JP2007232492A - Method and apparatus for measuring transfer characteristic - Google Patents

Method and apparatus for measuring transfer characteristic Download PDF

Info

Publication number
JP2007232492A
JP2007232492A JP2006052843A JP2006052843A JP2007232492A JP 2007232492 A JP2007232492 A JP 2007232492A JP 2006052843 A JP2006052843 A JP 2006052843A JP 2006052843 A JP2006052843 A JP 2006052843A JP 2007232492 A JP2007232492 A JP 2007232492A
Authority
JP
Japan
Prior art keywords
sound
measurement
transfer characteristic
interval
characteristic measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052843A
Other languages
Japanese (ja)
Other versions
JP4915773B2 (en
Inventor
Gen Izumisawa
玄 和泉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP2006052843A priority Critical patent/JP4915773B2/en
Publication of JP2007232492A publication Critical patent/JP2007232492A/en
Application granted granted Critical
Publication of JP4915773B2 publication Critical patent/JP4915773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereophonic System (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a transfer characteristic such as an impulse response or the like to be measured such that its S/N ratio is improved. <P>SOLUTION: A measurement sound is generated by a loudspeaker 13 which is arranged in a measurement space 12, in response to a TSP signal. The generation interval of the TSP signal is controlled by a measurement signal generation interval control section 16 so as to be increased by a predetermined period. A microphone 14 starts recording a measured sound, in synchronization with outputting of an instruction for generating the TSP signal. A measured signal recording section 19 acquires an output waveform of the microphone 14. The output waveform represents a recorded sound result of the measured sound being generated and is influenced by the transfer characteristic of the measurement space 12. A convolution computing section 20 generates an impulse response by applying a convolution to the output waveform which is acquired by the microphone 14, by using a TSP inverse filter. The TSP signal is output multiple times at controlled intervals, and impulse responses corresponding to these outputs are subjected to a synchronous adding operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、伝達特性測定方法および装置に関し、特に、S/N(エスエヌ)比を向上させることができる伝達特性測定方法および装置に関する。   The present invention relates to a transfer characteristic measuring method and apparatus, and more particularly to a transfer characteristic measuring method and apparatus capable of improving the S / N ratio.

アコースティックピアノでは、弦を押さえているダンパーをダンパーペダルで弦から外す操作を行い、実際に弾かれた弦だけでなく他の全ての弦を共鳴によって振動させる演奏手法がとられる。電子ピアノや電子オルガン等の電子楽器において、このダンパーペダル操作による弦共鳴音を模擬する機能が要求されることがある。この弦共鳴音を模擬するために、例えば、通常の楽音をリバーブと呼ばれる残響付加回路に入力し、ダンパーペダルを踏み込んだ時に残響付加回路の出力に基づく残響音を発生させることが行われている。   In an acoustic piano, the damper that holds the strings is removed from the strings with a damper pedal, and not only the strings that are actually played but also all other strings are vibrated by resonance. In an electronic musical instrument such as an electronic piano or an electronic organ, a function of simulating a string resonance sound by operating the damper pedal may be required. In order to simulate this string resonance sound, for example, a normal musical sound is input to a reverberation adding circuit called reverb, and a reverberation sound based on the output of the reverberation adding circuit is generated when the damper pedal is depressed. .

この残響音発生においては、アコースティックピアノの弦の配置や実際に演奏される空間の形状などによって異なる反射や干渉を考慮して信号のデジタル処理を行うことが望ましい。そこで、インパルス応答を測定し、その測定結果を利用することが行われる。   In the generation of reverberant sound, it is desirable to perform digital processing of a signal in consideration of reflection and interference that vary depending on the arrangement of the strings of the acoustic piano and the shape of the space actually played. Therefore, an impulse response is measured and the measurement result is used.

ホールなどの音響空間のインパルス応答を測定する場合、暗騒音が大きいと1回の測定では十分なS/N比がとれないことがある。そこで、測定信号(例えば、インパルス)を等間隔で複数回発生し、その応答を各信号発生間隔で同期をとって加算し、平均する方法がとられる。この方法による処理は同期加算処理と呼ばれ、再現性のある測定信号のみが加算されて増幅され、ランダムに発生されるノイズ成分は加算されることによって減衰し、結果的にS/N比を向上させることができる。   When measuring the impulse response of an acoustic space such as a hall, if the background noise is large, a sufficient S / N ratio may not be obtained with a single measurement. Therefore, a method is used in which measurement signals (for example, impulses) are generated a plurality of times at equal intervals, and the responses are added in synchronization at each signal generation interval and averaged. Processing by this method is called synchronous addition processing, and only reproducible measurement signals are added and amplified, and randomly generated noise components are attenuated by addition, resulting in an S / N ratio. Can be improved.

インパルス応答結果は電子ピアノだけでなく、オーディオ機器に広く利用されている。例えば、特開2000−097763号公報には、同期加算処理をするサラウンド効果に適したインパルス応答の収集方法が記載されている。また、特開平10−210592号公報には、スピーカからマイクロホンへの音の回り込みによって生じるハウリングを検出するハウリング検出器において、音響系のインパルス応答の計測開始から所定値減衰までの時間に基づいてハウリング発生の有無を検出するものが記載されている。
特開2000−097763号公報 特開平10−210592号公報
Impulse response results are widely used not only for electronic pianos but also for audio equipment. For example, Japanese Patent Laid-Open No. 2000-097763 describes an impulse response collection method suitable for the surround effect of performing synchronous addition processing. Japanese Patent Laid-Open No. 10-210592 discloses a howling detector for detecting howling caused by sound sneaking from a speaker to a microphone, based on the time from the start of measurement of an impulse response of an acoustic system to the decay of a predetermined value. What detects the presence or absence of occurrence is described.
JP 2000-097663 A JP-A-10-210592

上記同期加算処理は無相関な暗騒音を低減するのには有効である。しかし測定信号を等間隔で発生させるので、測定信号の発生周期がちょうど整数倍となる信号発生間隔である定常信号は全く低減できない。例えば、エアコンや測定機材などが発する周期的なノイズは低減できないことがある。その結果、十分なS/N比が確保できなかったり、その周期的なノイズを測定信号の一部であると誤ってしまったりするという問題点があった。   The synchronous addition process is effective in reducing uncorrelated background noise. However, since the measurement signals are generated at equal intervals, it is not possible to reduce a steady signal that is a signal generation interval in which the generation cycle of the measurement signal is exactly an integral multiple. For example, periodic noise generated by an air conditioner or measurement equipment may not be reduced. As a result, there has been a problem that a sufficient S / N ratio cannot be secured, or that the periodic noise is mistakenly regarded as a part of the measurement signal.

本発明は、上記問題点に鑑み、暗騒音だけでなく周期的なノイズをも低減してインパルス応答等のS/N比を向上させることができる伝達特性測定方法および装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a transfer characteristic measuring method and apparatus capable of reducing not only background noise but also periodic noise and improving the S / N ratio such as impulse response. And

上記問題点を解決し、目的を達成するための本発明は、音場が形成される空間内に複数回発音された測定音を収音し、該測定音を表す収音信号を前記測定音の発音間隔で同期をとって加算および平均し、該加算平均した結果を前記音場の伝達特性として記録する伝達特性測定方法において、前記測定音が予定時間ずつ変化させた発音間隔で発音される点に第1の特徴がある。   In order to solve the above problems and achieve the object, the present invention collects a measurement sound that is sounded a plurality of times in a space in which a sound field is formed, and collects a collected sound signal representing the measurement sound as the measurement sound. In the transfer characteristic measurement method, the results of the addition and averaging are recorded as the sound field transfer characteristics, and the measured sound is generated at a sound generation interval that is changed by a predetermined time. The point has the first feature.

また、本発明は、前記測定音の発音間隔を予定時間ずつ増加させる方向に変化させる点に第2の特徴がある。   In addition, the present invention has a second feature in that the sounding interval of the measurement sound is changed in a direction to increase by a predetermined time.

また、本発明は、前記測定音がインパルス信号によって生成されている点に第3の特徴がある。   Further, the present invention has a third feature in that the measurement sound is generated by an impulse signal.

さらに、本発明は、前記発音間隔の変化に対応する予定時間が、予め設定した減衰目標周波数帯域における上限周波数の1周期分より短くなるように設定される点に第4の特徴がある。   Furthermore, the present invention has a fourth feature in that the scheduled time corresponding to the change in the sounding interval is set to be shorter than one cycle of the upper limit frequency in the preset attenuation target frequency band.

またさらに、本発明は、前記測定音の発音回数は、前記発音間隔の変化に対応する予定時間との積が、予め設定した減衰目標周波数帯域における下限周波数の1周期分より長くなるように設定される点に第5の特徴がある。   Still further, in the present invention, the number of sounding times of the measurement sound is set so that a product of a scheduled time corresponding to a change in the sounding interval is longer than one cycle of a lower limit frequency in a preset attenuation target frequency band. There is a fifth feature.

第1〜第5の特徴を有する本発明では、インパルス信号等によって生成された測定音が予定時間ずつ増加または減少する方向に変化する発音間隔で音場に発音され、該測定音の収音信号を発音間隔に同期させて加算・平均して伝達特性を得る。このように、等間隔ではなく、予定した時間ずつずらされていく発音間隔を使用することによって、周期的でない暗騒音だけでなく、モータやポンプなど、周期が一定しているノイズも低減され、収音信号のS/N比が向上され、精度のよい伝達特性を測定することができる。   In the present invention having the first to fifth characteristics, a measurement sound generated by an impulse signal or the like is sounded in a sound field at a sound generation interval that changes in a direction of increasing or decreasing by a predetermined time, and a sound collection signal of the measurement sound Is added and averaged in synchronization with the sound production interval to obtain the transfer characteristics. In this way, by using sound generation intervals that are shifted by a predetermined time instead of equal intervals, not only background noise that is not periodic, but also noise that has a constant period, such as motors and pumps, is reduced. The S / N ratio of the collected sound signal is improved, and the transfer characteristic with high accuracy can be measured.

第3の特徴を有する本発明では、インパルス信号に対するインパルス応答を伝達特性として取得することができる。   In the present invention having the third feature, an impulse response to the impulse signal can be acquired as a transfer characteristic.

第4の特徴を有する本発明では、複数回の測定音発生間隔の増分よりも長い波長を有するノイズを減衰することができる。   In the present invention having the fourth feature, noise having a wavelength longer than an increment of a plurality of measurement sound generation intervals can be attenuated.

第5の特徴を有する本発明では、複数回の測定音発生間隔の増分の総和、すなわち測定開始から終了までの測定音発生間隔のずらし量を、ノイズの周波数の1周期分より長くすることにより、同期加算によって該ノイズを減衰させることができる。   In the present invention having the fifth feature, the sum of the increments of the plurality of measurement sound generation intervals, that is, the shift amount of the measurement sound generation interval from the start to the end of the measurement is made longer than one period of the noise frequency. The noise can be attenuated by synchronous addition.

以下、図面を参照して本発明を詳細に説明する。図2は本発明の一実施形態に係るインパルス応答測定装置のハードウェア構成を示すブロック図である。同図において、CPU1は、システムバス2を介して図中に示した各部を制御する。システムバス2は、アドレスバス、データバスおよび制御信号ラインからなる。ROM3はCPU1において用いられるプログラムを記憶するプログラムメモリ3aや少なくとも測定音データを含む各種データを記憶するデータメモリ3bを有している。RAM4はCPU1による制御において発生する各種のデータ等を一時的に記憶する。操作スイッチ5aを含む各種状態設定のためのスイッチ等を備えた操作パネル5が設けられ、この操作パネル5から設定された情報はCPU1に供給される。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 is a block diagram showing a hardware configuration of the impulse response measuring apparatus according to the embodiment of the present invention. In the figure, a CPU 1 controls each part shown in the figure via a system bus 2. The system bus 2 includes an address bus, a data bus, and a control signal line. The ROM 3 has a program memory 3a for storing programs used in the CPU 1 and a data memory 3b for storing various data including at least measurement sound data. The RAM 4 temporarily stores various data generated in the control by the CPU 1. An operation panel 5 including switches for setting various states including the operation switch 5a is provided, and information set from the operation panel 5 is supplied to the CPU 1.

収音システム6は、ホール等の測定空間でインパルス応答を測定するシステムである。収音システム6で収音されたインパルス応答はA/D変換器7でデジタルデータに変換される。このデジタルデータは、波形収音・再生部8に入力されて記憶される。   The sound collection system 6 is a system that measures an impulse response in a measurement space such as a hall. The impulse response collected by the sound collection system 6 is converted into digital data by the A / D converter 7. This digital data is input to and stored in the waveform sound collection / reproduction unit 8.

波形メモリ9には、測定音波形データが格納されている。波形収音・再生部8は、波形メモリ9から測定音波形を読み出し、測定信号を生成する。生成された測定信号はD/A変換器10を介してアナログ信号に変換され、サウンドシステム11に供給される。サウンドシステム11は、アンプやスピーカ等から構成されており、D/A変換器10の出力信号を外部に発音させる。   The waveform memory 9 stores measurement sound waveform data. The waveform sound collection / reproduction unit 8 reads the measurement sound waveform from the waveform memory 9 and generates a measurement signal. The generated measurement signal is converted into an analog signal via the D / A converter 10 and supplied to the sound system 11. The sound system 11 is composed of an amplifier, a speaker, and the like, and causes the output signal of the D / A converter 10 to sound externally.

次に、インパルス応答測定装置の要部機能について説明する。図1は、インパルス応答測定装置の要部機能を示すブロック図である。図1において、収音システム6は音場すなわち測定空間12に配置されたマイクロフォン14からなる。マイクロフォン14は、例えば、ダミーヘッドに装着される。測定信号発生部15はスピーカ13に入力するインパルス信号を発生する。なお、本実施形態では、インパルス信号として時間伸長パルス(Time Stretched Pulse:TSP信号)を用いている。TSP信号はインパルスのエネルギを時間軸に分散させたパルスである。   Next, the main function of the impulse response measuring apparatus will be described. FIG. 1 is a block diagram showing main functions of the impulse response measuring apparatus. In FIG. 1, the sound collection system 6 is composed of a microphone 14 disposed in a sound field or measurement space 12. The microphone 14 is attached to a dummy head, for example. The measurement signal generator 15 generates an impulse signal input to the speaker 13. In the present embodiment, a time stretched pulse (TSP signal) is used as the impulse signal. The TSP signal is a pulse in which impulse energy is dispersed along the time axis.

測定信号発生間隔つまりTSP信号発生間隔は、測定信号発生間隔制御部16で予定時間ずつ変化するように制御される。ここでは、TSP信号が増加するように制御される例を説明する。測定信号発生指示部17は、測定信号発生間隔制御部16で制御されたTSP信号発生間隔で、測定信号発生部15にTSP信号発生指示を入力する。測定信号発生部15はこのTSP信号発生指示を受けてTSP信号を発生する。スピーカ13は、測定信号発生部15で発生されたTSP信号に基づく音声つまり測定音を発音する。   The measurement signal generation interval, that is, the TSP signal generation interval, is controlled by the measurement signal generation interval control unit 16 so as to change every scheduled time. Here, an example in which the TSP signal is controlled to increase will be described. The measurement signal generation instruction unit 17 inputs a TSP signal generation instruction to the measurement signal generation unit 15 at the TSP signal generation interval controlled by the measurement signal generation interval control unit 16. The measurement signal generator 15 receives the TSP signal generation instruction and generates a TSP signal. The speaker 13 generates sound based on the TSP signal generated by the measurement signal generator 15, that is, measurement sound.

測定信号発生指示部17がTSP信号発生指示を出力するのと同期して、収録指示部18が測定音の収録指示を発生する。被測定信号収録部19にはマイクロフォン14が接続されており、収録指示部18からの収録指示に応答してマイクロフォン14の出力波形を取り込む。この出力波形は発音された測定音の収音結果であり、測定空間12の伝達特性の影響を含むものである。   In synchronization with the measurement signal generation instruction unit 17 outputting the TSP signal generation instruction, the recording instruction unit 18 generates a measurement sound recording instruction. A microphone 14 is connected to the measured signal recording unit 19, and the output waveform of the microphone 14 is captured in response to a recording instruction from the recording instruction unit 18. This output waveform is the sound collection result of the sounded measurement sound, and includes the influence of the transfer characteristics of the measurement space 12.

畳み込み演算部20は、マイクロフォン14から取り込んだ出力波形に逆TSP信号発生部21から入力される逆TSP信号(TSP逆フィルタ)を畳み込む。この畳み込み演算によってインパルス応答が得られる。TSP信号は測定信号発生間隔制御部16で決定された間隔で多数回出力され、これに対するインパルス応答がバッファ22に記憶される。バッファ22に記憶されるインパルス応答は、同期加算演算部23に入力され、TSP信号発生間隔で同期をとって加算され、さらに平均化される。   The convolution operation unit 20 convolves the inverse TSP signal (TSP inverse filter) input from the inverse TSP signal generation unit 21 with the output waveform captured from the microphone 14. An impulse response is obtained by this convolution operation. The TSP signal is output a number of times at intervals determined by the measurement signal generation interval control unit 16, and the impulse response is stored in the buffer 22. The impulse responses stored in the buffer 22 are input to the synchronous addition calculation unit 23, added in synchronization at the TSP signal generation interval, and further averaged.

TSP信号を等間隔で発生させてその収音結果を同期加算した場合、暗騒音は低減できるが、周期性のあるノイズは低減できない可能性がある。そこで、本実施形態ではTSP信号の発生間隔が等間隔にならないように、発生毎に増分を付加したTSP信号発生間隔を設定した。こうして、間隔をずらせてTSP信号を発生すると、同期加算されたインパルス応答には、全く減衰されないノイズが含まれなくなる。   When TSP signals are generated at equal intervals and the collected sound results are synchronously added, background noise can be reduced, but periodic noise may not be reduced. Therefore, in this embodiment, the TSP signal generation interval to which an increment is added every generation is set so that the generation interval of the TSP signal is not equal. Thus, when the TSP signal is generated at a shifted interval, the synchronously added impulse response does not include noise that is not attenuated at all.

図3は、インパルス応答測定処理のフローチャートである。図3を参照して上記インパルス応答測定装置を説明する。図3において、ステップS1では、測定信号発生間隔制御部16にTSP信号発生間隔の初期値(基本間隔)Lを設定する。ステップS2では、基本間隔Lに付加する増分Iを設定する。ステップS3では、バッファ22をクリアして初期化する。ステップS4では、変数Nに「1」を設定する。   FIG. 3 is a flowchart of the impulse response measurement process. The impulse response measuring apparatus will be described with reference to FIG. In FIG. 3, in step S <b> 1, an initial value (basic interval) L of the TSP signal generation interval is set in the measurement signal generation interval control unit 16. In step S2, an increment I added to the basic interval L is set. In step S3, the buffer 22 is cleared and initialized. In step S4, “1” is set to the variable N.

ステップS5では、収録指示部18からの収録指示に応答して、マイクロフォン14から出力される測定音の応答信号(TSP応答)である波形データの取り込みが開始される。ステップS6では、測定信号発生指示部17からの指示により測定信号発生部15でTSP信号を発生させる。ステップS7では、被測定信号としてマイクロフォン14の出力波形データの取り込みを終了する。   In step S5, in response to a recording instruction from the recording instruction unit 18, the acquisition of waveform data, which is a response signal (TSP response) of the measurement sound output from the microphone 14, is started. In step S <b> 6, the measurement signal generation unit 15 generates a TSP signal according to an instruction from the measurement signal generation instruction unit 17. In step S7, the capturing of the output waveform data of the microphone 14 as the signal under measurement is terminated.

ステップS8では、予定した波形データの取り込みは終了したか、つまり予定した回数分のTSP応答を測定したか否かが判断される。ステップS8が否定ならば、ステップS9に進んで待ち時間Tを計算する。待ち時間Tは次のTSP信号発生までの時間つまりTSP信号発生間隔である。待ち時間Tは次式(1)で計算される。T=L+I&times;(N−1)……(式1)。ステップS10では、時間Tが経過するまで、TSP信号の発生を待機する。   In step S8, it is determined whether or not the scheduled waveform data has been captured, that is, whether or not the TSP responses for the predetermined number of times have been measured. If step S8 is negative, the process proceeds to step S9 to calculate the waiting time T. The waiting time T is the time until the next TSP signal generation, that is, the TSP signal generation interval. The waiting time T is calculated by the following equation (1). T = L + I &times; (N-1) (Formula 1). In step S10, the generation of the TSP signal is waited until the time T elapses.

時間Tの経過後、ステップS11に進み、測定回数Nをインクリメントする。ステップS12では、取り込んだTSP応答にTSP逆フィルタを畳み込んでインパルス応答を計算する。ステップS13では、インパルス応答(波形データ)を同期加算処理部23でそれまでに取り込んだインパルス応答に加算する。   After the elapse of time T, the process proceeds to step S11, and the number of measurements N is incremented. In step S12, an impulse response is calculated by convolving a TSP inverse filter with the acquired TSP response. In step S13, the impulse response (waveform data) is added to the impulse response captured so far by the synchronous addition processing unit.

TSP信号の測定を予定回数行ったならば、ステップS8は肯定となってステップS14に進む。ステップS14では、ステップS13で加算演算処理された波形データを測定回数Nで除算して平均化する。ステップS15では、波形データの除算結果が出力される。   If the measurement of the TSP signal is performed a predetermined number of times, step S8 becomes affirmative and the process proceeds to step S14. In step S14, the waveform data subjected to the addition calculation process in step S13 is divided by the number of times N and averaged. In step S15, the division result of the waveform data is output.

TSP信号発生間隔の決定手法を説明する。同期加算によってノイズを減衰させるためには、複数回のTSP信号発生間隔の増分の総和、すなわち測定開始から終了までのTSP信号発生間隔のずらし量が、ノイズの周波数の1周期分必要である。サンプリング周波数fsを48キロヘルツ(kHz)とすると20ヘルツ(Hz)のノイズは2400ポイントに相当する。   A method for determining the TSP signal generation interval will be described. In order to attenuate noise by synchronous addition, the sum of increments of a plurality of TSP signal generation intervals, that is, the shift amount of the TSP signal generation interval from the start to the end of measurement, is required for one period of the noise frequency. If the sampling frequency fs is 48 kilohertz (kHz), noise of 20 hertz (Hz) corresponds to 2400 points.

増分Iが周期の整数倍に相当する周波数のノイズは全く減衰されない。そのため、ノイズのすべての周波数成分を減衰させるためには、増分Iを1ポイントとするのがよい。しかし、増分Iを1ポイントとして20Hzのノイズを減衰させるためにはTSP信号発生回数を2400回としなければならないので、実際的ではない。   Noise at frequencies where the increment I corresponds to an integer multiple of the period is not attenuated at all. Therefore, in order to attenuate all frequency components of noise, the increment I is preferably set to one point. However, in order to attenuate 20 Hz noise with the increment I as one point, the number of TSP signal generations must be 2400, which is not practical.

したがって、減衰させるノイズの周波数を限定して増分Iを設定することとし、本実施形態では、20Hz〜3kHzを減衰させるノイズの周波数範囲とした。サンプリング周波数fs=48kHzとすると、3kHzの周期は16ポイントとなるので、増分Iを16ポイントとすれば、3kHzのノイズは減衰されないが、それより低い周波数のノイズは減衰させることができる。20Hz2400ポイントの信号を16ポイントの増分でカバーする場合、2400/16=150と計算され、150回のITSP信号発生回数となる。なお、基本間隔Lは、TSP信号長と無音部分とを合わせて2秒となるように設定した。   Therefore, the increment I is set by limiting the frequency of noise to be attenuated, and in this embodiment, the frequency range of noise to be attenuated is 20 Hz to 3 kHz. If the sampling frequency fs = 48 kHz, the period of 3 kHz is 16 points. Therefore, if the increment I is 16 points, noise of 3 kHz is not attenuated, but noise of lower frequencies can be attenuated. When a signal of 2400 points at 20 Hz is covered by an increment of 16 points, 2400/16 = 150 is calculated, and the number of ITSP signal generation times is 150 times. Note that the basic interval L was set to be 2 seconds in total of the TSP signal length and the silent portion.

上述のように設定した条件でTSP信号を発生させ、収音した結果を同期加算して無音部分のFFTを行ったところ、ノイズ成分は10〜20デシベル(dB)低減できていた。但し、3kHzの倍数である3kHz、6kHz、9kHz等の周波数を有するノイズ成分は低減できなかったが、これは設定のとおりの結果である。   When a TSP signal was generated under the conditions set as described above, and the collected results were synchronously added and FFT of the silent portion was performed, the noise component was reduced by 10 to 20 decibels (dB). However, noise components having frequencies such as 3 kHz, 6 kHz, and 9 kHz that are multiples of 3 kHz could not be reduced, but this is the result as set.

図4は、本実施形態によるインパルス応答測定装置によるノイズ成分の減衰効果を検証した実験結果の模式図である。この実験では、TSP信号波形に所定周波数の正弦波を小振幅で重畳し、これを同期加算して無音部分のRMS(実効値)を測定して、正弦波がどの程度低減するかを調べた。図4において、横軸は周波数、縦軸はRMSをそれぞれ示す。重畳する正弦波は40Hz〜12kHzの間で変化させた。図4において、重畳させた正弦波の周波数が低い領域では、該正弦波が減衰しているのが分かる。正弦波の周波数が高くなるにつれて、減衰の程度が小さくなっていく傾向がある。この例でも、3kHz、6kHz、12kHz等、3kHzの倍数の周波数では正弦波は全く減衰していない。   FIG. 4 is a schematic diagram of an experimental result verifying the attenuation effect of the noise component by the impulse response measuring apparatus according to the present embodiment. In this experiment, a sine wave of a predetermined frequency was superimposed on the TSP signal waveform with a small amplitude, and this was added synchronously to measure the RMS (rms value) of the silent part to examine how much the sine wave was reduced. . In FIG. 4, the horizontal axis represents frequency, and the vertical axis represents RMS. The superimposed sine wave was changed between 40 Hz and 12 kHz. In FIG. 4, it can be seen that the sine wave is attenuated in the region where the frequency of the superimposed sine wave is low. As the frequency of the sine wave increases, the degree of attenuation tends to decrease. Also in this example, the sine wave is not attenuated at all at frequencies of multiples of 3 kHz, such as 3 kHz, 6 kHz, and 12 kHz.

図5は、TSP信号発生間隔を変化させない従来の方法によるノイズ成分の減衰効果を示す模式図である。この図に示すように、従来の方法では、正弦波が減衰されない周波数が測定範囲の全帯域にわたって多数存在しているのが分かる。   FIG. 5 is a schematic diagram showing a noise component attenuation effect by a conventional method in which the TSP signal generation interval is not changed. As shown in this figure, in the conventional method, it can be seen that there are many frequencies at which the sine wave is not attenuated over the entire band of the measurement range.

図4と図5との対比から、本実施形態のインパルス応答測定装置は、周期的なノイズの低減に有効であることが分かる。   From the comparison between FIG. 4 and FIG. 5, it can be seen that the impulse response measuring apparatus of this embodiment is effective in reducing periodic noise.

なお、本発明は、上述の実施形態に限定されず、種々変形可能である。例えば、TSP信号発生間隔は、基本間隔Lに増分Iを加える方向に変化させるのではなく、基本間隔Lから予定時間ずつ減少させる方向に変化させるのであってもよい。   In addition, this invention is not limited to the above-mentioned embodiment, A various deformation | transformation is possible. For example, the TSP signal generation interval may not be changed in the direction in which the increment I is added to the basic interval L, but may be changed in a direction to decrease from the basic interval L by a predetermined time.

また、TSP信号発生間隔をリアルタイムで演算して変化させていくのに代えて、徐々に変化していく間隔を有する多数のTSP信号を含む波形データを予め形成しておき、この波形データに基づく音声をスピーカから発生させるようにしてもよい。   Further, instead of calculating and changing the TSP signal generation interval in real time, waveform data including a large number of TSP signals having gradually changing intervals is formed in advance, and based on this waveform data. Sound may be generated from a speaker.

本発明の一実施形態に係るインパルス応答測定装置の要部機能を示すブロック図である。It is a block diagram which shows the principal part function of the impulse response measuring device which concerns on one Embodiment of this invention. 本発明の一実施形態に係るインパルス応答測定装置のハード構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the impulse response measuring apparatus which concerns on one Embodiment of this invention. インパルス応答測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an impulse response measuring apparatus. 本実施形態によるインパルス応答測定装置によるノイズ成分の減衰効果を検証した実験結果の模式図である。It is a schematic diagram of the experimental result which verified the attenuation | damping effect of the noise component by the impulse response measuring apparatus by this embodiment. 従来の方法によるノイズ成分の減衰効果を示す模式図である。It is a schematic diagram which shows the attenuation effect of the noise component by the conventional method.

符号の説明Explanation of symbols

1…CPU、 6…収音システム、 8…波形収音・再生部、 12…測定空間、 15…測定信号発生部、 16…測定信号発生間隔制御部、 23…同期加算演算部

DESCRIPTION OF SYMBOLS 1 ... CPU, 6 ... Sound collection system, 8 ... Waveform sound collection / reproduction part, 12 ... Measurement space, 15 ... Measurement signal generation part, 16 ... Measurement signal generation interval control part, 23 ... Synchronous addition calculating part

Claims (10)

音場が形成される空間内に複数回発音された測定音を収音し、該測定音を表す収音信号を前記測定音の発音間隔で同期をとって加算および平均し、該加算平均した結果を前記音場の伝達特性として記録する伝達特性測定方法において、
前記測定音が予定時間ずつ変化させた発音間隔で発音されることを特徴とする伝達特性測定方法。
Collecting the measurement sound that is sounded multiple times in the space where the sound field is formed, adding and averaging the collected sound signals representing the measurement sound in synchronization with the sound generation interval of the measurement sound, and averaging the addition In the transfer characteristic measuring method for recording the result as the transfer characteristic of the sound field,
The transfer characteristic measuring method, wherein the measurement sound is sounded at a sounding interval changed by a predetermined time.
前記測定音の発音間隔を予定時間ずつ増加させる方向に変化させることを特徴とする請求項1記載の伝達特性測定方法。   The transfer characteristic measuring method according to claim 1, wherein the sound generation interval of the measurement sound is changed in a direction of increasing by a predetermined time. 前記測定音がインパルス信号によって生成されていることを特徴とする請求項1または2記載の伝達特性測定方法。   3. The transfer characteristic measuring method according to claim 1, wherein the measurement sound is generated by an impulse signal. 前記発音間隔の変化に対応する予定時間が、予め設定した減衰目標周波数帯域における上限周波数の1周期分より短くなるように設定されることを特徴とする請求項1〜3のいずれかに記載の伝達特性測定方法。   The scheduled time corresponding to the change in the sounding interval is set to be shorter than one cycle of the upper limit frequency in a preset attenuation target frequency band. Transfer characteristic measurement method. 前記測定音の発音回数は、前記発音間隔の変化に対応する予定時間との積が、予め設定した減衰目標周波数帯域における下限周波数の1周期分より長くなるように設定されることを特徴とする請求項1〜4のいずれかに記載の伝達特性測定方法。   The number of sounding times of the measurement sound is set such that a product of the scheduled time corresponding to the change in the sounding interval is longer than one cycle of the lower limit frequency in a preset attenuation target frequency band. The transfer characteristic measuring method according to claim 1. 音場が形成される空間内に測定音を発音する測定音発音手段と、発音された前記測定音の収音手段とを含む伝達特性測定装置において、
予定の発音間隔で測定音を複数回発音させる指示を前記測定音発音手段に与える測定音発生指示手段と、
前記発音間隔を予定時間ずつ変化させるように制御する測定音発生間隔制御手段と、
前記収音手段で収音された複数回の収音信号を前記発音間隔で同期をとって加算および平均する演算手段と、
前記演算手段で演算された結果を前記音場の伝達特性として記録する記憶手段とを具備したことを特徴とする伝達特性測定装置。
In a transfer characteristic measuring device including a measurement sound generating unit that generates a measurement sound in a space where a sound field is formed, and a sound collection unit of the generated measurement sound,
A measurement sound generation instruction means for giving an instruction to the measurement sound sound generation means to sound the measurement sound a plurality of times at a predetermined sound generation interval;
A measurement sound generation interval control means for controlling the sound generation interval to change by a predetermined time; and
An arithmetic means for adding and averaging a plurality of collected sound signals collected by the sound collecting means in synchronization with the sound generation interval;
A transfer characteristic measuring apparatus comprising: storage means for recording the result calculated by the calculating means as the transfer characteristic of the sound field.
前記測定音発生間隔制御手段が、発音間隔を予定時間ずつ増加方向に変化させるように制御するように構成されていることを特徴とする請求項6記載の伝達特性測定装置。   7. The transfer characteristic measuring apparatus according to claim 6, wherein the measurement sound generation interval control means is configured to control the sound generation interval to change in an increasing direction by a predetermined time. 前記測定音がインパルス信号によって生成されていることを特徴とする請求項6または7記載の伝達特性測定装置。   The transfer characteristic measuring apparatus according to claim 6 or 7, wherein the measurement sound is generated by an impulse signal. 前記発音間隔の変化に対応する予定時間が、予め設定した減衰目標周波数帯域における上限周波数の1周期分より短くなるように設定されることを特徴とする請求項6〜8のいずれかに記載の伝達特性測定装置。   The scheduled time corresponding to the change in the sounding interval is set to be shorter than one cycle of the upper limit frequency in a preset attenuation target frequency band. Transfer characteristic measuring device. 前記測定音の発音回数は、前記発音間隔の変化に対応する予定時間との積が、予め設定した減衰目標周波数帯域における下限周波数の1周期分より長くなるように設定されることを特徴とする請求項6〜9のいずれかに記載の伝達特性測定装置。   The number of sounding times of the measurement sound is set such that a product of the scheduled time corresponding to the change in the sounding interval is longer than one cycle of the lower limit frequency in a preset attenuation target frequency band. The transfer characteristic measuring device according to any one of claims 6 to 9.
JP2006052843A 2006-02-28 2006-02-28 Transfer characteristic measuring method and apparatus Expired - Fee Related JP4915773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052843A JP4915773B2 (en) 2006-02-28 2006-02-28 Transfer characteristic measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052843A JP4915773B2 (en) 2006-02-28 2006-02-28 Transfer characteristic measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007232492A true JP2007232492A (en) 2007-09-13
JP4915773B2 JP4915773B2 (en) 2012-04-11

Family

ID=38553222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052843A Expired - Fee Related JP4915773B2 (en) 2006-02-28 2006-02-28 Transfer characteristic measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4915773B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007706A1 (en) 2009-07-17 2011-01-20 エタニ電機株式会社 Impulse response measuring method and impulse response measuring device
EP2429216A2 (en) 2010-09-13 2012-03-14 Canon Kabushiki Kaisha Accoustic apparatus
JP2012093094A (en) * 2010-10-22 2012-05-17 Chugoku Electric Power Co Inc:The Apparatus, system, method and program for supporting acoustic diagnosis
JP2012128207A (en) * 2010-12-15 2012-07-05 Canon Inc Acoustic device, control method thereof, and program
JP2012172977A (en) * 2011-02-17 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Impulse response measuring apparatus
JP2013140350A (en) * 2011-12-09 2013-07-18 Yamaha Corp Device and method for calculating transfer characteristic
WO2015050006A1 (en) 2013-10-01 2015-04-09 クラリオン株式会社 Device, method, and program for measuring sound field
WO2015053068A1 (en) 2013-10-07 2015-04-16 クラリオン株式会社 Sound field measurement device, sound field measurement method, and sound field measurement program
WO2016135868A1 (en) * 2015-02-24 2016-09-01 独立行政法人石油天然ガス・金属鉱物資源機構 Sensor evaluation device, sensor evaluation system, and sensor evaluation method
JPWO2018123612A1 (en) * 2016-12-28 2019-10-31 ソニー株式会社 Audio signal reproduction apparatus and reproduction method, sound collection apparatus, sound collection method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440909B (en) * 2019-07-31 2021-07-13 安徽智寰科技有限公司 Vibration signal-to-noise ratio calculation method based on noise adaptive identification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150877A (en) * 1982-01-14 1983-09-07 Kazuo Okada Ultrasonic distance measuring apparatus
JPH06265400A (en) * 1993-03-11 1994-09-20 Sony Corp Impulse response measuring instrument
JPH0792264A (en) * 1993-09-24 1995-04-07 Aisin Seiki Co Ltd Vehicle-velocity measuring apparatus for mounting on vehicle
JP2000097763A (en) * 1998-09-25 2000-04-07 Sony Corp Method for collecting impulse response, sound effect adder, and record medium
JP2002328161A (en) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd Electric wave type sensor
JP2003141079A (en) * 2001-10-31 2003-05-16 Shusuke Nanba Password authentication method and password authentication program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150877A (en) * 1982-01-14 1983-09-07 Kazuo Okada Ultrasonic distance measuring apparatus
JPH06265400A (en) * 1993-03-11 1994-09-20 Sony Corp Impulse response measuring instrument
JPH0792264A (en) * 1993-09-24 1995-04-07 Aisin Seiki Co Ltd Vehicle-velocity measuring apparatus for mounting on vehicle
JP2000097763A (en) * 1998-09-25 2000-04-07 Sony Corp Method for collecting impulse response, sound effect adder, and record medium
JP2002328161A (en) * 2001-04-27 2002-11-15 Matsushita Electric Works Ltd Electric wave type sensor
JP2003141079A (en) * 2001-10-31 2003-05-16 Shusuke Nanba Password authentication method and password authentication program

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472784A (en) * 2009-07-17 2012-05-23 爱旦尼电机株式会社 Impulse response measuring method and impulse response measuring device
WO2011007706A1 (en) 2009-07-17 2011-01-20 エタニ電機株式会社 Impulse response measuring method and impulse response measuring device
EP2429216A3 (en) * 2010-09-13 2013-12-04 Canon Kabushiki Kaisha Accoustic apparatus
EP2429216A2 (en) 2010-09-13 2012-03-14 Canon Kabushiki Kaisha Accoustic apparatus
JP2012058701A (en) * 2010-09-13 2012-03-22 Canon Inc Acoustic device
US9134167B2 (en) 2010-09-13 2015-09-15 Canon Kabushiki Kaisha Acoustic apparatus
JP2012093094A (en) * 2010-10-22 2012-05-17 Chugoku Electric Power Co Inc:The Apparatus, system, method and program for supporting acoustic diagnosis
EP2466919A3 (en) * 2010-12-15 2013-10-16 Canon Kabushiki Kaisha Audio apparatus, control method for the audio apparatus, and program
JP2012128207A (en) * 2010-12-15 2012-07-05 Canon Inc Acoustic device, control method thereof, and program
US9088857B2 (en) 2010-12-15 2015-07-21 Canon Kabushiki Kaisha Audio apparatus, control method for the audio apparatus, and storage medium for determining sudden noise
JP2012172977A (en) * 2011-02-17 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Impulse response measuring apparatus
JP2013140350A (en) * 2011-12-09 2013-07-18 Yamaha Corp Device and method for calculating transfer characteristic
US9099069B2 (en) 2011-12-09 2015-08-04 Yamaha Corporation Signal processing device
WO2015050006A1 (en) 2013-10-01 2015-04-09 クラリオン株式会社 Device, method, and program for measuring sound field
US9883303B2 (en) 2013-10-01 2018-01-30 Clarion Co., Ltd. Sound field measuring device, method and program
WO2015053068A1 (en) 2013-10-07 2015-04-16 クラリオン株式会社 Sound field measurement device, sound field measurement method, and sound field measurement program
US9693171B2 (en) 2013-10-07 2017-06-27 Clarion Co., Ltd. Sound field measuring device, method, and program
WO2016135868A1 (en) * 2015-02-24 2016-09-01 独立行政法人石油天然ガス・金属鉱物資源機構 Sensor evaluation device, sensor evaluation system, and sensor evaluation method
JPWO2016135868A1 (en) * 2015-02-24 2018-02-08 独立行政法人石油天然ガス・金属鉱物資源機構 Sensor evaluation apparatus, sensor evaluation system, and sensor evaluation method
JPWO2018123612A1 (en) * 2016-12-28 2019-10-31 ソニー株式会社 Audio signal reproduction apparatus and reproduction method, sound collection apparatus, sound collection method, and program

Also Published As

Publication number Publication date
JP4915773B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4915773B2 (en) Transfer characteristic measuring method and apparatus
EP2602787B1 (en) Signal processing device
JP5606234B2 (en) Sound equipment
JP6806120B2 (en) Electronic musical instruments, musical tone generation methods and programs
WO2007010638A1 (en) Automatic music transcriptor and program
US8822804B1 (en) Digital aerophones and dynamic impulse response systems
JP2018106006A (en) Musical sound generating device and method, and electronic musical instrument
CN111739495A (en) Accompaniment control device, electronic musical instrument, control method, and recording medium
JP5627440B2 (en) Acoustic apparatus, control method therefor, and program
EP0917707B1 (en) Audio effects synthesizer with or without analyser
JP3279861B2 (en) Music signal generator
CN112489605B (en) Method for adapting a sound transducer to a reference sound transducer
EP3757984B1 (en) Electronic musical instrument, method and program
JP5050789B2 (en) Simulation apparatus and program
JP5701509B2 (en) Electronic keyboard instrument
JP2650509B2 (en) Sound image localization device
JP2011154394A (en) Musical sound generating device
WO2015165884A1 (en) Electronic drum interface
JPWO2019146285A1 (en) Electronic keyboard instrument, sound signal generating device, and sound signal generating method
WO2024069687A1 (en) Human detection device, human detection system, human detection method, and human detection program
JP7172423B2 (en) Electronic keyboard instrument, method and program
JP2687698B2 (en) Electronic musical instrument tone control device
EP3757985B1 (en) Electronic musical instrument, method and program
WO2024034115A1 (en) Audio signal processing device, audio signal processing method, and program
JP2010117536A (en) Resonance add-on device and electronic musical instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees