JP2007231089A - Electroconductive composition and its molded body - Google Patents

Electroconductive composition and its molded body Download PDF

Info

Publication number
JP2007231089A
JP2007231089A JP2006052596A JP2006052596A JP2007231089A JP 2007231089 A JP2007231089 A JP 2007231089A JP 2006052596 A JP2006052596 A JP 2006052596A JP 2006052596 A JP2006052596 A JP 2006052596A JP 2007231089 A JP2007231089 A JP 2007231089A
Authority
JP
Japan
Prior art keywords
conductive
under
composition
powder
applied voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052596A
Other languages
Japanese (ja)
Other versions
JP4968576B2 (en
Inventor
Hiroyuki Imai
浩之 今井
Osamu Sakatani
修 坂谷
Yoshihiko Sano
善彦 佐野
Masamichi Murota
正道 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2006052596A priority Critical patent/JP4968576B2/en
Publication of JP2007231089A publication Critical patent/JP2007231089A/en
Application granted granted Critical
Publication of JP4968576B2 publication Critical patent/JP4968576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive composition excellent in voltage stability and environmental stability and provide its molded body. <P>SOLUTION: The electroconductive composition contains carbon nanofibers and electroconductive powders in a matrix and has the relationship of following equation (1) between the volume resistance R100 under applied voltage 100 V and the volume resistance value R1000 under applied voltage 1,000 V. Preferably, the composition contains the carbon nanofibers with a particle size of ≤0.1 μm, an aspect ratio of ≥5 and a powder resistance of ≤1.0 Ω cm and the electroconductive powders whose powder compact has a resistance value of 10<SP>0</SP>-10<SP>8</SP>Ω cm under the pressure of 100 kg/cm<SP>2</SP>, and the content of the carbon nanofibers is ≥0.1 wt.%, that of the electroconductive powders is ≥10 wt.%, and the total content of these is one to give a volume resistance of 10<SP>3</SP>-10<SP>12</SP>Ωcm under the voltage 100 V applied for the composition. The equation (1) is shown by log<SB>10</SB>R100-log<SB>10</SB>R1000≤1.0 (1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電圧安定性および環境安定性に優れた導電性組成物とその成形体に関する。一般に、複写機、ファクシミリ、プリンタなどの電子写真方式の画像形成装置や静電記録装置に用いられる各種の部品、例えば、帯電、現像、転写、定着、除電、クリーニング、給紙、搬送用などのブレード、ローラ、ベルト、ブラシなどには導電性樹脂組成物、導電性エラストマー組成物、および導電性塗料などが用いられている。本発明はこれらの材料として好適であり、特に半導電領域(103〜1012Ω・cm、中抵抗領域とも云う)において安定な導電性を有し、中電圧下(100V〜1000V)での電圧安定性、および環境安定性に優れた導電性組成物とその成形体に関するものである。 The present invention relates to a conductive composition excellent in voltage stability and environmental stability and a molded product thereof. In general, various parts used in electrophotographic image forming apparatuses such as copying machines, facsimiles, and printers, and electrostatic recording apparatuses, for example, for charging, developing, transferring, fixing, discharging, cleaning, paper feeding, transporting, etc. Conductive resin compositions, conductive elastomer compositions, conductive paints, and the like are used for blades, rollers, belts, brushes, and the like. The present invention is suitable as these materials, and has stable conductivity particularly in a semiconductive region (10 3 to 10 12 Ω · cm, also referred to as a medium resistance region), and can be used under a medium voltage (100 V to 1000 V). The present invention relates to a conductive composition excellent in voltage stability and environmental stability and a molded product thereof.

