JP2007233985A - Optimal control method of system - Google Patents

Optimal control method of system Download PDF

Info

Publication number
JP2007233985A
JP2007233985A JP2006092243A JP2006092243A JP2007233985A JP 2007233985 A JP2007233985 A JP 2007233985A JP 2006092243 A JP2006092243 A JP 2006092243A JP 2006092243 A JP2006092243 A JP 2006092243A JP 2007233985 A JP2007233985 A JP 2007233985A
Authority
JP
Japan
Prior art keywords
control
equation
input
optimal control
controlled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092243A
Other languages
Japanese (ja)
Other versions
JP4609767B2 (en
Inventor
Naoto Fukushima
直人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006092243A priority Critical patent/JP4609767B2/en
Publication of JP2007233985A publication Critical patent/JP2007233985A/en
Application granted granted Critical
Publication of JP4609767B2 publication Critical patent/JP4609767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To clarify a process for obtaining a prospective optimal control rule to a nonlinear optimal control problem in which an optimal control rule is difficult to be analytically derived in the conventional theory. <P>SOLUTION: An evaluation function about input is defined as energy to be transmitted from a controller to a control target, and a function representing control performance is added to the evaluation function to be an evaluation function for the whole. Further, an expression of perfect power income and expenditure of the control target is added as a collateral condition to be a functional. Since the functional is a linear expression about a control variable in this way, the optimal control rule can be analytically derived without solving a differential equation from a condition that minimizes the functional, regardless of linearity or nonlinearity of the control target. Consequently, an optimal control rule can be obtained even about a nonlinear control problem having energy regenerative control and non-horonomic constraint in which the optimal control rule is analytically difficult to be obtained in the conventional practice. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として機械力学系システムの実時間最適制御方法に関する.線形、非線形、ホロノミック、非ホロノミック系を問わず広範囲のシステムに適用できる.  The present invention mainly relates to a real-time optimal control method for a mechanical system. It can be applied to a wide range of systems, whether linear, nonlinear, holonomic or nonholonomic.

ポントリャーギンが随伴変数を導入して最適制御問題をハミルトン形式に書き換えて最大原理を見出したことは,その後の最適制御理論の発展に大きな影響を与えた.しかし,現在でも随伴変数と状態変数についての連立微分方程式を解かねばならない状況は変わらず,特に非線形システムの最適制御則を解析的に導くことは容易ではない.そのため様々な数値探索的方法や推論的手法が工夫されてはいる.しかし制御則が数値解の場合は、制御系設計者が得られた制御則を改善しようとしても、制御対象システムのパラメータとの対応関係がわからず試行錯誤的にならざるを得ない.このような状況から脱却するためには見通しの良い解析的手法が必要である.  Pontryagin introduced adjoint variables and rewritten the optimal control problem in Hamiltonian form and found the maximum principle, which had a great influence on the subsequent development of optimal control theory. However, the situation in which simultaneous differential equations for adjoint variables and state variables have to be solved remains the same, and it is not easy to derive the optimal control law for nonlinear systems analytically. Therefore, various numerical search methods and inference methods have been devised. However, when the control law is a numerical solution, even if the control system designer tries to improve the control law obtained, the correspondence with the parameters of the control target system is not known and must be trial and error. To get out of this situation, an analytical method with good prospects is necessary.

発明が解決しようとする課題Problems to be solved by the invention

このような背景から,本考案では,従来とは異なる手法で主として機械力学系システムの非線形系を含む比較的広範囲の最適制御問題に対して制御則を解析的に導く手法を提示する.制御対象のエネルギ収支に着目した受動性の概念によりシステムを漸近安定させる制御則が簡単に導かれるように(例えば非特許文献1参照),本考案でも制御対象のエネルギ収支に着目する.入力に関する評価関数を制御装置から制御対象に伝達されるエネルギとし,これに制御性能を表現する関数を加えて全体の評価関数とする.さらに付帯条件として制御対象の完全なエネルギ収支の式を加えて汎関数とする.こうすると汎関数は制御変数に関して1次式となるので,制御対象が線形,非線形を問わず汎関数を最小化する条件から微分方程式を解かずに最適制御則を解析的に導くことができる.
この汎関数を最小化する条件は,最適制御であるための必要条件であり,しかも未定定数を含む弱い条件であるが,制御対象の構造的性質をうまく活用することにより有益な制御則が得られる.後の事例によりその有用性を示す.
Against this background, the present invention presents a method for analytically deriving control laws for a relatively wide range of optimal control problems, mainly including nonlinear systems of mechanical dynamics systems, using a method different from the conventional one. In order to easily derive a control law that asymptotically stabilizes the system by the concept of passivity focusing on the energy balance of the controlled object (see Non-Patent Document 1, for example), the present invention also focuses on the energy balance of the controlled object. The evaluation function related to the input is the energy transmitted from the control device to the control target, and the function that expresses the control performance is added to this to make the overall evaluation function. In addition, as an incidental condition, an equation for the complete energy balance of the controlled object is added to make a functional. In this way, the functional is linear with respect to the control variable, so the optimal control law can be derived analytically without solving the differential equation from the condition that minimizes the functional regardless of whether the controlled object is linear or non-linear.
The condition that minimizes this functional is a necessary condition for optimal control, and is a weak condition that includes undetermined constants. However, a useful control law can be obtained by making good use of the structural properties of the controlled object. It is possible. The usefulness is shown in a later example.

最適制御問題を定式化する.まず制御対象の特性表現について述べる.制御理論では制御対象の特性を運動方程式で記述するが,ここでは制御対象の全入出力パワーの収支の式を用いる具体的には,システムの各自由度毎の運動方程式をベクトル表示しこれに速度ベクトルを乗じたものである.入力パワーは制御入力だけでなく外乱入力も含まれ,また制御対象は受動要素だけとは限らないため,内部にエネルギ源がありこれが運動に影響を与えていれば外乱入力として扱う.  Formulate the optimal control problem. First, the characteristic representation of the controlled object is described. In the control theory, the characteristics of the controlled object are described by the equation of motion. Here, the equation of balance of the total input / output power of the controlled object is used. Specifically, the equation of motion for each degree of freedom of the system is displayed as a vector. It is multiplied by the velocity vector. The input power includes not only the control input but also the disturbance input, and the controlled object is not limited to passive elements, so if there is an energy source inside and this affects the motion, it is treated as a disturbance input.

式1Formula 1

Figure 2007233985
ここで,d,e,q,u,v,z ∈R ,M ∈Rn×n は正定対称な慣性マトリクス,nは制御対象の自由度である.qは一般化座標,uは制御入力,vは力入力の外乱,zは変位入力の外乱である.dはコリオリ力や遠心力やダンピング力など,eはポテンシャル力である.
制御対象が非線形であっても制御装置を合理的に設計すれば,式(1)のようにuを直接Mに作用させることができる.本論文では,このような合理的に設計された機械力学系システムを想定して最適制御則を導く.
上記のシステムに対し,次の評価関数を考える.
Figure 2007233985
Here, d, e, q, u, v, z ∈ R n and M ∈ R n × n are positive definite inertia matrices, and n is the degree of freedom of the controlled object. q is a generalized coordinate, u is a control input, v is a force input disturbance, and z is a displacement input disturbance. d is Coriolis force, centrifugal force and damping force, and e is potential force.
Even if the object to be controlled is non-linear, if the controller is rationally designed, u can be directly applied to M as shown in Equation (1). In this paper, the optimal control law is derived assuming such a reasonably designed mechanical system.
Consider the following evaluation function for the above system.

式2Formula 2

Figure 2007233985
Figure 2007233985
置が御対象に加えるパワーである.rは重み係数である.
式(2)を最小化する制御u(t)を求めることが最適制御の課題である.
有本卓,新版ロボットの力学と制御,(2002),PP.68−69.朝倉書店.
Figure 2007233985
Figure 2007233985
This is the power that the device will apply to the object. r is a weighting factor.
Finding the control u (t) that minimizes Equation (2) is the problem of optimal control.
Takashi Arimoto, Dynamics and Control of New Version Robot, (2002), PP. 68-69. Asakura Shoten.

課題を解決するための手段Means for solving the problem

従来の最適制御理論では,随伴変数を導入して微分方程式を導きこれに元の状態方程式を連立させて解くことになるが,本論文ではこのような方法とは全く異なる手法を示す.最適制御の必要条件を求めるため次のスカラー関数Lを定義する.  In the conventional optimal control theory, an adjoint variable is introduced and a differential equation is derived and the original state equation is coupled to solve it. In this paper, a method completely different from this method is shown. The following scalar function L is defined to find the necessary conditions for optimal control.

式3Formula 3

Figure 2007233985
ここで,κは未定定数である.右辺の{}内は,式(1)の左辺と同じで制御対象の全パワー収支であるからエネルギ保存則を満たし常にゼロである.従って式(3)で表されるLの積分を最小化する条件は,式(2)も最小化する.
従って関数Lにqを変数とする変分原理を適用した次式はuが最適制御であるための必要条件を与える.Lはuに関して1次式であるから,∂L/∂uは意味がなく次式に制御に関するすべての情報が含まれる.
Figure 2007233985
Where κ is an undetermined constant. The inside of {} on the right side is the same as the left side of Equation (1) and is the total power balance of the controlled object, so it satisfies the energy conservation law and is always zero. Therefore, the condition for minimizing the integral of L expressed by equation (3) also minimizes equation (2).
Therefore, the following equation applying the variational principle with q as a variable to the function L gives a necessary condition for u to be optimal control. Since L is a linear expression with respect to u, ∂L / ∂u has no meaning and the following expression contains all information related to control.

式4Formula 4

Figure 2007233985
Lにはqの2階の導関数が含まれるため一般的なオイラーの方程式に第3項が追加されている(例えば非特許文献2参照).
式(4)を積分し積分定数をゼロとすると次式になる.
Figure 2007233985
Since L includes the second derivative of q, the third term is added to the general Euler equation (see, for example, Non-Patent Document 2).
If equation (4) is integrated and the integration constant is zero, the following equation is obtained.

式5Formula 5

Figure 2007233985
式(3)を式(5)に代入し左辺第1〜3項の順に記すと次のようになる.
Figure 2007233985
Substituting equation (3) into equation (5) and writing in the order of the first to third terms on the left side, it becomes as follows.

式6Equation 6

Figure 2007233985
上式から制御則が次のように求まる.
Figure 2007233985
From the above equation, the control law is obtained as follows.

式7Equation 7

Figure 2007233985
このように,本手法はJを最小化するqとuの関係を直接導くことができるため,従来のように2点境界値問題を最適性の原理を用いて解くプロセスが不要になる.κは未定定数であるが,κ=0の時はuが制御の評価関数のパラメータのみで定まり,κ=∞の時はuが制御対象のパラメータのみで定まることからuが最適であるためにはκはゼロでない有限値でなければならないことは明らかである.
上式の第1行は外力vと慣性のq依存性に対する制御,第2行はコリオリ力や遠心力やダンピング力に対する制御,第3行はポテンシャル力とそのq依存性および外力zに対する制御,第4行は評価関数を低減させる制御でありそれぞれ意味が明確である.式(7)には未実行の微積分項が含まれているが,全ての外力と状態量の検出あるいは推定が可能とすればこれらの実時間での実行は可能である.式(5)において積分定数をゼロとしたが,上記の結果より積分定数は制御則に一定のバイアスを与えることになるためゼロとすることが妥当であることがわかる.式(7)中の積分も同様である.
式(7)ではアクチュエータの数と系の自由度が同じであることを想定しているが,アクチュエータの数が少ない場合には次のような処置が必要になる.例えばアクチュエータが二つの独立な慣性M,Mi+1の間に置かれるような場合は,制御ベクトルuにその拘束条件を含めておき最適制御則は二つの制御則を重みを付けて加算したものにする.
Figure 2007233985
In this way, since this method can directly derive the relationship between q and u that minimizes J, the conventional process of solving the two-point boundary value problem using the principle of optimality becomes unnecessary. κ is an undetermined constant. However, when κ = 0, u is determined only by the parameter of the control evaluation function, and when κ = ∞, u is determined only by the parameter to be controlled. It is clear that κ must be a non-zero finite value.
The first line of the above equation is the control for the external force v and the q dependence of the inertia, the second line is the control for the Coriolis force, the centrifugal force and the damping force, the third line is the control of the potential force and its q dependency and the external force z, The fourth line is a control that reduces the evaluation function, and the meaning of each is clear. Equation (7) includes unexecuted calculus terms, but these can be executed in real time if all external forces and state quantities can be detected or estimated. In equation (5), the integration constant is set to zero. From the above results, it can be seen that it is appropriate to set the integration constant to zero because it gives a constant bias to the control law. The integration in equation (7) is similar.
Equation (7) assumes that the number of actuators and the degree of freedom of the system are the same, but the following measures are required when the number of actuators is small. For example, when the actuator is placed between two independent inertias M i and M i + 1 , the constraint condition is included in the control vector u, and the optimal control law is the sum of the two control laws with weights added. .

式8Equation 8

Figure 2007233985
ここでu,ui+1はそれぞれが独立な制御として導いた場合の最適制御則であり,ρ,ρi+1は重み係数である.これらの重み係数や未定定数κの決定法については,次の具体例で示す.
L.E.エルスゴルツ,瀬川富士訳,科学者・技術者のための変分法,(1972),pp.34−37.ブレイン図書出版.
Figure 2007233985
Here, u i and u i + 1 are optimum control laws when they are derived as independent controls, and ρ i and ρ i + 1 are weighting factors. The following specific examples show how to determine these weighting factors and undetermined constant κ.
L. E. Els Golz, Segawa Fuji, Variation Method for Scientists and Engineers, (1972), pp. 34-37. Brain book publication.

発明の効果The invention's effect

ここでは,従来の最適制御理論では解析解を得ることができない問題に本手法を適用しその有効性を明らかにする.最初は評価関数が2次形式にならないアクティブサスペンションのエネルギ回生制御を扱い,次に未だに最適制御則の導出が困難とされている非ホロノミック系の制御への適用を試みる.  Here, this method is applied to problems that cannot be solved by conventional optimal control theory, and its effectiveness is clarified. First, the energy regeneration control of an active suspension whose evaluation function does not have a quadratic form will be handled, and then it will be applied to the control of nonholonomic systems where it is still difficult to derive the optimal control law.

まず、アクティブサスペンションのエネルギ回生制御への適用について具体的な定式化を行う.特許文献1では、図1に示すようなアクティブサスペンションのモデルを用いてエネルギ回生制御を考案し,近似解法により準最適制御則u optを導いている.この事例では結果的に入力に関する評価関数が本論文の手法と同じく制御装置から制御対象に伝達されるエネルギ収支式となっているが,当時はまだ制御対象のエネルギ収支に着目した最適制御という認識はなく,従来の制御理論では解析的に解けないケースとして近似解法を試みたものであり,近似解法ながらほぼ最適制御であることを立証している.本考案では解析的に導いた最適制御則uoptが簡潔な表現ながらこの近似解u optと同等の性能であることを確認する.
まず特許文献1の評価関数を変数qを用いて記述する.
First, a specific formulation for the application of active suspension to energy regeneration control is performed. In Patent Document 1, energy regeneration control is devised using an active suspension model as shown in FIG. 1, and a suboptimal control law u * opt is derived by an approximate solution method. In this case, as a result, the input evaluation function is the energy balance equation that is transmitted from the control device to the controlled object as in the method of this paper, but at that time, it was still recognized as the optimal control that focused on the controlled energy balance. However, the approximate solution method was tried as a case that cannot be solved analytically by the conventional control theory, and it is proved that it is almost optimal control while using the approximate solution method. In the present invention, it is confirmed that the optimal control law u opt derived analytically has the same performance as this approximate solution u * opt , though a concise expression.
First, the evaluation function of Patent Document 1 is described using the variable q.

式9Equation 9

Figure 2007233985
ここで,r,rは重み係数である.重みrはばね下質量の制振が従来車両と同程度になるようにr=5×10−3 とし,rについては振動の評価とエネルギの評価が同程度の値になるようにr=10−5とした.
Figure 2007233985
Here, r 1 and r are weighting factors. The weight r 1 is set to r 1 = 5 × 10 −3 so that the vibration suppression of the unsprung mass is about the same as that of the conventional vehicle, and r is set so that the vibration evaluation and the energy evaluation are about the same value. = 10 −5 .

続いて制御則を導出する.まず図1のモデルから式(1)の各要素を求めると次のようになる.  Next, the control law is derived. First, the elements of Equation (1) are obtained from the model in Fig. 1 as follows.

式10Equation 10

Figure 2007233985
Figure 2007233985

式11Equation 11

Figure 2007233985
Figure 2007233985

式12Formula 12

Figure 2007233985
Figure 2007233985

式13Equation 13

Figure 2007233985
Figure 2007233985

式14Equation 14

Figure 2007233985
Figure 2007233985

式15Equation 15

Figure 2007233985
式(10)〜(15)を式(3)に代入することでLが求まる.
Figure 2007233985
L is obtained by substituting Equations (10) to (15) into Equation (3).

式16Equation 16

Figure 2007233985
式(16)を式(5)に代入すると,
Figure 2007233985
Substituting equation (16) into equation (5),

式17Equation 17

Figure 2007233985
より次式が得られる.
Figure 2007233985
The following equation is obtained.

式18Equation 18

Figure 2007233985
これより次の制御則が得られる.
Figure 2007233985
This gives the following control law.

式19Equation 19

Figure 2007233985
同様にして,
Figure 2007233985
Similarly,

式20Equation 20

Figure 2007233985
より次式が得られる.
Figure 2007233985
The following equation is obtained.

式21Equation 21

Figure 2007233985
これより次の制御則が得られる.
Figure 2007233985
This gives the following control law.

式22Equation 22

Figure 2007233985
従って最終的な制御則は次の形になる.
Figure 2007233985
Therefore, the final control law has the following form.

式23Equation 23

Figure 2007233985
ρ,ρはそれぞれの重み係数で,その和は次式とする.
Figure 2007233985
ρ 1 and ρ 2 are the respective weighting factors, and the sum is as follows.

式24Formula 24

Figure 2007233985
評価関数の重みを考慮したM,Mへのu,uの感度を等しいと考えると次のようになる.
Figure 2007233985
Considering that the sensitivity of u 1 and u 2 to M 1 and M 2 considering the weight of the evaluation function is equal, it is as follows.

式25Formula 25

Figure 2007233985
以上より最適制御則は次のように求まる.
Figure 2007233985
From the above, the optimal control law is obtained as follows.

式26Equation 26

Figure 2007233985
ここで,ρ=2M/(M+r),ρ=2r/(M+r)である.本手法から求まる必要条件はここまでであって,κの最適化は探索的に求める必要がある.
Figure 2007233985
Here, ρ 1 = 2M 1 / (M 1 + r 1 M 2 ), ρ 2 = 2r 1 M 2 / (M 1 + r 1 M 2 ). The necessary condition obtained from this method is up to here, and the optimization of κ needs to be obtained exploratoryly.

MATLAB/SIMULINKによるランダム路面入力シミュレーションにより制御性能を評価する.以

Figure 2007233985
一定でレベルは極良路(ISO/TC108/クラスA)を60Km/h程度での走行に相当するように設定した.シミュレーションは,10−4secの固定ステップで2sec間行った.Control performance is evaluated by random road surface input simulation with MATLAB / SIMULLINK. Less than
Figure 2007233985
The level was constant and set to correspond to driving on an excellent road (ISO / TC108 / Class A) at about 60 km / h. The simulation was performed for 2 sec with a fixed step of 10 −4 sec.

上記シミュレーション条件において,Jを最小にするκ探索的に求めた結果を図2に示す.これより最適値は,κ=−3.6×10−7であることがわかる.Figure 2 shows the results of a κ search that minimizes J under the above simulation conditions. It can be seen from this that the optimum value is κ = −3.6 × 10 −7 .

シミュレーション結果を図3,4に示す.制御性能比較のため準最適制御以外にパッシブダン

Figure 2007233985
した.パッシブダンパ制御は図1のパッシブダンパCと同等の機能を制御で出すものである.スカイフックダンパ制御はばね下振動を押さえる機能がないためダンパが必要でありC=1200Nsec/mとし,他はすべて C=0とした.評価関数Jを振動に関する部分Jと制御入力エネルギに関する部分Jに分離すると次のようになる.The simulation results are shown in Figs. In order to compare control performance, passive
Figure 2007233985
did. Passive damper control is one issue in controlling the passive damper C 2 functions equivalent of FIG. Skyhook damper control does not have a function to suppress unsprung vibration, so a damper is necessary. C 2 = 1200 Nsec / m, and all others are set to C 2 = 0. When the evaluation function J is separated into a part J 1 related to vibration and a part J 2 related to control input energy, the following is obtained.

式27Equation 27

Figure 2007233985
Figure 2007233985

式28Equation 28

Figure 2007233985
図3は各制御についてJ,Jの比較を行ったものである.Jについてはuoptとu optは同等であるが,Jではuoptの方が若干優れることがわかる.
図4は,本制御と準最適制御について制御対象に伝達されるパワーのシミュレーション結果を示す.ともに大半の時間帯で伝達パワーは負の値を示しており,エネルギ回生を効果的に行っていることがわかる.
以上により,本制御則の式(26)は近似解法による準最適制御則(特許文献1の式(20))と比べ簡潔でありながら同等以上の効果があることが確認できた.
Figure 2007233985
Figure 3 shows a comparison of J 1 and J 2 for each control. U opt and u * opt for J 2 is an equivalent, more of the J 1 u opt it can be seen that the excellent slightly.
Figure 4 shows the simulation results of the power transmitted to the controlled object for this control and suboptimal control. In both cases, the transmitted power shows a negative value in most of the time, indicating that energy regeneration is effectively performed.
From the above, it was confirmed that the equation (26) of this control law is more concise but has the same or better effect than the suboptimal control law based on the approximate solution (equation (20) of Patent Document 1).

次に非ホロノミック系システムの最適制御に適用した例を示す.近年,非ホロノミックな拘束をもつ非線形系のシステムへの関心が高まり各種の制御が研究されている.ここでは非特許文献3において解説されている転がるコインの制御を例題にとり,本手法により導いた最適制御則の検討を行う.  Next, an example applied to the optimal control of a nonholonomic system is shown. In recent years, interest in nonlinear systems with nonholonomic constraints has increased, and various controls have been studied. Here, the control of rolling coins explained in Non-Patent Document 3 is taken as an example, and the optimal control law derived by this method is examined.

転がるコインのモデルを図5に示す.平面上に直行座標x−yを取り,コインの転がっていく方向の角度をq,平面上の位置を(q,q),コインの転がり角度をqとする.q,qを増やす方向のトルクをu,uとする.さらにコインの半径や慣性モーメントを1とし質量はゼロとする.
まず図5のモデルから式(1)の各要素を求めると次のようになる.
Figure 5 shows a model of a coin that rolls. The orthogonal coordinates xy are taken on the plane, the angle of the coin rolling direction is q 1 , the position on the plane is (q 2 , q 3 ), and the coin rolling angle is q 4 . The torques in the direction of increasing q 1 and q 4 are u 1 and u 2 . Furthermore, the coin radius and moment of inertia are set to 1 and the mass is set to zero.
First, the elements of Equation (1) are obtained from the model shown in Fig. 5 as follows.

式29Equation 29

Figure 2007233985
Figure 2007233985

式30Equation 30

Figure 2007233985
Figure 2007233985

式31Formula 31

Figure 2007233985
Figure 2007233985

式32Equation 32

Figure 2007233985
さらに非ホロノミックな拘束条件として次式が加わる.
Figure 2007233985
Furthermore, the following equation is added as a nonholonomic constraint.

式33Equation 33

Figure 2007233985
Figure 2007233985

式34Equation 34

Figure 2007233985
このようにuがMを直接制御する系ならば,非ホロノミック系であっても本手法により最適制御則を解析的に導くことが出来ることを次に示す.
Figure 2007233985
If u is a system that directly controls M in this way, the following shows that the optimal control law can be derived analytically by this method even for nonholonomic systems.

転がるコインの制御について具体的な定式化を行う.制御の目的は任意の初期状態からq,q,qをゼロにすることであるが,モデルから明らかなように,qはuを2回積分するだけで

Figure 2007233985
でよい.A specific formulation for the control of rolling coins is given. The purpose of control is to set q 1 , q 2 , and q 3 to zero from an arbitrary initial state, but as is clear from the model, q 1 only needs to integrate u 1 twice.
Figure 2007233985
It's fine.

式35Formula 35

Figure 2007233985
は振動的にする必要があることが既に知られているため,k=0.3,k=1とした.この制御則ではqの初期値が小さいと振動が小さすぎてq,qの制御に支障をきたすが,この場合は例えば事前にqをある値に設定してから全体の制御を開始するといった二段搆えの制御を行えば問題は回避できる.q,qに影響を与えずにqを事前にある値に設定することは容易であるためこの方式は許容できよう.あるいはqの初期値にかかわらずqについて式(35)の制御則と同様な次のような位置制御をプログラムしておくといった方法でもよい.
Figure 2007233985
Since it is already known that u 1 needs to be vibrated, k 1 = 0.3 and k 2 = 1. In this control law, if the initial value of q 1 is small, the vibration is too small and hinders the control of q 2 and q 3. In this case, for example, after setting q 1 to a certain value in advance, the entire control is performed. The problem can be avoided by making a two-step control such as starting. Since it is easy to set q 1 to a certain value in advance without affecting q 2 and q 3 , this method will be acceptable. Alternatively for q 1 regardless of the initial value of q 1 may be a method such as previously programmed position control such as similar following the control law of the formula (35).

式36Equation 36

Figure 2007233985
以上の事前検討を基にuについての最適制御を考え,評価関数を次式とする.
Figure 2007233985
Based on the above prior study, we consider optimal control for u 2 and use the following equation as the evaluation function.

式37Formula 37

Figure 2007233985
ここで,r,r,r,r は重み係数である.上式右辺第1,2項はq,qをゼロに収束させるという制御目的を表す項で,その意味をわかりやすくするため積分した結果を表示している.第3項がコインの回転運動に対する減衰を評価する項であり,第4項が制御対象への入力エネルギの項である.
Figure 2007233985
Here, r 2 , r 3 , r 4 , r 5 are weighting factors. The first and second terms on the right side of the above equation represent the control purpose of converging q 2 and q 3 to zero, and the integrated results are displayed to make the meaning easier to understand. The third term is a term that evaluates the attenuation of the coin against the rotational motion, and the fourth term is the term of the input energy to the controlled object.

続いて制御則を導出する.式(29)〜(34),(37)を用いてLを求める.ここでgは,式(37)右辺第1,2項を積分の形に戻した後に第1〜3項の被積分関数を加算したものに式(33)(34)の拘束条件を加味している.

Figure 2007233985
上式右辺第1行がパワー収支式から得られる項であり,第2,3行が評価関数から得られる項である.このケースではパワー収支式から得られる情報が少ないので評価関数に必要十分な情報を盛り込みこれを補っている.ここで,留意しなければならないのは,モデルから運動方程
Figure 2007233985
小化する条件の一部として既に式(39)に含まれているためさらに代入することはLに余計な拘束を強いることになる.
を最適にするための必要条件は次の方程式から求めることができる.Next, the control law is derived. L is obtained using equations (29) to (34) and (37). Here, g is obtained by adding the integrands of the first to third terms after adding the first and second terms on the right side of the equation (37) to the form of integration and adding the constraints of the equations (33) and (34). ing.
Figure 2007233985
The first line on the right side of the above equation is the term obtained from the power balance equation, and the second and third lines are terms obtained from the evaluation function. In this case, since there is little information obtained from the power balance equation, necessary and sufficient information is included in the evaluation function to compensate for this. Here, it should be noted that from the model to the exercise procedure
Figure 2007233985
Since it is already included in the equation (39) as a part of the condition to reduce, further substitution imposes an extra constraint on L.
The necessary conditions for optimizing u 2 can be obtained from the following equation.

式39Formula 39

Figure 2007233985
式(38)を代入すると,
Figure 2007233985
Substituting equation (38),

式40Formula 40

Figure 2007233985
となりこれより次の制御則が得られる.
Figure 2007233985
From this, the following control law is obtained.

式41Formula 41

Figure 2007233985
Figure 2007233985

式(35),(41)の制御則を用いてシミュレーションによる評価を行う.
まず,重み係数r,r,rの選定を行う.図5のモデルからわかるようにqを早めにゼロに収束させるとqの調整が出来なくなる.従ってqを収束させた後にqを収束させることが望ましくこのためrよりrを大きく設定する.またコインの回転のオーバーシュートを抑えるためrは大き目の値に設定する.以上よりr=0.25,r=2.5,r=1.0とした.このケースでは入力エネルギは最終的にゼロになるため,rの値はさほど重要ではない.他の重みとレベルを合わせて,r=0.5とした.
シミュレーション結果を図6〜9に示す.まず,κの最適化を行う.κを変化させた場合の式(37)の値の変化を図6に示す.これよりκ=−0.1が最適値であることがわかる.以後この値を用いてシミュレーションを行う.
図7は[q,q,q]の初期値を[1,1,−1]としてシミュレーションを行った結果である.qの振動を利用してまずqが収束し続いてqがゆっくり収束している様子がわかる.
図8は,このときのq,qの軌跡を示す.qは一度の速度切り替えで目標に収束しており良好な結果が得られた.
図5のモデルを漸近安定させる一例として非特許文献3において紹介されている制御則を用いて,図7と同一条件でシミュレーションした結果を図9に示す.特に収束性を良くする工夫はされてなく,漸近安定させる例として示されたものなので,本提案の結果との直接性能比較の対象ではないが,参考として掲示する.
The simulation is evaluated using the control laws of Equations (35) and (41).
First, the weight coefficients r 2 , r 3 and r 4 are selected. When caused to converge to zero earlier the q 1 As can be seen from the model in Figure 5 can not be adjusted q 3. Therefore, it is desirable to converge q 2 after converging q 3. For this reason, r 3 is set larger than r 2 . The r 4 to suppress the overshoot of the rotation of the coin is set to larger values. From the above, r 2 = 0.25, r 3 = 2.5, and r 4 = 1.0. Input energy in this case because ultimately becomes zero, the value of r 5 is not critical. Combined with other weights and levels, r 5 = 0.5.
The simulation results are shown in Figs. First, optimize κ. Figure 6 shows the change in the value of equation (37) when κ is changed. This shows that κ = −0.1 is the optimum value. The simulation is performed using this value.
Fig. 7 shows the results of simulation with the initial values of [q 1 , q 2 , q 3 ] as [1, 1, -1]. and subsequently the first convergence is q 3 by utilizing the vibration of q 1 q 2 is it can be seen that slowly converge.
Figure 8 shows the locus of q 2 and q 3 at this time. q 2 converged to the target with a single speed change, and good results were obtained.
As an example of asymptotically stabilizing the model of FIG. 5, using the control law introduced in Non-Patent Document 3, the simulation result under the same conditions as FIG. 7 is shown in FIG. In particular, it has not been devised to improve convergence, but has been presented as an example of asymptotic stabilization, so it is not a subject of direct performance comparison with the results of this proposal, but is posted for reference.

続いて、本制御はロバスト性能が優れていることを示す.再び図1のモデルを用いて従来の代表的な最適制御理論であるLQ制御と比較する.  Next, we show that this control has excellent robust performance. Again, using the model in Fig. 1, we compare it with LQ control, which is a typical conventional optimal control theory.

LQ制御則を求めるためには,図1のモデルを状態方程式で記述し直し,評価関数を2次形式にする必要がある.図1において,qをxとし,q−qをxとし,q−qをxとし,ばね下速度をxとし,ばね上速度をxとすると状態方程式は以下のようになる.In order to obtain the LQ control law, it is necessary to rewrite the model of Fig. 1 with the state equation and to make the evaluation function a quadratic form. In Figure 1, a q 0 and x 0, the q 1 -q 0 and x 1, the q 2 -q 0 and x 2, the unsprung velocity and x 3, the state equation when the sprung speed and x 4 is It is as follows.

式42Equation 42

Figure 2007233985
評価関数を次のような2次形式とする.
Figure 2007233985
The evaluation function has the following quadratic form.

式43Equation 43

Figure 2007233985
式(43)の被積分関数の第1項は式(27)の性能評価項と同一であるが,第2項は異なりuの2乗になっている.無限評価区間であるから,LQ制御則は次のリカッチ代数方程式の解から求まる.
Figure 2007233985
The first term of the integrand in equation (43) is the same as the performance evaluation term in equation (27), but the second term is different and is the square of u. Since it is an infinite evaluation interval, the LQ control law can be obtained from the solution of the following Riccati algebraic equation.

式44Formula 44

Figure 2007233985
本手法とLQ制御とは制御入力の評価関数が異なるため,性能比較を行うには性能評価値Jの値を基準値にとりこの値が同じになるようにして比較する必要がある.Jの値が図3に示す本手法の値と同じになるように,r1q=1.5×10−9とし,A,B,Qに数値を入れると制御則は次のようになる.
Figure 2007233985
Since the proposed method and the evaluation function of the control input to the LQ control are different, to compare the performance has to be compared as the value reaches the same taken reference value the value of the performance evaluation value J 1. When r 1q = 1.5 × 10 −9 so that the value of J 1 is the same as the value of the present method shown in FIG. 3, and when numerical values are entered in A, B, and Q, the control law is as follows: .

式45Formula 45

Figure 2007233985
Figure 2007233985
である.これを式(26)と同じ形式で記述し両者を数値で比較すると次のようになる.
Figure 2007233985
Figure 2007233985
It is. This is described in the same format as equation (26) and both are compared numerically as follows.

式46Equation 46

Figure 2007233985
Figure 2007233985

式47Equation 47

Figure 2007233985
Figure 2007233985

本制御とLQ制御についてロバスト性能を比較する.式(46),(47)を比較すると,LQ制御はqとqのゲインが大きいため信号ノイズに対するロバスト性の低下が懸念される.現実の制御では,路面入力qは推定値を用いることになるため,ある程度の推定誤差は前提とせざるをえない.qの推定誤差の影響についてのシミュレーション評価を行った.路面入力qとは無相関で統計的特性が同じ信号をyとし,推定誤差相当のランダムノイズをαyとした.αをパラメータとしたシミュレーション結果を図10に示す.色塗りで示した本手法のプロットはqの推定誤差による影響をほとんど受けずロバスト性が高いことがわかる.評価値Jは本手法が,評価値JLQではLQ制御が優れるのは当然であるが,αが0.2以上では評価値JLQにおいても本制御がLQ制御より優れることがわかる.従って従って,本手法は外乱入力の推定誤差に対するロバスト性が優れるといえる.Compare the robust performance of this control and LQ control. Comparing Equations (46) and (47), LQ control has a large gain of q 0 and q 1 , and there is a concern that robustness against signal noise is reduced. In actual control, since the road surface input q 0 uses an estimated value, a certain amount of estimation error must be assumed. A simulation evaluation of the effect of q 0 estimation error was performed. The same signal statistical characteristics uncorrelated to the road surface input q 0 and y 0, the random noise of the estimation error corresponds to the .alpha.y 0. Figure 10 shows the simulation results with α as a parameter. It can be seen that the plot of this method shown in color is almost unaffected by the estimation error of q 0 and is highly robust. It is obvious that the evaluation value J is superior to the LQ control in the evaluation value J LQ , but it is natural that the evaluation value J LQ is superior to the LQ control in the evaluation value J LQ . Therefore, it can be said that this method is excellent in robustness against the estimation error of disturbance input.

以上が今回の提案内容であるが、一般論としては式(2)が必ず最小値を持つことを証明しておく必要があるため、以下で確認する.
式(1)はパワー収支式であるが,変位入力の外乱によるパワーが陽に表されていない.これを明示し入力側を左辺に蓄積・散逸側を右辺に書き直せば,次式のようになる.
The above is the contents of this proposal, but as a general theory, it is necessary to prove that Equation (2) has the minimum value.
Equation (1) is a power balance equation, but the power due to the disturbance of the displacement input is not expressed explicitly. If this is specified and the input side is rewritten on the left side and the storage / dissipation side is rewritten on the right side, the following equation is obtained.

式48Formula 48

Figure 2007233985
ここで,fは変位入力外乱zに抗する制御対象側の反力,Uはポテンシャルエネルギである.式(1)との対応より次式の成立は明らかである.
Figure 2007233985
Here, f is the reaction force on the controlled object side against the displacement input disturbance z, and U is the potential energy. The following equation is clear from the correspondence with equation (1).

式49Formula 49

Figure 2007233985
Figure 2007233985
動方程式の記述を用いて書き直し,残りのダンピング力を改めてd’とすれば,式(48)の右辺は次のようになる.
Figure 2007233985
Figure 2007233985
Rewriting using the description of the dynamic equation, and letting d ′ be the remaining damping force, the right side of equation (48) is as follows.

式50Formula 50

Figure 2007233985
ここで,上式の第2項はコリオリ力によるもの,第3項は遠心力によるもの,第4項はダンピング力のみによるものである.式(50)を積分すると,
Figure 2007233985
Here, the second term in the above equation is due to Coriolis force, the third term is due to centrifugal force, and the fourth term is due to damping force only. Integrating equation (50),

式51Formula 51

Figure 2007233985
となる.ここで上式の第2項と3項は相殺され,結局式(51)は次式になる.
Figure 2007233985
It becomes. Here, the second and third terms of the above equation are cancelled, and eventually equation (51) becomes the following equation.

式52Formula 52

Figure 2007233985
上式第1項は運動エネルギ,第2項は散逸エネルギ,第3項はポテンシャルエネルギであり,これは制御対象に蓄えられるエネルギと散逸するエネルギの総和である.式(48)の左辺の積分は,制御対象に加えられるエネルギの総和であるから,結局式(48)を積分したものがエネルギ保存則になっていることがわかる.
ここで式(52)の第1,3項の和をEとする.外乱入力パワーの和の積分をEとすると,式(48)において外乱入力項を右辺に移項して,左右辺を積分すれば,
Figure 2007233985
The first term in the above equation is kinetic energy, the second term is dissipated energy, and the third term is potential energy, which is the sum of the energy stored in the controlled object and the dissipated energy. Since the integral on the left side of equation (48) is the sum of the energy applied to the controlled object, it turns out that the result of integrating equation (48) is the energy conservation law.
Let E 1 be the sum of the first and third terms of equation (52). When the integral of the sum of the disturbance input power and E 2, and transposition of the disturbance input terms on the right-hand side in equation (48), by integrating the right and left sides,

式53Formula 53

Figure 2007233985
となる.ここで,対象が工学的に意味のあるシステムであれば外乱入力パワーは有界であるか
Figure 2007233985
後の項は散逸エネルギで非負であり時間とともに単調増加する.よって,次式が導かれる.
Figure 2007233985
It becomes. Here, if the target is an engineeringly meaningful system, is the disturbance input power bounded?
Figure 2007233985
The latter term is non-negative in dissipative energy and increases monotonically with time. Therefore, the following equation is derived.

式54Formula 54

Figure 2007233985
また工学的に意味のある評価関数なら,有界な状態変数に対してgは下限値を持つように選ばれているから,その有限評価区間の積分値も下限値cを持つ.
よって評価関数Jは次式を満たし最小値を持つ.
Figure 2007233985
In the case of an engineeringly meaningful evaluation function, g is chosen to have a lower limit for bounded state variables, so the integral value of the finite evaluation interval also has a lower limit c.
Therefore, the evaluation function J satisfies the following formula and has a minimum value.

式55Formula 55

Figure 2007233985

特願2005−175656システムの最適制御方法 藤本健治,ハミルトニアンシステムの制御,計測と制御Vol.39,No.2(2000),pp.99−104.
Figure 2007233985

Japanese Patent Application No. 2005-175656 System Optimal Control Method Kenji Fujimoto, Control, Measurement and Control of Hamiltonian System Vol. 39, no. 2 (2000), pp. 99-104.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、本発明を実施するための最良の形態を図面に基づいて説明する.  The best mode for carrying out the present invention will be described below with reference to the drawings.

図11にアクティブサスペンションの構造図を示す.アクチュエータは車輪1と車体2との間に設置された油圧シリンダ3とピストンロッド4とアキュームレータ5で構成されている.センサは,上下Gセンサ6,7とストロークセンサ8とサスペンション伝達力センサ9で構成され,これらの信号により制御回路10により制御信号を発生させている.
双方向ポンプ11は誘導モータ12で回される.誘導モータ12が右回転する場合はポンプ11からシリンダ3の上室に作動油が送られ、左回転する場合は下室に作動油が送られる.誘導モータはインバータ13の3相出力で駆動され,この3相出力は制御指令値によって制御される.バッテリーもしくはキャパシタ15とインバータ13の間には可逆チョッパ回路14が設けられモータ駆動時にはバッテリー電圧を昇圧し,充電時にはモータからの電圧を調整しモータ電圧がバッテリー電圧を下回っても回生可能にする.
他の車輪も同様の構成である.
Fig. 11 shows the structure of the active suspension. The actuator is composed of a hydraulic cylinder 3, a piston rod 4 and an accumulator 5 installed between the wheel 1 and the vehicle body 2. The sensors are composed of vertical G sensors 6 and 7, a stroke sensor 8 and a suspension transmission force sensor 9, and a control signal is generated by a control circuit 10 based on these signals.
The bidirectional pump 11 is rotated by an induction motor 12. When the induction motor 12 rotates to the right, hydraulic oil is sent from the pump 11 to the upper chamber of the cylinder 3, and when it rotates counterclockwise, hydraulic oil is sent to the lower chamber. The induction motor is driven by the three-phase output of the inverter 13, and this three-phase output is controlled by the control command value. A reversible chopper circuit 14 is provided between the battery or capacitor 15 and the inverter 13 to boost the battery voltage when the motor is driven, and to adjust the voltage from the motor when charging, so that regeneration is possible even when the motor voltage falls below the battery voltage.
The other wheels have the same configuration.

次に、制御回路10について説明する.図12はセンサと制御回路10のブロック線図を示す.ばね上上下Gセンサ6、ばね下上下Gセンサ7、サスペンション伝達力センサ9、サスペンション変位センサ8からの信号が、制御回路10に伝送される.ばね上速度

Figure 2007233985
Next, the control circuit 10 will be described. FIG. 12 shows a block diagram of the sensor and the control circuit 10. Signals from the sprung vertical G sensor 6, the unsprung vertical G sensor 7, the suspension transmission force sensor 9, and the suspension displacement sensor 8 are transmitted to the control circuit 10. Sprung speed
Figure 2007233985

式56Formula 56

Figure 2007233985
Figure 2007233985

制御則演算部20は、モータ制御部と回生制御部からなる.モータ制御部は上記ばね上速度

Figure 2007233985
じてモータの電流を変えれば、制御指令値に応じて力を発生させる制御系が実現できる.回生
Figure 2007233985
optとからモータ駆動時か回生時かを判断し、モータ駆動時にはバッテリー電圧を昇圧し,回生時にはモータ電圧を昇圧する指令値uを出力する.The control law calculation unit 20 includes a motor control unit and a regeneration control unit. The motor control unit
Figure 2007233985
If the motor current is changed, a control system that generates force according to the control command value can be realized. Regeneration
Figure 2007233985
From u opt , it is judged whether the motor is driven or regenerated, and the battery voltage is boosted when the motor is driven, and the command value u e is boosted when the motor is regenerated.

本手法は、非ホロノミック拘束を含む非線形制御系の適用が可能であり、しかもシステムのエネルギ収支式から、微分方程式を解かずに最適制御則を得ることができるため有用性は高いものと考えられる.  This method can be applied to non-linear control systems including nonholonomic constraints, and the optimal control law can be obtained from the energy balance equation of the system without solving the differential equation. .

車両のアクティブサスペンションの1輪モデル図である.  It is a one-wheel model diagram of a vehicle active suspension. パラメータκの最適化の説明図である.  It is an explanatory diagram of optimization of parameter κ. アクティブサスペンションについて本発明の制御と従来の制御方法の性能比較図である.  It is the performance comparison figure of the control of this invention and the conventional control method about an active suspension. 本発明と特許文献1との制御入力パワーの比較図である.  It is a comparison figure of the control input power of this invention and patent document 1. FIG. 転がるコインのモデル図である.  This is a model of a coin that rolls. パラメータκの最適化の説明図である.  It is an explanatory diagram of optimization of parameter κ. 本発明の制御効果を説明する図である.  It is a figure explaining the control effect of the present invention. 本発明の制御効果を説明する図である.  It is a figure explaining the control effect of the present invention. 従来技術の制御効果を説明する図である.  It is a figure explaining the control effect of a prior art. 本発明と従来制御のロバスト性の比較図である。  It is a comparison figure of the robustness of this invention and conventional control. 本発明のアクテイブサスペンションの構成図である.  It is a block diagram of the active suspension of this invention. 本発明のアクティブサスペンションのセンサと制御回路の構成図である.  It is a block diagram of the active suspension sensor and control circuit of the present invention.

符号の説明Explanation of symbols

1 車輪(ばね下質量)
2 車体(ばね上質量)
3 油圧シリンダ
4 ピストンロッド
5 アキュームレータ
6 上下Gセンサ(ばね上用)
7 上下Gセンサ(ばね下用)
8 サスペンション変位センサ
9 サスペンション伝達力センサ
10 制御回路
11 双方向ポンプ
12 誘導モータ
13 インバータ
14 可変チョッパ回路
15 バッテリもしくはキャパシタ
20 制御則演算部
21 ばね上速度演算部
22 ばね下速度演算部
23 タイヤ変位演算部
1 Wheel (Unsprung mass)
2 Body (Spring mass)
3 Hydraulic cylinder 4 Piston rod 5 Accumulator 6 Vertical G sensor (for spring top)
7 Vertical G sensor (Unsprung)
DESCRIPTION OF SYMBOLS 8 Suspension displacement sensor 9 Suspension transmission force sensor 10 Control circuit 11 Bidirectional pump 12 Induction motor 13 Inverter 14 Variable chopper circuit 15 Battery or capacitor 20 Control law calculating part 21 Sprung speed calculating part 22 Unsprung speed calculating part 23 Tire displacement calculation Part

Claims (3)

制御対象の全入出力パワーの収支の式が次式で近似される制御システムにおいて,
Figure 2007233985
(ここで,d,e,q,u,v,z∈R,M∈Rn×nは正定対称な慣性マトリクス,nは制御対象の自由度である.qは一般化座標,uは制御入力,vは力入力の外乱,zは変位入力の外乱である.zはばねを介して慣性に作用するものとする.dはコリオリ力や遠心力やダンピング力など,eはポテンシャル力である.また制御対象は受動要素だけとは限らないため,内部にエネルギ源がありこれが運動に影響を与えていれば外乱入力として扱う.制御アクチュエータの数が制御対象の自由度nより少ない場合は、欠落したアクチュエータに対応するベクトルuの要素をゼロとする.また一つのアクチュエータが複数の慣性に作用する場合には、対応するベクトルuの要素にその条件を含めておく.変数qやzの上に付された記号“・”とその数は時間微分とその回数を表す.)次式であらわされる評価関数を最小にする制御方法.
Figure 2007233985
ここで、gは制御対象の制御性能を表す関数、rは重み係数である.
In a control system where the balance equation of the total input / output power to be controlled is approximated by
Figure 2007233985
(Where d, e, q, u, v, z ∈ R n and M ∈ R n × n are positive definite inertia matrices, n is the degree of freedom of the controlled object, q is generalized coordinates, and u is Control input, v is a force input disturbance, z is a displacement input disturbance, z is acting on inertia via a spring, d is Coriolis force, centrifugal force, damping force, etc. e is potential force Since the controlled object is not limited to passive elements, it is treated as a disturbance input if there is an internal energy source that affects the motion.If the number of controlled actuators is less than the freedom n of the controlled object The element of the vector u corresponding to the missing actuator is set to zero, and when one actuator acts on a plurality of inertias, the condition is included in the element of the corresponding vector u. The symbol “ "And their number represents the time derivative and the number thereof.) Control method to minimize an evaluation function expressed by the following equation.
Figure 2007233985
Here, g is a function representing the control performance of the controlled object, and r is a weighting coefficient.
請求項1の制御システムにおいて、次のスカラー関数Lを定義し、
Figure 2007233985
(ここで、κは定数である.)
制御則uは次式から導かれた関係式を含むことを特徴とする制御方法.
Figure 2007233985
2. The control system of claim 1, wherein the following scalar function L is defined:
Figure 2007233985
(Where κ is a constant.)
A control method characterized in that the control law u includes a relational expression derived from the following expression.
Figure 2007233985
請求項1において、制御則uが次式の各項の一部あるいは全部を含む制御方法.
Figure 2007233985
(ここで、κは定数である.)
The control method according to claim 1, wherein the control law u includes part or all of the following terms.
Figure 2007233985
(Where κ is a constant.)
JP2006092243A 2006-03-02 2006-03-02 Optimal system control method Expired - Fee Related JP4609767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092243A JP4609767B2 (en) 2006-03-02 2006-03-02 Optimal system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092243A JP4609767B2 (en) 2006-03-02 2006-03-02 Optimal system control method

Publications (2)

Publication Number Publication Date
JP2007233985A true JP2007233985A (en) 2007-09-13
JP4609767B2 JP4609767B2 (en) 2011-01-12

Family

ID=38554473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092243A Expired - Fee Related JP4609767B2 (en) 2006-03-02 2006-03-02 Optimal system control method

Country Status (1)

Country Link
JP (1) JP4609767B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073239A (en) * 2007-09-19 2009-04-09 Mazda Motor Corp Control device of suspension
JP2009078758A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller for vehicle
JP2009078761A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller
JP2009078757A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Road surface displacement inferring device for vehicle
JP2009078759A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller for vehicle
CN104626914A (en) * 2014-12-31 2015-05-20 广西科技大学 Fuzzy control method of automobile nonlinear active suspension system
JP2015180574A (en) * 2008-04-17 2015-10-15 レバント パワー コーポレイション regenerative shock absorber
JP2016050584A (en) * 2014-08-28 2016-04-11 本田技研工業株式会社 Damper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240502A (en) * 1985-08-19 1987-02-21 Fujitsu Ltd Digital servo device
JPH10274281A (en) * 1997-03-28 1998-10-13 Mitsubishi Heavy Ind Ltd Vibration damping device
JP2001311452A (en) * 2000-04-28 2001-11-09 Tokico Ltd Electromagnetic suspension control system
JP2004014429A (en) * 2002-06-11 2004-01-15 Japan Storage Battery Co Ltd Cylindrical storage battery
JP2005222509A (en) * 2004-02-06 2005-08-18 Naoto Fukushima Optimal control method of system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240502A (en) * 1985-08-19 1987-02-21 Fujitsu Ltd Digital servo device
JPH10274281A (en) * 1997-03-28 1998-10-13 Mitsubishi Heavy Ind Ltd Vibration damping device
JP2001311452A (en) * 2000-04-28 2001-11-09 Tokico Ltd Electromagnetic suspension control system
JP2004014429A (en) * 2002-06-11 2004-01-15 Japan Storage Battery Co Ltd Cylindrical storage battery
JP2005222509A (en) * 2004-02-06 2005-08-18 Naoto Fukushima Optimal control method of system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073239A (en) * 2007-09-19 2009-04-09 Mazda Motor Corp Control device of suspension
JP2009078758A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller for vehicle
JP2009078761A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller
JP2009078757A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Road surface displacement inferring device for vehicle
JP2009078759A (en) * 2007-09-27 2009-04-16 Mazda Motor Corp Suspension controller for vehicle
JP2015180574A (en) * 2008-04-17 2015-10-15 レバント パワー コーポレイション regenerative shock absorber
JP2016050584A (en) * 2014-08-28 2016-04-11 本田技研工業株式会社 Damper
US9636964B2 (en) 2014-08-28 2017-05-02 Honda Motor Co., Ltd. Damper
CN104626914A (en) * 2014-12-31 2015-05-20 广西科技大学 Fuzzy control method of automobile nonlinear active suspension system

Also Published As

Publication number Publication date
JP4609767B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4609767B2 (en) Optimal system control method
Theunissen et al. Preview-based techniques for vehicle suspension control: A state-of-the-art review
Morato et al. Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle
Čorić et al. Optimisation of active suspension control inputs for improved vehicle ride performance
Papadimitrakis et al. Active vehicle suspension control using road preview model predictive control and radial basis function networks
US8086377B2 (en) Suspension control apparatus
Arana et al. Series active variable geometry suspension application to comfort enhancement
JP2005153875A (en) Electronic control suspension device and damping force control method
CN109334380B (en) Active hydro-pneumatic suspension control method based on parameter uncertainty and external disturbance
Muhammed et al. Linear-control vs. ADRC for automatic management of the handling-comfort contradiction of a quarter-car system
Lin et al. A reinforcement learning backstepping‐based control design for a full vehicle active Macpherson suspension system
CN113761768A (en) Integrated optimization design method of magneto-rheological damper for whole vehicle vibration suppression
Chiang et al. Optimized sensorless antivibration control for semiactive suspensions with cosimulation analysis
WO2022192115A1 (en) Method of attenuating longitudinal acceleration oscillations of a vehicle body
CN116803797A (en) Method for controlling driving force of vehicle
Batra Dynamics and model-predictive anti-jerk control of connected electric vehicles
Reichhartinger et al. Robust cascaded automatic cruise control of electric vehicles
JP6589943B2 (en) Vehicle travel control system
JP2009078757A (en) Road surface displacement inferring device for vehicle
JP2009078759A (en) Suspension controller for vehicle
JP2009078761A (en) Suspension controller
ASI et al. Adaptive speed control of an autonomous vehicle with a comfort objective
Das Vehicle Dynamics Modelling: Lateral And Longitudinal
CN113525535B (en) Cab semi-active suspension control method and device based on fuzzy control
Brown et al. Comparison of generalized predictive control algorithms using a full vehicle multi-body dynamics model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees