に応じて0.5質量%以下の範囲で含有させることができる。   Al is effective as a deoxidizing element for steel, and can be contained in a range of 0.5% by mass or less as necessary.

Moは、Cr含有鋼の耐食性を向上させる元素であり、必要に応じて含有させることができる。ただしMoは高価な元素であり多量添加はコスト増を招くので、Moを含有させる場合は1.5質量%以下の範囲で行う。   Mo is an element that improves the corrosion resistance of the Cr-containing steel, and can be contained as necessary. However, since Mo is an expensive element and adding a large amount causes an increase in cost, when Mo is contained, it is performed in a range of 1.5 mass% or less.

その他、V:0.1質量%以下、W:1質量%以下、Zr:1質量%以下、REM(希土類元素):合計0.1質量%以下、Ca:0.1質量%以下、Y:0.1質量%以下、Mg:0.1質量%以下等、本発明の作用を害さない範囲で種々の元素の混入が許容される。   In addition, V: 0.1 mass% or less, W: 1 mass% or less, Zr: 1 mass% or less, REM (rare earth element): total 0.1 mass% or less, Ca: 0.1 mass% or less, Y: Various elements such as 0.1% by mass or less and Mg: 0.1% by mass or less are allowed to be mixed within a range that does not impair the function of the present invention.

さらに本発明では、基材鋼板の各成分間に下記(1)式で示されるγmaxが−5〜30となる関係が成立するように成分調整する必要がある。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 ……(1)
γmaxは高温での最大オーステナイト量を評価する指標である。この値が−5〜30の範囲にある基材鋼板の場合、光輝焼鈍時に雰囲気ガス成分の影響を受けない「内部」においては、焼鈍温度域でオーステナイト相が生成しないか、生成しても量が少ないため、焼鈍後の冷却過程で硬化が起こるほどの量のマルテンサイト相は生成せず、光輝焼鈍後には軟質なフェライト組織が得られる。一方、光輝焼鈍で窒素を吸収した表層においては、吸収した窒素を加えた組成がγmaxの上昇をもたらし、焼鈍温度域で多量のオーステナイト相が生成する。このオーステナイト相は冷却時にマルテンサイト相に変態して硬化に寄与する。つまり、基材鋼板のγmaxが上記範囲に調整されているときに、表層部には顕著な硬化を生じさせるに足る量のマルテンサイト量が確保され、表層域のみの硬化が達成される。
Furthermore, in the present invention, it is necessary to adjust the components so that the relationship in which γmax represented by the following formula (1) is −5 to 30 is established between the components of the base steel plate.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (1)
γmax is an index for evaluating the maximum amount of austenite at a high temperature. In the case of a base steel sheet in which this value is in the range of −5 to 30, in the “inside” that is not affected by the atmospheric gas components during bright annealing, an austenite phase is not generated in the annealing temperature range, or even if generated. Therefore, a martensite phase is not generated in such an amount that hardening occurs in the cooling process after annealing, and a soft ferrite structure is obtained after bright annealing. On the other hand, in the surface layer that has absorbed nitrogen by bright annealing, the composition with the absorbed nitrogen added causes an increase in γmax, and a large amount of austenite phase is generated in the annealing temperature range. This austenite phase transforms into a martensite phase during cooling and contributes to curing. That is, when the γmax of the base steel plate is adjusted to the above range, an amount of martensite sufficient to cause remarkable hardening is secured in the surface layer portion, and hardening only in the surface layer region is achieved.