複写機、ファクシミリ、プリンタなどの電子写真方式に基づく画像形成装置や静電記録装置等には導電性樹脂組成物や導電性エラストマー組成物、および導電性塗料などの導電性組成物が多く用いられている。従来の導電性組成物は、例えば、シリコーンやポリウレタン、エピクロルヒドリン,NBR,EPDMなどの絶縁性エラストマー、ポリカーボネート(PC)、ポリフッ化ビニリデン(PVdF),ポリイミド(PI),ポリアミドイミド(PAI),エチレンテトラフルオロエチレン共重合体(ETFE)等の絶縁性樹脂をベースにして、これにイオン導電材料、導電性ポリマー、カーボンブラック、金属酸化物等の導電物質を添加したものが用いられている。 Conductive resin compositions, conductive elastomer compositions, and conductive compositions such as conductive paints are often used in electrophotographic image forming apparatuses such as copying machines, facsimiles, and printers, and electrostatic recording apparatuses. ing. Conventional conductive compositions include, for example, insulating elastomers such as silicone, polyurethane, epichlorohydrin, NBR, EPDM, polycarbonate (PC), polyvinylidene fluoride (PVdF), polyimide (PI), polyamideimide (PAI), ethylenetetra An insulating resin such as a fluoroethylene copolymer (ETFE) is used as a base and a conductive material such as an ion conductive material, a conductive polymer, carbon black, or a metal oxide is added thereto.

従来の導電性組成物は導電物質の添加量を調整することによって機能上必要な導電性を付与しているものが多いが、近年、これらのOA機器の高性能化に伴い、導電性についてより厳密な制御が要求されている。しかし、カーボンや金属酸化物等の粉末状の導電物質はその僅かな添加量のズレや、材料温度、成型温度、成型時間等の条件の僅かな変化、更には成型方法の違いによって導電パスの形態が変化しやすいために導電性が大きく変動すると云う問題がある。特に半導電領域において、成型物の形状や成型条件などを注意して管理しても成型物全体に亘って安定な導電性を付与させることが難しい場合が頻繁にある。 Many of the conventional conductive compositions have imparted functional conductivity by adjusting the amount of conductive material added. However, in recent years, with the improvement in performance of these OA equipments, Strict control is required. However, powdered conductive materials such as carbon and metal oxides have a slight difference in addition amount, slight changes in conditions such as material temperature, molding temperature and molding time, and differences in molding methods. There is a problem that the conductivity is greatly fluctuated because the form is easily changed. In particular, in the semiconductive region, it is often difficult to impart stable conductivity over the entire molded product even if the shape and molding conditions of the molded product are carefully managed.

また、従来の導電性組成物は、半導電領域において、印加電圧に依存して電気抵抗値が変化する、いわゆる電圧依存性の高いものが多い。例えば、球状カーボンブラックを単独で用いることによって電圧依存性を緩和した導電性組成物が知られているが(特許文献1、2)、この導電性組成物でも体積固有抵抗が105Ω・cm以上のものは、カーボン量が±0.5質量%程度相違し、かつ成形条件(成形速度、温度、湿度)が相違するなどによって、体積抵抗値が10Ω・cm以上ずれる場合がある。 In addition, many of the conventional conductive compositions have a high so-called voltage dependency in which the electrical resistance value changes depending on the applied voltage in the semiconductive region. For example, a conductive composition is known in which voltage dependency is eased by using spherical carbon black alone (Patent Documents 1 and 2). Even in this conductive composition, the volume resistivity is 10 5 Ω · cm. In the above, the volume resistance value may deviate by 10 Ω · cm or more due to a difference in carbon amount by about ± 0.5 mass% and a difference in molding conditions (molding speed, temperature, humidity).

一方、イオン伝導性の導電材料を用いたものは、電圧や電流による抵抗値の変化(ie.電圧依存性)が抑制される傾向が見られるものの、温度や湿度による抵抗値の変化(ie.環境依存性)が増加する傾向がある。さらに通電によって抵抗が変化しやすく、またイオンがブリードして汚染源になりやすいなどの問題を抱えている。 On the other hand, those using ion conductive materials tend to suppress changes in resistance due to voltage and current (ie. Voltage dependence), but changes in resistance due to temperature and humidity (ie. (Environment dependency) tends to increase. Furthermore, there are problems that the resistance is easily changed by energization and that ions tend to bleed and become a contamination source.

