JP2007232603A - Voltage detecting device for battery pack - Google Patents

Voltage detecting device for battery pack Download PDF

Info

Publication number
JP2007232603A
JP2007232603A JP2006055744A JP2006055744A JP2007232603A JP 2007232603 A JP2007232603 A JP 2007232603A JP 2006055744 A JP2006055744 A JP 2006055744A JP 2006055744 A JP2006055744 A JP 2006055744A JP 2007232603 A JP2007232603 A JP 2007232603A
Authority
JP
Japan
Prior art keywords
voltage
current
battery
unit
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006055744A
Other languages
Japanese (ja)
Other versions
JP4760449B2 (en
Inventor
Tetsuya Kobayashi
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006055744A priority Critical patent/JP4760449B2/en
Publication of JP2007232603A publication Critical patent/JP2007232603A/en
Application granted granted Critical
Publication of JP4760449B2 publication Critical patent/JP4760449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To detect a voltage of a unit cell as either of a single secondary battery in a battery pack constituted as a series connecting body of a plurality of secondary batteries, and a secondary battery constituted by some adjoining batteries with a simpler structure. <P>SOLUTION: The voltages of both ends of the secondary battery B1 are converted into a current by a voltage/current conversion circuit C11 and output to resistance R21. The current is converted into a voltage for a negative electrode potential of a secondary battery B2 as a reference by the resistance R21. The voltage converted by the resistance R21 is converted into a current by a voltage/current conversion circuit C21 and output to resistance R31. The current is converted into a voltage for a negative electrode potential of a secondary battery B3 as a reference by the resistance R31. The voltage converted by the resistance R31 is converted into a current by a voltage/current conversion circuit C31. The current is converted into a voltage for a negative electrode potential of a secondary battery B4 as a reference by the resistance R41. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数個の2次電池の直列接続体として構成される組電池における単一の2次電池及び隣接するいくつかからなる2次電池のいずれかである単位電池の電圧を検出する組電池の電圧検出装置に関する。   The present invention relates to a set for detecting the voltage of a unit battery which is one of a single secondary battery and a plurality of adjacent secondary batteries in an assembled battery configured as a series connection body of a plurality of secondary batteries. The present invention relates to a battery voltage detection device.

例えばハイブリッド車等には、複数個の2次電池の直列接続体として構成される組電池が搭載されている。ハイブリッド車等においては、各2次電池の温度ばらつきや組電池自身の個体差等により、各2次電池の残存容量がばらつき、各2次電池の電圧にばらつきが生じることがある。このため、各2次電池の電圧を検出し、各2次電池の電圧を均一化することが望まれている。ただし、組電池の電圧は高圧となるため、2次電池の中にはその電位が極めて高くなるものがあり、2次電池の電圧を検出することを困難なものとしている。   For example, an assembled battery configured as a series connection body of a plurality of secondary batteries is mounted on a hybrid vehicle or the like. In a hybrid vehicle or the like, the remaining capacity of each secondary battery varies due to temperature variation of each secondary battery, individual differences among assembled batteries, and the like, and the voltage of each secondary battery may vary. For this reason, it is desired to detect the voltage of each secondary battery and make the voltage of each secondary battery uniform. However, since the voltage of the assembled battery becomes high, some secondary batteries have extremely high potentials, making it difficult to detect the voltage of the secondary battery.

そこで従来は、下記特許文献1に見られるように、直列接続された電気二重層コンデンサのそれぞれの両端の電圧を電流に変換する電圧電流変換手段と、同電圧電流変換手段の出力電流を上記組電池の負極電位を基準とする電圧に変換する手段とを備える電圧検出装置も提案されている。この装置によれば、高電位側のコンデンサの電圧をも低電位の電圧に変換することで、組電池の各2次電池の電圧を簡易に検出することが可能となる。   Therefore, conventionally, as seen in Patent Document 1 below, voltage-current conversion means for converting the voltage across each of the electric double layer capacitors connected in series into current, and the output current of the same voltage-current conversion means are the above set. There has also been proposed a voltage detection device including means for converting the negative electrode potential of the battery into a voltage based on the reference. According to this device, it is possible to easily detect the voltage of each secondary battery of the assembled battery by converting the voltage of the capacitor on the high potential side into the voltage of the low potential.

ただし、上記装置にあっては、高電位側のコンデンサの電圧を電流に変換する電圧電流変換手段の出力段には、コンデンサの電位と上記組電池の負極電位とが印加されることとなる。このため、電圧電流変換手段を、これら電位差に耐えられる高耐圧の素子を用いて構成することが要求される。
特開平09−318679号公報
However, in the above apparatus, the capacitor potential and the negative electrode potential of the assembled battery are applied to the output stage of the voltage-current conversion means for converting the voltage of the capacitor on the high potential side into a current. For this reason, it is required that the voltage-current conversion means be configured using a high-breakdown-voltage element that can withstand these potential differences.
JP 09-318679 A

本発明は、上記課題を解決するためになされたものであり、その目的は、複数個の2次電池の直列接続体として構成される組電池における単一の2次電池及び隣接するいくつかからなる2次電池のいずれかである単位電池の電圧をより簡易な構成にて検出することのできる組電池の電圧検出装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is from a single secondary battery and several adjacent ones in an assembled battery configured as a series connection body of a plurality of secondary batteries. An object of the present invention is to provide a voltage detection device for an assembled battery that can detect the voltage of a unit battery, which is one of the secondary batteries, with a simpler configuration.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、前記単位電池の一方の電極電位を基準とする電圧を電流に変換する電圧電流変換手段と、該電圧電流変換手段の出力電流を、別の単位電池の一方の電極電位を基準とする電圧に変換する電流電圧変換手段と、前記複数個の単位電池のうちの2個以上の単位電池のそれぞれの両端の電圧が、前記電圧電流変換手段及び前記電流電圧変換手段のいくつかによる電流変換及び電圧変換の繰り返しによって特定の単位電池の電極電位を基準とする電圧に変換されて取り出される集約部とを備えることを特徴とする。   The invention according to claim 1 is a voltage-current conversion means for converting a voltage based on one electrode potential of the unit battery into a current, and an output current of the voltage-current conversion means is used as one electrode of another unit battery. A current-voltage conversion means for converting the potential into a voltage based on the potential, and voltages at both ends of two or more unit cells of the plurality of unit cells, the voltage-current conversion means and the current-voltage conversion means And an aggregating portion that is converted into a voltage based on the electrode potential of a specific unit cell by repeating current conversion and voltage conversion according to some methods.

