JP2007236053A - Disconnector grounding switch - Google Patents

Disconnector grounding switch Download PDF

Info

Publication number
JP2007236053A
JP2007236053A JP2006052164A JP2006052164A JP2007236053A JP 2007236053 A JP2007236053 A JP 2007236053A JP 2006052164 A JP2006052164 A JP 2006052164A JP 2006052164 A JP2006052164 A JP 2006052164A JP 2007236053 A JP2007236053 A JP 2007236053A
Authority
JP
Japan
Prior art keywords
phase
pinion gear
conductor
insulating rod
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052164A
Other languages
Japanese (ja)
Other versions
JP4660397B2 (en
Inventor
Hironori Yanaga
博紀 矢永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006052164A priority Critical patent/JP4660397B2/en
Publication of JP2007236053A publication Critical patent/JP2007236053A/en
Application granted granted Critical
Publication of JP4660397B2 publication Critical patent/JP4660397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0352Gas-insulated switchgear for three phase switchgear

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disconnector grounding switch capable of miniaturizing a tank diameter, while ensuring a necessary relative insulating distance and necessary ground insulation distance, reducing a cost. <P>SOLUTION: In the inside of a tank 1 filled up with insulating gas 2, three-phase conductors 3, 4, 5 are each positioned of each of apices of an isosceles triangle, and the three-phase conductors 3, 4, 5 are arranged so as to form a staggered arrangement across the center line of insulating rods 6, 7, 8. Rotary turnover devices 16a, 16b for reverting the rotation of a pinion gear 13 are provided on both sides of the pinion gear 13 so that three-phase movable conductors 9, 10, 11 have the same sliding direction. The rotary turnover device 16a provided on an A-phase side is fixed on the insulating rod 7, and the rotary turnover device 16b provided on a C-phase side is fixed on the insulating rod 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ピニオンとラックによって三相分の断路部を同時に開閉駆動するようにした断路器接地開閉器に関する。   The present invention relates to a disconnector grounding switch that is configured to simultaneously open and close disconnecting portions for three phases by a pinion and a rack.

一般に、ガス絶縁開閉装置に使用される断路器接地開閉器には様々な駆動方式がある。なかでも絶縁ガスを充填したタンク内に三相の開閉部を収納した断路器接地開閉器は、棒状の絶縁物を回転することで開閉部を駆動するものが多い。このような断路器接地開閉器としては、三相開閉部が二等辺三角形の各頂点に配置され、開閉部と操作装置の空間に開閉部を動かすためのギアボックスを配置し、そのギアボックスと開閉部を絶縁物で繋ぎ、その力を開閉部に伝えることで動作するものがある(例えば、特許文献1参照)。   In general, there are various drive systems for the disconnect switch ground switch used in the gas insulated switchgear. Among them, a disconnecting switch grounding switch in which a three-phase switching unit is housed in a tank filled with an insulating gas often drives the switching unit by rotating a rod-shaped insulator. As such a disconnector grounding switch, a three-phase switching unit is arranged at each vertex of an isosceles triangle, a gear box for moving the switching unit is arranged in the space of the switching unit and the operating device, and the gear box There is one that operates by connecting the opening / closing part with an insulator and transmitting the force to the opening / closing part (see, for example, Patent Document 1).

また、他の例としては、図11及び図12に示すような三相開閉部が直線状に配置され、それぞれの開閉部を駆動する部品を棒状の絶縁物で回転することで、操作装置の操作力を伝達する構造のものも存在する。   As another example, three-phase opening and closing parts as shown in FIGS. 11 and 12 are arranged in a straight line, and the parts that drive each opening and closing part are rotated by a rod-like insulator, so that There are also structures that transmit operating force.

すなわち、図11及び図12に示した断路器接地開閉器においては、SF6ガス等の絶縁ガス2を充填したタンク1の内部に三相導体3、4、5が直線状に配置され、また、これらの導体3、4、5の内部には、直線摺動可能な棒状の可動導体9、10、11がそれぞれ収納されている。そして、これら可動導体9、10、11が、対向して配置されている三相導体3´、4´、5´の凹部に嵌合することによって、三相導体3−3´、4−4´、5−5´を接続するように断路部が構成されている。また、可動導体9、10、11と導体3、4、5は、接触子17により電気的に接続されている。本明細書においては、これら三相導体3−3´、4−4´、5−5´を、操作装置18からの距離が近い導体から順にA、B、C相というものとする。なお、図12では、これら三相導体のうち、B相の導体4、4´、10を示す。 That is, in the disconnector ground switch shown in FIGS. 11 and 12, the three-phase conductors 3, 4, and 5 are linearly arranged inside the tank 1 filled with the insulating gas 2 such as SF 6 gas. In these conductors 3, 4, and 5, rod-like movable conductors 9, 10, and 11 that are slidable linearly are accommodated, respectively. These movable conductors 9, 10, and 11 are fitted into the recesses of the three-phase conductors 3 ′, 4 ′, and 5 ′ that are arranged to face each other, so that the three-phase conductors 3-3 ′ and 4-4 are provided. The disconnecting portion is configured to connect '5-5'. The movable conductors 9, 10, 11 and the conductors 3, 4, 5 are electrically connected by a contact 17. In this specification, these three-phase conductors 3-3 ′, 4-4 ′, and 5-5 ′ are referred to as A, B, and C phases in order from the conductor that is closest to the operation device 18. In FIG. 12, among these three-phase conductors, B-phase conductors 4, 4 ′, and 10 are shown.

また、前記可動導体9、10、11にはラック15が固定され、これと導体3、4、5の内部に配置されているピニオンギア12、13、14とが互いに係合することにより、可動導体9、10、11が同時に同一方向に直線摺動できるように構成されている。   A rack 15 is fixed to the movable conductors 9, 10, and 11, and the pinion gears 12, 13, and 14 disposed inside the conductors 3, 4, and 5 are engaged with each other to move the rack 15. The conductors 9, 10, and 11 are configured to be able to slide linearly in the same direction at the same time.

なお、ピニオンギア12とピニオンギア13は絶縁棒7により連結され、同様にピニオンギア13とピニオンギア14は絶縁棒8により連結されている。また、ガスシール部19とピニオンギア12は絶縁棒6で連結され、これらの絶縁棒6、7、8はその中心線が同一線上に位置するように配置されている。   The pinion gear 12 and the pinion gear 13 are connected by an insulating rod 7. Similarly, the pinion gear 13 and the pinion gear 14 are connected by an insulating rod 8. Further, the gas seal portion 19 and the pinion gear 12 are connected by an insulating rod 6, and these insulating rods 6, 7, and 8 are arranged so that their center lines are located on the same line.

そして、これら三相導体3、4、5は、互いに隣接する導体中心間距離がそれぞれ相間絶縁距離Lを確保し、またタンクとの距離が対地絶縁距離Dを確保するように配置されている。なお、このように構成された図11及び図12に示した断路器接地開閉器のタンク内径は“r”となっている。   These three-phase conductors 3, 4, and 5 are arranged such that the distance between the conductor centers adjacent to each other ensures the inter-phase insulation distance L, and the distance from the tank secures the ground insulation distance D. In addition, the tank internal diameter of the disconnector grounding switch shown in FIG.11 and FIG.12 comprised in this way is "r".

このように構成された従来の断路器接地開閉器においては、操作装置18からガスシール部19を介して伝えられた操作力は、絶縁棒6によりピニオンギア12を回転させ、その回転力をラック15で直線摺動力に変換し、可動導体9を直線摺動させる。同時に、ピニオンギア12は絶縁棒7を回転させると共に、ピニオンギア13を回転させることで可動導体10を直線摺動させ、同様に、ピニオンギア13は絶縁棒8を回転させると共に、ピニオンギア14を回転させることで可動導体11を直線摺動させる。これにより、三相分の可動導体9、10、11を同時に同方向に駆動することができる。
特許第2878750号公報
In the conventional disconnector grounding switch configured as described above, the operating force transmitted from the operating device 18 through the gas seal portion 19 causes the pinion gear 12 to rotate by the insulating rod 6, and the rotational force is transmitted to the rack. At 15, it is converted into a linear sliding force, and the movable conductor 9 is slid linearly. At the same time, the pinion gear 12 rotates the insulating rod 7 and rotates the pinion gear 13 to linearly slide the movable conductor 10. Similarly, the pinion gear 13 rotates the insulating rod 8 and also rotates the pinion gear 14. The movable conductor 11 is linearly slid by rotating. Thereby, the movable conductors 9, 10, and 11 for three phases can be simultaneously driven in the same direction.
Japanese Patent No. 2878750

しかしながら、上述したような二等辺三角形の各頂点に三相開閉部を配置した断路器接地開閉器の場合には、開閉部と操作装置の空間にギアボックスを配置するために大きな空間が必要であるため、機器の縮小化を図ることが困難であり、タンク内径が大きくなるため、コストも増大するという問題点があった。   However, in the case of the disconnector grounding switch in which the three-phase switch is arranged at each vertex of the isosceles triangle as described above, a large space is required to arrange the gear box in the space between the switch and the operating device. For this reason, it is difficult to reduce the size of the equipment, and the inner diameter of the tank is increased, which increases the cost.

また、図11及び図12に示すような三相開閉部が直線状に配置され、それぞれの開閉部を駆動する部品を棒状の絶縁物で回転することで操作装置の操作力を伝達するように構成された断路器接地開閉器の場合には、構成要素が少なくなるというメリットはあるものの、相間絶縁距離Lと対地間絶縁距離Dを確保するためにタンク内径“r”が大きくなり、それに伴って、コストも増大するという問題点があった。   Also, the three-phase opening and closing parts as shown in FIGS. 11 and 12 are arranged in a straight line, and the operation force of the operating device is transmitted by rotating the parts that drive the opening and closing parts with a rod-like insulator. In the case of the configured disconnector grounding switch, although there is a merit that the number of components is reduced, the tank inner diameter “r” is increased in order to secure the inter-phase insulation distance L and the ground-to-ground insulation distance D. In addition, there is a problem that the cost increases.

本発明は、上述したような従来技術の問題点を解消するために提案されたものであり、その目的は、絶縁物を回転することで開閉部を駆動する断路器接地開閉器において、必要な相間絶縁距離と対地間絶縁距離を確保しながら、タンク径を最小化することができ、同時にコストも低減できる断路器接地開閉器を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and the object thereof is necessary in a disconnector grounding switch that drives an opening / closing part by rotating an insulator. An object of the present invention is to provide a disconnector grounding switch capable of minimizing the tank diameter while reducing the cost while ensuring the interphase insulation distance and the ground insulation distance.

上記のような目的を達成するために、請求項1に記載の発明は、絶縁ガスを充填したタンク内部に三相導体を配置し、この三相導体の内部にそれぞれ直線摺動可能な断路部の可動導体を収納し、各断路部の可動導体をラックとピニオンギアとの係合によって直線摺動させると共に、前記タンクの外部に設けられた操作装置に接続された絶縁棒の回転動作を、前記ピニオンギアに伝達するように構成した断路器接地開閉器において、前記三相の可動導体が前記絶縁棒の中心線を跨いで千鳥配置に構成され、互いに隣接する各相のピニオンギア間に回転反転装置が設置され、この回転反転装置によって前記三相の可動導体の動作方向が同一となるように構成されていることを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is arranged such that a three-phase conductor is disposed inside a tank filled with an insulating gas, and a linearly slidable disconnecting portion is provided inside the three-phase conductor. The movable conductor of each disconnecting portion is linearly slid by the engagement between the rack and the pinion gear, and the rotating operation of the insulating rod connected to the operating device provided outside the tank is performed. In the disconnector grounding switch configured to transmit to the pinion gear, the three-phase movable conductors are arranged in a staggered manner across the center line of the insulating rod, and rotate between the pinion gears of adjacent phases. A reversing device is installed, and the rotation reversing device is configured so that the operation directions of the three-phase movable conductors are the same.

上記のような構成を有する請求項1に記載の発明によれば、三相の導体を絶縁棒の中心線を跨いで千鳥配置としたことにより、相間絶縁距離Lを可能な限り最小とし、またタンクとの対地間絶縁距離Dも最小とすることができるとともに、タンクの内径を最小にすることができる。   According to the invention described in claim 1 having the above-described configuration, the interphase insulation distance L is minimized as much as possible by arranging the three-phase conductors in a staggered manner across the center line of the insulating rod. The insulation distance D between the tank and the ground can be minimized, and the inner diameter of the tank can be minimized.

本発明によれば、絶縁物を回転することで開閉部を駆動する断路器接地開閉器において、必要な相間絶縁距離と対地間絶縁距離を確保しながら、タンク径を最小化することができ、同時にコストも低減できる断路器接地開閉器を提供することができる。   According to the present invention, in the disconnector grounding switch that drives the switch by rotating the insulator, the tank diameter can be minimized while ensuring the necessary inter-phase insulation distance and the ground-to-ground insulation distance, At the same time, it is possible to provide a disconnector grounding switch that can reduce the cost.

以下、本発明に係る断路器接地開閉器の実施の形態(以下、実施形態という)について、図面を参照して具体的に説明する。なお、図11及び図12に示した従来型と同一の部材については同一の符号を付して、説明は省略する。   Hereinafter, an embodiment (hereinafter referred to as an embodiment) of a disconnector grounding switch according to the present invention will be specifically described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the member same as the conventional type shown in FIG.11 and FIG.12, and description is abbreviate | omitted.

(1)第1実施形態
(1−1)構成
本実施形態においては、図1及び図2に示すように、絶縁ガス2を充填したタンク1の内部に、三相導体3、4、5が二等辺三角形の各頂点に位置するように配置されている。この場合、三相導体3、4、5の内部に配設された可動導体9、10、11の内、B相の可動導体10だけが、前記絶縁棒7、8の中心線を跨いでA相及びC相の可動導体9、11とは反対側に配置されている。言い換えれば、三相導体3、4、5が絶縁棒6、7、8の中心線を跨いで千鳥配置とされている。なお、三相導体3、4、5が形成する二等辺三角形は、絶縁スペーサ(図示しない)の電極配置と同一ピッチとすることもできる。
(1) First Embodiment (1-1) Configuration In this embodiment, as shown in FIGS. 1 and 2, three-phase conductors 3, 4, 5 are provided inside a tank 1 filled with an insulating gas 2. It is arranged to be located at each vertex of the isosceles triangle. In this case, only the B-phase movable conductor 10 out of the movable conductors 9, 10, 11 arranged inside the three-phase conductors 3, 4, 5 extends across the center line of the insulating rods 7, 8. It arrange | positions on the opposite side to the movable conductors 9 and 11 of a phase and C phase. In other words, the three-phase conductors 3, 4, 5 are arranged in a staggered manner across the center lines of the insulating rods 6, 7, 8. Note that the isosceles triangles formed by the three-phase conductors 3, 4, and 5 can have the same pitch as the electrode arrangement of the insulating spacer (not shown).

また、B相の可動導体10を前記絶縁棒7、8の中心線を跨いでA相及びC相の可動導体9、11とは反対側に配置したことにより、図11に示した従来型のようにB相の導体4の内部に配置されているピニオンギア13を絶縁棒7及び絶縁棒8に固定したままでは、可動導体10の摺動方向が可動導体9、11とは反対方向になる。   In addition, the B-phase movable conductor 10 is disposed on the opposite side of the A-phase and C-phase movable conductors 9 and 11 across the center line of the insulating rods 7 and 8, so that the conventional type shown in FIG. As described above, when the pinion gear 13 disposed inside the B-phase conductor 4 is fixed to the insulating rod 7 and the insulating rod 8, the sliding direction of the movable conductor 10 is opposite to the movable conductors 9 and 11. .

そこで、本実施形態においては、三相の可動導体9、10、11の摺動方向が同一となるように、ピニオンギア13の両側に、その回転を反転させるための回転反転装置16a、16bが設けられている。また、A相側に設けられた回転反転装置16aは絶縁棒7に固定され、C相側に設けられた回転反転装置16bは絶縁棒8に固定されている。   Therefore, in this embodiment, rotation reversing devices 16a and 16b for reversing the rotation are provided on both sides of the pinion gear 13 so that the sliding directions of the three-phase movable conductors 9, 10, and 11 are the same. Is provided. The rotation reversing device 16 a provided on the A phase side is fixed to the insulating rod 7, and the rotation reversing device 16 b provided on the C phase side is fixed to the insulating rod 8.

なお、前記三相導体3、4、5は、互いに隣接する導体中心間距離がそれぞれ相間絶縁距離Lを確保し、またタンクとの対地絶縁距離Dを確保するとともに、相間絶縁距離L、タンクとの対地絶縁距離Dを最小としながら、タンク内径“R”が極力小さい寸法となるように配置されている。   The three-phase conductors 3, 4, and 5 have an inter-conductor distance between adjacent conductors to ensure an inter-phase insulation distance L and a ground insulation distance D from the tank, and an inter-phase insulation distance L and the tank The tank inner diameter “R” is arranged to be as small as possible while minimizing the ground insulation distance D.

(1−2)作用・効果
このように構成された本実施形態においては、操作装置18からガスシール部19を介して伝えられた操作力は、絶縁棒6によりピニオンギア12を回転させ、その回転力をラック15で直線摺動力に変換し、可動導体9を直線摺動させる。
(1-2) Action / Effect In the present embodiment configured as described above, the operating force transmitted from the operating device 18 via the gas seal portion 19 rotates the pinion gear 12 by the insulating rod 6, and The rotational force is converted into a linear sliding force by the rack 15, and the movable conductor 9 is linearly slid.

それと同時に、ピニオンギア12は絶縁棒7を回転させ、回転反転装置16aが回転することで、ピニオンギア13がピニオンギア12とは反対方向に回転する。その結果、可動導体10を可動導体9と同一方向に直線摺動させることができる。   At the same time, the pinion gear 12 rotates the insulating rod 7, and the rotation inversion device 16 a rotates, so that the pinion gear 13 rotates in the opposite direction to the pinion gear 12. As a result, the movable conductor 10 can be linearly slid in the same direction as the movable conductor 9.

また、ピニオンギア13の回転は、回転反転装置16bによって反転され、絶縁棒8を介してピニオンギア14を回転させ、その回転力をラック15で直線摺動力に変換し、可動導体11を直線摺動させる。これにより、三相の可動導体9、10、11は、同時に且つ同方向に駆動される。   Further, the rotation of the pinion gear 13 is reversed by the rotation reversing device 16b, the pinion gear 14 is rotated through the insulating rod 8, the rotational force is converted into a linear sliding force by the rack 15, and the movable conductor 11 is linearly slid. Move. Thereby, the three-phase movable conductors 9, 10, and 11 are driven simultaneously and in the same direction.

また、三相の導体3、4、5は、A−B相、B−C相、C−A相の相間絶縁距離Lが可能な限り最小となるように配置され、A−B相間に絶縁棒7を、B−C相間に絶縁棒8を配置し、絶縁棒6、7、8の中心線を跨いで導体3、4、5を千鳥配置とすることにより、タンク1との対地間絶縁距離Dも最小とし、且つタンク1の内径“R”を最小にすることができる。   In addition, the three-phase conductors 3, 4, and 5 are arranged so that the inter-phase insulation distance L between the A-B phase, the B-C phase, and the C-A phase is as short as possible, and is insulated between the A-B phases. Insulating the tank 7 from ground by disposing the insulating rod 8 between the B and C phases and arranging the conductors 3, 4, 5 in a staggered manner across the center line of the insulating rods 6, 7, 8 The distance D can also be minimized and the inner diameter “R” of the tank 1 can be minimized.

このように、本実施形態によれば、導体3、4、5の相間絶縁距離L、タンク1と導体3、4、5の対地間絶縁距離Dが最小となる開閉部を構成することが可能となり、且つタンク1の内径“R”を最小化できるので、三相一括操作の断路器接地開閉器を縮小化でき、コストを低減することができる。   As described above, according to the present embodiment, it is possible to configure an opening / closing portion that minimizes the interphase insulation distance L between the conductors 3, 4, and 5 and the insulation distance D between the tank 1 and the conductors 3, 4, and 5. In addition, since the inner diameter “R” of the tank 1 can be minimized, the disconnector grounding switch for three-phase operation can be reduced, and the cost can be reduced.

なお、本実施形態においては、可動導体9、10、11の摺動方向が同一となるように、ピニオンギア13の両側に回転反転装置16a、16bを配置したが、A−B相間とB−C相間に回転反転装置16を配置すれば、可動導体9、10、11の動作方向を同一方向とすることができる。従って、回転反転装置の設置位置は、可動導体9、10、11の動作方向を同一方向とできるように配置する限り、導体3、4、5のどの導体に配置しても良い。   In the present embodiment, the rotation inversion devices 16a and 16b are arranged on both sides of the pinion gear 13 so that the sliding directions of the movable conductors 9, 10, and 11 are the same. If the rotation inversion device 16 is arranged between the C phases, the operation directions of the movable conductors 9, 10, and 11 can be made the same direction. Therefore, the rotation reversing device may be installed on any of the conductors 3, 4, and 5 as long as the movable conductors 9, 10, and 11 are arranged in the same direction.

(2)第2実施形態
(2−1)構成
本実施形態においては、図3及び図4に示すように、絶縁棒6、7、8は、その中心線が同一線上に位置するように配置する点は、上記第1実施形態と同様であるが、可動導体9、10、11の設置位置は、絶縁棒6、7、8の中心線を跨がずに、千鳥配置に構成したことを特徴とする。
(2) Configuration of the Second Embodiment (2-1) In the present embodiment, as shown in FIGS. 3 and 4, the insulating rods 6, 7, and 8 are arranged so that their center lines are located on the same line. The point to do is the same as in the first embodiment, but the installation positions of the movable conductors 9, 10, 11 do not straddle the center lines of the insulating bars 6, 7, 8 and are configured in a staggered arrangement. Features.

また、本実施形態においては、第1のギア20a及び第2のギア20bからなる伝達機構20が、ピニオンギア13と絶縁棒7・絶縁棒8の間に配設されている。すなわち、前記第1のギア20aが絶縁棒7及び絶縁棒8の間に配設され、この第1のギア20aと係合するように第2のギア20bが配設され、さらに、この第2のギア20bがピニオンギア13と係合するように構成されている。   In the present embodiment, the transmission mechanism 20 including the first gear 20 a and the second gear 20 b is disposed between the pinion gear 13 and the insulating rod 7 and the insulating rod 8. That is, the first gear 20a is disposed between the insulating rod 7 and the insulating rod 8, and the second gear 20b is disposed so as to engage with the first gear 20a. The gear 20 b is configured to engage with the pinion gear 13.

(2−2)作用・効果
このように構成された本実施形態においては、第1のギア20a及び第2のギア20bからなる伝達機構20を、ピニオンギア13と絶縁棒7・絶縁棒8の間に設置することにより、上記第1実施形態に示した回転反転装置16を用いないシンプルな構造とすることができる。なお、本実施形態では伝達機構20をギアにより構成しているが、ベルトやチェーン等の他の伝達機構を用いても作用は同等となる。
(2-2) Action / Effect In this embodiment configured as described above, the transmission mechanism 20 including the first gear 20a and the second gear 20b is connected to the pinion gear 13, the insulating rod 7, and the insulating rod 8. By installing them in between, it is possible to make a simple structure that does not use the rotation inversion device 16 shown in the first embodiment. In the present embodiment, the transmission mechanism 20 is constituted by a gear, but the operation is equivalent even when other transmission mechanisms such as a belt and a chain are used.

このように、本実施形態によれば、タンク1と導体3、5のデッドスペースに伝達機構20を収納することで、タンク1の内径“R”を最小としながら、導体配置を千鳥配置とすることができる。従って、第1実施形態と同様に、導体3、4、5の相間絶縁距離L、タンク1と導体3、4、5の対地間絶縁距離Dが最小となる開閉部を構成することが可能となり、且つタンク1の内径“R”を最小化できるので、三相一括操作の断路器接地開閉器を縮小化でき、コストを低減することができる。   As described above, according to the present embodiment, the conductor arrangement is staggered while the inner diameter “R” of the tank 1 is minimized by housing the transmission mechanism 20 in the dead space between the tank 1 and the conductors 3 and 5. be able to. Therefore, similarly to the first embodiment, it is possible to configure an opening / closing portion that minimizes the interphase insulation distance L between the conductors 3, 4, 5 and the insulation distance D between the tank 1 and the conductors 3, 4, 5. In addition, since the inner diameter “R” of the tank 1 can be minimized, the disconnector grounding switch for three-phase collective operation can be reduced, and the cost can be reduced.

(3)第3実施形態
(3−1)構成
本実施形態においては、図5及び図6に示すように、絶縁棒6、7、8は、その中心線が同一線上に位置するように配置する点は上記第1実施形態と同様であるが、ピニオンギア13の設置位置を絶縁棒6、7、8の中心位置より下方にずらし、導体3、4、5の配置を二等辺三角形にしたことを特徴とする。なお、この二等辺三角形は絶縁スペーサ(図示しない)の電極配置(正三角形配置または二等辺三角形)と同一ピッチとしても良い。
(3) Third Embodiment (3-1) Configuration In this embodiment, as shown in FIGS. 5 and 6, the insulating rods 6, 7, and 8 are arranged so that their center lines are located on the same line. The point to do is the same as in the first embodiment, but the installation position of the pinion gear 13 is shifted downward from the center position of the insulating rods 6, 7, 8, and the conductors 3, 4, 5 are arranged in an isosceles triangle. It is characterized by that. The isosceles triangle may have the same pitch as the electrode arrangement (equilateral triangle arrangement or isosceles triangle) of the insulating spacer (not shown).

また、ピニオンギア13の回転方向を、ピニオンギア12及びピニオンギア14の回転方向と反対方向にするための回転反転装置26が、絶縁棒7及び絶縁棒8の間に設置され、さらにピニオンギア13と係合するように構成されている。そして、この回転反転装置26がピニオンギア12及びピニオンギア14と同方向に回転することにより、回転反転装置26と係合するピニオンギア13をピニオンギア12及びピニオンギア14とは反対方向に回転させることができるように構成されている。   A rotation reversing device 26 for setting the rotation direction of the pinion gear 13 to be opposite to the rotation direction of the pinion gear 12 and the pinion gear 14 is installed between the insulating rod 7 and the insulating rod 8. It is comprised so that it may engage with. Then, when the rotation reversing device 26 rotates in the same direction as the pinion gear 12 and the pinion gear 14, the pinion gear 13 engaged with the rotation reversing device 26 is rotated in the direction opposite to the pinion gear 12 and the pinion gear 14. It is configured to be able to.

(3−2)作用・効果
このように構成された本実施形態においては、回転反転装置26を絶縁棒7及び絶縁棒8の間に設置し、この回転反転装置26をピニオンギア13と係合させることにより、回転反転装置26をシンプルな構造にすることができるので、コストを低減することができる。なお、本実施形態では、回転反転装置26はギアにより構成しているが、ベルトやチェーン等の他の伝達機構を用いても作用は同等となる。
(3-2) Action / Effect In the present embodiment configured as described above, the rotation reversing device 26 is installed between the insulating rod 7 and the insulating rod 8, and the rotation reversing device 26 is engaged with the pinion gear 13. By doing so, the rotation and inverting device 26 can be made simple, and the cost can be reduced. In the present embodiment, the rotation and reversal device 26 is constituted by a gear, but the operation is equivalent even when other transmission mechanisms such as a belt and a chain are used.

このように、本実施形態によれば、上記第1実施形態と同様に、導体3、4、5の相間絶縁距離L、タンク1と導体3、4、5の対地間絶縁距離Dが最小となる開閉部を構成することが可能となり、且つタンク1の内径“R”を最小化できるので、三相一括操作の断路器接地開閉器を縮小化でき、コストを低減することができる。また、上記第1実施形態で用いた回転反転装置16に比べて、回転反転装置26をよりシンプルな構造にすることができる。   Thus, according to the present embodiment, as in the first embodiment, the interphase insulation distance L of the conductors 3, 4 and 5 and the insulation distance D between the tank 1 and the conductors 3, 4, and 5 are the minimum. Since the inner diameter “R” of the tank 1 can be minimized, the disconnector grounding switch for three-phase operation can be reduced, and the cost can be reduced. Further, the rotation / reversal device 26 can have a simpler structure than the rotation / reversal device 16 used in the first embodiment.

(4)第4実施形態
(4−1)構成
本実施形態においては、図7及び図8に示すように、上記第2実施形態に示した構成の中で、第2実施形態の絶縁棒6、7、8を一体構造の絶縁棒21としたことを特徴とする。この場合、ピニオンギア12、ピニオンギア14及び第1のギア20aは絶縁棒21に固定され、絶縁棒21とともに回転するように構成されている。なお、本実施形態では、絶縁棒6、7、8をすべて一体化しているが、組立性等を考慮し少なくとも2つの絶縁棒を一体化しても良い。
(4) Fourth Embodiment (4-1) Configuration In this embodiment, as shown in FIGS. 7 and 8, the insulating rod 6 of the second embodiment is the same as the configuration shown in the second embodiment. , 7 and 8 are formed as a single-piece insulating rod 21. In this case, the pinion gear 12, the pinion gear 14, and the first gear 20 a are fixed to the insulating rod 21 and are configured to rotate together with the insulating rod 21. In this embodiment, the insulating bars 6, 7, and 8 are all integrated, but at least two insulating bars may be integrated in consideration of assemblability and the like.

(4−2)作用・効果
このように構成された本実施形態においては、上記第2実施形態と比較して絶縁棒21の構造をシンプルにすることができるので、コストを低減することができる。また、伝達装置20は、上記第2実施形態と同様にギアにより構成しているが、ベルトやチェーン等の他の伝達機構を用いても作用は同等となる。
(4-2) Action / Effect In the present embodiment configured as described above, the structure of the insulating rod 21 can be simplified as compared with the second embodiment, so that the cost can be reduced. . Moreover, although the transmission apparatus 20 is comprised with the gear similarly to the said 2nd Embodiment, even if it uses other transmission mechanisms, such as a belt and a chain, an effect | action becomes equivalent.

このように、本実施形態によれば、上記第2実施形態と同様に導体3、4、5の相間絶縁距離L、タンク1と導体3、4、5の対地間絶縁距離Dが最小となる開閉部を構成することが可能となり、且つタンク1の内径“R”を最小化できるので、三相一括操作の断路器接地開閉器を縮小化でき、コストを低減することができる。   Thus, according to the present embodiment, the inter-phase insulation distance L between the conductors 3, 4, and 5 and the insulation distance D between the tank 1 and the conductors 3, 4, and 5 are minimized as in the second embodiment. Since the opening / closing section can be configured and the inner diameter “R” of the tank 1 can be minimized, the disconnector grounding switch for the three-phase collective operation can be reduced, and the cost can be reduced.

(5)第5実施形態
(5−1)構成
本実施形態においては、図9及び図10に示すように、上記第3実施形態に示した構成の中で、第3実施形態の絶縁棒6、7、8を一体構造の絶縁棒21としたことを特徴とする。この場合、ピニオンギア12、ピニオンギア14及び回転反転装置26は絶縁棒21に固定され、絶縁棒21とともに回転するように構成されている。なお、本実施形態では、絶縁棒6、7、8をすべて一体化しているが、組立性等を考慮し少なくとも2つの絶縁棒を一体化しても良い。
(5) Fifth Embodiment (5-1) Configuration In this embodiment, as shown in FIGS. 9 and 10, the insulating rod 6 of the third embodiment is the same as the configuration shown in the third embodiment. , 7 and 8 are formed as a single-piece insulating rod 21. In this case, the pinion gear 12, the pinion gear 14, and the rotation reversing device 26 are fixed to the insulating rod 21 and are configured to rotate together with the insulating rod 21. In this embodiment, the insulating bars 6, 7, and 8 are all integrated, but at least two insulating bars may be integrated in consideration of assemblability and the like.

(5−2)作用・効果
このように構成された本実施形態においては、ピニオンギア13の設置位置を絶縁棒の中心位置より下方にずらすことにより、絶縁棒21を一体化することができる。これにより、上記第3実施形態の効果に加えて、さらに絶縁棒21の構造をシンプルにできるので、コストを低減することができる。
(5-2) Action / Effect In the present embodiment configured as described above, the insulating rod 21 can be integrated by shifting the installation position of the pinion gear 13 downward from the center position of the insulating rod. Thereby, in addition to the effect of the said 3rd Embodiment, since the structure of the insulating rod 21 can be simplified further, cost can be reduced.

このように、本実施形態によれば、上記第3実施形態と同様に導体3、4、5の相間絶縁距離L、タンク1と導体3、4、5の対地間絶縁距離Dを最小となる開閉部を構成することが可能となり、且つタンク1の内径“R”を最小化できるので、三相一括操作の断路器接地開閉器を縮小化でき、コストも低減することができる。   Thus, according to the present embodiment, the inter-phase insulation distance L between the conductors 3, 4, and 5 and the insulation distance D between the tank 1 and the conductors 3, 4, and 5 are minimized as in the third embodiment. Since the opening / closing section can be formed and the inner diameter “R” of the tank 1 can be minimized, the disconnector grounding switch for three-phase operation can be reduced, and the cost can be reduced.

本発明に係る断路器接地開閉器の第1実施形態の内部構造を示す構成図。The block diagram which shows the internal structure of 1st Embodiment of the disconnector grounding switch which concerns on this invention. 図1に示す第1実施形態の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the disconnector grounding switch of 1st Embodiment shown in FIG. 本発明に係る断路器接地開閉器の第2実施形態の内部構造を示す構成図。The block diagram which shows the internal structure of 2nd Embodiment of the disconnector grounding switch which concerns on this invention. 図3に示す第2実施形態の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the disconnector grounding switch of 2nd Embodiment shown in FIG. 本発明に係る断路器接地開閉器の第3実施形態の内部構造を示す構成図。The block diagram which shows the internal structure of 3rd Embodiment of the disconnector grounding switch which concerns on this invention. 図5に示す第3実施形態の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the disconnector grounding switch of 3rd Embodiment shown in FIG. 本発明に係る断路器接地開閉器の第4実施形態の内部構造を示す構成図。The block diagram which shows the internal structure of 4th Embodiment of the disconnector grounding switch which concerns on this invention. 図7に示す第4実施形態の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the disconnector grounding switch of 4th Embodiment shown in FIG. 本発明に係る断路器接地開閉器の第5実施形態の内部構造を示す構成図。The block diagram which shows the internal structure of 5th Embodiment of the disconnector grounding switch which concerns on this invention. 図9に示す第5実施形態の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the disconnecting switch grounding switch of 5th Embodiment shown in FIG. 従来の断路器接地開閉器の内部構造を示す構成図。The block diagram which shows the internal structure of the conventional disconnecting switch grounding switch. 図11に示す従来の断路器接地開閉器の内部構造を示す側断面図。The sectional side view which shows the internal structure of the conventional disconnecting switch grounding switch shown in FIG.

符号の説明Explanation of symbols

1…タンク
2…絶縁ガス
3…導体
4、4´…導体
5…導体
6、7、8…絶縁棒
9、10、11…可動導体
12、13、14…ピニオンギア
15…ラック
16、26…回転反転装置
17…接触子
18…操作装置
19…ガスシール部
20…伝達装置
21…絶縁棒
DESCRIPTION OF SYMBOLS 1 ... Tank 2 ... Insulating gas 3 ... Conductor 4, 4 '... Conductor 5 ... Conductor 6, 7, 8 ... Insulating rod 9, 10, 11 ... Movable conductor 12, 13, 14 ... Pinion gear 15 ... Rack 16, 26 ... Rotation reversing device 17 ... Contact 18 ... Operating device 19 ... Gas seal part 20 ... Transmission device 21 ... Insulating rod

Claims (4)

絶縁ガスを充填したタンク内部に三相導体を配置し、この三相導体の内部にそれぞれ直線摺動可能な断路部の可動導体を収納し、各断路部の可動導体をラックとピニオンギアとの係合によって直線摺動させると共に、前記タンクの外部に設けられた操作装置に接続された絶縁棒の回転動作を、前記ピニオンギアに伝達するように構成した断路器接地開閉器において、
前記三相の可動導体が前記絶縁棒の中心線を跨いで千鳥配置に構成され、
互いに隣接する各相のピニオンギア間に回転反転装置が設置され、この回転反転装置によって前記三相の可動導体の動作方向が同一となるように構成されていることを特徴とする断路器接地開閉器。
A three-phase conductor is arranged inside a tank filled with an insulating gas, and a movable conductor of a disconnectable portion that can slide linearly is housed inside the three-phase conductor, and the movable conductor of each disconnected portion is connected to the rack and the pinion gear. In the disconnector grounding switch configured to linearly slide by engagement and to transmit the rotational motion of the insulating rod connected to the operating device provided outside the tank to the pinion gear,
The three-phase movable conductor is configured in a staggered arrangement across the center line of the insulating rod,
A disconnector grounding opening / closing device, characterized in that a rotation reversing device is installed between pinion gears of each phase adjacent to each other, and the operation direction of the three-phase movable conductors is the same by this rotation reversing device. vessel.
絶縁ガスを充填したタンク内部に三相導体を配置し、この三相導体の内部にそれぞれ直線摺動可能な断路部の可動導体を収納し、各断路部の可動導体をラックとピニオンギアとの係合によって直線摺動させると共に、前記タンクの外部に設けられた操作装置に接続された絶縁棒の回転動作を、前記ピニオンギアに伝達するように構成した断路器接地開閉器において、
前記三相の可動導体が前記絶縁棒の中心線を跨がないで千鳥配置に構成され、
前記絶縁棒と最も離れた位置に配置された可動導体を駆動するピニオンギアに、前記絶縁棒の回転方向と同一方向の回転力を伝える伝達装置を係合させたことを特徴とする断路器接地開閉器。
A three-phase conductor is arranged inside a tank filled with an insulating gas, and a movable conductor of a disconnectable portion that can slide linearly is housed inside the three-phase conductor, and the movable conductor of each disconnected portion is connected to the rack and the pinion gear. In the disconnector grounding switch configured to linearly slide by engagement and to transmit the rotational motion of the insulating rod connected to the operating device provided outside the tank to the pinion gear,
The three-phase movable conductor is configured in a staggered arrangement without straddling the center line of the insulating rod,
A disconnector grounding device, wherein a transmission device that transmits a rotational force in the same direction as the rotation direction of the insulating rod is engaged with a pinion gear that drives a movable conductor that is disposed farthest from the insulating rod. Switch.
絶縁ガスを充填したタンク内部に三相導体を配置し、この三相導体の内部にそれぞれ直線摺動可能な断路部の可動導体を収納し、各断路部の可動導体をラックとピニオンギアとの係合によって直線摺動させると共に、前記タンクの外部に設けられた操作装置に接続された絶縁棒の回転動作を、前記ピニオンギアに伝達するように構成した断路器接地開閉器において、
前記三相の可動導体が前記絶縁棒の中心線を跨いで千鳥配置に構成され、
前記絶縁棒には、他の二相に対して前記絶縁棒の反対側に配置された相の可動導体を駆動するピニオンギアと係合する回転反転装置と、前記他の二相の可動導体を駆動するピニオンギアが固定され、
前記回転反転装置によって前記三相の可動導体の動作方向が同一となるように構成されていることを特徴とする断路器接地開閉器。
A three-phase conductor is arranged inside a tank filled with an insulating gas, and a movable conductor of a disconnectable portion that can slide linearly is housed inside the three-phase conductor, and the movable conductor of each disconnected portion is connected to the rack and the pinion gear. In the disconnector grounding switch configured to linearly slide by engagement and to transmit the rotational motion of the insulating rod connected to the operating device provided outside the tank to the pinion gear,
The three-phase movable conductor is configured in a staggered arrangement across the center line of the insulating rod,
The insulating rod includes a rotation reversing device that engages with a pinion gear that drives a movable conductor of a phase arranged on the opposite side of the insulating rod with respect to the other two phases, and the other two-phase movable conductor. The driving pinion gear is fixed,
A disconnector grounding switch characterized in that the three-phase movable conductors are operated in the same direction by the rotation reversing device.
前記操作装置の回転動作を前記三相の導体に伝達する絶縁棒の内、少なくとも2つの絶縁棒が一体化されて構成されていることを特徴とする請求項2又は請求項3に記載の断路器接地開閉器。   4. The disconnection according to claim 2, wherein at least two of the insulating rods that transmit the rotational movement of the operating device to the three-phase conductor are integrated. 5. Earthing switch.
JP2006052164A 2006-02-28 2006-02-28 Disconnector grounding switch Active JP4660397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052164A JP4660397B2 (en) 2006-02-28 2006-02-28 Disconnector grounding switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052164A JP4660397B2 (en) 2006-02-28 2006-02-28 Disconnector grounding switch

Publications (2)

Publication Number Publication Date
JP2007236053A true JP2007236053A (en) 2007-09-13
JP4660397B2 JP4660397B2 (en) 2011-03-30

Family

ID=38556079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052164A Active JP4660397B2 (en) 2006-02-28 2006-02-28 Disconnector grounding switch

Country Status (1)

Country Link
JP (1) JP4660397B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252533A (en) * 2009-04-16 2010-11-04 Toshiba Corp Gas-insulated switchgear
JP2011065933A (en) * 2009-09-18 2011-03-31 Toshiba Corp Gas-insulated switchgear
KR20120136513A (en) * 2011-06-09 2012-12-20 현대중공업 주식회사 Conductor arrangement structure for gas insulated switchgear
CN110011213A (en) * 2019-04-25 2019-07-12 上海巴佩开关设备有限公司 Rotating propulsion type Cubicle Gas-Insulated Switchgear gas tank and tri-station isolating switch
KR102166906B1 (en) * 2019-05-28 2020-10-16 엘에스일렉트릭(주) Ring main unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038012U (en) * 1983-08-22 1985-03-16 富士電機株式会社 Three-phase all-in-one gas insulated switchgear
JPS62241220A (en) * 1986-04-10 1987-10-21 株式会社東芝 Gas insulated switchgear
JPS62202008U (en) * 1986-06-13 1987-12-23
JPS6373809A (en) * 1986-09-11 1988-04-04 三菱電機株式会社 Gas insulated switchgear
JPH01292719A (en) * 1988-05-18 1989-11-27 Hitachi Ltd Breaker for gas insulated switchgear
JPH03218206A (en) * 1990-01-22 1991-09-25 Meidensha Corp Gas-insulated contactor
JPH04203A (en) * 1990-04-16 1992-01-06 Toshiba Corp Gas insulated switchgear
JP2000134733A (en) * 1998-10-22 2000-05-12 Toshiba Corp Gas-insulated switch
JP2002044815A (en) * 2000-07-26 2002-02-08 Toshiba Corp Gas-insulated switchgear
JP2002042615A (en) * 2000-07-26 2002-02-08 Toshiba Corp Grounding switch
JP2002152929A (en) * 2000-11-10 2002-05-24 Toshiba Corp Gas-insulated switch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038012U (en) * 1983-08-22 1985-03-16 富士電機株式会社 Three-phase all-in-one gas insulated switchgear
JPS62241220A (en) * 1986-04-10 1987-10-21 株式会社東芝 Gas insulated switchgear
JPS62202008U (en) * 1986-06-13 1987-12-23
JPS6373809A (en) * 1986-09-11 1988-04-04 三菱電機株式会社 Gas insulated switchgear
JPH01292719A (en) * 1988-05-18 1989-11-27 Hitachi Ltd Breaker for gas insulated switchgear
JPH03218206A (en) * 1990-01-22 1991-09-25 Meidensha Corp Gas-insulated contactor
JPH04203A (en) * 1990-04-16 1992-01-06 Toshiba Corp Gas insulated switchgear
JP2000134733A (en) * 1998-10-22 2000-05-12 Toshiba Corp Gas-insulated switch
JP2002044815A (en) * 2000-07-26 2002-02-08 Toshiba Corp Gas-insulated switchgear
JP2002042615A (en) * 2000-07-26 2002-02-08 Toshiba Corp Grounding switch
JP2002152929A (en) * 2000-11-10 2002-05-24 Toshiba Corp Gas-insulated switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252533A (en) * 2009-04-16 2010-11-04 Toshiba Corp Gas-insulated switchgear
JP2011065933A (en) * 2009-09-18 2011-03-31 Toshiba Corp Gas-insulated switchgear
KR20120136513A (en) * 2011-06-09 2012-12-20 현대중공업 주식회사 Conductor arrangement structure for gas insulated switchgear
KR101705615B1 (en) 2011-06-09 2017-02-22 현대중공업 주식회사 Conductor arrangement structure for gas insulated switchgear
CN110011213A (en) * 2019-04-25 2019-07-12 上海巴佩开关设备有限公司 Rotating propulsion type Cubicle Gas-Insulated Switchgear gas tank and tri-station isolating switch
KR102166906B1 (en) * 2019-05-28 2020-10-16 엘에스일렉트릭(주) Ring main unit

Also Published As

Publication number Publication date
JP4660397B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US8173927B2 (en) High and medium voltage switch apparatus with two interrupters, having common means for actuating the movable contacts of the interrupters
KR100771673B1 (en) Gas insulated switchgear
JP4660397B2 (en) Disconnector grounding switch
KR100516854B1 (en) Gas insulated switchgear
EP2728603B1 (en) 3-way switch for a gas-insulated apparatus
WO2015190500A1 (en) Switch for gas-insulated switchgear and gas-insulated switching device
KR100990477B1 (en) Gas insulated switchgear
KR101238912B1 (en) Sector gear and gas-insulated switchgear having the same
CN103329375B (en) Switch
JP2004088825A (en) Gas insulated switchgear
JP4764287B2 (en) Gas insulated switch
CN109216099A (en) A kind of GIS device, switching device and its three-phase transmission mechanism
JP2013517753A (en) Gas insulated composite insulation / earthing switch with metal case
KR200321221Y1 (en) Development of the compact Disconnecting switch and Earthing switch for the Gas lnsulated Switchgear
RU2556084C2 (en) Driving mechanism for electric switching devices with three separate positions
KR20050098360A (en) Disconnecting/earthing switch for gas-insulated switchgear
KR200431023Y1 (en) Gas Insulated Switchgear
KR101060827B1 (en) Gas Insulated Switchgear
KR200486467Y1 (en) Gas insulated high voltage switchgear
KR101469308B1 (en) Gas Insulated Switchgear
JP4666487B2 (en) Gas insulated switchgear
KR101072544B1 (en) Gas Insulated Switchgear
KR101212493B1 (en) Sector gear and gas-insulated switchgear having the same
JP2002044815A (en) Gas-insulated switchgear
JP6415791B1 (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4660397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3