この他に、特許文献3には、白色導電粉末と中空マイクロファイバーを含む導電性ポリマーが記載されている。これは、双方を混合することによって黒色化を抑え、白色の導電性組成物を得ることができ、さらに任意の色に着色できるようにしたものであり、本発明のように、中抵抗域〜高抵抗域での電気抵抗の安定性については全く認識されていない。
特開平11−106657号公報 特開平11−190328号公報 特開H09−111135号公報
In addition, Patent Document 3 describes a conductive polymer including white conductive powder and hollow microfibers. This is to suppress blackening by mixing both, to obtain a white conductive composition, can be further colored in any color, like the present invention, medium resistance range ~ There is no recognition of the stability of electrical resistance in the high resistance region.
JP-A-11-106657 JP-A-11-190328 JP H09-111135A

本発明は、従来の導電性組成物における上記課題を解決したものであり、特に中抵抗領域(103〜1012Ω・cm)において安定な導電性を有し、かつ中電圧下(100V〜1000V)での電圧安定性および環境安定性に優れた導電性組成物とその成形体を提供する。 The present invention solves the above-mentioned problems in conventional conductive compositions, and has stable conductivity particularly in a medium resistance region (10 3 to 10 12 Ω · cm), and under a medium voltage (100 V to A conductive composition excellent in voltage stability and environmental stability at 1000 V) and a molded product thereof are provided.

本発明は以下の構成によって上記課題を解決した導電性組成物とその成形体に関する。
(1)マトリックス中にカーボンナノファイバーと導電粉末を含有し、印加電圧100V下の体積抵抗R100と印加電圧1000V下の体積抵抗値R1000とが次式(1)の関係にあることを特徴とする導電性組成物。
Log10R100−log10R1000≦1.0 …(1)
〔式中、R100は印加電圧100V下の体積抵抗率(Ω・cm)、R1000は印加電圧1000V下の体積抵抗率(Ω・cm)〕
(2)粒子径0.1μm以下、アスペクト比5以上、および粉体抵抗1.0Ω・cm以下のカーボンナノファイバーと、100kg/cm2の圧力下の圧粉体抵抗値が100〜108Ω・cmの導電粉末とを含有する上記(1)または上記(2)に記載する導電性組成物。
(3)組成物中のマトリックス材料100重量部に対してカーボンナノファイバー含有量が0.1重量部以上、および導電粉末の含有量が10重量部以上であって、カーボンナノファイバーと導電粉末の合計含有量が組成物の印加電圧100V下の体積抵抗が103〜1012Ω・cmとなる量である上記(1)〜上記(3)の何れかに記載する導電性組成物。
(4)上記(1)〜上記(4)の何れかに記載する導電性組成物によって形成された転写シート、導電シート、導電ブレード、導電ギア、導電ローラー、導電性ブラシ、導電糸、導電チューブ、または導電ロール。
The present invention relates to a conductive composition and a molded body thereof that have solved the above problems by the following constitution.
(1) The carbon nanofiber and the conductive powder are contained in the matrix, and the volume resistance R100 under an applied voltage of 100V and the volume resistance value R1000 under an applied voltage of 1000V are in the relationship of the following formula (1): Conductive composition.
Log 10 R100−log 10 R1000 ≦ 1.0 (1)
[Where R100 is the volume resistivity (Ω · cm) under an applied voltage of 100V, and R1000 is the volume resistivity (Ω · cm) under an applied voltage of 1000V]
(2) particle size 0.1μm or less and an aspect ratio of 5 or more, and powder resistance and 1.0 [Omega] · cm or less of the carbon nanofiber, 100 kg / cm compact resistance under pressure of 2 10 0 10 8 The conductive composition as described in (1) or (2) above, comprising a conductive powder of Ω · cm.
(3) The carbon nanofiber content is 0.1 parts by weight or more and the conductive powder content is 10 parts by weight or more with respect to 100 parts by weight of the matrix material in the composition, The conductive composition as described in any one of (1) to (3) above, wherein the total content is such that the volume resistance of the composition under an applied voltage of 100 V is from 10 3 to 10 12 Ω · cm.
(4) A transfer sheet, a conductive sheet, a conductive blade, a conductive gear, a conductive roller, a conductive brush, a conductive yarn, a conductive tube formed from the conductive composition described in any one of (1) to (4) above. Or conductive roll.