上記構成では、2個以上の単位電池の両端の電圧のそれぞれが、電圧電流変換手段及び電流電圧変換手段のいくつかによる電流変換及び電圧変換の繰り返しによって特定の単位電池のいずれかの電極電位を基準とする電圧に変換される。このため、上記両端の電圧を特定の単位電池の電極電位へと直接変換する場合と比較して、電圧電流変換手段の出力段に加わる電圧の差圧を低減することができる。このため、直接変換する場合と比較して、電圧電流変換手段を構成する素子に要求される耐圧を低下させることができ、ひいては、単位電池の電圧をより簡易な構成にて検出することができる。   In the above configuration, each of the voltages at both ends of the two or more unit cells has the electrode potential of any specific unit cell by repeating the current conversion and the voltage conversion by some of the voltage-current conversion unit and the current-voltage conversion unit. It is converted to a reference voltage. For this reason, compared with the case where the voltage of the said both ends is directly converted into the electrode potential of a specific unit battery, the differential pressure | voltage of the voltage added to the output stage of a voltage current conversion means can be reduced. For this reason, compared with the case of direct conversion, the withstand voltage required for the elements constituting the voltage-current conversion means can be reduced, and as a result, the voltage of the unit battery can be detected with a simpler configuration. .

請求項2記載の発明は、請求項1記載の発明において、前記2個以上の単位電池のそれぞれ毎に、該単位電池の電圧を前記特定の単位電池の電極電位を基準とする電圧に変換するための前記電圧電流変換手段及び前記電流電圧変換手段が、各別に設けられてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, for each of the two or more unit cells, the voltage of the unit cell is converted to a voltage based on the electrode potential of the specific unit cell. The voltage-current conversion means and the current-voltage conversion means are provided separately for each.

上記構成では、上記2個以上の単位電池のそれぞれの両端の電圧を常時特定の単位電池の電極電位を基準とする電圧に変換することができる。このため、この変換されたものを取り込む信号線を切り替える手段を備えるのみで上記各両端の電圧を検出することができる。   In the above-described configuration, the voltages at both ends of each of the two or more unit cells can always be converted into a voltage based on the electrode potential of the specific unit cell. For this reason, it is possible to detect the voltages at both ends only by providing means for switching the signal line for taking in the converted signal.

請求項3記載の発明は、請求項1記載の発明において、前記電圧電流変換手段による変換対象となる電圧として、前記電流電圧変換手段の出力電圧及び前記単位電池の両端の電圧のいずれかを選択するための選択手段を更に備えることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, as the voltage to be converted by the voltage-current conversion unit, one of the output voltage of the current-voltage conversion unit and the voltage at both ends of the unit cell is selected. It is further characterized by further comprising selection means for doing so.

上記構成では、上記2個以上の単位電池の間で、電圧電流変換手段を共有することができる。すなわち、検出対象となる単位電池の電圧が電流に変換された後、所定の単位電池の一方の電極電位を基準とする電圧に変換されたものを再度電流に変換する際には、当該所定の単位電池の電圧を電流に変換可能な電圧電流変換手段の変換対象を上記変換された電圧とすることができる。このため、電圧電流変換手段の数を低減することができる。   In the above configuration, the voltage-current conversion means can be shared between the two or more unit cells. That is, when the voltage of the unit battery to be detected is converted into a current and then converted into a voltage based on one electrode potential of the predetermined unit battery, the predetermined battery is converted into the current again. The conversion target of the voltage-current conversion means that can convert the voltage of the unit battery into a current can be the converted voltage. For this reason, the number of voltage-current conversion means can be reduced.

請求項4記載の発明は、請求項1〜3のいずれかに記載の発明において、前記集約部は、前記組電池を構成する全ての単位電池の電圧が前記特定の単位電池の電極電位を基準とする電圧に変換されたものを取り出す単一の集約部として構成されてなることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the voltage of all unit cells constituting the assembled battery is based on the electrode potential of the specific unit cell. It is characterized by being comprised as a single aggregation part which takes out the thing converted into the voltage to make.

上記構成では、集約部を一箇所とすることで、この単一の集約部にのみ高耐圧の素子を用いて、単位電池の電圧の検出値を取り込む低電圧駆動部分と組電池側とを絶縁することができる。   In the above configuration, by using a single converging part, the low voltage driving part that takes in the detected value of the voltage of the unit battery is insulated from the assembled battery side by using a high withstand voltage element only in this single converging part. can do.

請求項5記載の発明は、請求項1〜4のいずれかに記載の発明において、前記電流電圧変換手段は、前記電圧電流変換手段の出力電流を隣接する単位電池の一方の電極電位を基準とする電圧に変換するものであることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the current-voltage conversion means uses the output current of the voltage-current conversion means as a reference based on one electrode potential of an adjacent unit cell. It is the thing converted into the voltage which carries out.

上記構成では、電圧電流変換手段の出力段に加わる電位差を極力低減することができる。   With the above configuration, the potential difference applied to the output stage of the voltage / current converter can be reduced as much as possible.

請求項6記載の発明は、請求項1〜5のいずれかに記載の発明において、前記特定の単位電池が、前記直列接続体の両端部よりも内側の単位電池であることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, characterized in that the specific unit cell is a unit cell inside the both ends of the series connection body.

上記構成では、特定の単位電池の電極電位を基準とする電圧に変換する際に用いる電圧電流変換手段及び電流電圧変換手段の数を低減することができるため、変換に伴う誤差を低減することができる。   In the above configuration, the number of voltage-current conversion means and current-voltage conversion means used when converting the electrode potential of a specific unit battery into a reference voltage can be reduced, so that errors due to conversion can be reduced. it can.

請求項7記載の発明は、請求項6記載の発明において、前記特定の単位電池が、前記直列接続体の中央部の単位電池であることを特徴とする。   A seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, the specific unit cell is a unit cell in a central portion of the series connection body.

上記構成では、特定の単位電池から他の単位電池までの電位差の最大値を最小とすることができるため、変換に伴う誤差をいっそう低減することができる。特に、上記構成が請求項4及び請求項5記載の構成を有する場合には、変換に伴う誤差を低減させる上で好適なものとなる。   In the above configuration, since the maximum value of the potential difference from a specific unit cell to another unit cell can be minimized, the error associated with the conversion can be further reduced. In particular, when the above configuration has the configurations described in claims 4 and 5, it is suitable for reducing errors associated with the conversion.

(第1の実施形態)
以下、本発明にかかる組電池の電圧検出装置をハイブリッド車に搭載される組電池の電圧検出装置に適用した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment in which an assembled battery voltage detection device according to the present invention is applied to an assembled battery voltage detection device mounted on a hybrid vehicle will be described with reference to the drawings.

図1に、組電池及び電圧検出装置の全体構成を示す。   In FIG. 1, the whole structure of an assembled battery and a voltage detection apparatus is shown.

図示されるように、組電池10は、複数(ここでは紙面の関係上模式的に7個としている)のリチウム2次電池(2次電池B1〜B7)の直列接続体として構成されている。組電池10は、車載発電機によって発電される電力を蓄え、蓄えた電力を、DC−DCコンバータを介して低圧(例えば「12V」)の車載バッテリに供給するものである。   As shown in the drawing, the assembled battery 10 is configured as a series connection body of a plurality of lithium secondary batteries (secondary batteries B <b> 1 to B <b> 7, which are schematically illustrated here in terms of the space of 7). The assembled battery 10 stores electric power generated by the in-vehicle generator, and supplies the stored electric power to a low-voltage (for example, “12V”) in-vehicle battery via a DC-DC converter.

