JP2007232549A - Distance measuring instrument - Google Patents

Distance measuring instrument Download PDF

Info

Publication number
JP2007232549A
JP2007232549A JP2006054168A JP2006054168A JP2007232549A JP 2007232549 A JP2007232549 A JP 2007232549A JP 2006054168 A JP2006054168 A JP 2006054168A JP 2006054168 A JP2006054168 A JP 2006054168A JP 2007232549 A JP2007232549 A JP 2007232549A
Authority
JP
Japan
Prior art keywords
light
measured
measurement
light receiving
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006054168A
Other languages
Japanese (ja)
Other versions
JP4796405B2 (en
Inventor
Atsuro Toda
敦郎 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2006054168A priority Critical patent/JP4796405B2/en
Publication of JP2007232549A publication Critical patent/JP2007232549A/en
Application granted granted Critical
Publication of JP4796405B2 publication Critical patent/JP4796405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To respond to the variation of the measuring position of a measured object and to exactly measure a part to be measured. <P>SOLUTION: A changeover switch 15 is disposed in a controller 3, and the changeover switch 15 can select a reference for making the light receiving peak position of the light receiving distribution of the reflected light obtained by a CCD 6 correspond to the positions on front and rear faces of the measured object from the close side or separate side of a sensor head 2 (projection element 5). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラス基板等の光透過性を有する被測定物の表裏面間距離(厚み)や複数の被測定物間の隙間距離等の各種距離を測定するのに好適な距離測定装置に関するものである。   The present invention relates to a distance measuring device suitable for measuring various distances such as a distance (thickness) between front and back surfaces of a light-transmitting object to be measured such as a glass substrate and a gap distance between a plurality of objects to be measured. It is.

液晶やプラズマ等のフラットパネルディスプレイに用いられ2枚のガラス基板を貼り合わせた貼合せ基板において、各ガラス基板の厚みや各ガラス基板間の距離を測定する要求がある。そこで、このような要求を満たすべく、ガラス基板の表裏面間距離(厚み)や複数のガラス基板間の隙間距離を測定する距離測定装置が、例えば特許文献1にて提案されている。   There is a need to measure the thickness of each glass substrate and the distance between each glass substrate in a bonded substrate used for a flat panel display such as liquid crystal or plasma and having two glass substrates bonded together. Therefore, for example, Patent Document 1 proposes a distance measuring device that measures the distance (thickness) between the front and back surfaces of a glass substrate and the gap distance between a plurality of glass substrates in order to satisfy such a requirement.

特許文献1にて示される距離測定装置は、その貼合せ基板の上部にセンサヘッドを配置し、そのセンサヘッド内に設けた投光素子から貼合せ基板の上面に向けて光を照射し、同センサヘッド内に設けたCCDにて上下のガラス基板の表面及び裏面のそれぞれで反射する反射光をCCD上で受光し、装置本体側においてCCD上で得た受光分布における各ガラス基板の表面及び裏面反射光に対応した各受光ピーク位置の検出に基づいて、各ガラス基板の厚みと各ガラス基板間の隙間距離を演算する構成となっている。   In the distance measuring device shown in Patent Document 1, a sensor head is arranged on the upper side of the bonded substrate, light is irradiated from the light emitting element provided in the sensor head toward the upper surface of the bonded substrate, Reflected light reflected on the front and back surfaces of the upper and lower glass substrates is received on the CCD by the CCD provided in the sensor head, and the front and back surfaces of each glass substrate in the received light distribution obtained on the CCD on the apparatus main body side. Based on the detection of each light receiving peak position corresponding to the reflected light, the thickness of each glass substrate and the gap distance between each glass substrate are calculated.

厚み及び隙間距離の測定時においては、センサヘッド(投光素子)の近接側1番目の受光ピーク位置を基準、即ち上ガラス基板の表面位置として対応付けて認識し、その1番目の受光ピーク位置と次の2番目の受光ピーク位置(上ガラス基板の裏面位置)とで上ガラス基板の厚みが測定される。次いで、その2番目の受光ピーク位置と次の3番目の受光ピーク位置(下ガラス基板の表面位置)とで上下のガラス基板間の隙間距離が測定される。次いで、その3番目の受光ピーク位置と次の4番目の受光ピーク位置(下ガラス基板の裏面位置)とで下ガラス基板の厚みが測定される。
特開2004−264082号公報
When measuring the thickness and gap distance, the first light receiving peak position on the near side of the sensor head (light projecting element) is recognized as a reference, that is, the surface position of the upper glass substrate, and the first light receiving peak position is recognized. And the thickness of an upper glass substrate is measured by the following 2nd light reception peak position (back surface position of an upper glass substrate). Next, the gap distance between the upper and lower glass substrates is measured at the second light receiving peak position and the next third light receiving peak position (surface position of the lower glass substrate). Next, the thickness of the lower glass substrate is measured at the third light receiving peak position and the next fourth light receiving peak position (back surface position of the lower glass substrate).
JP 2004-264082 A

ところで、貼合せ基板を製造するラインの例えば搬送途中に行うような場合など、貼合せ基板が上方、即ち投光素子の近接側に位置ずれすることがあり、場合によってはCCDの測定レンジを超えてしまうような大きな移動が生じることがある。   By the way, the bonding substrate may be displaced upward, that is, in the vicinity of the light projecting element, for example, when it is performed in the middle of the line for manufacturing the bonding substrate, and in some cases, the measurement range of the CCD is exceeded. May cause large movements.

このような場合、例えば上ガラス基板の表面が測定レンジから外れると、その表面反射光に対応する受光ピークはCCD上の受光分布には現れないため、上ガラス基板の裏面反射光に対応する受光ピークを基準とし、その受光ピーク位置を上ガラス基板の表面位置と誤って対応付けを行ってしまう。   In such a case, for example, if the surface of the upper glass substrate is out of the measurement range, the light receiving peak corresponding to the surface reflected light does not appear in the light receiving distribution on the CCD. Using the peak as a reference, the received light peak position is erroneously associated with the surface position of the upper glass substrate.

そのため、次の2番目の受光ピークが下ガラス基板の表面反射光に対応するものであるにもかかわらず、測定装置では上ガラス基板の裏面反射光に対応するものであると誤認識してしまい、本来上下のガラス基板間の隙間距離を測定するものを、誤って上ガラス基板の厚みとして測定してしまう。同様に、次の3番目の受光ピークが下ガラス基板の裏面反射光に対応するものであるにもかかわらず、測定装置では下ガラス基板の表面反射光に対応するものであると誤認識してしまい、本来下ガラス基板の厚みを測定するものを、誤って上下のガラス基板間の隙間距離として測定してしまう。   Therefore, although the next second light receiving peak corresponds to the front surface reflected light of the lower glass substrate, the measuring apparatus erroneously recognizes that it corresponds to the rear surface reflected light of the upper glass substrate. What originally measures the gap distance between the upper and lower glass substrates is erroneously measured as the thickness of the upper glass substrate. Similarly, even though the next third light receiving peak corresponds to the back surface reflected light of the lower glass substrate, the measuring apparatus misrecognizes that it corresponds to the surface reflected light of the lower glass substrate. Therefore, what originally measures the thickness of the lower glass substrate is erroneously measured as the gap distance between the upper and lower glass substrates.

本発明は、上記課題を解決するためになされたものであって、その目的は、被測定物の測定位置の変動に対応でき、測定対象部分を的確に測定することができる距離測定装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a distance measuring device that can cope with fluctuations in the measurement position of an object to be measured and can accurately measure a measurement target portion. There is to do.

上記課題を解決するために、請求項1に記載の発明は、光透過性を有する被測定物に光を照射する投光手段と、前記投光手段からの光の照射に基づく前記被測定物の表面及び裏面の各反射光を受光可能に配置され、測定レンジ内の受光分布を検出する受光分布検出手段と、前記受光分布検出手段で検出した受光分布における複数の受光ピーク位置から前記被測定物の表面位置及び裏面位置を対応付けるとともに、その受光ピーク位置から前記被測定物に関する測定対象部分の測定値を算出する測定値算出手段とを備えた距離測定装置であって、前記受光ピーク位置と前記被測定物の表面位置及び裏面位置とを対応付ける基準を、予め記憶された測定対象とする全ての前記被測定物の各面のいずれかから選択する選択手段を備えたことをその要旨とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a light projecting means for irradiating light to a light-transmitting object to be measured, and the object to be measured based on light irradiation from the light projecting means. A light receiving distribution detecting means for detecting a light receiving distribution within a measurement range, and a plurality of light receiving peak positions in the light receiving distribution detected by the light receiving distribution detecting means. A distance measuring device comprising a measurement value calculating means for associating a front surface position and a back surface position of an object and calculating a measurement value of a measurement target portion related to the object to be measured from the light reception peak position, the light reception peak position It is necessary to include selection means for selecting a reference for associating the front surface position and the back surface position of the object to be measured from any of the surfaces of all the objects to be measured that are stored in advance. To.

この発明では、選択手段により、受光ピーク位置と被測定物の表面位置及び裏面位置とを対応付ける基準が予め記憶された測定対象とする全ての被測定物の各面のいずれかから選択することが可能となる。つまり、被測定物が特に複数部材で構成され各部材の表面及び裏面が複数となるものの測定時に、例えば被測定物が投光手段の近接側に位置ずれし易い環境で使用するような場合では、被測定物の一部が測定レンジから外れてしまい、被測定物の表面など近接側の一部の受光ピークが検出できなくなる。このような場合であっても、例えば投光手段の離間側に位置する被測定物の裏面位置を基準として被測定物の各面と受光ピーク位置とを対応付けるように選択手段にて選択を行うことで、受光ピーク位置と被測定物の各面とが的確に対応付けされる。また、被測定物が投光手段の離間側に位置ずれし易い環境で使用するような場合では、逆に近接側の被測定物の表面位置を基準とするように選択手段にて選択を行うことで、受光ピーク位置と被測定物の各面とが的確に対応付けされる。これにより、測定対象部分を的確に測定することができる。   In the present invention, the selection means can select from any one of the surfaces of all the objects to be measured that are stored in advance as a reference for associating the light receiving peak position with the surface position and the back surface position of the object to be measured. It becomes possible. In other words, the measurement object is composed of a plurality of members, and each member has a plurality of front and back surfaces. For example, when the measurement object is used in an environment in which the measurement object is likely to be displaced near the light projecting means. A part of the object to be measured is out of the measurement range, and a part of the light receiving peak on the near side such as the surface of the object to be measured cannot be detected. Even in such a case, for example, the selection unit performs selection so that each surface of the measurement object and the light reception peak position are associated with each other on the basis of the back surface position of the measurement object positioned on the separation side of the light projecting unit. Thus, the light receiving peak position and each surface of the object to be measured are accurately associated with each other. In addition, when the object to be measured is used in an environment in which the position of the object to be measured is likely to be shifted to the separated side of the light projecting means, the selection means selects the surface position of the object to be measured on the near side. Thus, the light receiving peak position and each surface of the object to be measured are accurately associated with each other. Thereby, a measurement object part can be measured accurately.

請求項2に記載の発明は、請求項1に記載の距離測定装置において、前記選択手段は、操作者の操作により選択切替可能に構成されたことをその要旨とする。
この発明では、選択手段は、操作者の操作により選択切替可能に構成されるものであるため、自動で選択を切り替える判定などは装置の制御構成に組み込む必要がなく、装置の制御構成の簡素化することができる。
The gist of the invention described in claim 2 is the distance measuring device according to claim 1, wherein the selection means is configured to be selectively switchable by an operation of an operator.
In this invention, since the selection means is configured to be selectable and switched by an operator's operation, it is not necessary to incorporate the determination to switch the selection automatically into the control configuration of the device, and the control configuration of the device is simplified. can do.

請求項3に記載の発明は、請求項1又は2に記載の距離測定装置において、前記測定値算出手段は、前記測定対象部分として前記被測定物の厚み又は複数の前記被測定物間の隙間距離の測定値を算出することをその要旨とする。   According to a third aspect of the present invention, in the distance measuring device according to the first or second aspect, the measurement value calculating means includes a thickness of the measurement object or a gap between the plurality of measurement objects as the measurement target portion. The gist is to calculate the distance measurement.

この発明では、測定値算出手段にて、被測定物の厚み又は複数の被測定物間の隙間距離が的確に測定される。   In this invention, the measured value calculation means accurately measures the thickness of the object to be measured or the gap distance between the plurality of objects to be measured.

従って、上記記載の発明によれば、被測定物の測定位置の変動に対応でき、測定対象部分を的確に測定することができる距離測定装置を提供することができる。   Therefore, according to the above-described invention, it is possible to provide a distance measuring device that can cope with a change in the measurement position of the object to be measured and can accurately measure the measurement target portion.

以下、本発明を具体化した一実施の形態を図面に従って説明する。
図1は、本実施の形態の距離測定装置1を示す。距離測定装置1は、液晶やプラズマ等のフラットパネルディスプレイに用いられ2枚のガラス基板W1,W2を貼り合わせた貼合せ基板Wにおいて、各ガラス基板W1,W2の厚みD1,D2(図3参照)や各ガラス基板W1,W2間の隙間距離Lを測定する時などに用いられるものである。この距離測定装置1は、使用時に被測定物(貼合せ基板W)の上方に配設されるセンサヘッド2と各種制御を行うコントローラ3とを備え、互いにケーブル4にて電気的に接続されて構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 shows a distance measuring apparatus 1 according to the present embodiment. The distance measuring device 1 is used for a flat panel display such as liquid crystal or plasma, and in a bonded substrate W in which two glass substrates W1 and W2 are bonded, the thicknesses D1 and D2 of the glass substrates W1 and W2 (see FIG. 3). ) And the distance L between the glass substrates W1 and W2 is measured. This distance measuring device 1 includes a sensor head 2 disposed above a measurement object (bonded substrate W) and a controller 3 that performs various controls when in use, and are electrically connected to each other by a cable 4. It is configured.

図1及び図2に示すように、センサヘッド2には、例えば赤色半導体レーザダイオードからなる投光素子5と、該投光素子5からの光の照射に基づく被測定物(貼合せ基板W)の反射光を受光可能に配置されたCCD6とが内蔵されている。また、センサヘッド2には、投光素子5に駆動電流を供給する投光素子駆動回路7と、CCD6を駆動するCCD駆動回路8が備えられ、コントローラ3にて制御されている。更に、センサヘッド2には、表示灯9が備えられ、コントローラ3の制御に基づいて各種の表示動作を行うようになっている。   As shown in FIGS. 1 and 2, the sensor head 2 includes a light projecting element 5 made of, for example, a red semiconductor laser diode, and an object to be measured (bonded substrate W) based on irradiation of light from the light projecting element 5. And a CCD 6 arranged so as to receive the reflected light. The sensor head 2 includes a light projecting element driving circuit 7 that supplies a driving current to the light projecting element 5 and a CCD driving circuit 8 that drives the CCD 6, and is controlled by the controller 3. Further, the sensor head 2 is provided with an indicator lamp 9 and performs various display operations based on the control of the controller 3.

コントローラ3は、表示とともにタッチパネル機能を有するディスプレイ10を有している。ディスプレイ10は、操作者のタッチ操作に応じた各種設定信号をCPU11に出力する。例えば、各ガラス基板W1,W2の厚みD1,D2や各ガラス基板W1,W2間の隙間距離Lを測定するモードをタッチ操作にて選択でき、これに対応した設定信号がCPU11に出力される。CPU11は、この設定信号に基づいて、投光素子駆動回路7(投光素子5)の投光制御やCCD駆動回路8(CCD6)の駆動制御、表示灯9の点灯制御を実施するとともに、各種の測定動作を実施する。   The controller 3 has a display 10 having a touch panel function as well as a display. The display 10 outputs various setting signals according to the touch operation of the operator to the CPU 11. For example, a mode for measuring the thicknesses D1 and D2 of the glass substrates W1 and W2 and the gap distance L between the glass substrates W1 and W2 can be selected by a touch operation, and a setting signal corresponding to this is output to the CPU 11. Based on this setting signal, the CPU 11 performs light projection control of the light projecting element drive circuit 7 (light projecting element 5), drive control of the CCD drive circuit 8 (CCD6), and lighting control of the display lamp 9, and various kinds of control. The measurement operation is performed.

また、コントローラ3には、前記CCD6からの出力信号が入力されるコンパレータ12及びA/Dコンバータ13が備えられている。コンパレータ12は、CCD6からの出力信号において所定のスライスレベルと比較し、その比較結果をCPU11に出力する。これは、CCD6からの出力信号に含まれるノイズをCCD6上の受光分布のピークレベルと区別するためのものであって、CPU11ではコンパレータ12からの出力がハイレベル、即ちCCD6の受光レベルが所定レベル以上の時のみA/Dコンバータ13の出力を被測定物(貼合せ基板W)からの反射光として取り込むようになっている。   Further, the controller 3 is provided with a comparator 12 and an A / D converter 13 to which an output signal from the CCD 6 is input. The comparator 12 compares the output signal from the CCD 6 with a predetermined slice level and outputs the comparison result to the CPU 11. This is for distinguishing noise contained in the output signal from the CCD 6 from the peak level of the light reception distribution on the CCD 6, and in the CPU 11, the output from the comparator 12 is high level, that is, the light reception level of the CCD 6 is a predetermined level. Only at the above time, the output of the A / D converter 13 is captured as reflected light from the object to be measured (bonded substrate W).

CPU11は、A/Dコンバータ13の出力に基づいてCCD6の受光分布を取得する。被測定物を貼合せ基板Wとした場合では、その貼合せ基板WがCCD6による測定可能な測定レンジ内に位置しているとき、受光分布には、上ガラス基板W1の表面a及び裏面bと下ガラス基板W2の表面c及び裏面dとで反射する各反射光に対応する位置にそれぞれ受光ピークが生じる。CPU11は、各受光ピークの位置に基づいて上ガラス基板W1の表面a及び裏面bと下ガラス基板W2の表面c及び裏面dのそれぞれ位置(例えば予め設定された基準位置からの距離)を求め、各面a〜dの位置から厚みD1,D2や隙間距離Lの測定値を算出する。具体的に、厚みD1は面bの位置と面aの位置との差分から求められ、厚みD2は面dの位置と面cの位置との差分から求められ、隙間距離Lは面cの位置と面bの位置との差分から求められる。尚、各面a〜dの位置から貼合せ基板Wの全体の厚みなども検出することもできる。因みに、コントローラ3内に備えられるメモリ14は、このようなCPU11の演算時などに用いられる。CPU11は、測定した厚みD1,D2や隙間距離Lをディスプレイ10に表示するとともに、取得した受光分布なども表示する。   The CPU 11 acquires the light reception distribution of the CCD 6 based on the output of the A / D converter 13. In the case where the object to be measured is a bonded substrate W, when the bonded substrate W is located within a measurement range that can be measured by the CCD 6, the received light distribution includes the front surface a and the back surface b of the upper glass substrate W1. A light receiving peak is generated at a position corresponding to each reflected light reflected by the front surface c and the rear surface d of the lower glass substrate W2. CPU11 calculates | requires each position (for example, distance from the reference position set beforehand) of each of front surface a and back surface b of upper glass substrate W1, and front surface c and back surface d of lower glass substrate W2 based on the position of each received light peak, The measured values of the thicknesses D1 and D2 and the gap distance L are calculated from the positions of the surfaces a to d. Specifically, the thickness D1 is obtained from the difference between the position of the surface b and the position of the surface a, the thickness D2 is obtained from the difference between the position of the surface d and the position of the surface c, and the gap distance L is the position of the surface c. And the position of the surface b. In addition, the whole thickness etc. of the bonding board | substrate W can also be detected from the position of each surface ad. Incidentally, the memory 14 provided in the controller 3 is used for such calculation of the CPU 11. The CPU 11 displays the measured thicknesses D1 and D2 and the gap distance L on the display 10, and also displays the acquired light reception distribution and the like.

本実施の形態では、CPU11の測定モードが予め記憶された「通常測定モード」と「逆測定モード」とのいずれかから選択切替可能とする切替スイッチ15が前記ディスプレイ10のタッチパネル機能に加えられている。つまり、ディスプレイ10のタッチパネル操作により、測定モードの切り替えを行うことができるようになっている。   In the present embodiment, a changeover switch 15 is added to the touch panel function of the display 10 so that the measurement mode of the CPU 11 can be selected and switched between “normal measurement mode” and “reverse measurement mode” stored in advance. Yes. That is, the measurement mode can be switched by a touch panel operation on the display 10.

切替スイッチ15により通常測定モードが選択された場合では、図3に示すように、CPU11は、センサヘッド2(投光素子5)の近接側1番目(受光分布の左側1番目)の受光ピーク位置を基準、即ち上ガラス基板W1の表面aの位置として対応付け、続いて2番目の受光ピーク位置を上ガラス基板W1の裏面bの位置、更に3番目の受光ピーク位置を下ガラス基板W2の表面cの位置、4番目の受光ピーク位置を下ガラス基板W2の裏面dの位置として対応付けて認識する。CPU11は、これらから厚みD1,D2や隙間距離Lの測定値を算出するための各面a〜dの位置(距離)を算出する。   When the normal measurement mode is selected by the changeover switch 15, as shown in FIG. 3, the CPU 11 receives the first light receiving peak position on the proximity side of the sensor head 2 (light projecting element 5) (first on the left side of the light receiving distribution). As the reference, that is, the position of the surface a of the upper glass substrate W1, then the second light receiving peak position is the position of the back surface b of the upper glass substrate W1, and the third light receiving peak position is the surface of the lower glass substrate W2. The position c and the fourth light reception peak position are recognized as being associated with the position of the back surface d of the lower glass substrate W2. The CPU 11 calculates the positions (distances) of the surfaces a to d for calculating the measured values of the thicknesses D1 and D2 and the gap distance L from these.

これに対し、切替スイッチ15により逆測定モードが選択された場合では、図4に示すように、CPU11は、センサヘッド2(投光素子5)の離間側1番目(受光分布の右側1番目)の受光ピーク位置を基準、即ち下ガラス基板W2の裏面dの位置として対応付け、続いて2番目の受光ピーク位置を下ガラス基板W2の表面cの位置、更に3番目の受光ピーク位置を上ガラス基板W1の裏面bの位置、4番目の受光ピーク位置を上ガラス基板W1の表面aの位置として対応付けて認識する。同様に、CPU11は、これらから各面a〜dの位置(距離)を算出する。   On the other hand, when the reverse measurement mode is selected by the changeover switch 15, as shown in FIG. 4, the CPU 11 is first on the separation side of the sensor head 2 (light projecting element 5) (first on the right side of the light reception distribution). Are matched with each other as the reference, that is, the position of the back surface d of the lower glass substrate W2, then the second light receiving peak position is the position of the surface c of the lower glass substrate W2, and the third light receiving peak position is the upper glass. The position of the back surface b of the substrate W1 and the fourth light receiving peak position are recognized in association with each other as the position of the surface a of the upper glass substrate W1. Similarly, CPU11 calculates the position (distance) of each surface ad from these.

ここで、被測定物である貼合せ基板Wが測定レンジから上方、即ちセンサヘッド2(投光素子5)の近接側に位置ずれし易い環境で使用するような場合、図5に示すように、例えば上ガラス基板W1の表面が測定レンジから外れることがある。すると、上ガラス基板W1の表面反射光に対応する受光ピークが受光分布には現れない。   Here, when used in an environment in which the bonded substrate W, which is the object to be measured, is likely to be displaced upward from the measurement range, that is, closer to the sensor head 2 (light projecting element 5), as shown in FIG. For example, the surface of the upper glass substrate W1 may be out of the measurement range. Then, the light reception peak corresponding to the surface reflected light of the upper glass substrate W1 does not appear in the light reception distribution.

因みに、このような場合に図3のように通常測定モードにて測定を行うと、CPU11は、受光分布の左側1番目の受光ピーク位置を基準、即ち上ガラス基板W1の表面aの位置として認識してしまうことから、実際は上ガラス基板W1の裏面bの位置であるにもかかわらず、左側1番目の受光ピーク位置が上ガラス基板W1の表面aの位置であると誤った対応付けを行ってしまう。従って、左側1番目の受光ピーク位置(実際は上ガラス基板W1の裏面bの位置)と2番目の受光ピーク位置(実際は下ガラス基板W2の表面cの位置)とで、CPU11は上ガラス基板W1の厚みD1を誤った状態で算出してしまう。また、その2番目の受光ピーク位置と3番目の受光ピーク位置(実際は下ガラス基板W2の裏面dの位置)とで、CPU11はガラス基板W1,W2間の隙間距離Lを誤った状態で算出してしまう。   In this case, when measurement is performed in the normal measurement mode as shown in FIG. 3, the CPU 11 recognizes the first light reception peak position on the left side of the light reception distribution as a reference, that is, the position of the surface a of the upper glass substrate W1. Therefore, although the actual position is the position of the back surface b of the upper glass substrate W1, the first light-receiving peak position on the left side is erroneously associated with the position of the surface a of the upper glass substrate W1. End up. Therefore, at the first left light receiving peak position (actually the position of the back surface b of the upper glass substrate W1) and the second light receiving peak position (actually the position of the surface c of the lower glass substrate W2), the CPU 11 The thickness D1 is calculated in an incorrect state. Further, the CPU 11 calculates the gap distance L between the glass substrates W1 and W2 in an incorrect state based on the second light receiving peak position and the third light receiving peak position (actually, the position of the back surface d of the lower glass substrate W2). End up.

そこで、本実施の形態では、上記のような環境で使用する場合、操作者の切替スイッチ15の操作により、逆測定モードに切り替えて被測定物(貼合せ基板W)の測定を行うことができるようになっている。   Therefore, in this embodiment, when used in the above environment, the measurement object (bonded substrate W) can be measured by switching to the reverse measurement mode by operating the changeover switch 15 of the operator. It is like that.

即ち、逆測定モードでは、図5に示すように、CPU11は、受光分布の右側1番目の受光ピーク位置を基準、即ち下ガラス基板W2の裏面dの位置として正常に対応付けが行われる。従って、右側1番目の受光ピーク位置(下ガラス基板W2の裏面dの位置)と2番目の受光ピーク位置(下ガラス基板W2の表面cの位置)とで、CPU11は下ガラス基板W2の厚みD2を的確に算出する。また、その2番目の受光ピーク位置と3番目の受光ピーク位置(上ガラス基板W1の裏面bの位置)とで、CPU11はガラス基板W1,W2間の隙間距離Lを的確に算出する。つまり、上ガラス基板W1の表面反射光の受光ピークが得られないことから上ガラス基板W1の厚みD1は測定されないが、残りの下ガラス基板W2の厚みD2やガラス基板W1,W2間の隙間距離Lといった測定対象部分は的確に算出される。   That is, in the reverse measurement mode, as shown in FIG. 5, the CPU 11 normally associates the first light receiving peak position on the right side of the light receiving distribution with the reference, that is, the position of the back surface d of the lower glass substrate W2. Accordingly, the CPU 11 determines the thickness D2 of the lower glass substrate W2 at the first light receiving peak position on the right side (the position of the back surface d of the lower glass substrate W2) and the second light receiving peak position (the position of the surface c of the lower glass substrate W2). Is calculated accurately. Further, the CPU 11 accurately calculates the gap distance L between the glass substrates W1 and W2 based on the second light receiving peak position and the third light receiving peak position (the position of the back surface b of the upper glass substrate W1). That is, the thickness D1 of the upper glass substrate W1 is not measured because the light receiving peak of the surface reflected light of the upper glass substrate W1 is not obtained, but the remaining thickness D2 of the lower glass substrate W2 and the gap distance between the glass substrates W1 and W2 The portion to be measured such as L is accurately calculated.

尚、被測定物が逆に測定レンジから下方、即ちセンサヘッド2(投光素子5)の離間側に位置ずれし易い環境で使用するような場合では、図3のように左側1番目の受光ピーク位置を基準とする通常測定モードにて測定を行うことが、測定対象部分が的確に算出可能であることから望ましい。   In the case where the object to be measured is used in an environment where the object to be measured is likely to be displaced downward from the measurement range, that is, to the side away from the sensor head 2 (light projecting element 5), the first light reception on the left side as shown in FIG. It is desirable to perform the measurement in the normal measurement mode based on the peak position because the measurement target portion can be accurately calculated.

このように本実施の形態の距離測定装置1では、被測定物(貼合せ基板W)の測定位置の変動に対応可能な切替スイッチ15が備えられ、各ガラス基板W1,W2の厚みD1,D2や各ガラス基板W1,W2間の隙間距離Lといった測定対象部分が的確に測定可能に構成されている。   As described above, the distance measuring device 1 according to the present embodiment includes the change-over switch 15 that can cope with the change in the measurement position of the object to be measured (bonded substrate W), and the thicknesses D1 and D2 of the glass substrates W1 and W2. In addition, a measurement target portion such as a gap distance L between the glass substrates W1 and W2 can be accurately measured.

次に、本実施の形態の特徴的な作用効果を記載する。
(1)本実施の形態では、コントローラ3に切替スイッチ15を設け、該切替スイッチ15によりCCD6で得た反射光の受光分布の受光ピーク位置と今回被測定物とした貼合せ基板Wの表裏面a〜dの位置とを対応付ける基準がセンサヘッド2(投光素子5)の近接側か離間側かのいずれかから選択することが可能に構成されている。つまり、被測定物が特に複数部材で構成され各部材の表面及び裏面が複数となる貼合せ基板Wといったものの測定時に、例えば貼合せ基板Wが上方(センサヘッド2の近接側)に位置ずれし易い環境で使用するような場合では、貼合せ基板Wの一部が測定レンジから外れてしまい、貼合せ基板Wの上ガラス基板W1の表面aなど近接側の一部の受光ピークが検出できなくなる。このような場合であっても、センサヘッド2の離間側に位置する下ガラス基板W2の裏面d位置を基準として貼合せ基板Wの各面a〜dと受光ピーク位置とを対応付けるように切替スイッチ15にて切り替えを行う(選択する)ことで、受光ピーク位置と貼合せ基板Wの各面b〜d(表面aが外れた場合)とを的確に対応付けすることができる。これにより、各ガラス基板W2の厚みD2や各ガラス基板W1,W2間の隙間距離Lといった測定対象部分を的確に測定することができる。
Next, characteristic actions and effects of the present embodiment will be described.
(1) In the present embodiment, the controller 3 is provided with a changeover switch 15, and the light receiving peak position of the received light distribution of the reflected light obtained by the CCD 6 by the changeover switch 15 and the front and back surfaces of the bonded substrate W as the object to be measured this time. The reference for associating the positions a to d can be selected from either the proximity side or the separation side of the sensor head 2 (light projecting element 5). That is, when the object to be measured is composed of a plurality of members and the bonded substrate W has a plurality of front and back surfaces of each member, for example, the bonded substrate W is displaced upward (closer to the sensor head 2). When used in an easy environment, a part of the bonded substrate W is removed from the measurement range, and a part of the light receiving peak on the near side such as the surface a of the upper glass substrate W1 of the bonded substrate W cannot be detected. . Even in such a case, the changeover switch is configured so that each surface a to d of the bonded substrate W and the light receiving peak position are associated with each other on the basis of the back surface d position of the lower glass substrate W2 positioned on the separation side of the sensor head 2. By switching (selecting) at 15, the light receiving peak position and each surface b to d (when the surface a is removed) of the bonded substrate W can be accurately associated with each other. Thereby, measurement object parts, such as thickness D2 of each glass substrate W2 and the clearance distance L between each glass substrate W1, W2, can be measured exactly.

(2)本実施の形態の切替スイッチ15は、操作者の操作により選択切替可能に構成されるものとしたため、自動で選択を切り替える判定などはコントローラ3の制御構成に組み込む必要がなく、コントローラ3の制御構成の簡素化することができる。   (2) Since the changeover switch 15 of the present embodiment is configured to be selectable and switched by an operator's operation, it is not necessary to incorporate the determination to automatically switch selection into the control configuration of the controller 3. The control configuration can be simplified.

(3)本実施の形態では、同一のセンサヘッド2に投光素子5及びCCD6を設ける一方で、CPU11及び切替スイッチ15はそのセンサヘッド2とは別体のコントローラ3に設けている。これにより、センサヘッド2の小型化に貢献でき、センサヘッド2の配置の自由度を向上することができる。また、本実施の形態のように、コントローラ3側に切替スイッチ15を設けた場合では、込み入った箇所に取り付けられることのあるセンサヘッド2側に切替スイッチを設けるよりも操作性に優れる。   (3) In the present embodiment, the light projecting element 5 and the CCD 6 are provided in the same sensor head 2, while the CPU 11 and the changeover switch 15 are provided in the controller 3 separate from the sensor head 2. Thereby, it can contribute to size reduction of the sensor head 2, and the freedom degree of arrangement | positioning of the sensor head 2 can be improved. Further, in the case where the changeover switch 15 is provided on the controller 3 side as in the present embodiment, the operability is superior to the case where the changeover switch is provided on the sensor head 2 side that may be attached to a complicated place.

尚、本発明の実施の形態は、以下のように変更してもよい。
・上記実施の形態では、ディスプレイ10のタッチパネル機能に切替スイッチ15を加えたが、切替スイッチを機械的な接点を有する構成とし、例えばコントローラ3側に設けてもよい。
The embodiment of the present invention may be modified as follows.
In the above embodiment, the changeover switch 15 is added to the touch panel function of the display 10, but the changeover switch may have a mechanical contact and may be provided on the controller 3 side, for example.

・上記実施の形態では、選択手段(切替スイッチ15)を操作者の操作により選択することを可能に構成したが、例えばCCD6で得た受光分布の受光ピークの偏りから被測定物の位置ずれし得る側を回路にて判定し、その判定結果に基づいて自動で選択を切り替えるように構成してもよい。   In the above embodiment, the selection means (switch 15) can be selected by the operator's operation. For example, the position of the object to be measured is shifted from the deviation of the light reception peak of the light reception distribution obtained by the CCD 6. The obtaining side may be determined by a circuit, and the selection may be automatically switched based on the determination result.

・上記実施の形態では、センサヘッド2内に投光素子5及びCCD6を備えていたが、センサヘッド2の構成はこれに限らない。
例えば、投光素子をセンサヘッドとは別の場所に配置して光ケーブルでセンサヘッドに設けた照射部に光を供給し、その照射部から被測定物に光を照射する構成としてもよい。
In the above embodiment, the light projecting element 5 and the CCD 6 are provided in the sensor head 2, but the configuration of the sensor head 2 is not limited to this.
For example, the light projecting element may be arranged at a location different from the sensor head, and light may be supplied to an irradiation unit provided on the sensor head with an optical cable, and the object to be measured may be irradiated from the irradiation unit.

また、投光素子5を赤色半導体レーザダイオードとしたが、他の投光素子を用いてもよい。
また、受光分布検出手段としてCCD6を用いたが、CCD以外で受光分布が得られる手段に置き換えてもよい。
Further, although the light projecting element 5 is a red semiconductor laser diode, other light projecting elements may be used.
Further, although the CCD 6 is used as the light reception distribution detecting means, it may be replaced with means other than the CCD that can obtain the light distribution.

・上記実施の形態では、同一のセンサヘッド2に投光素子5及びCCD6を設ける一方で、CPU11及び切替スイッチ15はそのセンサヘッド2とは別体のコントローラ3に設けたが、これらを全て一体に構成してもよい。   In the above embodiment, the light projecting element 5 and the CCD 6 are provided in the same sensor head 2, while the CPU 11 and the changeover switch 15 are provided in the controller 3 that is separate from the sensor head 2. You may comprise.

・上記実施の形態では、光透過性を有する被測定物として2枚のガラス基板W1,W2を貼り合わせた貼合せ基板Wの各種距離測定を実施したが、貼合せ基板(ガラス基板)以外の被測定物を測定してもよい。   -In the said embodiment, although the various distance measurement of the bonding board | substrate W which bonded two glass substrates W1 and W2 as a to-be-measured object was implemented, other than a bonding board | substrate (glass board | substrate) An object to be measured may be measured.

・上記実施の形態では、貼合せ基板Wの表裏面a〜dの位置とを対応付ける基準がセンサヘッド2(投光素子5)の近接側か離間側かのいずれかから選択するようにしたが、基準を予め記憶された測定対象の各面a〜dのいずれかから選択するようにしてもよい。特に、被測定物が3つ以上の複数となる程、複数の表裏面から基準を選択可能とする意義は大きい。   In the above embodiment, the reference for associating the positions of the front and back surfaces a to d of the bonded substrate W is selected from either the proximity side or the separation side of the sensor head 2 (light projecting element 5). The reference may be selected from any one of the surfaces a to d of the measurement object stored in advance. In particular, the greater the number of objects to be measured is three or more, the greater the significance of being able to select a reference from a plurality of front and back surfaces.

次に、上記実施の形態及び別例から把握できる技術的思想を以下に追記する。
(イ) 請求項1〜3のいずれか1項に記載の距離測定装置において、
前記受光分布検出手段は、CCDであることを特徴とする距離測定装置。
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below.
(A) In the distance measuring device according to any one of claims 1 to 3,
The distance measuring device, wherein the received light distribution detecting means is a CCD.

このようにすれば、CCDにて好適な受光分布を検出することができる。
(ロ) 光透過性を有する被測定物に光を照射し、その光の照射に基づく前記被測定物の表面及び裏面の各反射光を受光して測定レンジ内の受光分布を検出し、その受光分布における複数の受光ピーク位置から前記被測定物の表面位置及び裏面位置を対応付けるとともに、その受光ピーク位置から前記被測定物に関する測定対象部分の測定値を算出するようにした距離測定方法であって、
前記受光ピーク位置と前記被測定物の表面位置及び裏面位置とを対応付ける基準を、前記被測定物の各面のいずれかから選択するようにしたことを特徴とする距離測定方法。
In this way, a suitable light distribution can be detected by the CCD.
(B) irradiating a light-transmitting object to be measured, receiving each reflected light on the front and back surfaces of the object to be measured based on the light irradiation, and detecting a light reception distribution within the measurement range; The distance measurement method associates the surface position and the back surface position of the object to be measured from a plurality of light reception peak positions in the light reception distribution, and calculates the measurement value of the measurement target portion related to the object to be measured from the light reception peak position. And
A distance measuring method, wherein a reference for associating the light receiving peak position with a front surface position and a back surface position of the object to be measured is selected from any one of the surfaces of the object to be measured.

このようにすれば、請求項1と同様な効果を得ることができる。   In this way, the same effect as in the first aspect can be obtained.

本実施の形態の距離測定装置の斜視図である。It is a perspective view of the distance measuring device of this embodiment. 距離測定装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of a distance measuring device. 距離測定を説明するための説明図である。It is explanatory drawing for demonstrating distance measurement. 距離測定を説明するための説明図である。It is explanatory drawing for demonstrating distance measurement. 距離測定を説明するための説明図である。It is explanatory drawing for demonstrating distance measurement.

符号の説明Explanation of symbols

2…センサヘッド、3…コントローラ、5…投光手段としての投光素子、6…受光分布検出手段としてのCCD、11…測定値算出手段としてのCPU、15…選択手段としての切替スイッチ、D1,D2…測定対象部分としての厚み、L…測定対象部分としての隙間距離、W…被測定物としての貼合せ基板(W1…上ガラス基板、W2…下ガラス基板)、a〜d…面(表面・裏面)。   DESCRIPTION OF SYMBOLS 2 ... Sensor head, 3 ... Controller, 5 ... Light projection element as light projection means, 6 ... CCD as light reception distribution detection means, 11 ... CPU as measurement value calculation means, 15 ... Changeover switch as selection means, D1 , D2: thickness as a measurement target portion, L: gap distance as a measurement target portion, W: a bonded substrate as a measurement object (W1: upper glass substrate, W2: lower glass substrate), a to d: plane ( front side, reverse side).

Claims (3)

光透過性を有する被測定物に光を照射する投光手段と、
前記投光手段からの光の照射に基づく前記被測定物の表面及び裏面の各反射光を受光可能に配置され、測定レンジ内の受光分布を検出する受光分布検出手段と、
前記受光分布検出手段で検出した受光分布における複数の受光ピーク位置から前記被測定物の表面位置及び裏面位置を対応付けるとともに、その受光ピーク位置から前記被測定物に関する測定対象部分の測定値を算出する測定値算出手段と
を備えた距離測定装置であって、
前記受光ピーク位置と前記被測定物の表面位置及び裏面位置とを対応付ける基準を、予め記憶された測定対象とする全ての前記被測定物の各面のいずれかから選択する選択手段を備えたことを特徴とする距離測定装置。
A light projecting means for irradiating the object to be measured with light transmission;
A light distribution distribution detecting means that is arranged so as to be able to receive each reflected light on the front and back surfaces of the object to be measured based on the irradiation of light from the light projecting means, and detects a light reception distribution within the measurement range;
The surface position and the back surface position of the object to be measured are associated with each other from the plurality of light receiving peak positions in the light receiving distribution detected by the light receiving distribution detecting means, and the measurement value of the measurement target portion related to the object to be measured is calculated from the light receiving peak position. A distance measuring device comprising a measured value calculating means,
Selection means for selecting a reference for associating the light receiving peak position with the front surface position and the back surface position of the object to be measured from any of the surfaces of all the objects to be measured that are stored in advance. A distance measuring device characterized by.
請求項1に記載の距離測定装置において、
前記選択手段は、操作者の操作により選択切替可能に構成されたことを特徴とする距離測定装置。
The distance measuring device according to claim 1,
The distance measuring device is characterized in that the selection means is configured to be selectable and switched by an operator's operation.
請求項1又は2に記載の距離測定装置において、
前記測定値算出手段は、前記測定対象部分として前記被測定物の厚み又は複数の前記被測定物間の隙間距離の測定値を算出することを特徴とする距離測定装置。
In the distance measuring device according to claim 1 or 2,
The measurement value calculating unit calculates a measurement value of a thickness of the measurement object or a gap distance between the plurality of measurement objects as the measurement target portion.
JP2006054168A 2006-02-28 2006-02-28 Distance measuring device Active JP4796405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054168A JP4796405B2 (en) 2006-02-28 2006-02-28 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054168A JP4796405B2 (en) 2006-02-28 2006-02-28 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2007232549A true JP2007232549A (en) 2007-09-13
JP4796405B2 JP4796405B2 (en) 2011-10-19

Family

ID=38553269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054168A Active JP4796405B2 (en) 2006-02-28 2006-02-28 Distance measuring device

Country Status (1)

Country Link
JP (1) JP4796405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103363917B (en) * 2012-03-28 2016-07-13 上海重矿连铸技术工程有限公司 Laser digital display point to point is from measuring instrument and point to point distance measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159516A (en) * 1999-11-30 2001-06-12 Keyence Corp Optical displacement meter
JP2004069446A (en) * 2002-08-06 2004-03-04 Nippon Sheet Glass Co Ltd Thickness and gap measuring instrument
JP2004264082A (en) * 2003-02-28 2004-09-24 Sunx Ltd Thickness measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159516A (en) * 1999-11-30 2001-06-12 Keyence Corp Optical displacement meter
JP2004069446A (en) * 2002-08-06 2004-03-04 Nippon Sheet Glass Co Ltd Thickness and gap measuring instrument
JP2004264082A (en) * 2003-02-28 2004-09-24 Sunx Ltd Thickness measuring instrument

Also Published As

Publication number Publication date
JP4796405B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP6046929B2 (en) Optical measuring device
JP2016217736A (en) Ultrasonic wave flow rate switch
KR100622959B1 (en) A separate type photoelectric switch
JP2011202957A (en) Optical encoder
US20170184501A1 (en) Operating method of a biological detection calibration system
JP4796405B2 (en) Distance measuring device
JP4832741B2 (en) Ranging sensor and setting method thereof
TWI511007B (en) Optical touch apparatus and optical touch method
JP2003075117A (en) Optical sensor device and signal processing device of optical sensor and branch connector for optical sensor
CN110030946B (en) Multi-mode and state indicating device and method for handheld three-dimensional scanning equipment
JP2016219114A (en) Ultrasonic flow rate switch
JP5194101B2 (en) Photoelectric switch
JP5066207B2 (en) Photoelectric switch and object detection method using the same
JP5139049B2 (en) Photoelectric sensor
JP6132236B2 (en) Lighting device
JP2010122127A (en) Optical displacement sensor system, console, controller and program
JP3854300B2 (en) Photoelectric switch
JP4919590B2 (en) Ranging sensor and setting method thereof
JP2008076118A (en) Displacement sensor and sensor system
JP5271431B2 (en) Triangular distance measurement photoelectric switch
WO2022190516A1 (en) Optical sensor, control method for optical sensor, and control program for optical sensor
JP3854301B2 (en) Photoelectric switch
JP2009113521A (en) Non-contact operating device and electronic equipment
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
JP2022139823A (en) Optical sensor, control method for optical sensor, and control program for optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250