JP2007238402A - Powder production apparatus and powder production method - Google Patents

Powder production apparatus and powder production method Download PDF

Info

Publication number
JP2007238402A
JP2007238402A JP2006065144A JP2006065144A JP2007238402A JP 2007238402 A JP2007238402 A JP 2007238402A JP 2006065144 A JP2006065144 A JP 2006065144A JP 2006065144 A JP2006065144 A JP 2006065144A JP 2007238402 A JP2007238402 A JP 2007238402A
Authority
JP
Japan
Prior art keywords
powder
raw material
mist
plasma
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065144A
Other languages
Japanese (ja)
Inventor
Takashi Ogiwara
隆 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2006065144A priority Critical patent/JP2007238402A/en
Publication of JP2007238402A publication Critical patent/JP2007238402A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder production apparatus that can produce a powder with uniform powder shape and to provide a powder production method. <P>SOLUTION: Source liquid mist is generated by a mist generating means 6; the mist is carried by an air flow and dried by heating the air flow by a drying device 2 to generate a source powder; and the source powder is pyrolyzed and fused in a plasma space at an ultrahigh temperature produced by the plasma generating means 8 of a plasma heating device 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉体製造装置および粉体製造方法、特に、ナノ粉体の製造に適する粉体製造装置および粉体製造方法に関する。   The present invention relates to a powder manufacturing apparatus and a powder manufacturing method, and more particularly to a powder manufacturing apparatus and a powder manufacturing method suitable for manufacturing nanopowder.

例えば2次電池や半導体などの材料となる粉体の製造に適用される従来の粉体製造装置として、特許文献1に、プラズマ放電を行う電極を有する粉体生成塔内に、原料水溶液を噴霧し、プラズマ放電によって形成する超高温のプラズマ空間で、原料水溶液を乾燥、熱分解して融合させるものが開示されている。   For example, as a conventional powder production apparatus applied to the production of powder used as a material for secondary batteries and semiconductors, Patent Document 1 discloses that a raw material aqueous solution is sprayed into a powder production tower having an electrode for performing plasma discharge. However, there is disclosed a method in which an aqueous raw material solution is dried, thermally decomposed and fused in an ultra-high temperature plasma space formed by plasma discharge.

図6に、例として、従来の粉体製造装置で製造したLaGaO系酸化物粉体の電子顕微鏡写真を示す。従来の粉体製造装置で製造した粉体粒子は、形状がいびつで、不均一である。これは、原料水溶液の液滴が超高温のプラズマ空間で瞬間的に加熱され、粒子内の水分が一瞬のうちに気化膨張することで、粒子が水蒸気爆発して破壊されるためである。
特開2004−263257号公報
FIG. 6 shows, as an example, an electron micrograph of LaGaO 3 -based oxide powder produced by a conventional powder production apparatus. The powder particles manufactured by the conventional powder manufacturing apparatus are irregular in shape and non-uniform. This is because the droplets of the raw material aqueous solution are instantaneously heated in the ultra-high temperature plasma space, and the water in the particles evaporates and expands instantaneously, thereby destroying the particles by steam explosion.
JP 2004-263257 A

前記問題点に鑑みて、本発明は、粒子形状の均一な粉体を製造できる粉体製造装置および粉体製造方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a powder manufacturing apparatus and a powder manufacturing method capable of manufacturing a powder having a uniform particle shape.

前記課題を解決するために、本発明による粉体製造装置は、原料液のミストを生成するミスト発生手段と、前記ミストを乾燥させて原料粉体を生成する乾燥装置と、超高温のプラズマ空間を形成するプラズマ発生手段を備え、前記プラズマ空間において前記原料粉体を熱分解して融合させるプラズマ加熱装置とを有するものとする。   In order to solve the above problems, a powder manufacturing apparatus according to the present invention includes a mist generating means for generating a mist of a raw material liquid, a drying device for generating a raw material powder by drying the mist, and an ultra-high temperature plasma space. And a plasma heating device that thermally decomposes and fuses the raw material powder in the plasma space.

この構成によれば、原料液のミストを乾燥装置で乾燥して粉体にしてから、乾燥した粉体をプラズマ空間で熱変成させる。これによって、原料の水蒸気爆発を防止して、原料液のミスト形状を破壊せずに所定の粉体に変性させることができ、粒子形状の均一な粉体を製造することができる。   According to this configuration, the mist of the raw material liquid is dried with a drying device to form a powder, and then the dried powder is thermally transformed in the plasma space. As a result, the steam explosion of the raw material can be prevented, and the mist shape of the raw material liquid can be modified into a predetermined powder without destroying it, and a powder having a uniform particle shape can be produced.

前記乾燥装置の乾燥温度は、100℃以上200℃以下であるのがよい。   The drying temperature of the drying device may be 100 ° C. or higher and 200 ° C. or lower.

この構成によれば、原料液のミスト形状を破壊せずに水分を蒸発させて、形状の均一な乾燥した原料粉体を生成できる。これによって、プラズマ空間において水蒸気爆発が防止される。   According to this configuration, moisture can be evaporated without destroying the mist shape of the raw material liquid, and a dry raw material powder having a uniform shape can be generated. This prevents water vapor explosion in the plasma space.

また、本発明による粉体の製造方法は、原料液のミストを生成し、前記ミストを気流によって搬送し、前記気流を加熱することで前記ミストを乾燥して原料粉体を生成し、前記原料粉体を超高温のプラズマ空間で熱分解して融合させる方法とする。   In addition, the method for producing a powder according to the present invention generates a mist of a raw material liquid, conveys the mist by an air flow, heats the air flow to dry the mist, and generates a raw material powder. The powder is thermally decomposed and fused in an ultra-high temperature plasma space.

この方法によれば、原料液のミストを搬送する気流を加熱してミストを乾燥するので、略球形の乾燥した原料粉体が得られ、乾燥した原料粉体を高温のプラズマ空間で熱変性させるので水蒸気爆発することなく、略球形の均一な粉体を生成できる。   According to this method, since the mist is dried by heating the air current carrying the mist of the raw material liquid, a substantially spherical dry raw material powder is obtained, and the dried raw material powder is thermally denatured in a high-temperature plasma space. Therefore, a substantially spherical uniform powder can be generated without causing a steam explosion.

また、本発明による粉体の製造方法において、前記原料液をモル比に換算してLa:Sr:Ga:Mgが8:2:8:2の水溶液にすれば、前記プラズマ空間でLaGaO系酸化物の粉体を生成することができる。 In the method for producing powder according to the present invention, if the raw material liquid is converted to a molar ratio to make an aqueous solution of La: Sr: Ga: Mg of 8: 2: 8: 2, the LaGaO 3 system in the plasma space. Oxide powder can be produced.

また、本発明による粉体の製造方法において、前記原料液をモル比に換算してLi:Ni:Co:Mnが3:1:1:1の水溶液にすれば、前記プラズマ空間でLi(Co1/3Ni1/3Mn1/3)Oの粉体を生成することができる。 In the method for producing a powder according to the present invention, if the raw material liquid is converted into a molar ratio to make an aqueous solution of Li: Ni: Co: Mn of 3: 1: 1: 1, Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 powder can be produced.

また、本発明による粉体の製造方法において、モル比に換算してBa:Tiが1:1の酢酸またはクエン酸の水溶液にすれば、前記プラズマ空間でBaTiOの粉体を生成することができる。 Further, in the method for producing a powder according to the present invention, if an aqueous solution of acetic acid or citric acid in which Ba: Ti is 1: 1 in terms of molar ratio, BaTiO 3 powder can be produced in the plasma space. it can.

以上のように、本発明によれば、原料液のミストを乾燥してからプラズマ空間で熱変成させるので、ミストの粒子を破壊せずに乾燥、熱変性して球形の粉体を生成できる。   As described above, according to the present invention, since the mist of the raw material liquid is dried and then thermally transformed in the plasma space, a spherical powder can be generated by drying and heat denaturation without destroying the mist particles.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1は、本発明の第1実施形態の粉体製造装置1を示す。粉体製造装置1は、乾燥塔(乾燥装置)2、プラズマ加熱炉(プラズマ加熱装置)3およびバグフィルタ4を直列に接続し、排気ファン5で空気を引き抜くことで、乾燥塔2からプラズマ加熱炉3を経てバグフィルタ4を通過する気流を発生させるものである。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows a powder production apparatus 1 according to a first embodiment of the present invention. The powder manufacturing apparatus 1 connects a drying tower (drying apparatus) 2, a plasma heating furnace (plasma heating apparatus) 3, and a bag filter 4 in series, and draws air with an exhaust fan 5, thereby plasma heating from the drying tower 2. An airflow passing through the bag filter 4 through the furnace 3 is generated.

乾燥塔2は、直立筒状をしており、頂部にミスト発生手段であるスプレーノズル6が配置され、胴部を外側から加熱する電熱ヒータ7を有している。スプレーノズル6は、乾燥塔2内に原料液を噴霧して原料液のミスト(液滴)を生成することができる。また、電熱ヒータ7は、乾燥塔2内の気流を設定した温度に加熱するようにコントロールされる。   The drying tower 2 has an upright cylindrical shape, and has a spray nozzle 6 as a mist generating means at the top and an electric heater 7 that heats the body from the outside. The spray nozzle 6 can generate a mist (droplet) of the raw material liquid by spraying the raw material liquid into the drying tower 2. The electric heater 7 is controlled so as to heat the airflow in the drying tower 2 to a set temperature.

プラズマ加熱炉3は、直立筒状に形成され、乾燥塔2の直下に設置されており、胴部に複数のプラズマ電極8が配置されている。プラズマ電極8は、それぞれの間でプラズマ放電をすることによって、プラズマ加熱炉3内に2000℃を超える超高温のプラズマ空間を形成する。   The plasma heating furnace 3 is formed in an upright cylindrical shape, is installed immediately below the drying tower 2, and a plurality of plasma electrodes 8 are arranged on the body. The plasma electrodes 8 form a super-high temperature plasma space exceeding 2000 ° C. in the plasma heating furnace 3 by performing plasma discharge between them.

バグフィルタ4は、濾布9によってプラズマ加熱炉3の下部から流出する気流から粉体を分離する。   The bag filter 4 separates the powder from the airflow flowing out from the lower part of the plasma heating furnace 3 by the filter cloth 9.

続いて、粉体製造装置1における粉体製造について説明する。
スプレーノズル6で生成された原料液のミストは、排気ファン5による気流に乗って乾燥塔2内を下方に搬送される。電気ヒータ7は、原料液のミストを搬送する気流の温度を100℃から200℃に加熱する。これによって、原料液のミストは、各液滴の形状を維持したまま水分が蒸発し、略球形の乾燥した微粒子からなる原料粉体になる。気流の温度が100℃より低いと乾燥が不十分になるおそれがあり、200℃を超えると水分が爆発的に気化して液滴を分裂させるおそれがある。
Subsequently, powder production in the powder production apparatus 1 will be described.
The mist of the raw material liquid generated by the spray nozzle 6 is transported downward in the drying tower 2 on the air current by the exhaust fan 5. The electric heater 7 heats the temperature of the airflow carrying the raw material mist from 100 ° C. to 200 ° C. Thus, the mist of the raw material liquid evaporates while maintaining the shape of each droplet, and becomes a raw material powder composed of substantially spherical dried fine particles. If the temperature of the airflow is lower than 100 ° C., drying may be insufficient, and if it exceeds 200 ° C., water may explosively vaporize and break the droplets.

乾燥塔2内で乾燥された原料粉体は、気流に乗ってプラズマ加熱炉3内に搬送され、プラズマ電極8が形成する超高温のプラズマ空間に到達する。原料微粒子は、プラズマ空間において瞬間的に加熱され、熱分解して融合することで、目的の粉体に変性される。この工程においては、乾燥した原料粉体をさらに加熱するので、原料粉体に瞬間的に大きな熱を与えても水蒸気爆発によって粒子が破壊される心配がない。このため、原料粉体を破壊することなく変性して、略球形の微粒子からなる粉体を得ることができる。また、スプレーノズル6が生成したミストの液滴を分裂させることなくそのまま熱変性するので、得られる粉体の粒度のバラツキが小さくなる。   The raw material powder dried in the drying tower 2 is carried in an air current and transported into the plasma heating furnace 3 and reaches an ultra-high temperature plasma space formed by the plasma electrode 8. The raw material fine particles are instantaneously heated in the plasma space, and thermally decomposed and fused to be modified into the target powder. In this step, since the dried raw material powder is further heated, there is no concern that the particles are destroyed by the steam explosion even if the raw material powder is momentarily heated. For this reason, the raw material powder can be modified without breaking to obtain a powder composed of substantially spherical fine particles. Further, since the mist droplets generated by the spray nozzle 6 are thermally denatured as they are without being disrupted, variations in the particle size of the obtained powder are reduced.

さらに、図2に、本発明の第2実施形態の粉体製造装置1’を示す。本実施形態において、前記第1実施形態と同じ構成要素には同じ符号を付して説明を省略する。
粉体製造装置1’は、スプレーノズル6に換えて、ミスト発生手段として、ミストボックス10と挿気ファン11とが設けられている。
Further, FIG. 2 shows a powder production apparatus 1 ′ according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
The powder production apparatus 1 ′ is provided with a mist box 10 and an air insertion fan 11 as mist generating means instead of the spray nozzle 6.

ミストボックス10は、底部に超音波振動子12を備える水槽であり、所定量の原料液を貯留するようになっている。超音波振動子12によって振動させられた原料液からは、挿気ファン11が送り込んだ気流中に微細な液滴が飛び出してミストを生成し、原料液のミストは、そのまま気流に乗って乾燥塔2内に搬送される。   The mist box 10 is a water tank having an ultrasonic transducer 12 at the bottom, and stores a predetermined amount of raw material liquid. From the raw material liquid oscillated by the ultrasonic vibrator 12, fine droplets are ejected into the air stream sent by the air intake fan 11 to generate mist. 2 is conveyed.

本実施形態では、超音波振動によって液径数μmの微細なミストを生成でき、形状が均一で微細な粉体を製造することができる。なお、第1実施形態においても、スプレーノズル6を超音波振動子を有する超音波スプレーノズルにすれば、数十μm以下の微細なミストを発生させることができる。   In the present embodiment, a fine mist having a liquid diameter of several μm can be generated by ultrasonic vibration, and a fine powder having a uniform shape can be produced. In the first embodiment as well, if the spray nozzle 6 is an ultrasonic spray nozzle having an ultrasonic vibrator, a fine mist of several tens of μm or less can be generated.

続いて、本発明の実施例を説明する。
実施例1として、第2実施形態の粉体製造装置1’により、燃料電池の固体電解質材料に用いられるLaGaO系酸化物(La0.8Sr0.2Ga0.8Mg0.2)を製造した。
Next, examples of the present invention will be described.
As Example 1, a LaGaO 3 -based oxide (La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O) used for a solid electrolyte material of a fuel cell by the powder manufacturing apparatus 1 ′ of the second embodiment. 3 ) was produced.

原料として、硝酸ランタン、硝酸ストロンチウム、硝酸ガリウムおよび硝酸マグネシウムの各硝酸塩を用い、モル比に換算してLa:Sr:Ga:Mgが8:2:8:2になるように各硝酸塩を秤量し、各硝酸塩のモル比が等しくなるように秤量して0.1mol/dmの濃度になるように蒸留水に溶解したものを原料液とした。 Using each nitrate of lanthanum nitrate, strontium nitrate, gallium nitrate and magnesium nitrate as raw materials, each nitrate was weighed so that La: Sr: Ga: Mg was 8: 2: 8: 2 in terms of molar ratio. A raw material solution was prepared by weighing so that the molar ratios of the nitrates were equal and dissolving in distilled water to a concentration of 0.1 mol / dm 3 .

ミストボックス10において液滴径2〜3μmのミストを発生させ、乾燥塔2において200℃で乾燥し、プラズマ加熱炉3において7000℃で熱分解して融合した。こうして得られたLSCMの粉体は、LaSrGaおよびLaSrGaOを含んでいたが、さらにこの粉体を1300℃で10時間2次焼成することで、純度の高いLaGaO系酸化物を得ることができた。 Mist having a droplet diameter of 2 to 3 μm was generated in the mist box 10, dried at 200 ° C. in the drying tower 2, and thermally decomposed at 7000 ° C. in the plasma heating furnace 3 to be fused. The LSCM powder thus obtained contained LaSrGa 3 O 7 and LaSrGaO 4 , and this powder was further subjected to secondary firing at 1300 ° C. for 10 hours to obtain a highly pure LaGaO 3 -based oxide. I was able to.

図3に、本実施例で得られた粉体粒子の電子顕微鏡写真を示す。本実施例では、平均粒子径が930nmで幾何標準偏差が1.36の粉体を得ることができた。図6に示す従来の製造方法によって得られた粉体と比較すると、本実施例の粉体は、粒子形状が均一な球形で、粒度の均一性も高いことが分かる。   FIG. 3 shows an electron micrograph of the powder particles obtained in this example. In this example, a powder having an average particle size of 930 nm and a geometric standard deviation of 1.36 could be obtained. Compared with the powder obtained by the conventional manufacturing method shown in FIG. 6, it can be seen that the powder of this example has a uniform spherical particle shape and high uniformity of particle size.

さらに、実施例2として、第2実施形態の粉体製造装置1’により、リチウムイオン2次電池の正極材料に用いられるLi(Co1/3Ni1/3Mn1/3)Oを製造した。 Furthermore, as Example 2, Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 used for the positive electrode material of the lithium ion secondary battery is manufactured by the powder manufacturing apparatus 1 ′ of the second embodiment. did.

原料として、硝酸リチウム、硝酸ニッケル、硝酸コバルトおよび硝酸マンガンの各硝酸塩を用い、モル比に換算してLi:Ni:Co:Mnが3:1:1:1になるように各硝酸塩を秤量し、0.5mol/dmの濃度になるように蒸留水に溶解したものを原料液とした。 Using each nitrate of lithium nitrate, nickel nitrate, cobalt nitrate and manganese nitrate as raw materials, each nitrate was weighed so that the molar ratio of Li: Ni: Co: Mn was 3: 1: 1: 1. The raw material solution was dissolved in distilled water to a concentration of 0.5 mol / dm 3 .

ミストボックス10において液滴径2〜3μmのミストを発生させ、乾燥塔2において200℃で乾燥し、プラズマ加熱炉3において7000℃で熱分解して融合した。   Mist having a droplet diameter of 2 to 3 μm was generated in the mist box 10, dried at 200 ° C. in the drying tower 2, and thermally decomposed at 7000 ° C. in the plasma heating furnace 3 to be fused.

図4に、こうして得られた粉体粒子の電子顕微鏡写真を示す。本実施例では、平均粒子径が20nmで幾何標準偏差が1.2の微細で粒度のバラツキの少ない、形状の均一な粉体を得ることができた。   FIG. 4 shows an electron micrograph of the powder particles thus obtained. In this example, it was possible to obtain a fine powder having an average particle diameter of 20 nm, a geometric standard deviation of 1.2, and a uniform shape with little variation in particle size.

さらに、実施例3として、第2実施形態の粉体製造装置1’により、セラミック積層コンデンサなどの誘電体材料やPTCRサーミスタに用いられるBaTiOを製造した。 Furthermore, as Example 3, BaTiO 3 used for a dielectric material such as a ceramic multilayer capacitor and a PTCR thermistor was manufactured by the powder manufacturing apparatus 1 ′ of the second embodiment.

原料として、酢酸バリウムおよびチタンテトライソプロピルモノマーを用い、モル比に換算してBa:Tiが1:1になるように酢酸の水溶液に0.1mol/dmの濃度になるように溶解したものを原料液とした。 As raw materials, barium acetate and titanium tetraisopropyl monomer were used and dissolved in an aqueous solution of acetic acid to a concentration of 0.1 mol / dm 3 so that Ba: Ti was 1: 1 in terms of molar ratio. A raw material liquid was used.

ミストボックス10において液滴径2〜3μmのミストを発生させ、乾燥塔2において200℃で乾燥し、プラズマ加熱炉3において7000℃で熱分解して融合した。   Mist having a droplet diameter of 2 to 3 μm was generated in the mist box 10, dried at 200 ° C. in the drying tower 2, and thermally decomposed at 7000 ° C. in the plasma heating furnace 3 to be fused.

図5に、こうして得られた粉体粒子の電子顕微鏡写真を示す。本実施例では、平均粒子径が50nmで幾何標準偏差が1.2の微細で粒度のバラツキの少ない、形状の均一な粉体を得ることができた。   FIG. 5 shows an electron micrograph of the powder particles thus obtained. In this example, it was possible to obtain a fine powder having an average particle diameter of 50 nm, a geometric standard deviation of 1.2, and having a uniform shape and a small variation in particle size.

本実施例の酢酸バリウムに代えて塩化バリウムまたは硝酸バリウムを用いてもよく、酢酸に代えてクエン酸の水溶液を用いても、形状の均一なBaTiOの微細な粉体が得られる。 Barium chloride or barium nitrate may be used in place of barium acetate in this example, and a fine powder of BaTiO 3 having a uniform shape can be obtained by using an aqueous solution of citric acid instead of acetic acid.

本発明は、各実施例の粉体のみならず、多様な粉体、特にナノサイズの粉体を製造するのに適用できる。   The present invention can be applied not only to the powder of each example but also to manufacture various powders, particularly nano-sized powders.

本発明の第1実施形態の粉体製造装置の概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the powder manufacturing apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の粉体製造装置の概略図。Schematic of the powder manufacturing apparatus of 2nd Embodiment of this invention. 図2の粉体製造装置で製造した粉体の実施例の拡大写真。The enlarged photograph of the Example of the powder manufactured with the powder manufacturing apparatus of FIG. 図2の粉体製造装置で製造した粉体の異なる実施例の拡大写真。The enlarged photograph of the different Example of the powder manufactured with the powder manufacturing apparatus of FIG. 図2の粉体製造装置で製造した粉体のさらに異なる実施例の拡大写真。The enlarged photograph of the Example from which the powder manufactured with the powder manufacturing apparatus of FIG. 2 further differs. 従来の方法で製造した粉体の拡大写真。An enlarged photograph of powder produced by a conventional method.

符号の説明Explanation of symbols

1,1’ 粉体製造装置
2 乾燥塔(乾燥装置)
3 プラズマ加熱炉(プラズマ加熱装置)
6 スプレーノズル(ミスト発生手段)
7 電熱ヒータ
8 プラズマ電極(プラズマ発生手段)
10 ミストボックス(ミスト発生手段)
12 超音波振動子
1,1 'Powder production equipment 2 Drying tower (drying equipment)
3 Plasma heating furnace (plasma heating device)
6 Spray nozzle (mist generating means)
7 Electric heater 8 Plasma electrode (plasma generating means)
10 Mist box (Mist generating means)
12 Ultrasonic transducer

Claims (7)

原料液のミストを生成するミスト発生手段と、
前記ミストを乾燥させて原料粉体を生成する乾燥装置と、
超高温のプラズマ空間を形成するプラズマ発生手段を備え、前記プラズマ空間において前記原料粉体を熱分解して融合させるプラズマ加熱装置とを有することを特徴とする粉体製造装置。
Mist generating means for generating a mist of the raw material liquid;
A drying apparatus for drying the mist to produce a raw material powder;
A powder manufacturing apparatus comprising: a plasma generating unit that forms an ultra-high temperature plasma space; and a plasma heating device that thermally decomposes and fuses the raw material powder in the plasma space.
前記乾燥装置の乾燥温度は、100℃以上200℃以下であることを特徴とする請求項1に記載の粉体製造装置。   The powder manufacturing apparatus according to claim 1, wherein a drying temperature of the drying apparatus is 100 ° C. or more and 200 ° C. or less. 原料液のミストを生成し、
前記ミストを気流によって搬送し、
前記気流を加熱することで前記ミストを乾燥して原料粉体を生成し、
前記原料粉体を超高温のプラズマ空間で熱分解して融合させることを特徴とする粉体製造方法。
Generate mist of raw material liquid,
Transport the mist by airflow,
The mist is dried by heating the airflow to produce a raw material powder,
A powder manufacturing method, characterized in that the raw material powder is thermally decomposed and fused in an ultra-high temperature plasma space.
前記ミストを乾燥する際の前記気流の温度は、100℃以上200℃以下であることを特徴とする請求項3に記載の粉体製造方法。   The method for producing a powder according to claim 3, wherein the temperature of the airflow when drying the mist is 100 ° C or higher and 200 ° C or lower. 前記原料液は、モル比に換算してLa:Sr:Ga:Mgが8:2:8:2の水溶液であり、前記プラズマ空間でLaGaO系酸化物の粉体を生成することを特徴とする請求項3または4に記載の粉体製造方法。 The raw material liquid is an aqueous solution in which La: Sr: Ga: Mg is 8: 2: 8: 2 in terms of molar ratio, and a powder of LaGaO 3 oxide is generated in the plasma space. The powder production method according to claim 3 or 4. 前記原料液は、モル比に換算してLi:Ni:Co:Mnが3:1:1:1の水溶液であり、前記プラズマ空間でLi(Co1/3Ni1/3Mn1/3)Oの粉体を生成することを特徴とする請求項3または4に記載の粉体製造方法。 The raw material liquid is an aqueous solution of Li: Ni: Co: Mn 3: 1: 1: 1 in terms of molar ratio, and Li (Co 1/3 Ni 1/3 Mn 1/3 ) in the plasma space. The powder production method according to claim 3 or 4, wherein a powder of O 2 is produced. 前記原料液は、モル比に換算してBa:Tiが1:1の酢酸またはクエン酸の水溶液であり、前記プラズマ空間でBaTiOの粉体を生成することを特徴とする請求項3または4に記載の粉体製造方法。 5. The raw material solution is an aqueous solution of acetic acid or citric acid having a Ba: Ti ratio of 1: 1 in terms of a molar ratio, and generates BaTiO 3 powder in the plasma space. The powder manufacturing method as described in 2 ..
JP2006065144A 2006-03-10 2006-03-10 Powder production apparatus and powder production method Pending JP2007238402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065144A JP2007238402A (en) 2006-03-10 2006-03-10 Powder production apparatus and powder production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065144A JP2007238402A (en) 2006-03-10 2006-03-10 Powder production apparatus and powder production method

Publications (1)

Publication Number Publication Date
JP2007238402A true JP2007238402A (en) 2007-09-20

Family

ID=38584296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065144A Pending JP2007238402A (en) 2006-03-10 2006-03-10 Powder production apparatus and powder production method

Country Status (1)

Country Link
JP (1) JP2007238402A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277041A (en) * 2016-11-14 2017-01-04 东北大学 A kind of preparation method of lanthanum gallate solid solution Barium metatitanate. amorphous
JP2019026507A (en) * 2017-07-28 2019-02-21 住友金属鉱山株式会社 Method for producing transition metal composite oxide particles
JP2019522319A (en) * 2016-06-23 2019-08-08 アマスタン・テクノロジーズ・エル・エル・シー Lithium-ion battery material
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188416A (en) * 1988-01-19 1989-07-27 Furukawa Electric Co Ltd:The Production of oxide superconducting powder
JPH02311308A (en) * 1989-05-24 1990-12-26 Nkk Corp Production of ultrafine powder for sintering raw material and composed of oxide
JPH059023A (en) * 1991-06-28 1993-01-19 Toyo Ink Mfg Co Ltd Production of powder of perovskite type compound oxide
JPH11157842A (en) * 1997-11-28 1999-06-15 Toyota Central Res & Dev Lab Inc Production of lithium manganese dioxide
JP2002110156A (en) * 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
JP2003059490A (en) * 2001-08-17 2003-02-28 Tanaka Chemical Corp Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2005053715A (en) * 2003-08-06 2005-03-03 Noritake Co Ltd Method for manufacturing metal oxide powder, and utilization of the powder
JP2005218938A (en) * 2004-02-04 2005-08-18 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle manufacturing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188416A (en) * 1988-01-19 1989-07-27 Furukawa Electric Co Ltd:The Production of oxide superconducting powder
JPH02311308A (en) * 1989-05-24 1990-12-26 Nkk Corp Production of ultrafine powder for sintering raw material and composed of oxide
JPH059023A (en) * 1991-06-28 1993-01-19 Toyo Ink Mfg Co Ltd Production of powder of perovskite type compound oxide
JPH11157842A (en) * 1997-11-28 1999-06-15 Toyota Central Res & Dev Lab Inc Production of lithium manganese dioxide
JP2002110156A (en) * 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
JP2003059490A (en) * 2001-08-17 2003-02-28 Tanaka Chemical Corp Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003197219A (en) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The Solid oxide fuel cell and manufacturing method
JP2005053715A (en) * 2003-08-06 2005-03-03 Noritake Co Ltd Method for manufacturing metal oxide powder, and utilization of the powder
JP2005218938A (en) * 2004-02-04 2005-08-18 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle manufacturing apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577314B2 (en) 2015-12-16 2023-02-14 6K Inc. Spheroidal titanium metallic powders with custom microstructures
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
JP2022036097A (en) * 2016-06-23 2022-03-04 シックスケー インコーポレイテッド Lithium ion battery material
JP2019522319A (en) * 2016-06-23 2019-08-08 アマスタン・テクノロジーズ・エル・エル・シー Lithium-ion battery material
JP6991165B2 (en) 2016-06-23 2022-01-12 シックスケー インコーポレイテッド Lithium-ion battery material
JP7303281B2 (en) 2016-06-23 2023-07-04 シックスケー インコーポレイテッド lithium ion battery material
CN106277041A (en) * 2016-11-14 2017-01-04 东北大学 A kind of preparation method of lanthanum gallate solid solution Barium metatitanate. amorphous
CN106277041B (en) * 2016-11-14 2018-01-12 东北大学 A kind of preparation method of lanthanum gallate solid solution barium titanate amorphous
JP2019026507A (en) * 2017-07-28 2019-02-21 住友金属鉱山株式会社 Method for producing transition metal composite oxide particles
US11273491B2 (en) 2018-06-19 2022-03-15 6K Inc. Process for producing spheroidized powder from feedstock materials
US11465201B2 (en) 2018-06-19 2022-10-11 6K Inc. Process for producing spheroidized powder from feedstock materials
US11471941B2 (en) 2018-06-19 2022-10-18 6K Inc. Process for producing spheroidized powder from feedstock materials
US11311938B2 (en) 2019-04-30 2022-04-26 6K Inc. Mechanically alloyed powder feedstock
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Similar Documents

Publication Publication Date Title
JP2007238402A (en) Powder production apparatus and powder production method
JP4624006B2 (en) Spherical composite particle manufacturing method and manufacturing apparatus thereof
KR100772467B1 (en) Electrodes including particles of specific sizes
WO2005123307A1 (en) Nickel powder and manufacturing method thereof
TW558471B (en) Method and device for manufacturing metallic particulates and manufactured metallic particulates
JP5318463B2 (en) Fine particle production method and production apparatus used therefor
JP6559118B2 (en) Nickel powder
JP7080856B2 (en) Metal powder and its manufacturing method
WO2016080528A1 (en) Fine silver particle
JP2013220967A (en) Method for producing complex metal oxide
TW201206561A (en) Spraying apparatus and powder production equipment
JP2014071977A (en) Method and device for manufacturing lithium ion battery
Guo et al. Platinum and Palladium Nanotubes Based on Genetically Engineered Elastin–Mimetic Fusion Protein‐Fiber Templates: Synthesis and Application in Lithium‐O2 Batteries
CN112341208A (en) Preparation method of oxygen-loss type oxide ceramic spherical powder, oxygen-loss type oxide ceramic spherical powder and fuel cell electrolyte film
JP4578428B2 (en) Barium titanate powder and production method thereof
JPH08170112A (en) Production of metallic powder by spray thermal decomposition and apparatus therefor
KR101478555B1 (en) Nickel nano powder and method of manufacturing the same using high temperature plasma
US8888889B2 (en) Method of making non-hollow, non-fragmented spherical metal or metal alloy particles
KR101410971B1 (en) Continous nanoink producing apparatus
JP2005137955A (en) Particle production apparatus and particle production method
WO2004065304A1 (en) Method for producing titanium-containing oxide ultrafine particle and titanium-containing oxide ultrafine particle
TW202124068A (en) Fine particles
JP4359667B2 (en) Method for producing lithium manganate powder, produced lithium manganate powder, electrode and lithium secondary battery
JP2021039872A (en) Method for manufacturing lanthanum lithium titanate crystal grain for solid electrolyte of lithium ion secondary battery
JP2014191959A (en) Lithium ion battery manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207