これら2次電池B1〜B7の電圧を検出すべく、本実施形態では、電圧電流変換回路Cxy(x,y=1〜3、5〜7)と、電流電圧変換手段としての抵抗Rij(i=2〜6、j=1〜3,5〜7)とを備えている。これらにより、2次電池B1〜B3のそれぞれの両端の電圧を、電流変換及び電圧変換を繰り返すことで2次電池B4の負極電位を基準とする電圧に変換するとともに、2次電池B5〜B7のそれぞれの両端の電圧を、電流変換及び電圧変換を繰り返すことで2次電池B4の正極電位を基準とする電圧に変換する。   In this embodiment, in order to detect the voltages of the secondary batteries B1 to B7, in the present embodiment, a voltage / current conversion circuit Cxy (x, y = 1 to 3, 5 to 7) and a resistor Rij (i = i) as current-voltage conversion means. 2-6, j = 1-3, 5-7). As a result, the voltages at both ends of each of the secondary batteries B1 to B3 are converted into a voltage based on the negative potential of the secondary battery B4 by repeating current conversion and voltage conversion, and the secondary batteries B5 to B7. The voltage at each end is converted into a voltage based on the positive electrode potential of the secondary battery B4 by repeating current conversion and voltage conversion.

詳しくは、電圧電流変換回路Cxxは、それぞれ2次電池B1〜B3、B4〜B7と並列接続され、これらの両端の電圧を電流に変換する。また、電圧電流変換回路Cxy(x>y又はx<y)は、抵抗Rijの両端の電圧を電流に変換するものである。そして、例えば2次電池B1の両端の電圧は、電圧電流変換回路C11によって電流に変換されて抵抗R21に出力される。そして、この電流は、抵抗R21によって、2次電池B2の負極電位を基準とする電圧に変換される。抵抗R21によって変換された電圧は、電圧電流変換回路C21によって電流に変換され、抵抗R31に出力される。そして、この電流は、抵抗R31によって2次電池B3の負極電位を基準とする電圧に変換される。そして、抵抗R31によって変換された電圧は、電圧電流変換回路C31によって電流に変換され、抵抗R41に出力される。そして、この電流は、抵抗R41によって2次電池B4の負極電位を基準とする電圧に変換される。   Specifically, the voltage-current conversion circuit Cxx is connected in parallel with the secondary batteries B1 to B3 and B4 to B7, respectively, and converts the voltage at both ends into a current. Further, the voltage-current conversion circuit Cxy (x> y or x <y) converts the voltage across the resistor Rij into a current. For example, the voltage across the secondary battery B1 is converted into a current by the voltage-current conversion circuit C11 and output to the resistor R21. This current is converted into a voltage based on the negative electrode potential of the secondary battery B2 by the resistor R21. The voltage converted by the resistor R21 is converted to a current by the voltage / current conversion circuit C21 and output to the resistor R31. This current is converted into a voltage based on the negative electrode potential of the secondary battery B3 by the resistor R31. The voltage converted by the resistor R31 is converted to a current by the voltage / current converter circuit C31 and output to the resistor R41. This current is converted into a voltage based on the negative electrode potential of the secondary battery B4 by the resistor R41.

ここで、電圧電流変換回路Cxyの構成を、電圧電流変換回路C11を例として用いて説明する。   Here, the configuration of the voltage / current conversion circuit Cxy will be described using the voltage / current conversion circuit C11 as an example.

図2に示されるように、電圧電流変換回路C11は、2つの入力端子間の電圧に応じた信号を出力する検出部21と、検出部21の出力信号を増幅して出力するカレントミラー回路22とを備えている。ここで、カレントミラー回路22は、ベース同士が互いに接続されるトランジスタ23a,23bのエミッタ端子が、抵抗22a,22bを介して2次電池B1の正極側と接続されるものである。そして、トランジスタ23a,23bのベース端子は、入力側のトランジスタ23aのコレクタと接続され、また、このコレクタは、抵抗24を介して検出部21の出力端子と接続される。そして、出力側のトランジスタ23bのコレクタからの出力が、電圧電流変換回路C11の出力電流となる。   As shown in FIG. 2, the voltage-current conversion circuit C11 includes a detection unit 21 that outputs a signal corresponding to a voltage between two input terminals, and a current mirror circuit 22 that amplifies and outputs the output signal of the detection unit 21. And. Here, in the current mirror circuit 22, the emitter terminals of the transistors 23a and 23b whose bases are connected to each other are connected to the positive electrode side of the secondary battery B1 via the resistors 22a and 22b. The base terminals of the transistors 23 a and 23 b are connected to the collector of the input-side transistor 23 a, and the collector is connected to the output terminal of the detection unit 21 via the resistor 24. The output from the collector of the transistor 23b on the output side becomes the output current of the voltage / current conversion circuit C11.

先の図1に示す電圧検出回路30は、信号線L1〜L3、L5〜L7を介して、上記2次電池B1〜B3、B5〜B7の両端の電圧を、抵抗R41、R42、R43、R45、R46、R47による電圧降下量として取り込む。更に、電圧検出回路30は、2次電池B4の正極電位及び負極電位を、信号線L4、L8を介してそれぞれ取り込む。   The voltage detection circuit 30 shown in FIG. 1 converts the voltages at both ends of the secondary batteries B1 to B3 and B5 to B7 through the signal lines L1 to L3 and L5 to L7 to resistors R41, R42, R43, and R45. , R46, and R47 as a voltage drop amount. Further, the voltage detection circuit 30 takes in the positive electrode potential and the negative electrode potential of the secondary battery B4 via the signal lines L4 and L8, respectively.

図3に、電圧検出回路30の構成を示す。   FIG. 3 shows the configuration of the voltage detection circuit 30.

ここで、マルチプレクサ31は、2次電池B1〜B4の両端の電圧を信号線L1〜L4のいずれかと信号線L8との間の電圧として、また、2次電池B5〜B8の両端の電圧を、信号線L5〜L7のいずれかと信号線L4との間の電圧として、出力するものである。これら2次電池B1〜B7のいずれを選択するかは、フォトカプラ32を介して入力される選択信号に応じて設定される。マルチプレクサ31の出力は、A/D変換器33によってディジタルデータに変換され、指令信号に同期してフォトカプラ34を介して外部に出力される。これにより、例えばマイクロコンピュータ等により各2次電池B1〜B7の両端の電圧がディジタルデータとして取得される。   Here, the multiplexer 31 uses the voltage across the secondary batteries B1 to B4 as the voltage between any of the signal lines L1 to L4 and the signal line L8, and the voltage across the secondary batteries B5 to B8. The voltage is output as a voltage between any one of the signal lines L5 to L7 and the signal line L4. Which of the secondary batteries B <b> 1 to B <b> 7 is selected is set according to a selection signal input via the photocoupler 32. The output of the multiplexer 31 is converted into digital data by the A / D converter 33 and output to the outside through the photocoupler 34 in synchronization with the command signal. Thus, for example, the voltages at both ends of each of the secondary batteries B1 to B7 are acquired as digital data by a microcomputer or the like.

上記フォトカプラ32,34は、組電池10の各2次電池B1〜B7の両端の電圧の検出値を取得する手段(マイクロコンピュータ等)側と、高圧側である組電池10側との絶縁を取るための手段となっている。すなわち、組電池10の各2次電池B1〜B7の両端の電圧を検出するに際しては、その検出値を取得する手段(マイクロコンピュータ等)が組電池10の両端の電圧よりもはるかに低圧で駆動されるために、高圧の組電池10側と低圧の上記手段側とのインターフェースを高耐圧の素子を用いて構成する必要がある。しかし、本実施形態では、2次電池B1〜B7の両端の電圧を、2次電池B4の電極電位を基準とする電圧に変換することで、電圧検出のために必要な高耐圧の素子の数を低減することができる。   The photocouplers 32 and 34 insulate the means (microcomputer etc.) side for obtaining the detected value of the voltage across the secondary batteries B1 to B7 of the assembled battery 10 from the assembled battery 10 side which is the high voltage side. It is a means to take. That is, when detecting the voltages at both ends of each of the secondary batteries B1 to B7 of the assembled battery 10, the means (microcomputer or the like) for obtaining the detected value is driven at a much lower voltage than the voltages at both ends of the assembled battery 10. Therefore, it is necessary to configure an interface between the high-voltage assembled battery 10 side and the low-voltage means side using a high-breakdown-voltage element. However, in the present embodiment, the number of high breakdown voltage elements necessary for voltage detection is obtained by converting the voltage across the secondary batteries B1 to B7 into a voltage based on the electrode potential of the secondary battery B4. Can be reduced.

更に、本実施形態では、組電池10の中央部の2次電池B4の電極電位を基準とする電圧に変換することで、電圧電流変換回路Cxyや抵抗Rijによる変換誤差を抑制することもできる。これは、中央部に集約部(電圧検出回路30)を備えることで、この集約部と各2次電池B1〜B7との電位差の最大値を最小とすることができ、ひいては変換に用いる電圧電流変換回路Cxy及び抵抗Rijの数を最小とすることができるためである。   Furthermore, in the present embodiment, conversion errors due to the voltage-current conversion circuit Cxy and the resistor Rij can be suppressed by converting the electrode potential of the secondary battery B4 at the center of the assembled battery 10 into a reference voltage. This is because the central portion is provided with an aggregating unit (voltage detection circuit 30), whereby the maximum value of the potential difference between the aggregating unit and each of the secondary batteries B1 to B7 can be minimized. This is because the number of conversion circuits Cxy and resistors Rij can be minimized.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)電圧電流変換回路Cxyと抵抗Rijとを用いて電流変換及び電圧変換を繰り返すことで、2次電池B1、B2,B6,B7の両端の電圧を、2次電池B4の電極電位を基準とする電圧に変換した。これにより、2次電池B1〜B7の電圧を共通の集約部(電圧検出回路30)にて取り出すことができるため、2次電池B1〜B7の電圧を検出する手段側と組電池10側とのインターフェースに用いる高耐圧の素子の数を低減することができる。また、2次電池B1、B2,B6,B7の両端の電圧を、2次電池B4の電極電位に直接変換することなく電流変換及び電圧変換を繰り返すことで、電圧電流変換回路Cxyの出力段に加わる電位差を低減することもできる。   (1) By repeating current conversion and voltage conversion using the voltage / current conversion circuit Cxy and the resistor Rij, the voltages at both ends of the secondary batteries B1, B2, B6, and B7 are used as a reference with respect to the electrode potential of the secondary battery B4. The voltage was converted to As a result, the voltages of the secondary batteries B1 to B7 can be taken out by a common collecting unit (voltage detection circuit 30), so the means side for detecting the voltages of the secondary batteries B1 to B7 and the assembled battery 10 side. It is possible to reduce the number of high breakdown voltage elements used for the interface. In addition, by repeating current conversion and voltage conversion without directly converting the voltages at both ends of the secondary batteries B1, B2, B6, and B7 into the electrode potential of the secondary battery B4, the output stage of the voltage-current conversion circuit Cxy is obtained. The applied potential difference can also be reduced.

(2)各2次電池B1〜B3、B5〜B7のそれぞれに、各別の電圧電流変換回路Cxy及び抵抗Rijを備えることで、各2次電池B1〜B3、B5〜B7の両端の電圧を、2次電池B4の電極電位を基準とする電圧に常時変換することができる。このため、この変換されたものを取り込む信号線L1〜L3、L5〜L7のうちいずれかを選択するマルチプレクサ31を備えるのみで上記各両端の電圧を検出することができる。   (2) The voltage across each of the secondary batteries B1 to B3 and B5 to B7 is obtained by providing each of the secondary batteries B1 to B3 and B5 to B7 with a separate voltage-current conversion circuit Cxy and a resistor Rij. The voltage can be constantly converted to a voltage based on the electrode potential of the secondary battery B4. For this reason, it is possible to detect the voltages at the both ends only by including the multiplexer 31 that selects any one of the signal lines L1 to L3 and L5 to L7 that take in the converted signal.

(3)全ての2次電池B1〜B7の両端の電圧を特定の2次電池B4の電極電位を基準とする電圧に集約した。これにより、この単一の集約部(電圧検出回路30)にのみ高耐圧の素子を用いることで、2次電池B1〜B7の電圧の検出値を取り込む低電圧駆動部分と組電池10側とを絶縁することができる。   (3) The voltages at both ends of all the secondary batteries B1 to B7 are integrated into a voltage based on the electrode potential of the specific secondary battery B4. Thereby, the low voltage drive part which takes in the detected value of the voltage of secondary battery B1-B7, and the assembled battery 10 side by using a high voltage | pressure-resistant element only for this single aggregation part (voltage detection circuit 30). Can be insulated.

(4)抵抗Rijを、電圧電流変換回路Cxyの出力電流を隣接する単位電池の一方の電極電位を基準とする電圧に変換するものとすることで、電圧電流変換回路Cxyの出力段に加わる電位差を極力低減することができる。   (4) The potential difference applied to the output stage of the voltage / current conversion circuit Cxy by converting the output current of the voltage / current conversion circuit Cxy into a voltage based on the electrode potential of one of the adjacent unit batteries. Can be reduced as much as possible.

(5)2次電池B1〜B7の両端の電圧を、組電池10の中央部の2次電池B4の電極電位を基準とする電圧に変換することで、変換に伴う誤差を好適に低減させることができる。   (5) By appropriately converting the voltages at both ends of the secondary batteries B1 to B7 into a voltage based on the electrode potential of the secondary battery B4 at the center of the assembled battery 10, it is possible to suitably reduce errors associated with the conversion. Can do.

(第2の実施形態)
以下、第2の実施形態について先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

図4に、本実施形態にかかる組電池及び電圧検出装置の全体構成を示す。なお、図4において、先の図1に示した部材と同様の機能を有するものには便宜上同一の符号を付している。   FIG. 4 shows the overall configuration of the assembled battery and the voltage detection device according to the present embodiment. In FIG. 4, components having the same functions as those shown in FIG. 1 are given the same reference numerals for convenience.

図示されるように、本実施形態では、2次電池B1〜B3、B5〜B7の一方の電極電位を基準とする電圧を電流に変換する電圧電流変換回路Cx(x=1〜3、5〜7)を、それぞれ1つのみ備え、電圧電流変換回路C2、C3,C4,C5,C6の変換対象を、対応する2次電池B2、B3,B5,B6の両端の電圧とするか、抵抗R2、R3,R5,R6の電圧降下量とするかを選択する機能を備える。   As shown in the figure, in the present embodiment, a voltage-current conversion circuit Cx (x = 1 to 3, 5 to 5) that converts a voltage based on one electrode potential of the secondary batteries B1 to B3 and B5 to B7 into a current. 7) is provided with only one each, and the voltage-current conversion circuits C2, C3, C4, C5, C6 are converted to the voltages across the corresponding secondary batteries B2, B3, B5, B6, or the resistance R2 , R3, R5, and R6.

ここで、スイッチング素子S22、S33は、電圧電流変換回路C2、C3側と各2次電池B2、B3の正極側との導通及び遮断を切り替え、スイッチング素子S55、S66は、電圧電流変換回路C6、C5側と各2次電池B6、B5の負極側との導通及び遮断を切り替える。また、スイッチング素子S12,S23,S34は、それぞれ電圧電流変換回路C1〜C3側と抵抗R2〜R4a側との導通及び遮断を切り替え、スイッチング素子S76、S65,S54は、それぞれ電圧電流変換回路C7〜C5側と抵抗R6〜R4b側との導通及び遮断を切り替える。   Here, the switching elements S22 and S33 switch between conduction and interruption between the voltage / current conversion circuits C2 and C3 side and the positive side of each of the secondary batteries B2 and B3, and the switching elements S55 and S66 include the voltage / current conversion circuit C6, Switching between conduction and interruption between the C5 side and the negative side of each of the secondary batteries B6 and B5 is switched. Further, the switching elements S12, S23, and S34 respectively switch conduction and interruption between the voltage / current conversion circuits C1 to C3 side and the resistors R2 to R4a side, and the switching elements S76, S65, and S54 respectively switch to the voltage / current conversion circuits C7 to C7. Switching between conduction and interruption between the C5 side and the resistors R6 to R4b side is switched.

更に、本実施形態では、2次電池B4の正極電位側と電圧検出回路30側との導通及び遮断を切り替えるスイッチング素子44aと、2次電池B4の負極電位側と電圧検出回路30側との導通及び遮断を切り替えるスイッチング素子44bとを備えている。   Furthermore, in this embodiment, the switching element 44a for switching conduction and interruption between the positive electrode potential side of the secondary battery B4 and the voltage detection circuit 30 side, and conduction between the negative electrode potential side of the secondary battery B4 and the voltage detection circuit 30 side. And a switching element 44b for switching off.

上記スイッチング素子Sij(i=1〜3,5〜7、j=2〜6)、S44a、S44bを適宜切り替えることで、2つの信号線L10、L11を用いて2次電池B1〜B7の両端の電圧を検出することができる。図5に、2次電池B1〜B7の両端の電圧を検出する際に導通状態(オン状態)とするスイッチング素子Sij、S44a、S44bを示す。   By appropriately switching the switching elements Sij (i = 1 to 3, 5 to 7, j = 2 to 6), S44a and S44b, the two signal lines L10 and L11 are used to connect both ends of the secondary batteries B1 to B7. The voltage can be detected. FIG. 5 shows switching elements Sij, S44a, and S44b that are turned on when detecting voltages across the secondary batteries B1 to B7.

上記態様にてスイッチング素子Sijを適宜操作することで、先の図4に示す信号線L10,L11を介して、電圧検出回路30では、2次電池B1〜B7の両端の電圧を検出することができる。   By appropriately operating the switching element Sij in the above mode, the voltage detection circuit 30 can detect the voltages at both ends of the secondary batteries B1 to B7 via the signal lines L10 and L11 shown in FIG. it can.

図6に電圧検出回路30の構成を示す。図示されるように、信号線L10及び信号線L11間の電圧は、スイッチング素子SW1,SW2を介してフライングキャパシタ35に印加される。そして、フライングキャパシタ35の両端の電圧が、2次電池B1〜B7の両端の電圧として、スイッチング素子SW3,SW4を介してA/D変換器36によってディジタルデータに変換され、外部へと出力される。   FIG. 6 shows the configuration of the voltage detection circuit 30. As illustrated, the voltage between the signal line L10 and the signal line L11 is applied to the flying capacitor 35 via the switching elements SW1 and SW2. The voltage across the flying capacitor 35 is converted into digital data by the A / D converter 36 via the switching elements SW3 and SW4 as the voltage across the secondary batteries B1 to B7, and is output to the outside. .

先の図4に示す電圧検出装置では、先の図1に示したものと比較して、電圧電流変換回路や抵抗の数を低減することができる。このため、電圧電流変換回路や抵抗の調整にかかる処理(例えば、抵抗値を調整するためのトリミング等)の数を低減することができる。更に図4に示す構成によれば、2次電池B1〜B7の両端の電圧の検出誤差のうち、隣接する2次電池B1〜B7の両端の電圧同士の差の検出誤差は、たかだか1つの電圧検出回路及び1つの抵抗によるものとなる。このため、先の図1に示す構成と比較して、隣接する2次電池B1〜B7の両端電圧の差圧の検出誤差を低減することもできる。   In the voltage detection apparatus shown in FIG. 4, the number of voltage-current conversion circuits and resistors can be reduced as compared with that shown in FIG. 1. For this reason, the number of processes (for example, trimming for adjusting the resistance value) related to the voltage-current conversion circuit and the resistance adjustment can be reduced. Further, according to the configuration shown in FIG. 4, among the detection errors of the voltages at both ends of the secondary batteries B1 to B7, the detection error of the difference between the voltages at both ends of the adjacent secondary batteries B1 to B7 is at most one voltage. This is due to the detection circuit and one resistor. For this reason, compared with the structure shown in previous FIG. 1, the detection error of the differential pressure | voltage of the both-ends voltage of adjacent secondary battery B1-B7 can also be reduced.

以上説明した本実施形態によれば、先の第1の実施形態の上記(1)、(3)〜(5)の効果に加えて、更に以下の効果が得られるようになる。   According to this embodiment described above, the following effects can be obtained in addition to the effects (1) and (3) to (5) of the first embodiment.

(6)電圧電流変換回路C2,C3,C5,C6による変換対象となる電圧として、抵抗R2,R3,R5,R6の電圧降下量及び2次電池B2,B3,B5,B6の両端の電圧のいずれかを選択するためのスイッチング素子Sijを備えた。これにより、先の図1に示す構成と比較して電圧電流変換回路や抵抗の数を低減することができる。   (6) Voltages to be converted by the voltage / current conversion circuits C2, C3, C5, and C6 include voltage drop amounts of the resistors R2, R3, R5, and R6 and voltages at both ends of the secondary batteries B2, B3, B5, and B6. A switching element Sij for selecting either one is provided. Thereby, the number of voltage-current conversion circuits and resistors can be reduced as compared with the configuration shown in FIG.

(第3の実施形態)
以下、第3の実施形態について先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Third embodiment)
Hereinafter, the third embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

図7に、本実施形態にかかる組電池及び電圧検出装置の全体構成を示す。なお、図7において、先の図4に示した部材と同様の機能を有するものには便宜上同一の符号を付している。   FIG. 7 shows the overall configuration of the assembled battery and the voltage detection device according to the present embodiment. In FIG. 7, components having the same functions as those shown in FIG. 4 are given the same reference numerals for the sake of convenience.

本実施形態では、2次電池B1〜Bnの両端の電圧を取り出す集約部である電圧検出回路30を複数備える。そして、組電池10の2次電池B1〜Bnを均等に分割した各グループ毎に、それぞれ異なる電圧検出回路30によって電圧を取り出す。ここで各グループ内の2次電池B1〜Bnの数は、図7では紙面の関係上模式的に7個としている。   In the present embodiment, a plurality of voltage detection circuits 30 that are aggregation units for extracting voltages at both ends of the secondary batteries B1 to Bn are provided. Then, the voltage is extracted by a different voltage detection circuit 30 for each group obtained by equally dividing the secondary batteries B <b> 1 to Bn of the assembled battery 10. Here, the number of secondary batteries B1 to Bn in each group is schematically set to seven in FIG.

そして、例えば組電池10が14個の2次電池B1〜B14を備える場合には、2つの電圧検出回路30を備え、2次電池B1〜B7までの各両端の電圧を共通の電圧検出回路30によって検出し、2次電池B8〜B14までの各両端の電圧を共通の電圧検出回路30によって検出する。この際、電圧検出回路30は、2次電池B4の電極電位及び2次電池B11の電極電位をそれぞれ基準として電圧を検出する。また、組電池10が21個の2次電池B1〜B21を備える場合には、3つの電圧検出回路30を備え、隣接する7個(2次電池B1〜B7、B8〜B14、B15〜B21)毎にそれぞれ共通の電圧検出回路30によって電圧を検出する。この際、電圧検出回路30は、2次電池B4の電極電位、2次電池B11の電極電位、及び2次電池B18の電極電位をそれぞれ基準として電圧を検出する。   For example, when the assembled battery 10 includes 14 secondary batteries B1 to B14, the voltage detection circuit 30 includes two voltage detection circuits 30 and the voltages at both ends of the secondary batteries B1 to B7. And the voltages at both ends of the secondary batteries B8 to B14 are detected by the common voltage detection circuit 30. At this time, the voltage detection circuit 30 detects the voltage with reference to the electrode potential of the secondary battery B4 and the electrode potential of the secondary battery B11. Moreover, when the assembled battery 10 is provided with 21 secondary batteries B1-B21, it is provided with the three voltage detection circuits 30, and seven adjacent (secondary batteries B1-B7, B8-B14, B15-B21). The voltage is detected by the common voltage detection circuit 30 every time. At this time, the voltage detection circuit 30 detects the voltage with reference to the electrode potential of the secondary battery B4, the electrode potential of the secondary battery B11, and the electrode potential of the secondary battery B18.

以上説明した本実施形態によれば、先の第1の実施形態の上記(1)、(3)の効果や、先の第2の実施形態の上記(6)の効果に加えて、更に以下の効果が得られるようになる。   According to this embodiment described above, in addition to the effects (1) and (3) of the previous first embodiment and the effect (6) of the previous second embodiment, The effect will be obtained.

(7)組電池10の2次電池B1〜Bnを均等に分割し、分割された各グループ毎に共通の電圧検出回路30を備えた。これにより、電圧検出に際して、電圧電流変換回路Cxや抵抗Ri等による変換誤差を低減することができる。   (7) The secondary batteries B1 to Bn of the assembled battery 10 are equally divided, and a common voltage detection circuit 30 is provided for each of the divided groups. Thereby, at the time of voltage detection, conversion errors due to the voltage-current conversion circuit Cx, the resistor Ri, and the like can be reduced.

(第4の実施形態)
以下、第4の実施形態について先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Fourth embodiment)
Hereinafter, the fourth embodiment will be described with reference to the drawings, focusing on differences from the first embodiment.

図8に、本実施形態にかかる組電池及び電圧検出装置の全体構成を示す。なお、図8において、先の図1に示した部材と同様の機能を有するものには便宜上同一の符号を付している。   FIG. 8 shows the overall configuration of the assembled battery and the voltage detection device according to the present embodiment. In FIG. 8, components having the same functions as those shown in FIG.

本実施形態では、互いに隣接するn(≧2)個の2次電池Bi1〜Bin(i=1〜7)を1つのブロックとして、これら各ブロックの両端の電圧を検出する。ここで、2次電池B11〜B1n、B21〜B2n、B61〜B6n、B71〜B7nの両端の電圧を検出する際には、電流変換及び電圧変換を繰り返すことにより、2次電池B41〜B4nの電極電位を基準とする電圧に変換する。これにより、各ブロックの両端の電圧を2次電池B41〜B4nの電極電位を基準とする電圧に直接変換する場合と比較して、電圧電流変換回路Cxyの出力段に要求される耐圧を低下させることができる。   In the present embodiment, n (≧ 2) secondary batteries Bi1 to Bin (i = 1 to 7) adjacent to each other are taken as one block, and the voltages at both ends of these blocks are detected. Here, when detecting the voltages at both ends of the secondary batteries B11 to B1n, B21 to B2n, B61 to B6n, B71 to B7n, the electrodes of the secondary batteries B41 to B4n are obtained by repeating current conversion and voltage conversion. The potential is converted to a reference voltage. As a result, the withstand voltage required for the output stage of the voltage / current conversion circuit Cxy is reduced as compared with the case where the voltages at both ends of each block are directly converted into voltages based on the electrode potentials of the secondary batteries B41 to B4n. be able to.

以上説明した本実施形態によっても、先の第1の実施形態と同様の効果を得ることができる。   According to the present embodiment described above, the same effects as those of the first embodiment can be obtained.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
The above embodiments may be implemented with the following modifications.

・先の第1の実施形態や第2の実施形態では、組電池10の各2次電池B1〜B7の両端の電圧を、組電池10の中央の2次電池B4の電極電位を基準とする電圧に変換したが、これに限らない。例えば図8に、第2の実施形態の変形例として示すように、組電池10の各2次電池B1〜B7の両端の電圧を、組電池10の負極電位を基準とする電圧に変換するようにしてもよい。   In the first and second embodiments, the voltages at both ends of each of the secondary batteries B1 to B7 of the assembled battery 10 are based on the electrode potential of the secondary battery B4 at the center of the assembled battery 10. Although it converted into voltage, it is not restricted to this. For example, as shown in FIG. 8 as a modification of the second embodiment, the voltage at both ends of each of the secondary batteries B1 to B7 of the assembled battery 10 is converted to a voltage based on the negative electrode potential of the assembled battery 10. It may be.

・上記第1〜第3の実施形態では、電圧電流変換回路の出力電流を、隣接する2次電池の電極電位を基準とする電圧に変換したがこれに限らない。例えば、先の図1において、電流圧変換回路C11の出力電流が、抵抗R31によって2次電池B3の負極電位を基準とする電圧に変換されるようにしてもよい。この場合であれ、2次電池B1の電圧を2次電池B4の負極電位を基準とする電圧に直接変換する場合と比較して、電圧電流変換回路C11の出力段に加わる電位差を低減することができる。   In the first to third embodiments, the output current of the voltage / current conversion circuit is converted into a voltage based on the electrode potential of the adjacent secondary battery, but the present invention is not limited to this. For example, in FIG. 1, the output current of the current / voltage conversion circuit C11 may be converted into a voltage based on the negative potential of the secondary battery B3 by the resistor R31. Even in this case, the potential difference applied to the output stage of the voltage-current conversion circuit C11 can be reduced as compared with the case where the voltage of the secondary battery B1 is directly converted to a voltage based on the negative electrode potential of the secondary battery B4. it can.

・電圧検出回路30としては、先の図3、図6に例示するものに限らない。例えば、先の図3において、2次電池B4の電位によって駆動されるA/D変換器33を用いる代わりに、マルチプレクサ31の出力を先の図6に例示するスイッチング素子SW1,SW2を介してフライングキャパシタ35に印加する構成としてもよい。また、先の図6において、A/D変換器36を電圧検出回路30が備えていなくても、外部のマイクロコンピュータがA/D変換器を内蔵する場合には、これによりフライングキャパシタ35の両端の電圧をディジタルデータに変換してもよい。   The voltage detection circuit 30 is not limited to those illustrated in FIGS. 3 and 6 above. For example, instead of using the A / D converter 33 driven by the potential of the secondary battery B4 in FIG. 3, the output of the multiplexer 31 is made to fly via the switching elements SW1 and SW2 illustrated in FIG. It may be configured to apply to the capacitor 35. In FIG. 6, even if the A / D converter 36 is not included in the voltage detection circuit 30, if the external microcomputer incorporates the A / D converter, both ends of the flying capacitor 35 are thereby connected. May be converted into digital data.

・上記各実施形態では、電圧検出回路30を、フォトカプラやフォトMOSリレー等の絶縁素子を用いて構成した。しかし、絶縁素子としては、こうした光絶縁素子に限らず、例えば、トランスの1次側コイルのパルスを変圧して2次側コイルに出力するいわゆるパルストランス等の磁気絶縁素子であってもよい。更に、電圧検出回路30の入力側の接地電位と電圧検出回路30の出力側の接地電位とを略同一にする手段を備えるなら、電圧検出回路30を上記光絶縁素子や磁気絶縁素子を用いて構成しなくてもよい。   In each of the above embodiments, the voltage detection circuit 30 is configured using an insulating element such as a photocoupler or a photoMOS relay. However, the insulating element is not limited to such an optical insulating element, and may be a magnetic insulating element such as a so-called pulse transformer that transforms the pulse of the primary coil of the transformer and outputs the pulse to the secondary coil. Further, if a means for making the ground potential on the input side of the voltage detection circuit 30 substantially the same as the ground potential on the output side of the voltage detection circuit 30 is provided, the voltage detection circuit 30 is made of the above-described optical insulating element or magnetic insulating element. It does not have to be configured.

・上記各実施形態では、電圧検出装置をハイブリッド車に搭載したが、これに限らず、例えば電気自動車であってもよい。   In each of the above embodiments, the voltage detection device is mounted on the hybrid vehicle. However, the present invention is not limited to this and may be, for example, an electric vehicle.

第1の実施形態における組電池及びその各2次電池の両端の電圧の検出装置の構成を示す回路図。The circuit diagram which shows the structure of the detection apparatus of the voltage of the both ends of the assembled battery and its each secondary battery in 1st Embodiment. 同実施形態における電圧電流変換回路の構成を例示する図。The figure which illustrates the structure of the voltage-current conversion circuit in the embodiment. 同実施形態における電圧検出回路の回路構成を示す図。The figure which shows the circuit structure of the voltage detection circuit in the embodiment. 第2の実施形態における組電池及びその各2次電池の両端の電圧の検出装置の構成を示す回路図。The circuit diagram which shows the structure of the detection apparatus of the voltage of the both ends of the assembled battery and its each secondary battery in 2nd Embodiment. 同実施形態におけるスイッチング素子の操作態様を示す図。The figure which shows the operation mode of the switching element in the embodiment. 同実施形態の電圧検出回路の回路構成を示す図。The figure which shows the circuit structure of the voltage detection circuit of the embodiment. 第3の実施形態における組電池及びその各2次電池の両端の電圧の検出装置の構成を示す回路図。The circuit diagram which shows the structure of the detection apparatus of the voltage of the both ends of the assembled battery and its each secondary battery in 3rd Embodiment. 第4の実施形態における組電池及びその各2次電池の両端の電圧の検出装置の構成を示す回路図。The circuit diagram which shows the structure of the detection apparatus of the voltage of the both ends of the assembled battery and its each secondary battery in 4th Embodiment. 第2の実施形態の変形例における組電池及びその各2次電池の両端の電圧の検出装置の構成を示す回路図。The circuit diagram which shows the structure of the detection apparatus of the voltage of the both ends of the assembled battery and its each secondary battery in the modification of 2nd Embodiment.

符号の説明Explanation of symbols

10…組電池、30…電圧検出回路、B1〜B7…2次電池、C1〜C7、C11〜C77…電圧電流変換回路、R21〜R67…抵抗(電流電圧変換手段の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... Assembly battery, 30 ... Voltage detection circuit, B1-B7 ... Secondary battery, C1-C7, C11-C77 ... Voltage-current conversion circuit, R21-R67 ... Resistance (one embodiment of a current-voltage conversion means).

Claims (7)

複数個の2次電池の直列接続体として構成される組電池における単一の2次電池及び隣接するいくつかからなる2次電池のいずれかである単位電池の電圧を検出する組電池の電圧検出装置において、
前記単位電池の一方の電極電位を基準とする電圧を電流に変換する電圧電流変換手段と、
該電圧電流変換手段の出力電流を、別の単位電池の一方の電極電位を基準とする電圧に変換する電流電圧変換手段と、
前記複数個の単位電池のうちの2個以上の単位電池のそれぞれの両端の電圧が、前記電圧電流変換手段及び前記電流電圧変換手段のいくつかによる電流変換及び電圧変換の繰り返しによって特定の単位電池の電極電位を基準とする電圧に変換されて取り出される集約部とを備えることを特徴とする組電池の電圧検出装置。
Voltage detection of an assembled battery that detects a voltage of a unit battery that is one of a single secondary battery and a plurality of adjacent secondary batteries in an assembled battery configured as a series connection body of a plurality of secondary batteries. In the device
Voltage-current conversion means for converting a voltage based on one electrode potential of the unit battery into a current;
Current-voltage conversion means for converting the output current of the voltage-current conversion means into a voltage based on one electrode potential of another unit battery; and
The voltage across each of two or more unit cells of the plurality of unit cells is a specific unit cell by repeating current conversion and voltage conversion by the voltage-current conversion unit and some of the current-voltage conversion units. A voltage detector for an assembled battery, comprising: an aggregating unit that is converted into a voltage with reference to the electrode potential of the battery and extracted.
前記2個以上の単位電池のそれぞれ毎に、該単位電池の電圧を前記特定の単位電池の電極電位を基準とする電圧に変換するための前記電圧電流変換手段及び前記電流電圧変換手段が、各別に設けられてなることを特徴とする請求項1記載の組電池の電圧検出装置。   For each of the two or more unit cells, the voltage-current conversion unit and the current-voltage conversion unit for converting the voltage of the unit cell into a voltage based on the electrode potential of the specific unit cell, 2. The assembled battery voltage detection device according to claim 1, wherein the voltage detection device is provided separately. 前記電圧電流変換手段による変換対象となる電圧として、前記電流電圧変換手段の出力電圧及び前記単位電池の両端の電圧のいずれかを選択するための選択手段を更に備えることを特徴とする請求項1記載の組電池の電圧検出装置。   2. A selection means for selecting one of an output voltage of the current-voltage conversion means and a voltage at both ends of the unit battery as a voltage to be converted by the voltage-current conversion means. The voltage detection apparatus of the assembled battery as described. 前記集約部は、前記組電池を構成する全ての単位電池の電圧が前記特定の単位電池の電極電位を基準とする電圧に変換されたものを取り出す単一の集約部として構成されてなることを特徴とする請求項1〜3のいずれかに記載の組電池の電圧検出装置。   The aggregating unit is configured as a single aggregating unit that takes out the voltages obtained by converting the voltages of all unit cells constituting the assembled battery into voltages based on the electrode potential of the specific unit cell. The assembled battery voltage detection device according to any one of claims 1 to 3. 前記電流電圧変換手段は、前記電圧電流変換手段の出力電流を隣接する単位電池の一方の電極電位を基準とする電圧に変換するものであることを特徴とする請求項1〜4のいずれかに記載の組電池の電圧検出装置。   5. The current-voltage conversion unit converts the output current of the voltage-current conversion unit into a voltage based on one electrode potential of an adjacent unit cell. The voltage detection apparatus of the assembled battery as described. 前記特定の単位電池が、前記直列接続体の両端部よりも内側の単位電池であることを特徴とする請求項1〜5のいずれかに記載の組電池の電圧検出装置。   The assembled battery voltage detection device according to claim 1, wherein the specific unit battery is a unit battery inside the both ends of the series connection body. 前記特定の単位電池が、前記直列接続体の中央部の単位電池であることを特徴とする請求項6記載の組電池の電圧検出装置。   7. The assembled battery voltage detection device according to claim 6, wherein the specific unit battery is a unit battery in a central portion of the series connection body.
JP2006055744A 2006-03-02 2006-03-02 Voltage detection device for battery pack Expired - Fee Related JP4760449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055744A JP4760449B2 (en) 2006-03-02 2006-03-02 Voltage detection device for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055744A JP4760449B2 (en) 2006-03-02 2006-03-02 Voltage detection device for battery pack

Publications (2)

Publication Number Publication Date
JP2007232603A true JP2007232603A (en) 2007-09-13
JP4760449B2 JP4760449B2 (en) 2011-08-31

Family

ID=38553318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055744A Expired - Fee Related JP4760449B2 (en) 2006-03-02 2006-03-02 Voltage detection device for battery pack

Country Status (1)

Country Link
JP (1) JP4760449B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL273496A (en) * 2020-03-22 2021-09-30 Irp Nexus Group Ltd Battery management system (bms) and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042591A (en) * 2004-06-21 2006-02-09 Panasonic Ev Energy Co Ltd Abnormal voltage detecting device for battery pack

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042591A (en) * 2004-06-21 2006-02-09 Panasonic Ev Energy Co Ltd Abnormal voltage detecting device for battery pack

Also Published As

Publication number Publication date
JP4760449B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5710731B2 (en) Battery cell module balancing control circuit using LC series resonance
JP6033337B2 (en) Battery equalization device
KR101726901B1 (en) Electricity-storage device provided with balancing circuit
JP4148162B2 (en) Circuit system
JP4500121B2 (en) Battery voltage monitoring system
US8004249B2 (en) Battery management system and method
CN103997073B (en) The circuit and method of electric voltage equalization in big battery group
JP4892595B2 (en) Power supply
JP5353914B2 (en) Battery voltage monitoring device
JP5208714B2 (en) Assembled battery system
US10393818B2 (en) Systems and methods for characterizing impedance of an energy storage device
JP5168176B2 (en) Battery pack capacity adjustment device
KR101686018B1 (en) Battery cell balancing circuit using transformer
JP4270154B2 (en) Battery voltage detection controller
CN108450041B (en) Battery pack monitoring system
KR20150024796A (en) Battery management system and method
JP4137842B2 (en) Secondary battery capacity equalization device
JP5049903B2 (en) Battery voltage measuring device and battery pack system using the same
JP2010243157A (en) Voltage detection device
JP4158352B2 (en) Battery voltage detector
JP4760449B2 (en) Voltage detection device for battery pack
JP2010226811A (en) Management device for battery pack
JP5157634B2 (en) Voltage measuring apparatus and voltage measuring method
JP5479270B2 (en) Battery condition monitoring device
KR20140135419A (en) Battery cell ballancing circuit using series resonant circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees