JP2007233222A - Focus detecting device for video camera - Google Patents

Focus detecting device for video camera Download PDF

Info

Publication number
JP2007233222A
JP2007233222A JP2006057403A JP2006057403A JP2007233222A JP 2007233222 A JP2007233222 A JP 2007233222A JP 2006057403 A JP2006057403 A JP 2006057403A JP 2006057403 A JP2006057403 A JP 2006057403A JP 2007233222 A JP2007233222 A JP 2007233222A
Authority
JP
Japan
Prior art keywords
signal
frequency component
video
focus
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057403A
Other languages
Japanese (ja)
Inventor
Katsuyuki Fukui
克幸 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006057403A priority Critical patent/JP2007233222A/en
Publication of JP2007233222A publication Critical patent/JP2007233222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a focus detecting device for a video camera which has the circuit scale substantially equal to that in a method for extracting high-frequency components from luminance signal and which can fully secure focusing accuracy, even for a video having few G signals. <P>SOLUTION: A focusing position is obtained by selecting a signal, having the largest amplitude from among video signals of red, green and blue that are the three primary colors of light by an NAM generation part 104, halfway through signal processing in a video signal processing part 103, and controlling the position of the lens with a lens control part 107 so that the value obtained by integrating the absolute value of the high-frequency components, extracted from the selected video signal by a high-frequency components extraction part 105 in a predetermined area by a focusing discrimination part 106, become maximum. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビデオカメラの合焦の検出のため、映像信号の高周波成分を用いる合焦検出装置に関する。   The present invention relates to a focus detection apparatus that uses a high-frequency component of a video signal to detect the focus of a video camera.

従来、ビデオカメラでは合焦の検出に、映像信号から抽出した高周波成分が最大になったところを合焦位置と判断する合焦検出装置がよく用いられる。これは、被写体に焦点が合ったときには映像が鮮明になること、すなわち映像信号の高周波成分が大きくなることを利用している。そしてこの高周波成分を抽出する信号として輝度信号が用いられる場合が多い。   2. Description of the Related Art Conventionally, in a video camera, a focus detection device that determines a focus position where a high-frequency component extracted from a video signal is maximized is often used for focus detection. This utilizes the fact that the image becomes clear when the subject is focused, that is, the high-frequency component of the image signal is increased. A luminance signal is often used as a signal for extracting the high frequency component.

通常の被写体を撮影した映像信号は、光の3原色の赤、緑、青の信号すなわちR、G、Bの信号のうちG信号が多く含まれているため、輝度信号で十分合焦位置の検出を行うことができる。しかし、G信号が少ない映像の場合、輝度信号が小さくなるので輝度信号から得られる高周波成分は小さくなる。これは、NTSC(National Television System Committee)方式やPAL(Phase Alternation by Line)方式の映像方式では、G信号は輝度信号の約60%を占めているため、G信号が少なければ輝度信号が小さくなるからである。   A video signal obtained by photographing a normal subject contains a large number of G signals among the three primary colors of red, green, and blue, that is, R, G, and B signals. Detection can be performed. However, in the case of an image with few G signals, the luminance signal is small, so the high frequency component obtained from the luminance signal is small. This is because the G signal occupies about 60% of the luminance signal in the NTSC (National Television System Committee) or PAL (Phase Alternation By Line) video system, so the luminance signal is small if the G signal is small. Because.

すると、小さな高周波成分から合焦の検出をすることになり、結果として、量子化ノイズやランダムノイズの影響が大きくなるので合焦の検出精度が悪くなる。具体的な例として、映像信号がR信号とG信号が0で、B信号が図7(a)で示す波形の信号である場合について説明すると次のようになる。先ず、図7(a)の信号はA/D変換されると、図7(b)の信号波形になる。そして、NTSCやPALの映像方式の場合、B信号は輝度信号に11%程度含まれるので、GとRの信号がなければ輝度信号は図7(c)に示す信号になる。ここで、図7の点線は量子化の間隔を示している。すると、輝度信号はほとんどノイズと区別がつかない程度になり、合焦の検出が極めて困難になる。実際の映像信号にB信号だけという状態はほとんど存在しないが、青っぽい映像では同様の傾向になるので、合焦の検出精度はどうしても悪くなる。   Then, the focus is detected from a small high-frequency component. As a result, the influence of quantization noise and random noise increases, and the focus detection accuracy deteriorates. As a specific example, a case where the video signal is an R signal and a G signal are 0 and the B signal is a signal having a waveform shown in FIG. 7A will be described as follows. First, when the signal of FIG. 7A is A / D converted, the signal waveform of FIG. 7B is obtained. In the case of the NTSC or PAL video system, the B signal is included in the luminance signal by about 11%. Therefore, if there are no G and R signals, the luminance signal is the signal shown in FIG. Here, the dotted line in FIG. 7 indicates the quantization interval. Then, the luminance signal is almost indistinguishable from noise, and it becomes extremely difficult to detect the focus. Although there is almost no state of only the B signal in the actual video signal, since the same tendency is observed in a bluish video, the focus detection accuracy is inevitably deteriorated.

これに対して、特許文献1に開示されている構成を使用すれば、G信号の高周波成分とR信号またはB信号の高周波成分を評価することで合焦位置の検出を行うので、G信号やR信号が少なくB信号の割合が多い映像信号に対しても、輝度信号から合焦の検出を行う場合に比べて検出の精度は高くなる。   On the other hand, if the configuration disclosed in Patent Document 1 is used, the in-focus position is detected by evaluating the high-frequency component of the G signal and the high-frequency component of the R signal or B signal. Even for a video signal with a small amount of R signal and a large proportion of B signal, the detection accuracy is higher than in the case of detecting focus from a luminance signal.

これを、具体例で説明すると次のようになる。図8は特許文献1に開示されている合焦状態を検出する回路を含むビデオカメラの構成を示すブロック図、図9はNAM(Non Additive Mixing)生成部の構成を示すブロック図である。図8において、レンズ801を通過した光が撮像素子802で電気信号に変換される。その信号は映像信号処理部803にてホワイトバランスなどの信号処理が行われるが、途中から光の3原色の赤、緑、青、すなわちR、G、Bの映像信号を取り出し、高周波成分抽出部804〜806にてそれぞれR、G、Bの高周波成分を抽出する。ここで、高周波成分の抽出にはバンドパスフィルタを用いる。   This will be described with a specific example as follows. FIG. 8 is a block diagram showing a configuration of a video camera including a circuit for detecting an in-focus state disclosed in Patent Document 1, and FIG. 9 is a block diagram showing a configuration of a NAM (Non Additive Mixing) generator. In FIG. 8, the light that has passed through the lens 801 is converted into an electric signal by the image sensor 802. The signal is subjected to signal processing such as white balance in the video signal processing unit 803. The video signals of the three primary colors red, green, and blue, that is, R, G, and B, are extracted from the middle, and a high frequency component extraction unit R, G, and B high frequency components are extracted at 804 to 806, respectively. Here, a band pass filter is used for extraction of the high frequency component.

そして、図9に示すように、NAM生成部807にて、B信号の高周波成分とR信号の高周波成分の振幅を振幅比較回路901で比較し、その比較結果に基づき、大きいほうを選択回路902で選択して、R信号とB信号の高周波成分の振幅の大きいほうを得ることができ、R信号がほとんどないときにはB信号の高周波成分が得られる。このB信号の高周波成分と、高周波成分抽出部804から取り出されたG信号の高周波成分をもとに、合焦の判断をするが、G信号がほとんどないときにはG信号の高周波成分はほとんどないので、G信号の高周波成分は無視され、B信号の高周波成分をもって合焦の判断をするための信号として使用される。   Then, as shown in FIG. 9, the amplitude comparison circuit 901 compares the amplitude of the high frequency component of the B signal and the high frequency component of the R signal in the NAM generation unit 807, and the larger one is selected based on the comparison result. The higher one of the amplitudes of the high frequency components of the R signal and B signal can be obtained, and when there is almost no R signal, the high frequency component of the B signal is obtained. Focusing is determined based on the high-frequency component of the B signal and the high-frequency component of the G signal extracted from the high-frequency component extraction unit 804. When there is almost no G signal, there is almost no high-frequency component of the G signal. , The high frequency component of the G signal is ignored, and the high frequency component of the B signal is used as a signal for determining focus.

そして、B信号の高周波成分が最大になるように、レンズ制御部809にてレンズの位置を制御すると合焦位置が得られる。従って、G信号とR信号が少なくB信号が多い映像であっても、輝度信号から合焦位置を求める場合に比べて、合焦位置を求める検出の精度はあまり落ちないで済む。   Then, when the lens position is controlled by the lens control unit 809 so that the high-frequency component of the B signal is maximized, the in-focus position is obtained. Therefore, even in the case of an image with few G and R signals and many B signals, the detection accuracy for obtaining the in-focus position does not decrease much compared to the case in which the in-focus position is obtained from the luminance signal.

なお、特許文献1に記載されている実施例は、軸上色収差を利用した例について述べてあるが、上述した通り、R信号とG信号が少ない場合の映像に対してもB信号から抽出した高周波成分を用いることになるので、輝度信号から抽出した高周波成分を用いる場合に比べて合焦位置の検出精度があまり落ちないという効果がある。
特開平8−102955号公報(段落番号0007〜0008)
In addition, although the Example described in patent document 1 described the example using axial chromatic aberration, as above-mentioned, it extracted from B signal also about the image | video in case there are few R signals and G signals. Since the high frequency component is used, there is an effect that the detection accuracy of the in-focus position does not drop much compared to the case where the high frequency component extracted from the luminance signal is used.
JP-A-8-102955 (paragraph numbers 0007 to 0008)

前述した構成では、輝度信号から高周波成分を抽出する方法に比べ、G信号の少ない映像に対して合焦の精度は改善される。しかしながら、高周波成分を抽出する回路が3倍になり、さらに高周波成分同士の大小判定を行う回路も必要になるので、輝度信号から高周波成分を抽出する方法に比べると、回路規模が大きくなる。   In the above-described configuration, the focusing accuracy is improved for an image with few G signals, compared to a method of extracting a high frequency component from a luminance signal. However, the number of circuits for extracting high-frequency components is tripled, and further, a circuit for determining the size of high-frequency components is also required, so that the circuit scale becomes larger compared to a method for extracting high-frequency components from luminance signals.

本発明は、輝度信号から高周波成分を抽出する方法と回路規模はほぼ同等で、なおかつ、G信号の少ない映像に対しても合焦の精度が十分確保できるビデオカメラの合焦検出装置を提供することを目的とする。   The present invention provides a focus detection device for a video camera that is substantially the same in circuit scale as a method for extracting a high-frequency component from a luminance signal, and that can ensure sufficient focusing accuracy even for an image with little G signal. For the purpose.

本願第1の発明のビデオカメラの合焦検出装置は、被写体の光を集光するレンズと、前記レンズを通過して結像した光を電気信号に変換する撮像手段と、前記撮像手段から出力される信号に、色の調整と周波数特性の調整と階調補正を含む所定の信号処理を行う映像信号処理手段と、前記映像信号処理手段の途中の所定の信号処理の後から取り出した光の3原色である赤と緑と青の映像信号の中から、最も大きい信号を選択するNAM生成手段と、前記NAM生成手段から出力される映像信号の高周波成分を抽出する高周波成分抽出手段と、前記高周波成分の量をもとに合焦しているかどうかを判別する合焦判別手段と、前記合焦判別手段の判別結果に従って前記レンズを制御するレンズ制御手段とを具備することを特徴とする。   An in-focus detection device for a video camera according to a first aspect of the present invention includes a lens that collects light of a subject, an imaging unit that converts light imaged through the lens into an electrical signal, and an output from the imaging unit Video signal processing means for performing predetermined signal processing including color adjustment, frequency characteristic adjustment and gradation correction, and light extracted after the predetermined signal processing in the middle of the video signal processing means. A NAM generating means for selecting the largest signal among the three primary colors of red, green and blue video signals; a high frequency component extracting means for extracting a high frequency component of the video signal output from the NAM generating means; It is characterized by comprising focusing determining means for determining whether or not focusing is performed based on the amount of high-frequency component, and lens control means for controlling the lens according to the determination result of the focusing determining means.

本願第2の発明のビデオカメラの合焦検出装置は、被写体の光を集光するレンズと、前記レンズを通過して結像した光を電気信号に変換する撮像手段と、前記撮像素子から出力される信号に、色の調整と周波数特性の調整と階調補正を含む所定の信号処理を行う映像信号処理手段と、前記映像信号処理手段の途中の所定の信号処理の後から取り出した光の3原色である赤と緑と青の映像信号の中から、最も大きい信号を選択するNAM生成手段と、前記NAM生成手段から出力される映像信号の高周波成分を抽出する高周波成分抽出手段と、前記高周波成分の量をもとに合焦しているかどうかを判別する合焦判別手段と、前記合焦判別手段の判別結果を表示する表示手段とを具備することを特徴とする。   A focus detection device for a video camera according to a second invention of the present application includes a lens that collects light of an object, an imaging unit that converts light imaged through the lens into an electrical signal, and an output from the imaging device. Video signal processing means for performing predetermined signal processing including color adjustment, frequency characteristic adjustment and gradation correction, and light extracted after the predetermined signal processing in the middle of the video signal processing means. A NAM generating means for selecting the largest signal among the three primary colors of red, green and blue video signals; a high frequency component extracting means for extracting a high frequency component of the video signal output from the NAM generating means; It is characterized by comprising focusing determining means for determining whether or not focusing is performed based on the amount of the high frequency component, and display means for displaying the determination result of the focusing determining means.

以上の本発明により、輝度信号から高周波成分を抽出する方法と回路規模はほぼ同等で、なおかつ緑色の少ない映像に対しても合焦の精度が改善できるビデオカメラの合焦検出装置を提供できる。   According to the present invention as described above, it is possible to provide a focus detection device for a video camera which has substantially the same circuit scale as a method for extracting a high-frequency component from a luminance signal and can improve focusing accuracy even for an image with little green.

また、手動で焦点を合わすときにも、輝度信号から高周波成分を抽出する方法と回路規模はほぼ同等で、なおかつ緑色の少ない映像に対しても合焦の目安となる信号を得ることができ、その信号を視覚的に認識できる形式でモニタなどに表示することで、特に人間の目の感度の低い青っぽい映像に対して、カメラの操作者が合焦位置を見つけやすくなる。   In addition, even when focusing manually, the circuit scale is almost the same as the method of extracting high-frequency components from the luminance signal, and a signal that is a guide for focusing can be obtained even for images with little green color, Displaying the signal on a monitor or the like in a visually recognizable format makes it easier for the camera operator to find the in-focus position, particularly for bluish images with low human eye sensitivity.

以下本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1のビデオカメラの合焦検出装置の構成を示すブロック図、図2はNAM(Non Additive Mixing)生成部の構成を示すブロック図である。図1において、被写体からの光がレンズ101によって集光され、撮像素子102にて電気信号に変換される。この電気信号は、映像信号処理部103で固体撮像素子固有のノイズを除去された後、A/D変換されて、ホワイトバランスなどの色の調整、輪郭補正などの周波数特性の調整やガンマ補正などの階調補正を含んだ、カメラとしての信号処理が行われ、カメラとしての映像信号が出力される。
(Embodiment 1)
FIG. 1 is a block diagram showing the configuration of a focus detection apparatus for a video camera according to Embodiment 1 of the present invention, and FIG. 2 is a block diagram showing the configuration of a NAM (Non Additive Mixing) generator. In FIG. 1, light from a subject is collected by a lens 101 and converted into an electric signal by an image sensor 102. This electric signal is subjected to A / D conversion after the noise specific to the solid-state image sensor is removed by the video signal processing unit 103, color adjustment such as white balance, frequency characteristic adjustment such as contour correction, and gamma correction. The signal processing as the camera including the tone correction is performed, and the video signal as the camera is output.

この映像信号処理部103の途中から、光の3原色の緑、青、赤すなわちG、B、Rの映像信号を取り出し、NAM生成部104にて、G、B、Rの映像信号のNAM、すなわち信号レベルが最も大きい信号が選択される。従って、R信号やG信号が少ない場合、R信号やG信号に比べてB信号のレベルが大きいのでB信号が選択される。   From the middle of the video signal processing unit 103, the three primary colors green, blue, and red, that is, G, B, and R video signals are taken out, and the NAM generation unit 104 extracts the N, That is, the signal with the highest signal level is selected. Therefore, when there are few R signals and G signals, the level of the B signal is higher than that of the R signal and the G signal, so the B signal is selected.

そして、高周波成分抽出部105にて、このNAM信号の高周波成分を抽出する。ここで、高周波成分の抽出にはバンドパスフィルタを用いる。次に、合焦判別部106にて、この高周波成分の絶対値をそれぞれ画面の指定したエリアで1フィールド分だけ積分する。そして、この積分した値が、図4に示す曲線の頂点の位置にくるように、レンズ制御部107にてレンズの位置を制御すると合焦位置が得られる。図4は、映像信号の高周波成分の積分値とレンズの位置の関係を示す図である。この制御は、いわゆる山登り方式の制御を行い、まずどちらか一方にレンズを動かして、高周波成分の積分値が減ったら逆の方向にレンズを動かし、高周波成分が増えたらそのまま同じ方向にレンズを動かす。この動作を繰り返していくと、どちらに動かしても高周波成分が減る位置がでてくる。どちらに動かしても高周波成分が減るということはその位置で高周波成分が最大ということであり、その位置が合焦位置になる。図4でいえば曲線の山のピークがこの合焦位置になる。   Then, the high frequency component extraction unit 105 extracts the high frequency component of the NAM signal. Here, a band pass filter is used for extraction of the high frequency component. Next, the focus determination unit 106 integrates the absolute value of the high frequency component for one field in each designated area of the screen. Then, when the lens control unit 107 controls the position of the lens so that the integrated value comes to the position of the vertex of the curve shown in FIG. FIG. 4 is a diagram illustrating the relationship between the integral value of the high frequency component of the video signal and the position of the lens. This control is a so-called hill-climbing control method. First, move the lens in one direction, move the lens in the opposite direction when the integral value of the high-frequency component decreases, and move the lens in the same direction as the high-frequency component increases. . If this operation is repeated, the position where the high-frequency component is reduced appears regardless of the movement. The fact that the high-frequency component is reduced by either movement means that the high-frequency component is maximum at that position, and that position becomes the in-focus position. In FIG. 4, the peak of the peak of the curve is the in-focus position.

次にNAM生成部104の動作を図2を併用しつつ説明する。図2において、まず、B信号とR信号がレベル比較回路201にてレベルを比較され、その比較結果に基づき、選択回路202にてB信号とR信号のうちレベルの大きいほうの信号が選択される。そして、同様にG信号と選択回路202の出力信号、すなわちB信号とR信号の振幅の大きいほうについてレベル比較回路203にて比較し、レベルの大きいほうを選択回路204にて選択する。従って、R信号とG信号とB信号の中で最も大きいレベルの信号が選択される。   Next, the operation of the NAM generation unit 104 will be described with reference to FIG. In FIG. 2, first, the level comparison circuit 201 compares the levels of the B signal and the R signal, and based on the comparison result, the selection circuit 202 selects the signal having the larger level of the B signal and the R signal. The Similarly, the level comparison circuit 203 compares the G signal and the output signal of the selection circuit 202, that is, the larger amplitude of the B signal and the R signal, and the selection circuit 204 selects the larger level. Therefore, the signal having the highest level among the R, G, and B signals is selected.

以上の動作により、少ない回路規模で緑の光の少ない場合でも、輝度信号から合焦位置を判断する回路より少ない回路規模で合焦の精度を改善することができる。   With the above operation, even when there is little green light with a small circuit scale, focusing accuracy can be improved with a smaller circuit scale than a circuit that determines the focus position from the luminance signal.

なお、NAM生成部104に入力するG、B、Rの信号は、マイナスになっていたり、値が大きくなりすぎている場合がある。このとき図3に示すように、振幅制限回路301〜303のようにNAM信号を求める前に振幅を制限する回路を設ける。例えばマイナスの信号は0にし、大きすぎる信号はビット数による上限を設けて制限する。こうすることで、NAM生成部104内の回路及び高周波成分抽出部のビット数を少なくすることができ、さらなる回路規模の削減を実現することができる。   Note that the G, B, and R signals input to the NAM generating unit 104 may be negative or too large. At this time, as shown in FIG. 3, a circuit for limiting the amplitude is obtained before obtaining the NAM signal, such as the amplitude limiting circuits 301 to 303. For example, a negative signal is set to 0, and an excessively large signal is limited by setting an upper limit based on the number of bits. By doing so, the number of bits of the circuit in the NAM generation unit 104 and the high frequency component extraction unit can be reduced, and the circuit scale can be further reduced.

(実施の形態2)
図5は本発明の実施の形態2のビデオカメラの合焦検出装置の構成を示すブロック図、図6は合焦の検出結果を表示したビューファインダーの画面を示す図である。図5において、実施の形態1の図1と同じ構成は同一番号を付し説明を省略する。実施の形態1と異なるところは、図1における合焦判別部106とレンズ制御部107をなくし、表示変換部501とビューファインダー502を設けた点である。図5に示すように、高周波成分抽出部105で取り出した高周波成分を、表示変換部501にて棒グラフや数値に変換して、図6のように、ビューファインダー502に表示することで、手動で焦点を合わせるときに、合焦位置の目安として使用することもできる。
(Embodiment 2)
FIG. 5 is a block diagram showing a configuration of a focus detection apparatus for a video camera according to Embodiment 2 of the present invention, and FIG. 6 is a view showing a viewfinder screen displaying a focus detection result. In FIG. 5, the same components as those in FIG. The difference from the first embodiment is that the focus determination unit 106 and the lens control unit 107 in FIG. 1 are eliminated, and a display conversion unit 501 and a viewfinder 502 are provided. As shown in FIG. 5, the high frequency component extracted by the high frequency component extraction unit 105 is converted into a bar graph or numerical value by the display conversion unit 501 and displayed on the viewfinder 502 as shown in FIG. When focusing, it can also be used as a guide for the in-focus position.

もちろん、実施の形態1と実施の形態2の合焦検出装置を合わせて、ビデオカメラの合焦を自動または手動に切り替えるようにしてもよいことは言うまでもない。   Of course, it goes without saying that the focus detection apparatus of the first embodiment and the second embodiment may be combined to switch the focus of the video camera to automatic or manual.

本発明のビデオカメラの合焦検出回路を用いることにより、少ない回路規模で緑色の少ない映像でも精度良く合焦位置を求めることができ、自動で焦点を合わせるビデオカメラに有用である。   By using the focus detection circuit of the video camera of the present invention, the focus position can be obtained with high accuracy even with a small circuit scale and a small amount of green images, which is useful for a video camera that automatically focuses.

また、本発明のビデオカメラの合焦検出回路を用いることにより、少ない回路規模で緑色の少ない映像でも合焦の検出結果をビューファインダーに表示することで、手動で焦点を合わせるビデオカメラにも有用である。   In addition, by using the focus detection circuit of the video camera of the present invention, the focus detection result is displayed on the viewfinder even with a small circuit scale and a little green image, which is also useful for a manually focused video camera. It is.

本発明の実施の形態1のビデオカメラの合焦検出回路の構成を示すブロック図1 is a block diagram showing a configuration of a focus detection circuit of a video camera according to Embodiment 1 of the present invention. 本発明の実施の形態1のビデオカメラの合焦検出回路におけるNAM生成部の構成を示すブロック図The block diagram which shows the structure of the NAM production | generation part in the focus detection circuit of the video camera of Embodiment 1 of this invention. 本発明の実施の形態1のビデオカメラの合焦検出回路における振幅制限回路を設けたNAM生成部の構成を示すブロック図The block diagram which shows the structure of the NAM production | generation part which provided the amplitude limiting circuit in the focus detection circuit of the video camera of Embodiment 1 of this invention. 映像信号の高周波成分の積分値とレンズの位置の関係を示す図The figure which shows the relationship between the integrated value of the high frequency component of the video signal and the lens position 本発明の実施の形態2のビデオカメラの合焦検出装置の構成を示すブロック図The block diagram which shows the structure of the focus detection apparatus of the video camera of Embodiment 2 of this invention. 本発明の実施の形態2のビデオカメラの合焦検出装置の合焦の検出結果を表示したビューファインダーの画面を示す図The figure which shows the screen of the viewfinder which displayed the focus detection result of the focus detection apparatus of the video camera of Embodiment 2 of this invention. B信号の波形を示す図The figure which shows the waveform of B signal 従来の合焦状態を検出する回路を含むビデオカメラの構成を示すブロック図A block diagram showing a configuration of a video camera including a circuit for detecting a conventional in-focus state 従来の合焦状態を検出する回路を含むビデオカメラのNAM生成部の構成を示すブロック図A block diagram showing a configuration of a NAM generating unit of a video camera including a circuit for detecting a conventional in-focus state

符号の説明Explanation of symbols

101 レンズ
102 撮像素子
103 映像信号処理部
104 NAM生成部
105 高周波成分抽出部
106 合焦判別部
107 レンズ制御部
201、203 レベル比較回路
202、204 選択回路
301、302、303 振幅制限回路
501 表示変換部
502 ビューファインダー
DESCRIPTION OF SYMBOLS 101 Lens 102 Image pick-up element 103 Image | video signal processing part 104 NAM production | generation part 105 High frequency component extraction part 106 Focus determination part 107 Lens control part 201,203 Level comparison circuit 202,204 Selection circuit 301,302,303 Amplitude limiting circuit 501 Display conversion Part 502 Viewfinder

Claims (3)

被写体の光を集光するレンズと、前記レンズを通過して結像した光を電気信号に変換する撮像手段と、前記撮像手段から出力される信号に、色の調整と周波数特性の調整と階調補正を含む所定の信号処理を行う映像信号処理手段と、前記映像信号処理手段の途中の所定の信号処理の後から取り出した光の3原色である赤と緑と青の映像信号の中から、最も大きい信号を選択するNAM生成手段と、前記NAM生成手段から出力される映像信号の高周波成分を抽出する高周波成分抽出手段と、前記高周波成分の量をもとに合焦しているかどうかを判別する合焦判別手段と、前記合焦判別手段の判別結果に従って前記レンズを制御するレンズ制御手段とを具備することを特徴とするビデオカメラの合焦検出装置。 A lens for condensing the light of the subject, an imaging means for converting the light imaged through the lens into an electrical signal, and a signal output from the imaging means for adjusting the color, adjusting the frequency characteristics, and Video signal processing means for performing predetermined signal processing including tone correction, and red, green and blue video signals which are three primary colors of light extracted after predetermined signal processing in the middle of the video signal processing means NAM generating means for selecting the largest signal, high frequency component extracting means for extracting a high frequency component of the video signal output from the NAM generating means, and whether or not the focus is based on the amount of the high frequency component An in-focus detection device for a video camera, comprising: an in-focus determining means for determining; and a lens control means for controlling the lens in accordance with a determination result of the in-focus determining means. 被写体の光を集光するレンズと、前記レンズを通過して結像した光を電気信号に変換する撮像手段と、前記撮像素子から出力される信号に、色の調整と周波数特性の調整と階調補正を含む所定の信号処理を行う映像信号処理手段と、前記映像信号処理手段の途中の所定の信号処理の後から取り出した光の3原色である赤と緑と青の映像信号の中から、最も大きい信号を選択するNAM生成手段と、前記NAM生成手段から出力される映像信号の高周波成分を抽出する高周波成分抽出手段と、前記高周波成分の量をもとに合焦しているかどうかを判別する合焦判別手段と、前記合焦判別手段の判別結果を表示する表示手段とを具備することを特徴とするビデオカメラの合焦検出装置。 A lens for condensing the light of the subject, an imaging means for converting the light imaged through the lens into an electrical signal, a color adjustment, a frequency characteristic adjustment and a step in the signal output from the imaging device; Video signal processing means for performing predetermined signal processing including tone correction, and red, green and blue video signals which are three primary colors of light extracted after predetermined signal processing in the middle of the video signal processing means NAM generating means for selecting the largest signal, high frequency component extracting means for extracting a high frequency component of the video signal output from the NAM generating means, and whether or not the focus is based on the amount of the high frequency component An in-focus detection device for a video camera, comprising: an in-focus determining means for determining; and a display means for displaying a determination result of the in-focus determining means. NAM生成手段は、入力された映像信号の振幅を制限する振幅制限手段を具備することを特徴とする請求項1または請求項2記載のビデオカメラの合焦検出装置。 3. The in-focus detection apparatus for a video camera according to claim 1, wherein the NAM generating means includes amplitude limiting means for limiting the amplitude of the input video signal.
JP2006057403A 2006-03-03 2006-03-03 Focus detecting device for video camera Pending JP2007233222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057403A JP2007233222A (en) 2006-03-03 2006-03-03 Focus detecting device for video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057403A JP2007233222A (en) 2006-03-03 2006-03-03 Focus detecting device for video camera

Publications (1)

Publication Number Publication Date
JP2007233222A true JP2007233222A (en) 2007-09-13

Family

ID=38553852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057403A Pending JP2007233222A (en) 2006-03-03 2006-03-03 Focus detecting device for video camera

Country Status (1)

Country Link
JP (1) JP2007233222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147076A (en) * 2010-01-18 2011-07-28 Nikon Corp Image processing apparatus, image capturing apparatus and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147076A (en) * 2010-01-18 2011-07-28 Nikon Corp Image processing apparatus, image capturing apparatus and program

Similar Documents

Publication Publication Date Title
JP4325599B2 (en) Imaging apparatus and display control method
US20130016245A1 (en) Imaging apparatus
US9444992B2 (en) Focus control apparatus and method
JP2006293009A (en) Automatic focusing device and method
JP2010054730A (en) Focusing position detecting device, imaging apparatus, and focusing position detecting method
US10368008B2 (en) Imaging apparatus and control method wherein auto bracket parameters and image processes applied are determined from image analysis
JP2008011473A (en) Imaging apparatus, camera control unit, video camera system, and control information transmission method
US20100066869A1 (en) Video signal processing apparatus, image pickup apparatus, display apparatus, and video signal processing method
JPH11215426A (en) Automatic focusing system
US8243165B2 (en) Video camera with flicker prevention
US8212916B2 (en) Image display device, image pickup apparatus, and image display method that allow focus assistant display
JP5092673B2 (en) Imaging apparatus and program thereof
US7710492B2 (en) Imaging device and imaging method for performing automatic focus detection
US20100182493A1 (en) Electronic camera
JP4710960B2 (en) Video display device, imaging device, and video display method
JP5106283B2 (en) Video camera
JP2007043312A (en) Imaging apparatus
JP2006287814A (en) Imaging apparatus and method of determining motion vector
JP2007266956A (en) Imaging apparatus, impulse component detecting circuit, impulse component removing circuit, impulse component detecting method, impulse component removing method, and computer program
JP2010213086A (en) Image processing apparatus, image processing method, and computer program
JP2007233222A (en) Focus detecting device for video camera
JP5880221B2 (en) Imaging apparatus, imaging method, and image processing apparatus
JP5418553B2 (en) Imaging apparatus and imaging method using the same
JP2009164723A (en) Imaging apparatus and imaging control method
JP2006243745A (en) Automatic focus detector