上述したような種々の物品への加工性を考慮したとき、硬質表層より板厚方向内部の領域は硬さが230HV以下のフェライト組織となっている必要がある。その硬さは板厚中央部の断面硬さを測定することによって知ることができる。フェライト組織はフェライト相を主体とするマトリクスで構成される金属組織、具体的にはフェライト相が90体積%以上を占める金属組織である。フェライト相以外には少量のマルテンサイト相や、一般的なフェライト系ステンレス鋼板に見られる介在物、析出物を含んでいて構わない。   When considering the workability to various articles as described above, the region inside the plate thickness direction from the hard surface layer needs to have a ferrite structure having a hardness of 230 HV or less. The hardness can be known by measuring the cross-sectional hardness at the center of the plate thickness. The ferrite structure is a metal structure composed of a matrix mainly composed of a ferrite phase, specifically, a metal structure in which the ferrite phase occupies 90% by volume or more. In addition to the ferrite phase, it may contain a small amount of martensite phase, inclusions and precipitates found in general ferritic stainless steel sheets.

一方、硬質表層はマルテンサイト相を含んで硬化した表層であり、その厚さは特に規定する必要はないが、表面硬さとして250HV以上を呈する必要がある。これより軟質だと摺動性および耐疵付き性を十分確保することが難しくなる。この表面硬さは、表面から概ね5μm以内の深さ領域における硬さである。なお、通常、硬質表層の厚さは数μm〜数十μm程度である。この硬質表層の最表面には不働体皮膜が存在し、ステンレス鋼の耐食性が維持される。   On the other hand, the hard surface layer is a hardened surface layer containing a martensite phase, and the thickness of the hard surface layer does not need to be particularly defined, but the surface hardness needs to be 250 HV or more. If it is softer than this, it will be difficult to ensure sufficient slidability and scratch resistance. This surface hardness is a hardness in a depth region within approximately 5 μm from the surface. In general, the thickness of the hard surface layer is about several μm to several tens of μm. A passive film is present on the outermost surface of the hard surface layer, and the corrosion resistance of the stainless steel is maintained.

表面硬さと板厚中央部の硬さの差(Δh)はHV値で50以上であることが望ましい。Δhが大きいとそれぞれの用途(加工性レベル)に応じて表面硬さの向上効果が顕著に発揮され、好ましい。Δhは75以上であることが一層好ましい。   The difference (Δh) between the surface hardness and the hardness at the center of the plate thickness is preferably 50 or more in terms of HV value. When Δh is large, the effect of improving the surface hardness is remarkably exhibited according to each application (workability level), which is preferable. More preferably, Δh is 75 or more.

以上のような特性を有するステンレス鋼板は以下のようにして作ることができる。
前述の化学組成に調整された鋼を一般的なステンレス鋼の製鋼プロセスにて溶製し、熱間圧延、焼鈍、冷間圧延を経て光輝焼鈍に供する基材鋼板を製造する。基材鋼板の板厚は概ね0.5〜2.0mm程度とすることができる。また、その目標板厚に応じて適宜「焼鈍、冷間圧延」を複数回行うことができる。これらの各工程は通常のフェライト系ステンレス鋼板の製造法に従えばよい。光輝焼鈍に供する基材鋼板の冷間圧延率(冷間圧延を複数回行う場合は最後の冷間圧延における圧延率)は50〜80%とすることが望ましい。
The stainless steel plate having the above characteristics can be produced as follows.
The steel adjusted to the above-mentioned chemical composition is melted by a general stainless steel making process, and a base steel plate that is subjected to bright annealing through hot rolling, annealing, and cold rolling is manufactured. The plate thickness of the base steel plate can be about 0.5 to 2.0 mm. Further, “annealing and cold rolling” can be appropriately performed a plurality of times according to the target plate thickness. Each of these steps may be performed in accordance with a normal method for producing a ferritic stainless steel sheet. It is desirable that the cold rolling rate (the rolling rate in the last cold rolling when cold rolling is performed a plurality of times) of the base steel sheet to be subjected to bright annealing is 50 to 80%.

次いで基材鋼板を光輝焼鈍に供する。光輝焼鈍の雰囲気はN2:15〜35体積%を含む還元雰囲気とすればよい。雰囲気ガスのN2濃度を10体積%以上にしたとき、雰囲気中の窒素は鋼中に吸収されて固溶し、γmaxの上昇に十分寄与するようになる。ただし、雰囲気ガスのN2濃度が35体積%を超えると鋼中に吸収された窒素が鋼成分と反応し、表面欠陥や応力集中の原因になる窒化物を形成しやすくなり、好ましくない。具体的な雰囲気ガスとして、N2:15〜35体積%+H2:65〜85体積%の混合ガスが採用できる。焼鈍温度は800〜1100℃とすればよい。焼鈍時間は均熱0〜2分とすることが好ましい。光輝焼鈍後の冷却過程で表層に生成したオーステナイト相がマルテンサイト相に変態する。冷却速度は普通鋼の焼入れ処理とは異なりあまり大きくする必要はなく、概ね1〜10℃/secの範囲とすればよい。この光輝焼鈍は連続焼鈍ラインで実施可能である。 Next, the base steel sheet is subjected to bright annealing. The bright annealing atmosphere may be a reducing atmosphere containing N 2 : 15 to 35% by volume. When the N 2 concentration of the atmospheric gas is set to 10% by volume or more, nitrogen in the atmosphere is absorbed into the steel and becomes a solid solution, and sufficiently contributes to an increase in γmax. However, if the N 2 concentration of the atmospheric gas exceeds 35% by volume, nitrogen absorbed in the steel reacts with the steel components, and it is easy to form nitrides that cause surface defects and stress concentration, which is not preferable. As a specific atmosphere gas, a mixed gas of N 2 : 15 to 35% by volume + H 2 : 65 to 85% by volume can be adopted. The annealing temperature may be 800-1100 ° C. It is preferable that the annealing time is 0 to 2 minutes. The austenite phase formed in the surface layer during the cooling process after bright annealing transforms into the martensite phase. Unlike the quenching treatment of ordinary steel, the cooling rate does not need to be increased so much and may be in the range of 1 to 10 ° C./sec. This bright annealing can be performed in a continuous annealing line.

光輝焼鈍後の鋼板は、必要に応じて調質圧延に供することができる。その際、表面硬さおよび板厚中央部の硬さが上記の範囲となるように圧延率を調整する。例えば10%以下の圧延率とすることが好ましい。   The steel plate after bright annealing can be subjected to temper rolling as necessary. At that time, the rolling rate is adjusted so that the surface hardness and the hardness at the center of the plate thickness are in the above ranges. For example, the rolling rate is preferably 10% or less.

このようにして、良好な加工性を維持しながら摺動性および耐疵付き性を付与したフェライト系ステンレス鋼板が実現でき、これを無垢のまま製品に成形加工して使用することができる。用途によってはさらに塗装その他の表面処理に供することもできる。この場合でも、下地鋼板の優れた摺動性および耐疵付き性は、表面処理後の表面における耐久性の向上をもたらす。ただし、要求される成形加工に耐えうる範囲で表面処理手段を選択する必要がある。   In this way, a ferritic stainless steel sheet imparted with slidability and scratch resistance while maintaining good workability can be realized, and this can be molded into a product and used. Depending on the application, it can also be used for coating and other surface treatments. Even in this case, the excellent slidability and scratch resistance of the base steel sheet result in improved durability on the surface after the surface treatment. However, it is necessary to select the surface treatment means within a range that can withstand the required molding process.

表1に示す組成のフェライト系ステンレス鋼を溶製し、30kgのインゴットに鋳造し、熱間圧延し、その後、焼鈍、冷間圧延を繰り返して板厚0.5mmの冷延鋼板(焼鈍後、最後に行った冷間圧延での圧延率:各鋼種とも約65%)とした。次いで各冷延鋼板を種々の条件で最終焼鈍に供した。最終焼鈍は一部の試料を除きH2+N2混合ガス中での光輝焼鈍とした。焼鈍条件は表2に記載してある。光輝焼鈍時間は均熱0.5分(共通)である。一部の試料では光輝焼鈍の代わりに大気焼鈍を採用し、酸洗に供した。さらに、一部の試料について2%の調質圧延を施した。 A ferritic stainless steel having the composition shown in Table 1 is melted, cast into a 30 kg ingot, hot-rolled, and thereafter annealed and cold-rolled repeatedly to obtain a cold-rolled steel sheet having a thickness of 0.5 mm (after annealing, The rolling ratio in the last cold rolling was about 65% for each steel type. Each cold-rolled steel sheet was then subjected to final annealing under various conditions. The final annealing was a bright annealing in a H 2 + N 2 mixed gas except for some samples. The annealing conditions are listed in Table 2. The bright annealing time is 0.5 minutes (common) for soaking. Some samples employed atmospheric annealing instead of bright annealing and were subjected to pickling. Furthermore, 2% temper rolling was applied to some samples.

