JP2007234435A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2007234435A
JP2007234435A JP2006055614A JP2006055614A JP2007234435A JP 2007234435 A JP2007234435 A JP 2007234435A JP 2006055614 A JP2006055614 A JP 2006055614A JP 2006055614 A JP2006055614 A JP 2006055614A JP 2007234435 A JP2007234435 A JP 2007234435A
Authority
JP
Japan
Prior art keywords
ground electrode
discharge gap
spark discharge
spark
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006055614A
Other languages
Japanese (ja)
Other versions
JP4718345B2 (en
Inventor
Kazumasa Yoshida
和正 吉田
Kazuyoshi Torii
計良 鳥居
Wataru Matsutani
渉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006055614A priority Critical patent/JP4718345B2/en
Publication of JP2007234435A publication Critical patent/JP2007234435A/en
Application granted granted Critical
Publication of JP4718345B2 publication Critical patent/JP4718345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug capable of improving ignitability while efficiently arranging it in a small range by specifying an optimum positional relationship between a spark discharge gap and a ground electrode. <P>SOLUTION: It is preferable that the distance (d) between a central point C of the spark discharge gap composed of a center electrode 20 of this spark plug 100 and the ground electrode 30 thereof, and the ground electrode 30 is not smaller than 2.6 mm. In the circumference of the spark plug gap, when a flame kernel formed in the spark discharge gap grows, contact to the ground electrode 30 in its growth initial stage can be avoided, and an anti-flammatory action can be reduced. By specifying the optimum positional relationship between the spark discharge space and the ground electrode 30, respective members arranged around the spark discharge gap can be efficiently arranged in a small range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関に組み付けられて混合気への点火を行うためのスパークプラグに関するものである。   The present invention relates to a spark plug that is assembled in an internal combustion engine and ignites an air-fuel mixture.

従来、内燃機関には点火のためのスパークプラグが用いられている。一般的なスパークプラグは、自身の先端側に火花放電のための電極を形成する中心電極と、その中心電極を軸孔内に保持する絶縁碍子と、この絶縁碍子の径方向周囲を取り囲んで保持する主体金具とを有している。その主体金具の先端面には接地電極の一端部が接合されており、他端部が中心電極に臨むように屈曲されて、中心電極の先端部との間で火花放電間隙が形成されている。この火花放電間隙にて火花放電が行われることによって、混合気への点火が行われる。   Conventionally, spark plugs for ignition are used in internal combustion engines. A typical spark plug has a center electrode that forms an electrode for spark discharge on its tip side, an insulator that holds the center electrode in the shaft hole, and surrounds the periphery of the insulator in the radial direction. And a metal shell. One end of the ground electrode is joined to the front end surface of the metal shell, and the other end is bent so as to face the center electrode to form a spark discharge gap between the front end of the center electrode. . A spark discharge is performed in the spark discharge gap, whereby the mixture is ignited.

ところで接地電極の一端部は、通常、中心電極の先端部に対し軸線方向前方に配置され、両者間の最短距離を軸線方向に有し、この方向に、火花放電間隙における放電が行われる。一方、接地電極の他端部は主体金具の先端面に接合されるため、接地電極は、一端部から他端部に向けて、緩やかな曲線を描くように屈曲されている。つまり、放電方向と直交する方向において、接地電極と火花放電間隙との間の距離は、一端部に近いほど短くなる。このようなスパークプラグでは、火花放電間隙で形成された火炎核が放電方向と直交する方向に成長する(燃え広がる)過程において接地電極の屈曲部分に接触しやすくなり、消炎作用を受ける虞がある。   By the way, one end of the ground electrode is usually arranged forward in the axial direction with respect to the tip of the center electrode, and has the shortest distance between the two in the axial direction, and discharge in the spark discharge gap is performed in this direction. On the other hand, since the other end of the ground electrode is joined to the front end surface of the metal shell, the ground electrode is bent so as to draw a gentle curve from one end to the other end. That is, in the direction orthogonal to the discharge direction, the distance between the ground electrode and the spark discharge gap becomes shorter as it is closer to one end. In such a spark plug, the flame core formed in the spark discharge gap is likely to come into contact with the bent portion of the ground electrode in the process of growing (burning out) in the direction perpendicular to the discharge direction, and may be extinguished. .

そこで、接地電極を中心電極と平行に延ばし、中心電極の先端面よりも軸線方向前方において屈曲させて、他端部を、軸線方向前方から中心電極の先端面に対向させるように構成する(例えば、特許文献1参照。)。このようにすれば、火花放電間隙の周囲の空間を広げることができ、火炎核の成長の過程において接地電極による消炎作用を受けにくくすることができる。
特開平6−68951号公報
Therefore, the ground electrode is extended in parallel with the center electrode, bent forward in the axial direction from the tip surface of the center electrode, and the other end is configured to face the tip surface of the center electrode from the front in the axial direction (for example, , See Patent Document 1). In this way, the space around the spark discharge gap can be widened, and the flame extinguishing action by the ground electrode can be made difficult during the growth process of the flame kernel.
Japanese Unexamined Patent Publication No. 6-68951

しかしながら、特許文献1では、接地電極が中心電極の先端面よりも軸線方向前方に大きく突出した構成となるため、スパークプラグを内燃機関に組み付けた際に接地電極が燃焼室内で張り出して、内燃機関の構成部材と干渉する虞があった。一方で、接地電極を火花放電間隙に、ただ近づけただけでは、火花放電間隙で形成される火炎核が接地電極による消炎作用を受けやすくなり着火性が低下するという問題があった。   However, in Patent Document 1, since the ground electrode protrudes greatly forward in the axial direction from the front end surface of the center electrode, the ground electrode protrudes in the combustion chamber when the spark plug is assembled to the internal combustion engine, and the internal combustion engine There was a possibility of interfering with the constituent members. On the other hand, if the ground electrode is simply brought close to the spark discharge gap, there is a problem that the flame nucleus formed in the spark discharge gap is easily subjected to the extinguishing action by the ground electrode and the ignitability is lowered.

本発明は上記問題点を解決するためになされたものであり、火花放電間隙と接地電極との最適な位置関係を規定して小範囲内に効率よく配置させつつ、着火性を向上することができるスパークプラグを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is possible to improve the ignitability while efficiently arranging the spark discharge gap and the ground electrode within a small range by defining the optimum positional relationship between the spark discharge gap and the ground electrode. An object is to provide a spark plug that can be used.

上記目的を達成するために、請求項1に係る発明のスパークプラグは、中心電極と、軸線方向に延びる軸孔を有し、自身の先端部より前記中心電極の先端部を突出させた状態で、前記中心電極を前記軸孔内部に保持する絶縁碍子と、自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、一端部が、前記主体金具の先端面に接合され、他端部の一側面が、前記中心電極を臨むように屈曲され、その他端部の一側面と前記中心電極の先端面との間で火花放電間隙を形成する接地電極とを備え、前記火花放電間隙の大きさが2.0mm以下であり、且つ前記火花放電間隙の中点と前記接地電極の前記他端部の一側面との間の距離が1.0mm以下であるスパークプラグにおいて、前記軸線方向と直交し、且つ前記接地電極の延長方向と直交する方向における前記接地電極の幅をtとし、前記火花放電間隙の大きさをGとしたとき、d−0.5t(G−2)≧1.0を満たすことを特徴とする。 In order to achieve the above object, a spark plug according to a first aspect of the present invention has a center electrode and an axial hole extending in the axial direction, with the tip of the center electrode protruding from its tip. An insulator that holds the center electrode inside the shaft hole, and a metal shell that surrounds and holds the periphery of the insulator in the radial direction in a state where the tip of the insulator protrudes from the tip surface of the insulator. One end is joined to the front end surface of the metal shell, one side of the other end is bent so as to face the center electrode, and a spark is formed between one side of the other end and the front end surface of the center electrode. A ground electrode that forms a discharge gap, wherein the size of the spark discharge gap is 2.0 mm or less, and between a midpoint of the spark discharge gap and one side surface of the other end of the ground electrode. For spark plugs with a distance of 1.0 mm or less When the width of the ground electrode in the direction perpendicular to the axial direction and perpendicular to the extending direction of the ground electrode is t and the size of the spark discharge gap is G, d−0.5t (G−2 ) 2 ≧ 1.0 is satisfied.

また、請求項2に係る発明のスパークプラグは、請求項1に記載の発明の構成に加え、前記火花放電間隙の中点を含み前記火花放電間隙における放電方向と直交する前記スパークプラグの断面において、前記火花放電間隙の中点の位置と、前記接地電極の位置との間の距離をdとしたとき、d≧2.6(mm)であることを特徴とする。   In addition to the configuration of the invention of claim 1, a spark plug of the invention according to claim 2 includes a midpoint of the spark discharge gap and a cross section of the spark plug perpendicular to the discharge direction in the spark discharge gap. When the distance between the midpoint position of the spark discharge gap and the position of the ground electrode is d, d ≧ 2.6 (mm).

火花放電間隙にて形成された火炎核は、火花放電間隙付近における接地電極の体積の大きさによって接地電極から受ける消炎作用の大きさに影響が生ずる。接地電極の体積の大きさは、軸線方向と直交し、且つ接地電極の延長方向と直交する方向における接地電極の幅tの大きさと比例し、tが小さいほど接地電極が火炎核に与える消炎作用が小さくなる。一方で、火花放電間隙の中点と接地電極との間の距離dが大きいほど着火性が向上する。そこで、請求項1に係る発明のように、本願発明者等の見い出した関係式、d−0.5t(G−2)≧1.0を満たすことが好ましい。この関係式では、火花放電間隙の中点と接地電極との間の距離dの値が大きいほど、接地電極の幅tの値が小さいほど、また、火花放電間隙の大きさGの値が2に近づくほど、d−0.5t(G−2)が1.0以上の値となりやすい。 The flame nuclei formed in the spark discharge gap affect the magnitude of the flame extinguishing action received from the ground electrode depending on the volume of the ground electrode in the vicinity of the spark discharge gap. The volume of the ground electrode is proportional to the size of the width t of the ground electrode in the direction perpendicular to the axial direction and perpendicular to the extending direction of the ground electrode, and the extinguishing action that the ground electrode gives to the flame kernel as t decreases. Becomes smaller. On the other hand, the ignitability improves as the distance d between the midpoint of the spark discharge gap and the ground electrode increases. Therefore, as in the invention according to claim 1, it is preferable to satisfy the relational expression d-0.5t (G-2) 2 ≧ 1.0 found by the inventors of the present application. In this relational expression, as the value of the distance d between the midpoint of the spark discharge gap and the ground electrode is larger, the value of the width t of the ground electrode is smaller, and the value G of the spark discharge gap is 2. As it approaches, d−0.5t (G−2) 2 tends to be a value of 1.0 or more.

火花放電間隙の中点と接地電極との間の距離dが大きいほど、上記したように、火炎核の成長初期の段階において接地電極と接触することを避けることができるので、消炎作用が低減されて失火しにくくなり、スパークプラグの着火性が向上する。また、接地電極の幅tが小さいほど、接地電極の体積が小さくなるため、成長する火炎核が接地電極に接触した場合に接地電極により奪われる熱量が少なくなり、消炎作用を低減することができる。更に、接地電極の幅tが小さくなれば、燃焼室内における混合気の流れが接地電極側から火花放電間隙に向かう流れであった場合、混合気が接地電極の周囲を迂回して火花放電間隙に向けて流れやすくなるため、着火性は低下しにくい。そして、0≦G≦2.0の範囲において火花放電間隙の大きさGが2.0mmに近づくほど火花放電間隙の大きさが大きくなるため、火花放電間隙で形成される火炎核が成長する際に接地電極によって受ける消炎作用を低減することができる。そして、これらd、t、Gの値が上記関係式により相互関係もってそれぞれ決定されることで、スパークプラグは、火花放電間隙の周囲に、火花放電間隙で形成される火炎核に対する消炎作用の影響を少なくするのに十分な空間を得ることができ、スパークプラグの着火性を向上することができる。更に、火花放電間隙の周囲に配置される各部材を小範囲内に効率よく配置させることができ、スパークプラグの小型化を図ることができる。   As the distance d between the midpoint of the spark discharge gap and the ground electrode is larger, as described above, it is possible to avoid contact with the ground electrode in the early stage of the growth of the flame kernel, so that the extinguishing action is reduced. This makes it difficult to misfire and improves the ignitability of the spark plug. In addition, the smaller the width t of the ground electrode, the smaller the volume of the ground electrode. Therefore, when the growing flame nucleus contacts the ground electrode, the amount of heat taken away by the ground electrode is reduced, and the flame extinguishing action can be reduced. . Further, if the width t of the ground electrode is reduced, if the flow of the air-fuel mixture in the combustion chamber is from the ground electrode side toward the spark discharge gap, the air-fuel mixture bypasses the periphery of the ground electrode and enters the spark discharge gap. The ignitability is unlikely to decrease because it tends to flow toward the vehicle. In the range of 0 ≦ G ≦ 2.0, the size of the spark discharge gap increases as the spark discharge gap size G approaches 2.0 mm. Therefore, when a flame nucleus formed in the spark discharge gap grows. It is possible to reduce the flame extinguishing effect received by the ground electrode. The values of d, t, and G are respectively determined by the above relational expressions so that the spark plug has an effect of extinguishing action on the flame nucleus formed in the spark discharge gap around the spark discharge gap. It is possible to obtain a sufficient space to reduce the amount of spark plugs and improve the ignitability of the spark plug. Furthermore, each member arrange | positioned around a spark discharge gap can be efficiently arrange | positioned in a small range, and size reduction of a spark plug can be achieved.

また、請求項2に係る発明では、火花放電間隙における放電方向と直交する方向において、火花放電間隙の中点と接地電極との間の距離dとして2.6mm以上の大きさが確保されるので、火花放電間隙にて形成される火炎核が成長する過程において、放電方向と直交する方向で、火炎核は、接地電極と接触するまでの間に、失火の虞が生じないほど十分に成長することができる。すなわち、火炎核の成長初期の段階において接地電極と接触することを避けることができるので、消炎作用が低減されて失火しにくくなり、スパークプラグの着火性が向上する。このように、火花放電間隙と接地電極との最適な位置関係を規定することで、スパークプラグの着火性を向上させた上で、火花放電間隙の周囲に配置される各部材を小範囲内に効率よく配置させることができ、スパークプラグの小型化を図ることができる。   In the invention according to claim 2, since the distance d between the midpoint of the spark discharge gap and the ground electrode is secured in the direction orthogonal to the discharge direction in the spark discharge gap, a size of 2.6 mm or more is secured. In the process of growing the flame nuclei formed in the spark discharge gap, the flame nuclei grow sufficiently in the direction perpendicular to the discharge direction so that there is no risk of misfire before contacting the ground electrode. be able to. That is, since it is possible to avoid contact with the ground electrode in the initial stage of the growth of the flame kernel, the flame extinguishing action is reduced and misfire is difficult to occur, and the ignitability of the spark plug is improved. In this way, by defining the optimum positional relationship between the spark discharge gap and the ground electrode, the ignitability of the spark plug is improved, and each member disposed around the spark discharge gap is within a small range. Therefore, the spark plug can be efficiently arranged and the spark plug can be downsized.

ところで、火花放電間隙の放電方向においても、形成された火炎核が成長して接地電極に接触すれば消炎作用を受けるので、火花放電間隙を大きくするほど消炎作用を低減することができる。この放電方向では、火炎核は、放電される火花に沿って混合気に着火して燃え広がるため、成長の過程の早い段階で失火しにくくなる。具体的には火花放電間隙の大きさが2.0mmより大きくなれば、2.0mmの場合と比べ着火性の向上はみられなくなる。このため、火花放電間隙が大きくなることによって火炎核が十分に成長できる状態となっては、放電方向と直交する方向における火炎核の成長に着目した着火性の評価を行うことが難しい。具体的には、火花放電間隙の大きさが2.0mm以下である場合に着火性の評価を行うことが肝要である。   By the way, also in the discharge direction of the spark discharge gap, the flame extinguishing action can be reduced as the spark discharge gap is increased because the formed flame nucleus grows and contacts the ground electrode. In this discharge direction, the flame kernel ignites the air-fuel mixture along the discharged sparks and spreads, making it difficult to misfire early in the growth process. Specifically, if the size of the spark discharge gap is larger than 2.0 mm, the ignitability is not improved as compared with 2.0 mm. For this reason, it is difficult to evaluate the ignitability by paying attention to the growth of flame nuclei in the direction orthogonal to the discharge direction when the flame nuclei are sufficiently grown by increasing the spark discharge gap. Specifically, it is important to evaluate the ignitability when the size of the spark discharge gap is 2.0 mm or less.

また、中心電極の先端部に臨む接地電極の他端部の一側面に、例えば貴金属チップなどの突起部を設け、その突起部と中心電極との間で火花放電間隙を形成すれば、火炎核が放電方向に成長する上で接地電極の母材と接触するまでの距離が大きくなり、消炎作用が低減されるため着火性が向上する。もっとも、上記同様、火花放電間隙の中点と接地電極の他端部の一側面との間の距離が大きくなることによって火炎核が十分に成長できる状態となっては、放電方向と直交する方向における火炎核の成長に着目した着火性の評価を行うことが難しい。具体的には、火花放電間隙の中点と接地電極の他端部の一側面との間の距離が1.0mm以下である場合に着火性の評価を行うことが肝要である。   Further, if a projection such as a noble metal tip is provided on one side surface of the other end of the ground electrode facing the tip of the center electrode, and a spark discharge gap is formed between the projection and the center electrode, a flame nucleus As the electrode grows in the discharge direction, the distance until it comes into contact with the base material of the ground electrode is increased, and the flame extinguishing action is reduced, thereby improving the ignitability. However, as described above, when the distance between the midpoint of the spark discharge gap and the one side surface of the other end of the ground electrode is increased, the flame nucleus can be sufficiently grown. It is difficult to evaluate the ignitability focusing on the growth of flame kernels. Specifically, it is important to evaluate the ignitability when the distance between the midpoint of the spark discharge gap and one side surface of the other end of the ground electrode is 1.0 mm or less.

以下、本発明を具体化したスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1を参照して、一例としてのスパークプラグ100の構造について説明する。図1は、スパークプラグ100の部分断面図である。なお、図1において、スパークプラグ100の軸線O方向を図面における上下方向とし、下側をスパークプラグ100の先端側(前方)、上側を後端側(後方)として説明する。   Hereinafter, an embodiment of a spark plug embodying the present invention will be described with reference to the drawings. First, the structure of a spark plug 100 as an example will be described with reference to FIG. FIG. 1 is a partial cross-sectional view of a spark plug 100. In FIG. 1, the axis O direction of the spark plug 100 will be described as the vertical direction in the drawing, the lower side will be described as the front end side (front), and the upper side will be described as the rear end side (rear).

図1に示すように、スパークプラグ100は、概略、絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端面57に基端部32を溶接され、先端部31の内面33が中心電極20の先端部22を臨むように屈曲された接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。   As shown in FIG. 1, the spark plug 100 generally includes an insulator 10, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held in the insulator 10 in the direction of the axis O, and a metal shell. 50 is provided at the rear end portion of the insulator 10 and the ground electrode 30 which is bent so that the inner end 33 of the front end portion 31 faces the front end portion 22 of the center electrode 20. Terminal metal fitting 40.

まず、このスパークプラグ100の絶縁体を構成する絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ延びる軸孔12が形成された筒形状を有する。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には後端側胴部18よりも外径の小さな先端側胴部17が形成され、更にその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径されており、スパークプラグ100が内燃機関のエンジンヘッド(図示外)に取り付けられた際には、その燃焼室に曝される。そして、脚長部13と後端側胴部18との間は段部15として形成されている。   First, the insulator 10 constituting the insulator of the spark plug 100 will be described. As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which an axial hole 12 extending in the direction of the axis O is formed at the axial center. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end body portion 18 is formed on the rear end side (upper side in FIG. 1). A front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side (lower side in FIG. 1) from the flange portion 19, and further, the front end side is closer to the front end side than the front end side body portion 17. A long leg portion 13 having an outer diameter smaller than that of the side body portion 17 is formed. The long leg portion 13 is reduced in diameter toward the tip side, and when the spark plug 100 is attached to the engine head (not shown) of the internal combustion engine, it is exposed to the combustion chamber. A step portion 15 is formed between the long leg portion 13 and the rear end side trunk portion 18.

次に、中心電極20は、インコネル(商標名)600または601等のニッケル系合金等で形成され、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20は、その軸線がスパークプラグ100の軸線Oと一致するように絶縁碍子10の軸孔12内の先端側にて保持されている。中心電極20の先端側は絶縁碍子10の先端部11の先端面から突出され、その突出部分は先端側に向かって径小となるように形成されている。この突出部分の先端には耐火花消耗性を向上するための貴金属チップ91が接合されており、中心電極20本体と一体となって小径の先端部22を構成している。なお、本実施の形態では、中心電極20と一体になった貴金属チップ91を含め「中心電極」と称する。   Next, the center electrode 20 is formed of a nickel-based alloy such as Inconel (trade name) 600 or 601 and has a metal core 23 made of copper or the like having excellent thermal conductivity. The center electrode 20 is held on the distal end side in the shaft hole 12 of the insulator 10 so that the axis thereof coincides with the axis O of the spark plug 100. The distal end side of the center electrode 20 protrudes from the distal end surface of the distal end portion 11 of the insulator 10, and the protruding portion is formed so that the diameter decreases toward the distal end side. A noble metal tip 91 for improving the spark wear resistance is joined to the tip of the protruding portion, and a small-diameter tip 22 is formed integrally with the center electrode 20 body. In the present embodiment, the noble metal tip 91 integrated with the center electrode 20 is referred to as a “center electrode”.

また、中心電極20は、軸孔12の内部に設けられたシール体4およびセラミック抵抗3を経由して、上方の端子金具40に電気的に接続されている。そして端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加されるようになっている。   Further, the center electrode 20 is electrically connected to the upper terminal fitting 40 via the seal body 4 and the ceramic resistor 3 provided in the shaft hole 12. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage is applied.

次に、主体金具50について説明する。主体金具50は、図示外の内燃機関のエンジンヘッドにスパークプラグ100を固定するための円筒状の金具であり、自身の先端面57より絶縁碍子10の先端部11を突出させた状態で、脚長部13から後端側胴部18にかけての部位を取り囲むようにして、絶縁碍子10を内部に保持している。主体金具50は低炭素鋼材より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、内燃機関の上部に設けられたエンジンヘッドに螺合する雄ねじ状のねじ部52とを備えている。その工具係合部51とねじ部52との間には鍔状のシール部54が形成され、シール部54とねじ部52との間の位置に、エンジン内の気密漏れを防止するためのガスケット5が嵌挿されている。   Next, the metal shell 50 will be described. The metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to an engine head of an internal combustion engine (not shown), and the leg length is set in a state where the tip portion 11 of the insulator 10 protrudes from its tip surface 57. The insulator 10 is held inside so as to surround a portion from the portion 13 to the rear end side body portion 18. The metal shell 50 is formed of a low carbon steel material, and includes a tool engaging portion 51 into which a spark plug wrench (not shown) is fitted, and a male screw-like screw portion 52 that is screwed into an engine head provided at the upper portion of the internal combustion engine. I have. A flange-like seal portion 54 is formed between the tool engaging portion 51 and the screw portion 52, and a gasket for preventing airtight leakage in the engine at a position between the seal portion 54 and the screw portion 52. 5 is inserted.

主体金具50の工具係合部51より後端側には薄肉の加締め部53が設けられており、シール部54と工具係合部51との間には薄肉の座屈部58が設けられている。また、工具係合部51から加締め部53にかけての主体金具50の内周面と、内部に保持される絶縁碍子10の後端側胴部18の外周面との間には円環状のリング部材6,7が介在されており、更に両リング部材6,7間にタルク(滑石)9の粉末が充填されている。そして、加締め部53の端部を内側に折り曲げるようにして加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧される。これにより、主体金具50の内周でねじ部52の位置に形成された段部56に、絶縁碍子10の段部15が環状の板パッキン8を介して支持されて、主体金具50と絶縁碍子10とが一体にされる。このとき、主体金具50と絶縁碍子10との間の気密性は板パッキン8によって保持され、燃焼ガスの流出が防止される。また、座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、タルク9の圧縮ストロークを稼いで気密性を高めている。   A thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51, and a thin buckling portion 58 is provided between the seal portion 54 and the tool engaging portion 51. ing. An annular ring is formed between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10 held inside. Members 6 and 7 are interposed, and a powder of talc (talc) 9 is filled between the ring members 6 and 7. Then, the insulator 10 is pressed toward the front end side in the metal shell 50 through the ring members 6 and 7 and the talc 9 by bending the end portion of the crimp portion 53 inward. As a result, the step portion 15 of the insulator 10 is supported via the annular plate packing 8 on the step portion 56 formed at the position of the screw portion 52 on the inner periphery of the metal shell 50, and the metal shell 50 and the insulator 10 is integrated. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented. In addition, the buckling portion 58 is configured to bend outwardly and deform as the compression force is applied during caulking, and increases the compression stroke of the talc 9 to improve airtightness.

次いで、接地電極30について説明する。接地電極30は耐腐食性の高い金属から構成され、一例として、インコネル(商標名)600または601等のニッケル合金が用いられる。この接地電極30は自身の長手方向の横断面が略長方形に形成されており、基端部32が主体金具50の先端面57に溶接により接合されている。また、接地電極30の先端部31は、内面33側が中心電極20の先端部22を臨むように屈曲され、その内面33と、中心電極20の先端面21(本実施の形態では貴金属チップ91の先端面21)との間で火花放電間隙が形成されている。本実施の形態では、中心電極20の先端面21と接地電極30の内面33とが互いに対向し軸線Oと直交する平面から構成されるため、両者間の最短距離を軸線O方向に有し、この方向を放電方向として、火花放電間隙における放電が行われる。なお、接地電極30の先端部31および基端部32が、それぞれ本発明における「他端部」および「一端部」に相当する。また、内面33が、本発明における「一側面」に相当する。   Next, the ground electrode 30 will be described. The ground electrode 30 is made of a metal having high corrosion resistance. As an example, a nickel alloy such as Inconel (trade name) 600 or 601 is used. The ground electrode 30 has a substantially rectangular cross section in the longitudinal direction, and the base end portion 32 is joined to the front end surface 57 of the metal shell 50 by welding. The tip 31 of the ground electrode 30 is bent so that the inner surface 33 faces the tip 22 of the center electrode 20, and the inner surface 33 and the tip 21 of the center electrode 20 (in the present embodiment, the noble metal tip 91 of the noble metal tip 91). A spark discharge gap is formed between the tip surface 21). In the present embodiment, since the tip surface 21 of the center electrode 20 and the inner surface 33 of the ground electrode 30 are configured by planes facing each other and orthogonal to the axis O, the shortest distance between them is in the direction of the axis O, With this direction as the discharge direction, discharge in the spark discharge gap is performed. In addition, the front-end | tip part 31 and the base end part 32 of the ground electrode 30 are corresponded to the "other end part" and the "one end part" in this invention, respectively. The inner surface 33 corresponds to “one side surface” in the present invention.

このように構成された本実施の形態のスパークプラグ100では、火花放電間隙で形成された火炎核が放電方向と直交する方向に成長する過程において、接地電極30と接触するまでに失火しないだけの十分な成長がなされるように、後述する評価試験の結果に基づいて、接地電極30の大きさや火花放電間隙との最適な位置関係を規定している。以下、図2,図3を参照し、接地電極30と火花放電間隙との位置関係や大きさに関する規定について説明する。図2は、主体金具50と接地電極30との接合位置を真横に配置し、スパークプラグ100の火花放電間隙付近を拡大して見たスパークプラグ100の一側面図である。図3は、図2におけるスパークプラグ100の右側面側から火花放電間隙付近を拡大して見たスパークプラグ100の他の側面図である。   In the spark plug 100 according to the present embodiment configured as described above, in the process in which the flame kernel formed in the spark discharge gap grows in the direction orthogonal to the discharge direction, it does not misfire until it contacts the ground electrode 30. Based on the result of an evaluation test described later, an optimum positional relationship with the size of the ground electrode 30 and the spark discharge gap is defined so that sufficient growth is achieved. Hereinafter, with reference to FIG. 2 and FIG. 3, the rules regarding the positional relationship and size between the ground electrode 30 and the spark discharge gap will be described. FIG. 2 is a side view of the spark plug 100 in which the joining position of the metal shell 50 and the ground electrode 30 is arranged directly beside and the vicinity of the spark discharge gap of the spark plug 100 is enlarged. FIG. 3 is another side view of the spark plug 100 viewed from the right side of the spark plug 100 in FIG. 2 in an enlarged manner near the spark discharge gap.

まず、火花放電間隙の中点を含み火花放電間隙における放電方向と直交するスパークプラグ100の断面において、火花放電間隙の中点と接地電極30の位置との間の距離をdとしたとき、d≧2.6(mm)が満たされることと規定している。本実施の形態のスパークプラグ100では、図2に示すように、軸線O方向と直交する平面を有する中心電極20の先端面21と接地電極30の内面33とが軸線O方向を最短距離として互いに向き合って火花放電間隙を形成する構成となっている。つまり火花放電間隙における放電方向は軸線O方向と一致する。従って、この軸線O方向において、中心電極20の先端面21と接地電極30の内面33との間の中間点が、本実施の形態における火花放電間隙の中点Cといえる。火花放電間隙の中点Cを含み火花放電間隙における放電方向と直交するスパークプラグ100の断面とは、側方から見た場合、図2に示すように、この中点Cを通り軸線Oに直交する仮想線として捉えることができる。このため、上記スパークプラグ100の断面における火花放電間隙の中点Cの位置と接地電極の位置との間の距離とは、図2に示す側面図において、上記仮想線と、接地電極30の輪郭線のうち火花放電間隙に近い側の交点をEとしたとき、中点Cと交点Eとの間の距離であるといえる。本実施の形態では、この中点Cと交点Eとの間の距離をdとしている。   First, in the cross section of the spark plug 100 including the midpoint of the spark discharge gap and orthogonal to the discharge direction in the spark discharge gap, d is the distance between the midpoint of the spark discharge gap and the position of the ground electrode 30. It is defined that ≧ 2.6 (mm) is satisfied. In the spark plug 100 of the present embodiment, as shown in FIG. 2, the tip surface 21 of the center electrode 20 having a plane orthogonal to the direction of the axis O and the inner surface 33 of the ground electrode 30 are mutually connected with the axis O direction as the shortest distance. It is the structure which forms a spark discharge gap | interval facing each other. That is, the discharge direction in the spark discharge gap coincides with the axis O direction. Therefore, in the direction of the axis O, the intermediate point between the tip surface 21 of the center electrode 20 and the inner surface 33 of the ground electrode 30 can be said to be the midpoint C of the spark discharge gap in the present embodiment. When viewed from the side, the cross section of the spark plug 100 including the midpoint C of the spark discharge gap and perpendicular to the discharge direction in the spark discharge gap passes through this midpoint C and is perpendicular to the axis O as shown in FIG. Can be seen as a virtual line. For this reason, the distance between the position of the midpoint C of the spark discharge gap and the position of the ground electrode in the cross section of the spark plug 100 is the contour of the virtual line and the ground electrode 30 in the side view shown in FIG. It can be said that it is the distance between the middle point C and the intersection point E, where E is the intersection point on the side close to the spark discharge gap. In the present embodiment, the distance between the midpoint C and the intersection E is d.

火花放電間隙で形成される火炎核が軸線Oと直交する方向に成長する(燃え広がる)際に、距離dが2.6mmより小さいと、火炎核が十分に成長する前に接地電極30と接触してしまうため着火性が低下する。そこで、接地電極30の屈曲位置や曲げ具合を調整し、距離dが2.6mm以上となるようにするとよい。   When the flame nucleus formed in the spark discharge gap grows in a direction orthogonal to the axis O (burns out), if the distance d is smaller than 2.6 mm, it contacts the ground electrode 30 before the flame nucleus grows sufficiently. Therefore, the ignitability is reduced. Therefore, it is preferable to adjust the bending position and bending condition of the ground electrode 30 so that the distance d is 2.6 mm or more.

また、火花放電間隙の大きさをGとし、軸線O方向と直交し、且つ接地電極30の延長方向と直交する方向における接地電極30の幅をtとしたとき、d−0.5t(G−2)≧1.0が満たされることと規定している。火花放電間隙の大きさGについて、より具体的には、図2,図3に示すように、互いに向かい合う中心電極20の先端面21と接地電極30の内面33とが最短距離となる位置にて、両者間の大きさを火花放電間隙の大きさGとしている。そして軸線O方向と直交し、且つ、接地電極30の延長方向、すなわち基端部32から先端部31に向かう方向(図2において一点鎖線Pで示す方向)と直交する方向における接地電極30の幅をtとしている。 Further, when the size of the spark discharge gap is G, the width of the ground electrode 30 in the direction orthogonal to the axis O direction and the direction orthogonal to the extension direction of the ground electrode 30 is t, d−0.5t (G− 2) It is defined that 2 ≧ 1.0 is satisfied. More specifically, with respect to the size G of the spark discharge gap, as shown in FIGS. 2 and 3, the tip surface 21 of the center electrode 20 and the inner surface 33 of the ground electrode 30 facing each other are located at the shortest distance. The size between the two is the size G of the spark discharge gap. The width of the ground electrode 30 in the direction perpendicular to the direction of the axis O and perpendicular to the extending direction of the ground electrode 30, that is, the direction from the base end portion 32 to the tip end portion 31 (the direction indicated by the alternate long and short dash line P in FIG. 2). T.

上記関係式、d−0.5t(G−2)は、着火性の良否を示す指標であり、後述する評価試験の結果に基づいて求められたものである。この値を1.0以上とするには、dを大きく、tを小さく、そしてGを2(mm)に近づけるとよいことがわかる。つまり、dを大きくすることは、火花放電間隙で形成される火炎核が成長する過程で、放電方向と直交する方向においては接地電極30との距離を離すことを意味する。また、tを小さくすることは、少なくとも火花放電間隙付近に配置される接地電極30の体積を小さくすることを意味する。更に放電方向と直交する方向において接地電極30の幅tが小さくなれば、燃焼室内における混合気の流れが接地電極30側から火花放電間隙に向かう流れであった場合、混合気が接地電極30の周囲を迂回して火花放電間隙に向けて流れやすくなるため着火性は低下しない。 The relational expression, d-0.5t (G-2) 2, is an index indicating the quality of ignitability, and is obtained based on the result of an evaluation test described later. It can be seen that in order to make this value 1.0 or more, it is preferable to increase d, decrease t, and approximate G to 2 (mm). That is, increasing d means that the distance from the ground electrode 30 is increased in the direction orthogonal to the discharge direction in the process of growth of the flame kernel formed in the spark discharge gap. Further, reducing t means reducing the volume of the ground electrode 30 disposed at least in the vicinity of the spark discharge gap. Further, if the width t of the ground electrode 30 is reduced in the direction orthogonal to the discharge direction, the air-fuel mixture flows in the combustion chamber from the ground electrode 30 side toward the spark discharge gap. The ignitability does not deteriorate because it tends to flow around the spark discharge gap around the periphery.

また、Gを2(mm)に近づけることは、火花放電間隙で形成される火炎核が成長する過程で、放電方向において、接地電極30との距離を2.0mmに近づけるほど接地電極30による消炎作用を受けにくくなることを意味する。なお、火花放電間隙において放電方向では、火炎核は放電される火花に沿って混合気に着火して燃え広がるため成長が早い。このため、火花放電間隙の大きさGを2.0mmより大きくしても、2.0mmの場合と比べ、着火性は向上しない。従って、放電方向と直交する方向において火炎核の成長に対する着火性を評価するには、火花放電間隙の大きさGが2.0mm以下である場合について評価を行うことが肝要である。   Further, bringing G closer to 2 (mm) means that the flame nuclei formed in the spark discharge gap grow, and in the discharge direction, the extinction by the ground electrode 30 becomes closer to 2.0 mm in the discharge direction. It means that it becomes difficult to receive the action. In the discharge direction in the spark discharge gap, the flame nuclei ignite the air-fuel mixture along the discharged sparks and spread, so that the growth is fast. For this reason, even if the size G of the spark discharge gap is larger than 2.0 mm, the ignitability is not improved as compared with 2.0 mm. Therefore, in order to evaluate the ignitability with respect to the growth of flame nuclei in the direction orthogonal to the discharge direction, it is important to evaluate the case where the spark discharge gap size G is 2.0 mm or less.

また、接地電極30の内面33に、例えば貴金属チップなどの突起部を設ければ、その突起部と中心電極20との間で形成される火花放電間隙にて生ずる火炎核が放電方向に成長する上で、接地電極30の母材と接触するまでの距離を大きくでき、消炎作用を低減することができる。しかし、上記同様、放電方向と直交する方向において火炎核の成長に対する着火性を評価するにあたって、火花放電間隙の中点Cと接地電極30の内面33との間の距離が大きくなることによって火炎核が十分に成長できる状態となっては難しい。従って、接地電極30の上記のような突起部が形成されていない状態、すなわち、火花放電間隙の中点Cと接地電極30の先端部31の内面33との間の距離が1.0mm以下である場合に着火性の評価を行うことが肝要である。   Further, if a protrusion such as a noble metal tip is provided on the inner surface 33 of the ground electrode 30, flame nuclei generated in the spark discharge gap formed between the protrusion and the center electrode 20 grow in the discharge direction. Above, the distance until it contacts with the base material of the ground electrode 30 can be increased, and the flame extinguishing action can be reduced. However, as described above, in evaluating the ignitability to the growth of flame nuclei in the direction orthogonal to the discharge direction, the flame nuclei are increased by increasing the distance between the midpoint C of the spark discharge gap and the inner surface 33 of the ground electrode 30. It is difficult to get enough growth. Therefore, when the above-described protrusions of the ground electrode 30 are not formed, that is, the distance between the center C of the spark discharge gap and the inner surface 33 of the tip 31 of the ground electrode 30 is 1.0 mm or less. In some cases, it is important to evaluate ignitability.

このように、接地電極30の大きさや火花放電間隙との位置関係を規定することで、着火性を良好にできることを確認するため、以下に示す評価試験を行った。   Thus, in order to confirm that the ignitability can be improved by defining the size of the ground electrode 30 and the positional relationship with the spark discharge gap, the following evaluation test was performed.

[実施例1]
まず、火花放電間隙の大きさGと接地電極30の幅tとの関係について、着火限界空燃比の観点による評価試験を行った。この評価試験では、接地電極の幅tとして1.0,1.4,2.8(mm)の3種類と、火花放電間隙の大きさGとして0.6,0.8,1.1,1.3,1.5,2.0,2.5(mm)の7種類とを組み合わせた構成の21種類のスパークプラグのサンプルを作製した。そして、各サンプルを6気筒2000ccのエンジンに組み付けた。このエンジンを2000rpmで駆動させ、失火の発生する頻度が火花放電回数1000回中1%となる空燃比を測定し、これを着火限界空燃比として求めた。
[Example 1]
First, an evaluation test was performed on the relationship between the spark discharge gap size G and the width t of the ground electrode 30 in terms of the ignition limit air-fuel ratio. In this evaluation test, three types of 1.0, 1.4, and 2.8 (mm) as the width t of the ground electrode, and 0.6, 0.8, 1.1, as the size G of the spark discharge gap, Samples of 21 types of spark plugs having a configuration combining 7 types of 1.3, 1.5, 2.0, and 2.5 (mm) were produced. Each sample was assembled into a 6-cylinder 2000 cc engine. The engine was driven at 2000 rpm, and the air-fuel ratio at which the frequency of misfire was 1% during 1000 spark discharges was measured, and this was determined as the ignition limit air-fuel ratio.

この評価試験の結果、火花放電間隙の大きさGが大きくなるにつれて着火限界空燃比が向上し、火花放電間隙の大きさGが2.0mm以上となると、着火限界空燃比の向上が見られなくなった。そこで、火花放電間隙の大きさGが2.0mmのときの着火限界空燃比を基準とし、接地電極の幅tの大きさ毎に、火花放電間隙の大きさGの異なる各サンプルの着火限界空燃比と、基準とした着火限界空燃比との差分を着火限界空燃比差として求めた。   As a result of this evaluation test, the ignition limit air-fuel ratio is improved as the spark discharge gap size G is increased. When the spark discharge gap size G is 2.0 mm or more, the ignition limit air-fuel ratio is not improved. It was. Therefore, with reference to the ignition limit air-fuel ratio when the spark discharge gap size G is 2.0 mm, the ignition limit sky of each sample having a different spark discharge gap size G for each size of the width t of the ground electrode. The difference between the fuel ratio and the reference ignition limit air-fuel ratio was determined as the ignition limit air-fuel ratio difference.

接地電極の幅tを1.0mmとし、火花放電間隙の大きさGを上記のように0.6〜2.5mmの間で異ならせた7種のサンプルの着火限界空燃比差は、それぞれ、−1.01,−0.74,−0.40,−0.23,−0.12,0,0であった。また、接地電極の幅tを1.4mmとし、火花放電間隙の大きさGを上記のように0.6〜2.5mmの間で異ならせた7種のサンプルの着火限界空燃比差は、それぞれ、−1.38,−1.20,−0.58,−0.32,−0.18,0,0であった。そして、接地電極の幅tを2.8mmとし、火花放電間隙の大きさGを上記のように0.6〜2.5mmの間で異ならせた7種のサンプルの着火限界空燃比差は、それぞれ、−2.68,−2.01,−1.21,−0.71,−0.35,0,0であった。この評価試験の結果を表1に示す。更に、この評価試験の結果より着火限界空燃比差と火花放電間隙の大きさGとの関係を接地電極の幅tの違いごとに分けてプロットしたグラフを図4に示した。   The ignition limit air-fuel ratio difference of the seven types of samples in which the width t of the ground electrode is 1.0 mm and the spark discharge gap size G is varied between 0.6 and 2.5 mm as described above is as follows. It was -1.01, -0.74, -0.40, -0.23, -0.12, 0,0. In addition, the ignition limit air-fuel ratio difference of the seven types of samples in which the width t of the ground electrode is 1.4 mm and the spark discharge gap size G is varied between 0.6 and 2.5 mm as described above is They were -1.38, -1.20, -0.58, -0.32, -0.18, 0, 0, respectively. And the ignition limit air-fuel ratio difference of the seven types of samples in which the width t of the ground electrode is 2.8 mm and the size G of the spark discharge gap is varied between 0.6 and 2.5 mm as described above. It was -2.68, -2.01, -1.21, -0.71, -0.35, 0, 0, respectively. The results of this evaluation test are shown in Table 1. Further, FIG. 4 shows a graph in which the relationship between the ignition limit air-fuel ratio difference and the spark discharge gap size G is plotted for each difference in the width t of the ground electrode from the result of this evaluation test.

Figure 2007234435
Figure 2007234435

表1および図4に示すグラフより明らかに、この実施例1の評価試験において接地電極の幅tの大きさに関わらず、火花放電間隙の大きさGが大きくなって2.0mmに近づくほど着火限界空燃比差が小さくなること、すなわち着火限界空燃比が向上することがわかった。一方、火花放電間隙の大きさGが一定の場合には、接地電極の幅tの大きさが小さいほど着火限界空燃比差が小さくなって着火限界空燃比が向上することが確認できた。   Clearly from the graphs shown in Table 1 and FIG. 4, in the evaluation test of Example 1, the spark discharge gap size G increases and approaches to 2.0 mm regardless of the size of the width t of the ground electrode. It has been found that the limit air-fuel ratio difference is reduced, that is, the ignition limit air-fuel ratio is improved. On the other hand, it was confirmed that when the spark discharge gap size G is constant, the ignition limit air-fuel ratio difference becomes smaller and the ignition limit air-fuel ratio improves as the width t of the ground electrode decreases.

ところで、図4に示すグラフに基づくと、火花放電間隙の大きさGおよび接地電極の幅tと、着火限界空燃比差との間に一定の相関関係があることがわかる。この相関関係は以下に示す、公知の統計的手法により求めた近似式によって表すことができる。
着火限界空燃比差=−0.5t(G−2) (ただし、0≦G≦2.0)・・・(1)
By the way, based on the graph shown in FIG. 4, it can be seen that there is a certain correlation among the spark discharge gap size G, the ground electrode width t, and the ignition limit air-fuel ratio difference. This correlation can be expressed by an approximate expression obtained by a known statistical method shown below.
Ignition limit air-fuel ratio difference = −0.5t (G−2) 2 (where 0 ≦ G ≦ 2.0) (1)

[実施例2]
次に、前述した火花放電間隙の中点Cと接地電極30の輪郭線上の交点E(図2参照)との間の距離dと、上記着火限界空燃比差との関係が着火性に与える影響について、評価試験を行った。この評価試験では、ねじ径の規格がM14であるスパークプラグとM10であるスパークプラグを対象とした。M14スパークプラグでは、接地電極の幅tを2.8mmとし、火花放電間隙の大きさGを0.9,1.1,1.5,2.0(mm)とした4種類のサンプルをそれぞれ4本ずつ、16本作製した。各サンプルはその製造過程において接地電極の先端部を屈曲させる際に、距離dがそれぞれ異なるように任意に調整した。また、M10スパークプラグについても同様に、接地電極の幅tを2.2mmとし、火花放電間隙の大きさGを0.7,0.9,1.1,1.5(mm)とした4種類のサンプルをそれぞれ3本ずつ、12本作製し、距離dがそれぞれ異なるように任意に調整した。
[Example 2]
Next, the influence of the relationship between the distance d between the above-described midpoint C of the spark discharge gap and the intersection E (see FIG. 2) on the contour line of the ground electrode 30 on the ignition limit air-fuel ratio affects the ignitability. An evaluation test was conducted. In this evaluation test, a spark plug with a thread diameter of M14 and a spark plug with M10 were targeted. In the M14 spark plug, four types of samples with a ground electrode width t of 2.8 mm and spark discharge gap sizes G of 0.9, 1.1, 1.5, and 2.0 (mm), respectively. 16 pieces were produced, 4 pieces each. Each sample was arbitrarily adjusted so that the distance d was different when the tip of the ground electrode was bent during the manufacturing process. Similarly, for the M10 spark plug, the width t of the ground electrode is set to 2.2 mm, and the spark discharge gap size G is set to 0.7, 0.9, 1.1, 1.5 (mm) 4. Twelve samples of three types were prepared, each of which was arbitrarily adjusted so that the distances d were different.

そして、各サンプルに対し、机上評価試験を行った。点火装置に組み付けた評価試験対象のスパークプラグを試験用チャンバ内に配置し、この試験用チャンバ内を大気とプロパンとを混合してなる評価混合気で充満して、スパークプラグに点火する。点火により着火された火炎核の面積を点火後3ms経過した時点で測定し、この面積について比較を行った。なお、面積の測定は、火炎核を図2と同じ方向から撮像した画像を用いて行った。   And the desktop evaluation test was done with respect to each sample. A spark plug to be evaluated and assembled in an ignition device is placed in a test chamber, and the test chamber is filled with an evaluation mixture obtained by mixing air and propane, and the spark plug is ignited. The area of the flame kernel ignited by ignition was measured when 3 ms passed after ignition, and the areas were compared. The area was measured using an image obtained by imaging the flame kernel from the same direction as in FIG.

この比較において、各サンプルのうち距離dが最も大きいサンプルでは、火炎核の成長を阻害されないため着火性が良好となる。このサンプルにより着火された火炎核の面積を基準とし、距離dを小さくしても火炎核の面積が変わらなかったサンプルについて、同様に、接地電極によって火炎核の成長が阻害されなかったと判定し、着火性が良好であるとして「○」と評価した。一方、火炎核の面積が小さくなったサンプルについては、接地電極によって火炎核の成長が阻害されたと判定し、着火性に劣るとして「×」と評価した。   In this comparison, the sample having the longest distance d among the samples has good ignitability because the growth of the flame kernel is not inhibited. Based on the area of the flame kernel ignited by this sample, for the sample in which the area of the flame nucleus did not change even when the distance d was reduced, similarly, it was determined that the growth of the flame nucleus was not inhibited by the ground electrode, It evaluated as "(circle)" that ignitability was favorable. On the other hand, the sample in which the area of the flame kernel was reduced was determined to be that the growth of the flame nucleus was inhibited by the ground electrode, and was evaluated as “x” because it was poor in ignitability.

ところで、前述したように、距離dは大きいほど火炎核の成長を妨げにくく、また、着火限界空燃比差は0に近づくほど着火性が向上する。そこで、着火性の良否を判断する指標として、距離dに、(1)の式に基づく着火限界空燃比差を加算した値をfとし、以下の式に表した。
f=d−0.5t(G−2) ・・・(2)
そして、それぞれのサンプルについてfの値を求め、着火性の良否との関係を確認した。この結果を表2に示す。なお、(2)の式で求められたfと、距離dとの関係を着火性の良否に分けてプロットしたグラフを図5に示した。
By the way, as described above, the larger the distance d, the more difficult it is to prevent the growth of flame nuclei, and the ignitability improves as the ignition limit air-fuel ratio difference approaches zero. Therefore, as an index for determining whether the ignitability is good or bad, a value obtained by adding the ignition limit air-fuel ratio difference based on the equation (1) to the distance d is represented by the following equation.
f = d−0.5t (G−2) 2 (2)
And the value of f was calculated | required about each sample, and the relationship with the quality of ignitability was confirmed. The results are shown in Table 2. In addition, the graph which divided and plotted the relationship between f calculated | required by Formula (2) and the distance d according to the quality of ignitability was shown in FIG.

Figure 2007234435
Figure 2007234435

表2および図5に示すグラフより明らかに、fの値が1.0より小さかったサンプル群は、いずれも着火性に劣ることがわかる。つまり、(2)の式を用いれば着火性の良否を判定できることが示された。具体的にはd−0.5t(G−2)≧1.0が満たされれば、着火性が良好となることがわかった。 As apparent from the graphs shown in Table 2 and FIG. 5, it can be seen that all the sample groups in which the value of f is smaller than 1.0 are inferior in ignitability. In other words, it was shown that whether or not the ignitability is good can be determined by using the expression (2). Specifically, it was found that if d−0.5t (G-2) 2 ≧ 1.0 is satisfied, the ignitability is improved.

また、図5に示すように、着火性に劣ると判定されたサンプルは、いずれも距離dが2.6mm未満であることがわかる。つまり、少なくとも距離dとして2.6mm以上の大きさが確保できるように火花放電間隙の中点と接地電極との位置関係もしくは接地電極の屈曲具合の調整を行えば、着火性は良好となることがわかった。   Moreover, as shown in FIG. 5, it turns out that all the samples determined to be inferior in ignitability have a distance d of less than 2.6 mm. In other words, if the positional relationship between the midpoint of the spark discharge gap and the ground electrode or the bending condition of the ground electrode is adjusted so that at least a distance d of 2.6 mm or more can be secured, the ignitability can be improved. I understood.

なお、接地電極30の内面33に貴金属チップを設け、軸線O方向における火花放電間隙と接地電極30の母材との間の距離を広げれば、その方向における火炎核の成長が妨げられにくくなり着火性を向上させることも可能であるが、上記実施例1,2では、貴金属チップを設けなかった場合について検証を行った。前述したように、接地電極30の内面33に貴金属チップを設けない場合について検証を行うことで、火花放電間隙と接地電極30との最適な位置関係を規定することは、小範囲内に効率よく配置させる上で肝要である。火花放電間隙の大きさGが2.0mm以下であり、且つ、火花放電間隙の中点Cと接地電極30の内面33との間の距離が1.0mm以下であるスパークプラグ100に対し、距離dが2.6mm以上となるように構成すれば、着火性を向上させることができる。   If a noble metal tip is provided on the inner surface 33 of the ground electrode 30 and the distance between the spark discharge gap and the base material of the ground electrode 30 in the direction of the axis O is widened, the growth of the flame kernel in that direction will not be hindered and ignition will occur. Although it is possible to improve the property, in Examples 1 and 2, the case where no noble metal tip was provided was verified. As described above, the verification of the case where the noble metal tip is not provided on the inner surface 33 of the ground electrode 30 makes it possible to define the optimum positional relationship between the spark discharge gap and the ground electrode 30 efficiently within a small range. It is important to arrange. Distance to the spark plug 100 in which the spark discharge gap size G is 2.0 mm or less and the distance between the center C of the spark discharge gap and the inner surface 33 of the ground electrode 30 is 1.0 mm or less. If d is configured to be 2.6 mm or more, the ignitability can be improved.

なお、本発明は各種の変形が可能なことはいうまでもない。例えば、本実施の形態では接地電極30を軸線O方向に対し略直角に屈曲させることによって、火花放電間隙の中点と接地電極30との間の距離dが2.6mm以上の大きさを確保できるようにしたが、ねじ径の大きなスパークプラグの場合など、距離dとして2.6mm以上の大きさが確保できるのであれば接地電極全体を緩やかに湾曲させてもよい。また、火花放電間隙における放電方向が軸線O方向に沿わない場合でも、その放電方向と直交する方向において、火花放電間隙の中点と接地電極との間の距離dとして2.6mm以上の大きさが確保されていればよい。   Needless to say, the present invention can be modified in various ways. For example, in the present embodiment, the distance d between the midpoint of the spark discharge gap and the ground electrode 30 is ensured to be 2.6 mm or more by bending the ground electrode 30 substantially perpendicular to the direction of the axis O. However, in the case of a spark plug having a large screw diameter, the entire ground electrode may be gently curved as long as the distance d is 2.6 mm or more. Even when the discharge direction in the spark discharge gap does not follow the direction of the axis O, the distance d between the midpoint of the spark discharge gap and the ground electrode is 2.6 mm or more in the direction orthogonal to the discharge direction. Should be secured.

スパークプラグ100の部分断面図である。1 is a partial cross-sectional view of a spark plug 100. FIG. 主体金具50と接地電極30との接合位置を真横に配置し、スパークプラグ100の火花放電間隙付近を拡大して見たスパークプラグ100の一側面図である。FIG. 3 is a side view of the spark plug 100 in which the joining position of the metal shell 50 and the ground electrode 30 is arranged directly beside and the vicinity of the spark discharge gap of the spark plug 100 is enlarged. 図2におけるスパークプラグ100の右側面側から火花放電間隙付近を拡大して見たスパークプラグ100の他の側面図である。FIG. 3 is another side view of the spark plug 100 in which the vicinity of the spark discharge gap is enlarged from the right side surface side of the spark plug 100 in FIG. 2. 着火限界空燃比差と火花放電間隙の大きさGとの関係を接地電極の幅tの違いごとに分けてプロットしたグラフである。5 is a graph in which the relationship between the ignition limit air-fuel ratio difference and the spark discharge gap size G is plotted for each difference in the width t of the ground electrode. fと距離dとの関係を着火性の良否に分けてプロットしたグラフである。It is the graph which divided and plotted the relationship between f and the distance d according to the quality of ignitability.

符号の説明Explanation of symbols

10 絶縁碍子
11 先端部
12 軸孔
20 中心電極
21 先端面
22 先端部
30 接地電極
31 先端部
32 基端部
33 内面
50 主体金具
57 先端面
100 スパークプラグ
DESCRIPTION OF SYMBOLS 10 Insulator 11 Tip part 12 Shaft hole 20 Center electrode 21 Tip surface 22 Tip part 30 Ground electrode 31 Tip part 32 Base end part 33 Inner surface 50 Metallic body 57 Tip surface 100 Spark plug

Claims (2)

中心電極と、
軸線方向に延びる軸孔を有し、自身の先端部より前記中心電極の先端部を突出させた状態で、前記中心電極を前記軸孔内部に保持する絶縁碍子と、
自身の先端面より前記絶縁碍子の先端部を突出させた状態で、前記絶縁碍子の径方向周囲を取り囲んで保持する主体金具と、
一端部が、前記主体金具の先端面に接合され、他端部の一側面が、前記中心電極を臨むように屈曲され、その他端部の一側面と前記中心電極の先端面との間で火花放電間隙を形成する接地電極と
を備え、
前記火花放電間隙の大きさが2.0mm以下であり、且つ前記火花放電間隙の中点と前記接地電極の前記他端部の一側面との間の距離が1.0mm以下であるスパークプラグにおいて、
前記軸線方向と直交し、且つ前記接地電極の延長方向と直交する方向における前記接地電極の幅をtとし、前記火花放電間隙の大きさをGとしたとき、
d−0.5t(G−2)≧1.0
を満たすことを特徴とするスパークプラグ。
A center electrode;
An insulator that has an axial hole extending in the axial direction, and that holds the center electrode inside the axial hole in a state where the distal end of the central electrode protrudes from the distal end of the axial hole;
A metal shell that surrounds and holds the periphery of the insulator in the radial direction in a state in which the tip of the insulator protrudes from its tip surface,
One end is joined to the front end surface of the metal shell, one side of the other end is bent so as to face the center electrode, and a spark is formed between one side of the other end and the front end surface of the center electrode. A ground electrode that forms a discharge gap, and
In the spark plug in which the size of the spark discharge gap is 2.0 mm or less and the distance between the midpoint of the spark discharge gap and one side surface of the other end of the ground electrode is 1.0 mm or less ,
When the width of the ground electrode in a direction orthogonal to the axial direction and orthogonal to the extending direction of the ground electrode is t, and the size of the spark discharge gap is G,
d-0.5t (G-2) 2 ≧ 1.0
A spark plug characterized by satisfying.
前記火花放電間隙の中点を含み前記火花放電間隙における放電方向と直交する前記スパークプラグの断面において、前記火花放電間隙の中点の位置と、前記接地電極の位置との間の距離をdとしたとき、
d≧2.6(mm)
であることを特徴とする請求項1に記載のスパークプラグ。
In the cross-section of the spark plug that includes the midpoint of the spark discharge gap and is orthogonal to the discharge direction in the spark discharge gap, the distance between the position of the midpoint of the spark discharge gap and the position of the ground electrode is d. When
d ≧ 2.6 (mm)
The spark plug according to claim 1, wherein:
JP2006055614A 2006-03-01 2006-03-01 Spark plug Active JP4718345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055614A JP4718345B2 (en) 2006-03-01 2006-03-01 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055614A JP4718345B2 (en) 2006-03-01 2006-03-01 Spark plug

Publications (2)

Publication Number Publication Date
JP2007234435A true JP2007234435A (en) 2007-09-13
JP4718345B2 JP4718345B2 (en) 2011-07-06

Family

ID=38554809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055614A Active JP4718345B2 (en) 2006-03-01 2006-03-01 Spark plug

Country Status (1)

Country Link
JP (1) JP4718345B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041379A1 (en) 2008-10-06 2010-04-15 日本特殊陶業株式会社 Method for manufacturing spark plug and device for manufacturing spark plug
WO2010041733A1 (en) * 2008-10-10 2010-04-15 日本特殊陶業株式会社 Sparkplug and manufacturing method therefor
WO2010041599A1 (en) 2008-10-06 2010-04-15 日本特殊陶業株式会社 Method for manufacturing spark plug and device for manufacturing spark plug
CN102790358A (en) * 2011-05-19 2012-11-21 日本特殊陶业株式会社 Spark plug
JP2012256590A (en) * 2011-05-19 2012-12-27 Ngk Spark Plug Co Ltd Spark plug
US8912715B2 (en) 2011-12-26 2014-12-16 Ngk Spark Plug Co., Ltd. Spark plug
JP2015032573A (en) * 2013-08-07 2015-02-16 日本特殊陶業株式会社 Spark plug
JP2018041573A (en) * 2016-09-06 2018-03-15 株式会社デンソー Spark plug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283259A (en) * 1996-02-15 1997-10-31 Ngk Spark Plug Co Ltd Spark plug
JP2000243535A (en) * 1999-02-22 2000-09-08 Ngk Spark Plug Co Ltd Spark plug
JP2001143847A (en) * 1999-11-16 2001-05-25 Ngk Spark Plug Co Ltd Spark plug
JP2002289318A (en) * 2001-03-23 2002-10-04 Ngk Spark Plug Co Ltd Spark plug
JP2003007423A (en) * 2001-06-20 2003-01-10 Ngk Spark Plug Co Ltd Spark plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283259A (en) * 1996-02-15 1997-10-31 Ngk Spark Plug Co Ltd Spark plug
JP2000243535A (en) * 1999-02-22 2000-09-08 Ngk Spark Plug Co Ltd Spark plug
JP2001143847A (en) * 1999-11-16 2001-05-25 Ngk Spark Plug Co Ltd Spark plug
JP2002289318A (en) * 2001-03-23 2002-10-04 Ngk Spark Plug Co Ltd Spark plug
JP2003007423A (en) * 2001-06-20 2003-01-10 Ngk Spark Plug Co Ltd Spark plug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041379A1 (en) 2008-10-06 2010-04-15 日本特殊陶業株式会社 Method for manufacturing spark plug and device for manufacturing spark plug
WO2010041599A1 (en) 2008-10-06 2010-04-15 日本特殊陶業株式会社 Method for manufacturing spark plug and device for manufacturing spark plug
WO2010041733A1 (en) * 2008-10-10 2010-04-15 日本特殊陶業株式会社 Sparkplug and manufacturing method therefor
CN102165653A (en) * 2008-10-10 2011-08-24 日本特殊陶业株式会社 Sparkplug and manufacturing method therefor
US8212462B2 (en) 2008-10-10 2012-07-03 Ngk Spark Plug Co., Ltd. Spark plug and manufacturing method therefor
EP2333916B1 (en) * 2008-10-10 2018-08-29 NGK Spark Plug Co., Ltd. Sparkplug and manufacturing method therefor
CN102790358A (en) * 2011-05-19 2012-11-21 日本特殊陶业株式会社 Spark plug
JP2012256590A (en) * 2011-05-19 2012-12-27 Ngk Spark Plug Co Ltd Spark plug
US8912715B2 (en) 2011-12-26 2014-12-16 Ngk Spark Plug Co., Ltd. Spark plug
JP2015032573A (en) * 2013-08-07 2015-02-16 日本特殊陶業株式会社 Spark plug
JP2018041573A (en) * 2016-09-06 2018-03-15 株式会社デンソー Spark plug
US9948067B2 (en) 2016-09-06 2018-04-17 Denso Corporation Spark plug

Also Published As

Publication number Publication date
JP4718345B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4718345B2 (en) Spark plug
EP2216862B1 (en) Spark plug
JP5249205B2 (en) Spark plug
US10714904B2 (en) Spark plug
US20110210659A1 (en) Spark plug and manufacturing method therefor
JP5149295B2 (en) Spark plug
US9276384B2 (en) Spark plug
US20110025186A1 (en) Spark plug for internal combustion engine
JP2002260817A (en) Spark plug
JP2009087925A (en) Spark plug
US7847473B2 (en) Spark plug
US8215277B2 (en) Spark plug
JP5303006B2 (en) Manufacturing method of spark plug for internal combustion engine
JP2020191173A (en) Spark plug
JP4457021B2 (en) Spark plug
EP2800216B1 (en) Spark plug
JP5816126B2 (en) Spark plug
JP4699918B2 (en) Spark plug
JP5721680B2 (en) Spark plug
JP7039519B2 (en) Spark plug
JP2009151981A (en) Spark plug
CN111917006A (en) Spark plug
JP2010267625A (en) Spark plug for internal combustion engine
JP2006260988A (en) Spark plug
JP2013110126A (en) Spark plug

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4718345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250