JP2007235092A - Method for grinding silicon carbide single crystal - Google Patents

Method for grinding silicon carbide single crystal Download PDF

Info

Publication number
JP2007235092A
JP2007235092A JP2006278605A JP2006278605A JP2007235092A JP 2007235092 A JP2007235092 A JP 2007235092A JP 2006278605 A JP2006278605 A JP 2006278605A JP 2006278605 A JP2006278605 A JP 2006278605A JP 2007235092 A JP2007235092 A JP 2007235092A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
grinding
hollow cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006278605A
Other languages
Japanese (ja)
Inventor
Masao Nakamura
昌生 中村
Morizo Hino
茂利三 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006278605A priority Critical patent/JP2007235092A/en
Publication of JP2007235092A publication Critical patent/JP2007235092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for grinding a silicon carbide single crystal capable of efficiently and easily cutting silicon carbide without damaging such as cracking. <P>SOLUTION: The method for grinding a silicon carbide single crystal includes a process that allows an opening of a hollow cylindrical grindstone 30 to contact a growth surface opposed to a seed crystal side of the silicon carbide single crystal 10 formed by sublimation process and a process that cuts the silicon carbide single crystal 10 by rotating the hollow cylindrical grindstone 30 and lowering the hollow cylindrical grindstone in the seed crystal direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化ケイ素単結晶の研削方法に関し、詳しくは加工時に割れや欠けなどの発生することのない炭化ケイ素単結晶の研削方法に関する。   The present invention relates to a method for grinding a silicon carbide single crystal, and more particularly to a method for grinding a silicon carbide single crystal that does not generate cracks or chips during processing.

炭化ケイ素は、ケイ素に比し、バンドギャップが大きく、絶縁破壊特性、耐熱性、耐放射線性等に優れることから、小型で高出力の半導体等の電子デバイス材料として注目されている。また、炭化ケイ素は、光学的特性に優れた他の化合物半導体との接合性に優れることから、光学デバイス材料としても注目されてきている。   Silicon carbide is attracting attention as a small and high-power electronic device material such as a semiconductor because it has a larger band gap and is superior in dielectric breakdown characteristics, heat resistance, radiation resistance, and the like. In addition, silicon carbide has been attracting attention as an optical device material because it has excellent bonding properties with other compound semiconductors having excellent optical characteristics.

炭化ケイ素単結晶ウェハの製造方法の一態様として、坩堝内に昇華用原料粉を封入し、対向する側に配置された種結晶上に昇華ガスを供給しつつ、種結晶上に炭化ケイ素単結晶を再結晶させ(昇華法)、得られた炭化ケイ素単結晶からウェハを切り出す方法がある。かかるウェハの切り出し法としては、円盤状の砥石を回転させて砥石の外周面を研削面として単結晶側面部に押し当てて単結晶を切り出す方法が提案されている(特許文献1参照)。   As one aspect of a method for producing a silicon carbide single crystal wafer, a raw material powder for sublimation is enclosed in a crucible, and a sublimation gas is supplied onto a seed crystal disposed on the opposite side, while a silicon carbide single crystal is formed on the seed crystal. There is a method of recrystallizing (sublimation method) and cutting a wafer from the obtained silicon carbide single crystal. As a method for cutting out such a wafer, there has been proposed a method of cutting a single crystal by rotating a disk-shaped grindstone and pressing the outer peripheral surface of the grindstone against a side surface of the single crystal as a grinding surface (see Patent Document 1).

しかしながら、単結晶成長表面の周縁部、特に坩堝との接触面外周部分に螺旋転位などの結晶欠陥が発生しやすく、円筒研削を行うとかかる欠陥部分にクラックが発生しやすかった。この結果、単結晶表面までクラックが進行して使い物にならないなど、加工方法に関してはいまだ十分な加工方法が提案されていなかった。
特開2001−261491号公報
However, crystal defects such as screw dislocations are liable to occur at the peripheral portion of the single crystal growth surface, particularly the outer peripheral portion of the contact surface with the crucible, and cracks are liable to occur when cylindrical grinding is performed. As a result, a sufficient processing method has not been proposed yet regarding the processing method, such as cracks reaching the surface of the single crystal and making it unusable.
JP 2001-261491 A

炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に切り出すことができる炭化ケイ素単結晶の研削方法が求められていた。   There has been a demand for a grinding method of a silicon carbide single crystal that can efficiently cut out a silicon carbide single crystal without causing breakage such as cracks.

即ち、本発明は、以下の記載事項に関する:
(1)昇華法により形成された炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口部を接触させる工程と、
上記中空円筒状砥石を回転させると共に上記中空円筒状砥石を上記種結晶方向に下降させて上記炭化ケイ素単結晶を研削する工程と、
を含むことを特徴とする炭化ケイ素単結晶の研削方法。
That is, the present invention relates to the following items:
(1) contacting the opening of the hollow cylindrical grindstone with the growth surface facing the seed crystal side of the silicon carbide single crystal formed by the sublimation method;
Rotating the hollow cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction to grind the silicon carbide single crystal;
A method for grinding a silicon carbide single crystal, comprising:

(2)上記研削工程において、上記中空筒状砥石の開口部形状を楕円形状である上記(1)記載の炭化ケイ素単結晶の研削方法。 (2) The method for grinding a silicon carbide single crystal according to (1), wherein, in the grinding step, the shape of the opening of the hollow cylindrical grindstone is elliptical.

(3)上記研削工程において、前記中空筒状砥石の開口部形状を、長径と短径との差が0.01mm乃至2.0mmの範囲内の楕円形状である上記(2)記載の炭化ケイ素単結晶の研削方法。 (3) The silicon carbide according to (2), wherein, in the grinding step, the shape of the opening of the hollow cylindrical grindstone is an elliptical shape having a difference between a major axis and a minor axis in a range of 0.01 mm to 2.0 mm. Single crystal grinding method.

(4)上記研削工程において、上記炭化ケイ素単結晶の成長方向の中心軸と、上記中空円筒状砥石の中心軸とを一致させた状態で上記中空円筒状砥石を上記種結晶方向に下降させる上記(1)記載の炭化ケイ素単結晶の研削方法。 (4) In the grinding step, the hollow cylindrical grindstone is lowered in the seed crystal direction in a state where the central axis in the growth direction of the silicon carbide single crystal coincides with the central axis of the hollow cylindrical grindstone. (1) The method for grinding a silicon carbide single crystal according to (1).

(5)上記研削工程において、上記炭化ケイ素単結晶と上記中空円筒状砥石を相対的に動かして揺動させる上記(4)記載の炭化ケイ素単結晶の研削方法。 (5) The method for grinding a silicon carbide single crystal according to (4), wherein, in the grinding step, the silicon carbide single crystal and the hollow cylindrical grindstone are relatively moved and oscillated.

(6)上記炭化ケイ素単結晶の成長方向の中心軸と、中空円筒状砥石の中心軸とのずれで定義される揺動幅が0.1〜1.0mmである上記(5)記載の炭化ケイ素単結晶の研削方法。 (6) The carbonization according to (5), wherein a rocking width defined by a deviation between a central axis in the growth direction of the silicon carbide single crystal and a central axis of the hollow cylindrical grindstone is 0.1 to 1.0 mm. A method for grinding a silicon single crystal.

(7)上記円筒状砥石の回転速度は300〜3000rpmである上記(4)〜(6)のいずれかに記載の炭化ケイ素単結晶の研削方法。 (7) The method for grinding a silicon carbide single crystal according to any one of (4) to (6), wherein the rotational speed of the cylindrical grindstone is 300 to 3000 rpm.

(8)上記円筒状砥石の送り速度は0.1〜1.0mm/minである上記(4)〜(7)のいずれかに記載の炭化ケイ素単結晶の研削方法。 (8) The grinding method of the silicon carbide single crystal according to any one of (4) to (7), wherein a feeding speed of the cylindrical grindstone is 0.1 to 1.0 mm / min.

(9)上記円筒状砥石は、砥石先端部に一定の間隔で切り欠き部を具える上記(4)〜(8)のいずれかに記載の炭化ケイ素単結晶の研削方法。 (9) The method for grinding a silicon carbide single crystal according to any one of (4) to (8), wherein the cylindrical grindstone includes notches at a constant interval at a grindstone tip.

(10)上記中空円筒状砥石は、中心軸上に潤滑剤を供給する噴出し口を備え、上記噴出し口から潤滑剤を供給しつつ、上記炭化ケイ素単結晶を研削する上記(4)〜(9)のいずれかに記載の炭化ケイ素単結晶の研削方法。 (10) The hollow cylindrical grindstone includes an ejection port for supplying a lubricant on a central axis, and grinds the silicon carbide single crystal while supplying the lubricant from the ejection port. (9) The grinding method of the silicon carbide single crystal according to any one of (9).

(11)さらに、上記研削工程で切り出された円筒状炭化ケイ素単結晶の成長表面近傍及び種結晶接着面近傍を研削する工程を含む上記(4)〜(10)のいずれかに記載の炭化ケイ素単結晶の研削方法。 (11) The silicon carbide according to any one of (4) to (10), further including a step of grinding the vicinity of the growth surface and the vicinity of the seed crystal bonding surface of the cylindrical silicon carbide single crystal cut out in the grinding step. Single crystal grinding method.

本発明によれば、炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に切り出すことができる。   According to the present invention, a silicon carbide single crystal can be easily cut out efficiently and without breakage such as cracks.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。図中同一の機能用途を有するものには同様の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments. In the figure, components having the same functional application are denoted by the same reference numerals and description thereof is omitted.

(研削砥石)
本発明の実施形態にかかる炭化ケイ素単結晶の研削方法に用いられる研削砥石を装着する研削装置としては、回転機能と上下動機能を備えるものであれば特に制限はない。具体的には、図4(a)、(b)又は(c)に示すように、研削砥石30は、長手方向の中心軸Zを中心に回転し、また中心軸Zに沿って上下動する(Z軸方向とする)。図中駆動部の図示は省略してある。中空円筒部32の断面内法直径は、単結晶領域12を囲むに十分な内法径を有することが好ましい。研削砥石30は中空円筒部32の開口部に、切り欠部が一定間隔で設けられていることが好ましい。加工屑が欠き出されやすくなり研削抵抗が低減するからである。また研削砥石30は図4(a)の一部断面図に示すように、研削砥石本体33の中心軸Z上に水等の潤滑剤を供給する噴出し口(センタースルー)31を備えることが好ましい。加工点の温度上昇を防止すると共に水流34により加工屑を吐き出すことで研削抵抗を低下させることができるからである。
(Grinding wheel)
The grinding apparatus for mounting the grinding wheel used in the silicon carbide single crystal grinding method according to the embodiment of the present invention is not particularly limited as long as it has a rotation function and a vertical movement function. Specifically, as shown in FIGS. 4A, 4 </ b> B, or 4 </ b> C, the grinding stone 30 rotates about the central axis Z in the longitudinal direction and moves up and down along the central axis Z. (Z axis direction). The illustration of the drive unit is omitted in the figure. It is preferable that the internal diameter of the hollow cylindrical portion 32 has a sufficient internal diameter to surround the single crystal region 12. The grinding wheel 30 is preferably provided with notches at regular intervals in the opening of the hollow cylindrical portion 32. This is because the machining waste is easily cut out and the grinding resistance is reduced. Further, as shown in the partial cross-sectional view of FIG. 4A, the grinding wheel 30 includes an ejection port (center through) 31 for supplying a lubricant such as water onto the central axis Z of the grinding wheel main body 33. preferable. This is because the grinding resistance can be reduced by preventing the temperature rise at the machining point and discharging the machining waste by the water stream 34.

図4(b)に示す研削砥石30は、開口部形状が円形状となっており、これに対し、図4(c)に示す研削砥石30は、開口部形状が楕円形状となっている。研削砥石30を楕円形状とすることにより、加工屑が切り欠部から排出される効率を、円形状とした場合よりも高くする。すなわち、研削砥石30の開口部が楕円形状となっていることにより、楕円形状の長径と短径との差で研削軌道の差を発生させることができ、当該研削軌道の差で生じる間隙から加工屑を排出させることができる。これにより、研削砥石30を炭化ケイ素単結晶10から抜くときにおいて加工屑によって研削砥石30が目詰まりを起こし、研削砥石30のブレによって炭化ケイ素単結晶10のクラックを広げることがない。   The grinding wheel 30 shown in FIG. 4 (b) has a circular opening, whereas the grinding wheel 30 shown in FIG. 4 (c) has an elliptical opening. By making the grinding wheel 30 elliptical, the efficiency with which the machining waste is discharged from the notch is made higher than when it is circular. That is, since the opening of the grinding wheel 30 has an elliptical shape, a difference in grinding trajectory can be generated due to the difference between the major axis and the minor axis of the elliptical shape, and machining is performed from the gap generated by the difference in the grinding trajectory. Waste can be discharged. As a result, when the grinding wheel 30 is pulled out of the silicon carbide single crystal 10, the grinding wheel 30 is not clogged by the processing waste, and the cracks in the silicon carbide single crystal 10 are not widened by the blurring of the grinding wheel 30.

図4(c)のY軸方向で示す長径aとX軸方向で示す短径bとの差は、0.01mm〜2.0mmの範囲内であることが望ましく、更には、0.05mm〜0.5mmの範囲内である方が更に望ましい。長径aと短径bとの差が小さいと、円形状の研削砥石30と同様の加工屑の排出効率となり、長径aと短径bとの差が大きくなるほど切削抵抗が上昇してしまい、研削砥石30が割れやすくなり、炭化ケイ素単結晶10にクラックが発生しやすくなる。   The difference between the major axis “a” shown in the Y-axis direction and the minor axis “b” shown in the X-axis direction in FIG. 4C is preferably within the range of 0.01 mm to 2.0 mm, and more preferably 0.05 mm to It is more desirable to be within the range of 0.5 mm. When the difference between the major axis a and the minor axis b is small, the processing efficiency of discharging waste scraps is the same as that of the circular grinding wheel 30, and the cutting resistance increases as the difference between the major axis a and the minor axis b increases. The grindstone 30 is easily broken, and cracks are easily generated in the silicon carbide single crystal 10.

(第1の実施形態)
図1〜図7を参照して炭化ケイ素単結晶の研削方法を説明する:
(イ)まず図1(a)に示す坩堝の蓋20上に成長した炭化ケイ素単結晶10を用意し、蓋20面を固定装置21上に配置し固定する。炭化ケイ素単結晶10は図1(b)の断面図に示すように単結晶領域12が炭化ケイ素単結晶の成長方向に向かって除々に径が拡がっているものが好ましい。
(First embodiment)
A method for grinding a silicon carbide single crystal will be described with reference to FIGS.
(A) First, the silicon carbide single crystal 10 grown on the crucible lid 20 shown in FIG. 1A is prepared, and the lid 20 surface is arranged on the fixing device 21 and fixed. As shown in the cross-sectional view of FIG. 1B, the silicon carbide single crystal 10 preferably has a single crystal region 12 whose diameter gradually increases in the growth direction of the silicon carbide single crystal.

(ロ)次に図2に示すような中空円筒部(刃)32を備える研削砥石30を用意する。 (B) Next, a grinding wheel 30 having a hollow cylindrical portion (blade) 32 as shown in FIG. 2 is prepared.

(ハ)そして図2に示すように炭化ケイ素単結晶10の中心軸Zと、研削砥石30の長手方向の中心軸を合わせる。図2において紙面左右方向をX方向、前後方向をY方向とする。 (C) Then, as shown in FIG. 2, the central axis Z of the silicon carbide single crystal 10 and the central axis in the longitudinal direction of the grinding wheel 30 are aligned. In FIG. 2, the left-right direction on the paper is the X direction, and the front-back direction is the Y direction.

(ニ)次に図3に示すように研削砥石30を、中心軸Zを軸に回転させながら炭化ケイ素単結晶10の種結晶方向11に向けて所定速度で下降させて炭化ケイ素単結晶10を研削する。このときの円筒状砥石の回転数は300〜3000rpm、好ましくは500〜1000rpmである。回転数が300rpm未満では充分な研削効率を得ることができないからである。また回転数が3000rpmを超えると砥石すべりが発生し加工が不安定になるからである。砥石の下方送り速度は0.1〜1.0mm/minが好ましい。下方送り速度が0.1mm/min未満ではコスト高になるばかりでなく砥石すべりが発生するからである。下方送り速度が1.0mm/minを超えると、研削抵抗が上がりすぎ砥石の逃げやぶれが大きくなり、加工精度が悪くなるばかりかクラック誘発に繋がるからである。 (D) Next, as shown in FIG. 3, the grinding wheel 30 is lowered at a predetermined speed toward the seed crystal direction 11 of the silicon carbide single crystal 10 while rotating about the central axis Z. Grind. The rotational speed of the cylindrical grindstone at this time is 300 to 3000 rpm, preferably 500 to 1000 rpm. This is because sufficient grinding efficiency cannot be obtained when the rotational speed is less than 300 rpm. Also, if the rotational speed exceeds 3000 rpm, grinding wheel slip occurs and machining becomes unstable. The downward feed speed of the grindstone is preferably 0.1 to 1.0 mm / min. This is because when the downward feed speed is less than 0.1 mm / min, not only the cost increases but also grinding of the grindstone occurs. This is because when the downward feed speed exceeds 1.0 mm / min, the grinding resistance increases too much, and the grinding stones run away and sway, resulting in poor processing accuracy and lead to cracking.

図4(a)に示すように、上記回転及び上下動と併せて研削砥石30の噴出し口31から水流34(潤滑剤)を吹きかけながら研削を行うことが好ましい。加工点の温度上昇を防止すると共に研削抵抗を低減できるからである。   As shown in FIG. 4A, it is preferable to perform grinding while spraying a water flow 34 (lubricant) from the ejection port 31 of the grinding wheel 30 together with the rotation and vertical movement. This is because it is possible to prevent the temperature rise at the processing point and reduce the grinding resistance.

(ホ)次に図5、6に示す巻き取り部41a、41bと、巻き取り部41a、41bに把持されたワイヤー42とを備えるシングルワイヤ40を用意する。研削にはワイヤー42としてダイヤモンドなどの砥粒がコーティングされたものを用いてもよく、またダイヤモンド砥粒を供給しつつ研削してもよい。そして図5に示すように、円柱状炭化ケイ素単結晶の成長表面近傍、即ち切り込み部の上端とシングルワイヤ40を接触させる。そして、炭化ケイ素単結晶10の単結晶領域12に形成された円柱状炭化ケイ素単結晶の上部(成長表面近傍)を切断除去する。また図6に示すように、種結晶11の上端とシングルワイヤ40を接触させる。そして、炭化ケイ素単結晶10の円柱状炭化ケイ素単結晶の下部(種結晶接着面近傍)を切断する。 (E) Next, a single wire 40 including winding portions 41a and 41b shown in FIGS. 5 and 6 and a wire 42 held by the winding portions 41a and 41b is prepared. For the grinding, a wire 42 coated with abrasive grains such as diamond may be used, or grinding may be performed while supplying diamond abrasive grains. Then, as shown in FIG. 5, the single wire 40 is brought into contact with the vicinity of the growth surface of the columnar silicon carbide single crystal, that is, the upper end of the cut portion. Then, the upper part (near the growth surface) of the cylindrical silicon carbide single crystal formed in the single crystal region 12 of the silicon carbide single crystal 10 is cut and removed. Further, as shown in FIG. 6, the upper end of the seed crystal 11 and the single wire 40 are brought into contact with each other. Then, the lower part (near the seed crystal bonding surface) of the cylindrical silicon carbide single crystal of the silicon carbide single crystal 10 is cut.

以上のようにして炭化ケイ素単結晶10から円柱状の単結晶領域10aを切り出すことができる。尚、マルチワイヤ(図示せず)を用いて所定間隔で単結晶領域10aを切断することで所望のウェハ厚の炭化ケイ素単結晶ウェハが得られる。   The cylindrical single crystal region 10a can be cut out from the silicon carbide single crystal 10 as described above. Note that a silicon carbide single crystal wafer having a desired wafer thickness can be obtained by cutting the single crystal regions 10a at predetermined intervals using a multi-wire (not shown).

図9に示すように、従来の炭化ケイ素単結晶110の研削方法は、研削部131と回転軸132を備える研削砥石130を炭化ケイ素単結晶110の側部に近接し、回転軸132を軸に研削部131を回転させて研削を行うことで、炭化ケイ素単結晶110を円柱形状に成形していた。しかし炭化ケイ素単結晶110の側部には多結晶113が存在し、かかる多結晶113中の螺旋転位などからクラックが生じやすく円柱形状に成形することが難しかった。ところが本実施形態によれば、炭化ケイ素単結晶の単結晶領域12に研削砥石30の中空円筒部32を押し付け研削するためクラックが生じにくいという作用効果を奏する。また炭化ケイ素単結晶10から円柱状の単結晶領域10aを効率良く切り出すことができる。   As shown in FIG. 9, the conventional grinding method for silicon carbide single crystal 110 is such that a grinding wheel 130 having a grinding part 131 and a rotary shaft 132 is brought close to the side of the silicon carbide single crystal 110, and the rotary shaft 132 is used as an axis. The silicon carbide single crystal 110 was formed into a cylindrical shape by rotating the grinding part 131 to perform grinding. However, the polycrystal 113 exists on the side portion of the silicon carbide single crystal 110, and cracks are likely to occur due to the screw dislocations in the polycrystal 113, and it has been difficult to form into a cylindrical shape. However, according to the present embodiment, since the hollow cylindrical portion 32 of the grinding wheel 30 is pressed and ground against the single crystal region 12 of the silicon carbide single crystal, there is an effect that cracks hardly occur. Further, the cylindrical single crystal region 10a can be efficiently cut out from the silicon carbide single crystal 10.

第1の実施形態の実施例1,2及び比較例として、研削対象としての6H型炭化ケイ素単結晶(成長高さ:10mm、最大径:75mm)について以下の条件で研削実験を行い、クラックの発生について目視観察を行った。そして同様の条件で研削を行った際に生じたクラックの回数をクラック発生率(%)として調べた。   As Examples 1 and 2 of the first embodiment and a comparative example, a 6H-type silicon carbide single crystal (growth height: 10 mm, maximum diameter: 75 mm) as a grinding object was subjected to a grinding experiment under the following conditions, and cracks were observed. Visual observation was made about the occurrence. The number of cracks that occurred when grinding under the same conditions was examined as the crack generation rate (%).

(実施例1)
研削装置:グライディングセンター(三井精機製、商品名「VU65」)、
研削砥石:内径51.0mm、刃厚1.0mm、ダイヤモンド砥粒、粒径#140、
研削条件:回転数500rpm、送り速度0.3mm/min、センタースルー圧力0.17MPa、
結果:クラック発生率は20/100回(20%)であった。
Example 1
Grinding equipment: Gliding Center (Mitsui Seiki, trade name “VU65”),
Grinding wheel: inner diameter 51.0 mm, blade thickness 1.0 mm, diamond abrasive, particle size # 140,
Grinding conditions: 500 rpm, feed rate 0.3 mm / min, center through pressure 0.17 MPa,
Result: The crack occurrence rate was 20/100 times (20%).

(実施例2)
研削装置:グライディングセンター(三井精機製、商品名「VU65」)、
研削砥石:内径51.8mm(短径)〜52.2mm(長径)、刃厚1.0mm、ダイヤモンド砥粒、粒径#140、
研削条件:回転数1000rpm、送り速度0.3mm/min、センタースルー圧力0.17MPa、
結果:クラック発生率は1/10回(10%)であった。
(Example 2)
Grinding equipment: Gliding Center (Mitsui Seiki, trade name “VU65”),
Grinding wheel: inner diameter 51.8 mm (minor axis) to 52.2 mm (major axis), blade thickness 1.0 mm, diamond abrasive, particle size # 140,
Grinding conditions: rotation speed 1000 rpm, feed rate 0.3 mm / min, center through pressure 0.17 MPa,
Result: The crack occurrence rate was 1/10 times (10%).

(比較例1)
比較例として、円筒研削機(岡本工作機械社製、商品名「OGM340UEX」)を用いて、片側切り込み(切り込み量:17.5mm、左右送り:98mm/min)、ワーク回転数100rpm、スパークアウト4往復の条件で研削加工を行ったことを除いて実施例1と同様の実験を行った。その結果、クラック発生率は50/100回(50%)であった。
(Comparative Example 1)
As a comparative example, using a cylindrical grinding machine (trade name “OGM340UEX” manufactured by Okamoto Machine Tool Co., Ltd.), one-side cutting (cutting amount: 17.5 mm, left and right feed: 98 mm / min), workpiece rotation speed 100 rpm, spark out 4 An experiment similar to that in Example 1 was performed, except that grinding was performed under reciprocating conditions. As a result, the crack occurrence rate was 50/100 times (50%).

(第2の実施形態)
(イ)まず図1、2に示すと同様の工程を行う。
(Second Embodiment)
(A) First, the same steps as shown in FIGS.

(ロ)次に図3、図4の工程に置き換えて、図7(a)〜(c)に示すように、研削砥石30を回転させると共に揺動を行いつつ、研削砥石30を炭化ケイ素単結晶10に対して下降させて炭化ケイ素単結晶10を研削する。回転に加えて揺動を行うことで、例えば研削砥石30の噴出し口31から水を噴き出した際に、研削砥石30と非加工物との間に隙間を生じさせ、冷却水を加工点に供給しやすくなる。また図8に示すように加工屑10bが吐き出されやすくなり、加工負荷や研削砥石30のブレを抑制できるという作用効果を奏する。「揺動」は、図7(b)(c)に示されるように研削砥石30の中心軸Zと炭化ケイ素単結晶の成長方向の中心軸ZL1、ZL2が互いにずれるように、研削砥石30と固定装置21を相対的に移動させることで行うことができる。また揺動は研削砥石30の中心軸Zが円弧を描くように移動させてもよいし、研削砥石30の中心軸Zを固定しつつ固定装置21をX,Y平面を円弧を描くように移動させてもよい。さらに揺動は研削砥石の断面形状を楕円形化し、研削砥石の中心軸とシャンク部を偏心させる手段を用いることができる。図7(b)に示される揺動幅lは加工屑10bを吐き出せる範囲であれば特に制限はないが、成長高さが10mm、最大径が75mmの炭化ケイ素単結晶から円柱状の単結晶領域を切り出す際の揺動幅lは0.1〜3.0mmが好ましい。0.1mm未満では切削抵抗を低減する効果が十分得られず、3.0mmを超えるとウェハの径が減少してコスト高になるからである。その他研削屑を効果的に排除するには研削砥石をZ方向にチョッピングするなどの手段が挙げられる。 (B) Next, in place of the steps shown in FIGS. 3 and 4, as shown in FIGS. 7A to 7C, the grinding wheel 30 is rotated and swung while the grinding wheel 30 is made of silicon carbide. The silicon carbide single crystal 10 is ground by being lowered with respect to the crystal 10. By swinging in addition to rotation, for example, when water is ejected from the ejection port 31 of the grinding wheel 30, a gap is created between the grinding wheel 30 and the non-workpiece, and the cooling water is used as a processing point. Easy to supply. Moreover, as shown in FIG. 8, the processing waste 10b is easily discharged, and there is an effect that the processing load and blurring of the grinding wheel 30 can be suppressed. As shown in FIGS. 7B and 7C, the “oscillation” is performed so that the center axis Z of the grinding wheel 30 and the center axes ZL1 and ZL2 in the growth direction of the silicon carbide single crystal are shifted from each other. This can be done by relatively moving the fixing device 21. The rocking may be moved so that the central axis Z of the grinding wheel 30 draws an arc, or the fixing device 21 is moved so as to draw an arc on the X and Y planes while fixing the central axis Z of the grinding wheel 30. You may let them. Further, the rocking can be performed by using means for making the cross-sectional shape of the grinding wheel elliptical and decentering the central axis of the grinding wheel and the shank. The swing width l shown in FIG. 7 (b) is not particularly limited as long as the machining waste 10b can be discharged, but from a silicon carbide single crystal having a growth height of 10 mm and a maximum diameter of 75 mm to a cylindrical single crystal. The rocking width l when cutting out the region is preferably 0.1 to 3.0 mm. If the thickness is less than 0.1 mm, the effect of reducing the cutting resistance cannot be sufficiently obtained, and if it exceeds 3.0 mm, the diameter of the wafer is reduced and the cost is increased. In order to effectively eliminate grinding waste, other means such as chopping the grinding wheel in the Z direction can be used.

(ハ)続いて図5,6と同様の工程を行うことで炭化ケイ素単結晶10から円柱状の単結晶領域10aが切り出される。 (C) Subsequently, a cylindrical single crystal region 10a is cut out from the silicon carbide single crystal 10 by performing the same steps as in FIGS.

第2の実施形態によれば、揺動を行うことで、第1の実施形態よりも研削抵抗を低減させることができるという作用効果を奏する。   According to the second embodiment, there is an effect that the grinding resistance can be reduced as compared with the first embodiment by swinging.

第2の実施形態の実施例3,4,5及び比較例2として、研削対象としての6H型炭化ケイ素単結晶(成長高さ:10mm、最大径:75mm)について以下の条件で研削実験を行い、クラックの発生について目視観察を行った。そして同様の条件で100回研削を行った際に生じたクラックの回数をクラック発生率(%)として調べた。得られた結果をまとめて表に示す:
研削装置:グライディングセンター(三井精機製、商品名「VU65」)、
研削砥石:内径51.0mm、刃厚1.0mm、ダイヤモンド砥粒、粒径#140、
研削条件:回転数500rpm、送り速度0.3mm/min、センタースルー圧力0.17MPa、研削砥石中心軸の移動速度30mm/min、切り込み20mm
一方、比較例として、円筒研削機(岡本工作機械社製、OGM340UEX)、片側切り込み(切り込み量:17.5mm、左右送り:98mm/min)、ワーク回転数100rpm、スパークアウト4往復の条件で研削加工を行った。

Figure 2007235092
As Examples 3, 4, 5 and Comparative Example 2 of the second embodiment, a grinding experiment was performed on a 6H-type silicon carbide single crystal (growth height: 10 mm, maximum diameter: 75 mm) as a grinding object under the following conditions. The occurrence of cracks was visually observed. And the frequency | count of the crack which arose when grinding 100 times on the same conditions was investigated as a crack generation rate (%). The results obtained are summarized in the table:
Grinding equipment: Gliding Center (Mitsui Seiki, trade name “VU65”),
Grinding wheel: inner diameter 51.0 mm, blade thickness 1.0 mm, diamond abrasive, particle size # 140,
Grinding conditions: rotational speed 500 rpm, feed rate 0.3 mm / min, center through pressure 0.17 MPa, grinding wheel central axis moving speed 30 mm / min, incision 20 mm
On the other hand, as a comparative example, grinding is performed with a cylindrical grinding machine (OGM340UEX, manufactured by Okamoto Machine Tool Co., Ltd.), one-sided cutting (cutting amount: 17.5 mm, left and right feed: 98 mm / min), workpiece rotation speed of 100 rpm, and sparkout 4 reciprocation. Processing was performed.
Figure 2007235092

(炭化ケイ素単結晶)
本発明の実施形態にかかる炭化ケイ素単結晶の研削方法によれば、高品質な炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に切り出すことができる。研削対象となる炭化ケイ素単結晶としては、昇華法により製造されたものであれば特に制限されないが、多結晶や多型の混入やマイクロパイプ等の結晶欠陥がなく、極めて高品質なものが好ましい。半導体ウエハ等の電子デバイス、発光ダイオード等の光学デバイスなどに特に好適に用いることができるからである。具体的には、溶融アルカリによりエッチングして評価した結晶欠陥(パイプ欠陥)が、50個/cm2以下のものが好ましく、10個/cm2以下のものがより好ましい。炭化ケイ素単結晶における金属不純物元素の総含有量が10ppm以下のものが好ましい。
(Silicon carbide single crystal)
According to the method for grinding a silicon carbide single crystal according to an embodiment of the present invention, a high-quality silicon carbide single crystal can be efficiently cut out in a state where there is no breakage such as cracks. The silicon carbide single crystal to be ground is not particularly limited as long as it is produced by a sublimation method, but it is preferable to have a very high quality without polycrystals, polymorphs, or micropipe crystal defects. . This is because it can be particularly suitably used for electronic devices such as semiconductor wafers, optical devices such as light emitting diodes, and the like. Specifically, the number of crystal defects (pipe defects) evaluated by etching with molten alkali is preferably 50 / cm 2 or less, and more preferably 10 / cm 2 or less. The total content of metal impurity elements in the silicon carbide single crystal is preferably 10 ppm or less.

図1(a)は炭化ケイ素単結晶の側面図を示し、図1(b)は炭化ケイ素単結晶の断面図を示す。Fig.1 (a) shows the side view of a silicon carbide single crystal, FIG.1 (b) shows sectional drawing of a silicon carbide single crystal. 図2は本発明の第1の実施形態にかかる炭化ケイ素単結晶の研削方法の工程図(その1)を示す。FIG. 2 is a process diagram (part 1) of the grinding method for a silicon carbide single crystal according to the first embodiment of the present invention. 図3は本発明の第1の実施形態にかかる炭化ケイ素単結晶の研削方法の工程図(その2)を示す。FIG. 3: shows process drawing (the 2) of the grinding method of the silicon carbide single crystal concerning the 1st Embodiment of this invention. 図4(a)は本発明の第1の実施形態にかかる炭化ケイ素単結晶の研削方法の工程を示す断面図を示し、図4(b)は研削砥石の一部断面図を示し、図4(c)は研削砥石の他の例の一部断面図を示す。FIG. 4A is a cross-sectional view showing the steps of the silicon carbide single crystal grinding method according to the first embodiment of the present invention, FIG. 4B is a partial cross-sectional view of the grinding wheel, and FIG. (C) shows a partial cross-sectional view of another example of a grinding wheel. 図5は本発明の第1の実施形態にかかる炭化ケイ素単結晶の研削方法の工程図(その3)を示す。FIG. 5: shows process drawing (the 3) of the grinding method of the silicon carbide single crystal concerning the 1st Embodiment of this invention. 図6は本発明の第1の実施形態にかかる炭化ケイ素単結晶の研削方法の工程図(その4)を示す。FIG. 6 is a process diagram (part 4) of the method for grinding a silicon carbide single crystal according to the first embodiment of the present invention. 図7(a)は本発明の第2の実施形態にかかる炭化ケイ素単結晶の研削方法の工程を示す断面図を示し、図7(b)は研削砥石の一部断面図を示し、図7(c)は研削砥石の一部断面図を示す。FIG. 7 (a) is a cross-sectional view showing the steps of the silicon carbide single crystal grinding method according to the second embodiment of the present invention, FIG. 7 (b) is a partial cross-sectional view of the grinding wheel, and FIG. (C) shows a partial cross-sectional view of the grinding wheel. 図8は本発明の第2の実施形態にかかる炭化ケイ素単結晶の研削方法の工程を示す断面拡大図を示す。FIG. 8: shows the expanded sectional view which shows the process of the grinding method of the silicon carbide single crystal concerning the 2nd Embodiment of this invention. 図9は従来の炭化ケイ素単結晶の研削方法の工程を示す断面図を示す。FIG. 9 is a cross-sectional view showing the steps of a conventional method for grinding a silicon carbide single crystal.

符号の説明Explanation of symbols

10…炭化ケイ素単結晶
10a…円筒状炭化ケイ素単結晶
12…種結晶
20…蓋
21…固定装置
30…中空円筒状砥石
40…シングルワイヤ
DESCRIPTION OF SYMBOLS 10 ... Silicon carbide single crystal 10a ... Cylindrical silicon carbide single crystal 12 ... Seed crystal 20 ... Lid 21 ... Fixing device 30 ... Hollow cylindrical grindstone 40 ... Single wire

Claims (11)

昇華法により形成された炭化ケイ素単結晶の種結晶側に対向する成長面に対して中空円筒状砥石の開口部を接触させる工程と、
前記中空円筒状砥石を回転させると共に前記中空円筒状砥石を前記種結晶方向に下降させて前記炭化ケイ素単結晶を研削する工程と、
を含むことを特徴とする炭化ケイ素単結晶の研削方法。
Contacting the opening of the hollow cylindrical grindstone with the growth surface facing the seed crystal side of the silicon carbide single crystal formed by the sublimation method;
Rotating the hollow cylindrical grindstone and lowering the hollow cylindrical grindstone in the seed crystal direction to grind the silicon carbide single crystal;
A method for grinding a silicon carbide single crystal, comprising:
前記中空筒状砥石の開口部形状を楕円形状としたことを特徴とする請求項1記載の炭化ケイ素単結晶の研削方法。   2. The method for grinding a silicon carbide single crystal according to claim 1, wherein the shape of the opening of the hollow cylindrical grindstone is an ellipse. 前記中空筒状砥石の開口部形状を、長径と短径との差が0.01mm乃至2.0mmの範囲内の楕円形状としたことを特徴とする請求項2記載の炭化ケイ素単結晶の研削方法。   3. The silicon carbide single crystal grinding according to claim 2, wherein an opening shape of the hollow cylindrical grindstone is an elliptical shape having a difference between a major axis and a minor axis within a range of 0.01 mm to 2.0 mm. Method. 前記研削工程において、前記炭化ケイ素単結晶の成長方向の中心軸と、前記中空円筒状砥石の中心軸とを一致させた状態で前記中空円筒状砥石を前記種結晶方向に下降させることを特徴とする請求項1記載の炭化ケイ素単結晶の研削方法。   In the grinding step, the hollow cylindrical grindstone is lowered in the seed crystal direction in a state where the central axis in the growth direction of the silicon carbide single crystal coincides with the central axis of the hollow cylindrical grindstone. The method for grinding a silicon carbide single crystal according to claim 1. 前記研削工程において、前記炭化ケイ素単結晶と前記中空円筒状砥石を相対的に動かして揺動させることを特徴とする請求項1記載の炭化ケイ素単結晶の研削方法。   2. The method for grinding a silicon carbide single crystal according to claim 1, wherein in the grinding step, the silicon carbide single crystal and the hollow cylindrical grindstone are relatively moved and oscillated. 前記炭化ケイ素単結晶の成長方向の中心軸と、中空円筒状砥石の中心軸とのずれで定義される揺動幅が0.1〜1.0mmであることを特徴とする請求項5記載の炭化ケイ素単結晶の研削方法。   The rocking width defined by the deviation between the central axis in the growth direction of the silicon carbide single crystal and the central axis of the hollow cylindrical grindstone is 0.1 to 1.0 mm. A method for grinding a silicon carbide single crystal. 前記円筒状砥石の回転速度は300〜3000rpmであることを特徴とする請求項4〜6のいずれかに記載の炭化ケイ素単結晶の研削方法。   The method for grinding a silicon carbide single crystal according to any one of claims 4 to 6, wherein a rotational speed of the cylindrical grindstone is 300 to 3000 rpm. 前記円筒状砥石の送り速度は0.1〜1.0mm/minであることを特徴とする請求項4〜7のいずれかに記載の炭化ケイ素単結晶の研削方法。   The method for grinding a silicon carbide single crystal according to any one of claims 4 to 7, wherein a feed rate of the cylindrical grindstone is 0.1 to 1.0 mm / min. 前記円筒状砥石は、砥石先端部に一定の間隔で切り欠き部を具えることを特徴とする請求項4〜8のいずれかに記載の炭化ケイ素単結晶の研削方法。   The method for grinding a silicon carbide single crystal according to any one of claims 4 to 8, wherein the cylindrical grindstone includes notches at a constant interval at a grindstone tip. 前記中空円筒状砥石は、中心軸上に潤滑剤を供給する噴出し口を備え、前記噴出し口から潤滑剤を供給しつつ、前記炭化ケイ素単結晶を研削することを特徴とする請求項3〜9のいずれかに記載の炭化ケイ素単結晶の研削方法。   The said hollow cylindrical grindstone is provided with the ejection port which supplies a lubricant on a center axis | shaft, The said silicon carbide single crystal is ground, supplying a lubricant from the said ejection port. The grinding method of the silicon carbide single crystal in any one of -9. さらに、前記研削工程で切り出された円筒状炭化ケイ素単結晶の成長表面近傍及び種結晶接着面近傍を研削する工程を含むことを特徴とする請求項4〜10のいずれかに記載の炭化ケイ素単結晶の研削方法。   The silicon carbide single crystal according to any one of claims 4 to 10, further comprising a step of grinding the vicinity of the growth surface and the vicinity of the seed crystal bonding surface of the cylindrical silicon carbide single crystal cut out in the grinding step. Crystal grinding method.
JP2006278605A 2006-02-06 2006-10-12 Method for grinding silicon carbide single crystal Pending JP2007235092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278605A JP2007235092A (en) 2006-02-06 2006-10-12 Method for grinding silicon carbide single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006028895 2006-02-06
JP2006278605A JP2007235092A (en) 2006-02-06 2006-10-12 Method for grinding silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2007235092A true JP2007235092A (en) 2007-09-13

Family

ID=38555323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278605A Pending JP2007235092A (en) 2006-02-06 2006-10-12 Method for grinding silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2007235092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220265A (en) * 2014-05-15 2015-12-07 新日鐵住金株式会社 Processing method of silicon carbide single crystal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220265A (en) * 2014-05-15 2015-12-07 新日鐵住金株式会社 Processing method of silicon carbide single crystal ingot

Similar Documents

Publication Publication Date Title
JP5237370B2 (en) Scribing wheel and scribing method for brittle material substrate
US9701043B2 (en) Dicing blade
TWI457188B (en) Method for cutting workpiece with wire saw
TWI507260B (en) Method for cutting silicon ingot by using wire saw and wire saw
US9314942B2 (en) Ingot cutting apparatus and ingot cutting method
CN1906740A (en) Method of producing III-nitride substrate
CN104858737B (en) Method for grinding flat surface of workpiece
JP2007030155A (en) Method for processing nitride semiconductor crystal
KR20150004931A (en) Dicing device and dicing method
WO2015029988A1 (en) Dicing device and dicing method
JP6352174B2 (en) Side surface processing method of silicon carbide single crystal ingot
KR20150052037A (en) Method for cutting high-hardness material by multi-wire saw
JP2010074056A (en) Semiconductor wafer and method of manufacturing same
US20010032583A1 (en) Method of producing a polycrystalline silicon rod
JP5003696B2 (en) Group III nitride substrate and manufacturing method thereof
JP2007235092A (en) Method for grinding silicon carbide single crystal
JP6334253B2 (en) Method for processing silicon carbide single crystal ingot
JP2008132559A (en) Grinding method for silicon carbide single crystal
JP2013086238A (en) METHOD FOR CUTTING Cu-Ga ALLOY AND METHOD FOR MANUFACTURING SPUTTERING TARGET
JP2008133152A (en) Grinding method of silicon carbide single crystal
JPWO2011052682A1 (en) Processing method of difficult-to-cut cast iron
JP2010194633A (en) Grinding method of silicon carbide monocrystal
WO2020246152A1 (en) Method for cutting polycrystalline silicon rod, method for manufacturing cut rod of polycrystalline silicon rod, method for manufacturing nugget of polycrystalline silicon rod, and polycrystalline silicon rod cutting device
JP2016087820A (en) Core drill for cutting work of sapphire single crystal boule
JP2018103356A (en) Blade processing device and blade processing method