このようにして得られた最終焼鈍後の材料または調質圧延後の材料を供試材とし、表面硬さ、板厚中央部の硬さ、摺動性、耐疵付き性、加工性を調べた。
表面硬さは、板の表面をマイクロビッカース硬度計にて0.98Nで測定して求めた。
板厚中央部の硬さは、圧延方向と板厚方向に平行な断面(L断面)をマイクロビッカース硬度計にて0.98Nで測定して求めた。
Using the material after final annealing or temper rolling obtained in this way as the test material, the surface hardness, the hardness at the center of the plate thickness, slidability, scratch resistance, and workability were investigated. It was.
The surface hardness was determined by measuring the surface of the plate with a micro Vickers hardness meter at 0.98N.
The hardness at the center of the plate thickness was determined by measuring a cross section (L cross section) parallel to the rolling direction and the plate thickness direction at 0.98 N with a micro Vickers hardness meter.

摺動性は、JIS B1501の鋼球(1/4インチ)を荷重3.92Nで供試材鋼板の表面に押し付け、20mmのストロークで運動させるときのスタート時に生じた荷重(静摩擦)をロードセルで測定し、前記静摩擦が0.59N以下のものを○(良好)、0.59超え〜0.98N以下のものを△(やや不良)、0.98Nを超えるものを×(不良)と評価した。
耐疵付き性は、JIS B1501の鋼球(1/4インチ)を荷重0.49Nで供試材鋼板の表面に押し付けた状態で、15mmのストロークで50往復させ、試験後に疵が認められないものを◎(優秀)、疵が認められるが、その幅が0.1mm未満であるものを○(良好)、0.1mm幅以上の疵が認められるものを×(不良)と評価した。
The slidability is determined by pressing the load (static friction) generated at the start when the steel ball of JIS B1501 (1/4 inch) is pressed against the surface of the specimen steel plate with a load of 3.92 N and moved with a stroke of 20 mm. When the static friction was 0.59 N or less, ○ (good), 0.59 to 0.98 N or less was evaluated as Δ (slightly defective), and 0.98 N or more was evaluated as × (defective). .
With respect to scratch resistance, JIS B1501 steel balls (1/4 inch) are pressed against the surface of the test steel plate with a load of 0.49 N, 50 strokes are made with a stroke of 15 mm, and no wrinkles are observed after the test. A thing with ◎ (excellent) and wrinkles was observed, and a width of less than 0.1 mm was evaluated as ◯ (good), and a wrinkle with a width of 0.1 mm or more was evaluated as x (bad).

加工性は、圧延方向に対して直角方向を曲げ軸とする90°曲げを行い、内側R=0.2mmの曲げで加工部表面にクラックが認められないものを◎(優秀)、内側R=0.2mmの曲げで加工部表面にクラックが認められるが、内側R=0.5mmの曲げではクラックが認められないものを○(良好)、内側R=0.5mmの曲げで加工部表面にクラックが認められるものを×(不良)と評価した。
結果を表2に示す。
As for workability, 90 ° bending is performed with the direction perpendicular to the rolling direction as the bending axis, and the inner surface R = 0.2 mm is bent with no cracks on the surface of the processed part. Cracks are observed on the surface of the machined part by bending 0.2 mm, but no cracks are found on the inner R = 0.5 mm bend (good), and bent on the inner part R = 0.5 mm on the machined part surface. Those with cracks were evaluated as x (defect).
The results are shown in Table 2.

Figure 2007239060
Figure 2007239060

Figure 2007239060
Figure 2007239060

本発明例の鋼板はいずれもマルテンサイト相を含む硬質表層をもち、それより板厚方向内部はフェライト組織であることが組織観察によって確認された。硬質表層の平均厚さは、研磨後にフッ酸+硝酸+グリセリンの混合溶液でエッチングした試料断面を光学顕微鏡で観察した結果、8〜35μmの範囲に入っていた。表2からわかるように、本発明例の鋼板は表面硬さが250HV以上、板厚中央部の硬さが230HV以下となり、良好な加工性を維持しながら、優れた摺動性および耐疵付き性を呈した。   The steel sheets of the examples of the present invention all had a hard surface layer containing a martensite phase, and it was confirmed by structural observation that the inside in the thickness direction was a ferrite structure. The average thickness of the hard surface layer was in the range of 8 to 35 μm as a result of observing a sample cross section etched with a mixed solution of hydrofluoric acid + nitric acid + glycerin with an optical microscope after polishing. As can be seen from Table 2, the steel sheet of the present invention has a surface hardness of 250 HV or more and a center thickness of 230 HV or less, with excellent slidability and wrinkle resistance while maintaining good workability Exhibited sex.

これに対し、比較例であるNo.1〜3はSi含有量が高いSUS430を使用したことにより、最終焼鈍条件を変えたり調質圧延を行ったりしても優れた摺動性を実現することができなかった。No.4はSUS430J1L相当の鋼、No.5はSUS430LX相当の鋼であり、いずれもγmaxが低いために硬質表層が形成されず摺動性および耐疵付き性に劣った。No.6は光輝焼鈍雰囲気のN2濃度が低かったために硬質表層が形成されず摺動性および耐疵付き性に劣った。No.7は光輝焼鈍雰囲気のN2濃度が高かったために表層に硬質な窒化物が生成し、これが加工性劣化の原因になった。No.8は光輝焼鈍温度が低かったことにより硬質表層が形成されず摺動性および耐疵付き性に劣った。No.9は大気中の焼鈍を行ったので硬質表層が形成されず摺動性および耐疵付き性に劣った。 On the other hand, No. 1-3 which is a comparative example uses SUS430 with high Si content, and realizes excellent slidability even if the final annealing condition is changed or temper rolling is performed. I could not. No. 4 is a steel equivalent to SUS430J1L, and No. 5 is a steel equivalent to SUS430LX, and since γmax is low, a hard surface layer is not formed and the sliding property and scratch resistance are inferior. No. 6 was inferior in slidability and scratch resistance because the hard surface layer was not formed because the N 2 concentration in the bright annealing atmosphere was low. In No. 7, since the N 2 concentration in the bright annealing atmosphere was high, a hard nitride was formed on the surface layer, which caused deterioration of workability. No. 8 was inferior in slidability and scratch resistance because a hard surface layer was not formed due to a low bright annealing temperature. Since No. 9 annealed in air | atmosphere, a hard surface layer was not formed but it was inferior to slidability and an abrasion resistance.

Claims (4)

マルテンサイト相を含む硬質表層を有し、それより板厚方向内部はフェライト組織であり、表面硬さが250HV以上、板厚中央部の硬さが230HV以下であり、前記フェライト組織は質量%でC:0.005〜0.1%、Si:0.5%未満、Mn:0.1〜1%、Cr:11〜25%、N:0.1%以下、残部実質的にFe、かつ下記(1)式で定義されるγmaxが−5〜30の組成を有する表面硬化フェライト系ステンレス鋼板。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 ……(1)
It has a hard surface layer containing a martensite phase, and the inside in the thickness direction is a ferrite structure, the surface hardness is 250 HV or more, the hardness at the center of the thickness is 230 HV or less, and the ferrite structure is in mass%. C: 0.005-0.1%, Si: less than 0.5%, Mn: 0.1-1%, Cr: 11-25%, N: 0.1% or less, the balance being substantially Fe, and A surface-hardened ferritic stainless steel sheet having a composition in which γmax defined by the following formula (1) is −5 to 30.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (1)
前記組成において、さらにNi:1%以下、Cu:1.5%以下、Nb:0.5%以下、Ti:0.5%以下、Al:0.5%以下、Mo:1.5%以下の1種または2種以上を含む請求項1に記載の表面硬化フェライト系ステンレス鋼板。   In the above composition, Ni: 1% or less, Cu: 1.5% or less, Nb: 0.5% or less, Ti: 0.5% or less, Al: 0.5% or less, Mo: 1.5% or less The surface-hardened ferritic stainless steel sheet according to claim 1, comprising one or more of the following. 硬質表層のマルテンサイト相は、焼鈍時に雰囲気中の窒素を吸収することにより生成したオーステナイト相から変態したものである請求項1または2に記載の表面硬化フェライト系ステンレス鋼板。   The surface-hardened ferritic stainless steel sheet according to claim 1 or 2, wherein the martensite phase of the hard surface layer is transformed from an austenite phase generated by absorbing nitrogen in the atmosphere during annealing. マルテンサイト相を含む硬質表層は、N2:15〜35体積%、H2:65〜85体積%の還元雰囲気中800〜1100℃で光輝焼鈍することにより形成されたものである請求項1または2に記載の表面硬化フェライト系ステンレス鋼板。 The hard surface layer containing a martensite phase is formed by bright annealing at 800 to 1100 ° C in a reducing atmosphere of N 2 : 15 to 35% by volume and H 2 : 65 to 85% by volume. 2. The surface-hardened ferritic stainless steel sheet according to 2.
JP2006065546A 2006-03-10 2006-03-10 Surface hardened ferritic stainless steel sheet Active JP4987326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065546A JP4987326B2 (en) 2006-03-10 2006-03-10 Surface hardened ferritic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065546A JP4987326B2 (en) 2006-03-10 2006-03-10 Surface hardened ferritic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP2007239060A true JP2007239060A (en) 2007-09-20
JP4987326B2 JP4987326B2 (en) 2012-07-25

Family

ID=38584881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065546A Active JP4987326B2 (en) 2006-03-10 2006-03-10 Surface hardened ferritic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP4987326B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157578A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
KR20170038866A (en) * 2014-08-29 2017-04-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel foil and production method for same
CN107130188A (en) * 2017-04-07 2017-09-05 邢台钢铁有限责任公司 Welding ferritic stainless steel and its method for refining
US20210072702A1 (en) * 2019-09-05 2021-03-11 Seiko Epson Corporation Watch Component And Watch
US11644795B2 (en) 2019-09-05 2023-05-09 Seiko Epson Corporation Watch component and watch
US11669049B2 (en) 2019-10-30 2023-06-06 Seiko Epson Corporation Watch component and watch
US11687038B2 (en) 2019-12-13 2023-06-27 Seiko Epson Corporation Watch outer packaging component and watch
US11774913B2 (en) 2019-11-11 2023-10-03 Seiko Epson Corporation Watch component and watch
US11809140B2 (en) 2019-12-13 2023-11-07 Seiko Epson Corporation Housing and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087190A (en) * 1998-09-07 2000-03-28 Sumitomo Metal Ind Ltd Cr STAINLESS STEEL SHEET AND ITS PRODUCTION
JP2002069608A (en) * 2000-09-05 2002-03-08 Sumitomo Metal Ind Ltd PRODUCTION METHOD FOR Cr-BASED STAINLESS STEEL HAVING MULTI-LAYER STRUCTURE
JP2005307293A (en) * 2004-04-22 2005-11-04 Nisshin Steel Co Ltd Ba-finished material of ferritic stainless steel superior in fingerprint resistance, scratch resistance and workability, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087190A (en) * 1998-09-07 2000-03-28 Sumitomo Metal Ind Ltd Cr STAINLESS STEEL SHEET AND ITS PRODUCTION
JP2002069608A (en) * 2000-09-05 2002-03-08 Sumitomo Metal Ind Ltd PRODUCTION METHOD FOR Cr-BASED STAINLESS STEEL HAVING MULTI-LAYER STRUCTURE
JP2005307293A (en) * 2004-04-22 2005-11-04 Nisshin Steel Co Ltd Ba-finished material of ferritic stainless steel superior in fingerprint resistance, scratch resistance and workability, and manufacturing method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157578A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
KR20150110762A (en) * 2013-03-27 2015-10-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
JP5837258B2 (en) * 2013-03-27 2015-12-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel having excellent surface corrosion resistance after polishing and method for producing the same
KR101663207B1 (en) 2013-03-27 2016-10-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
US20170275725A1 (en) * 2014-08-29 2017-09-28 Jfe Steel Corporation Ferritic stainless steel foil and method for manufacturing the same (as amended)
KR20170038866A (en) * 2014-08-29 2017-04-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel foil and production method for same
KR101994559B1 (en) * 2014-08-29 2019-06-28 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel foil and method for manufacturing the same
CN107130188A (en) * 2017-04-07 2017-09-05 邢台钢铁有限责任公司 Welding ferritic stainless steel and its method for refining
US20210072702A1 (en) * 2019-09-05 2021-03-11 Seiko Epson Corporation Watch Component And Watch
US11644795B2 (en) 2019-09-05 2023-05-09 Seiko Epson Corporation Watch component and watch
US11669048B2 (en) * 2019-09-05 2023-06-06 Seiko Epson Corporation Watch component and watch
US11669049B2 (en) 2019-10-30 2023-06-06 Seiko Epson Corporation Watch component and watch
US11774913B2 (en) 2019-11-11 2023-10-03 Seiko Epson Corporation Watch component and watch
US11687038B2 (en) 2019-12-13 2023-06-27 Seiko Epson Corporation Watch outer packaging component and watch
US11809140B2 (en) 2019-12-13 2023-11-07 Seiko Epson Corporation Housing and device

Also Published As

Publication number Publication date
JP4987326B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4987326B2 (en) Surface hardened ferritic stainless steel sheet
EP2540854B1 (en) Super-high strength cold-rolled steel sheet having excellent bending properties
US9580785B2 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
KR101617505B1 (en) Steel sheet for hot stamping members and method for producing same
JP5365112B2 (en) High strength steel plate and manufacturing method thereof
US6558815B1 (en) Hot dip Galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer
JP6797934B2 (en) A method for manufacturing a high-strength steel sheet with improved strength and formability, and the obtained high-strength steel sheet.
CA2934599C (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
JP2006274348A (en) High carbon steel sheet
KR101733513B1 (en) Steel sheet for nitriding and production method therefor
JP2006104546A (en) High strength automobile member and hot pressing method
JP2006224162A (en) Hot press forming method
KR101701652B1 (en) Steel sheet for soft-nitriding and method for manufacturing the same
Birol Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures
JP5262664B2 (en) Cr-containing steel plate and manufacturing method thereof
JPH07316740A (en) High strength stainless steel with composite phase structure and its production
KR20150123903A (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP4561136B2 (en) Steel sheet for nitriding treatment
JP4946617B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP2000212706A (en) Cr STAINLESS STEEL SHEET AND ITS PRODUCTION
JP2005298848A (en) Hot pressing method for steel sheet
JP6095822B1 (en) Martensitic stainless steel sheet and metal gasket manufacturing method
JP2003105489A (en) Steel for soft nitriding, and production method therefor
JP4325245B2 (en) Nitrided member excellent in durability fatigue characteristics and method for producing the same
JPH0280539A (en) Steel for nitriding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250