本発明の導電性組成物は、マトリックス中にカーボンナノファイバーと導電粉末とを含有することによって良好な導電パスが形成されるようにしたので、電圧依存性が低く、電圧変化に対する安定性が良い。具体的には、本発明の導電性組成物は、印加電圧100V下の体積抵抗R100と印加電圧1000V下の体積抵抗値R1000との差が、log10R100−log10R1000≦1.0 〔式中、R100は印加電圧100V下の体積抵抗率(Ω・cm)、R1000は印加電圧1000V下の体積抵抗率(Ω・cm)〕の範囲内であり、電圧変化に対する安定性が良い。 In the conductive composition of the present invention, since a good conductive path is formed by containing carbon nanofibers and conductive powder in the matrix, the voltage dependency is low and the stability against voltage change is good. . Specifically, in the conductive composition of the present invention, the difference between the volume resistance R100 under an applied voltage of 100 V and the volume resistance value R1000 under an applied voltage of 1000 V is log 10 R100−log 10 R1000 ≦ 1.0 [Formula R100 is in the range of volume resistivity (Ω · cm) under an applied voltage of 100 V, and R1000 is in the range of volume resistivity (Ω · cm) under an applied voltage of 1000 V, and has good stability against voltage change.

本発明によれば、例えば、粒子径0.1μm以下、アスペクト比5以上であって粉体抵抗1.0Ω・cm以下のカーボンナノファイバーと、100kg/cm2の圧力下の圧粉体抵抗値が1Ω・cm以上の導電粉末とを用い、これらのカーボンナノファイバーと導電粉末の合計量が組成物の体積抵抗が103〜1012Ω・cmとなる量を含有させることによって、半導電領域において安定な導電性を有し、中電圧下での電圧安定性および環境安定性に優れた導電性組成物を得ることができる。 According to the present invention, for example, carbon nanofibers having a particle diameter of 0.1 μm or less, an aspect ratio of 5 or more and a powder resistance of 1.0 Ω · cm or less, and a green compact resistance value under a pressure of 100 kg / cm 2. By using a conductive powder of 1 Ω · cm or more, and the total amount of these carbon nanofibers and conductive powder is contained so that the volume resistance of the composition is 10 3 to 10 12 Ω · cm. It is possible to obtain a conductive composition having a stable conductivity and excellent in voltage stability and environmental stability under a medium voltage.

本発明の導電性組成物は、電圧依存性が低く、かつ環境依存性も低いので、この導電性組成物を用いれば、帯電・現像・転写・定着の画像形成過程において電気的に非常に安定的に保持されるため、その電気的不安定さを克服するための機械的な制御を容易にすることができる。さらに、転写電圧をコントロールしやすく、画像形成装置の機構を簡素化できる。その結果、画像形成装置において高速化、高画質化およびコストダウンを図ることができる。また、印加電圧あるいは印加電流を、印字条件、紙の種類、環境条件に対応して制御するにあたり、精度の高い制御が可能になり、結果的に印字品位を高めることが出来るとともに小型化、低コスト化を図るうえで有利である。 The conductive composition of the present invention has low voltage dependency and low environmental dependency. Therefore, when this conductive composition is used, it is electrically very stable in the image forming process of charging / developing / transfer / fixing. Therefore, mechanical control for overcoming the electrical instability can be facilitated. Furthermore, the transfer voltage can be easily controlled, and the mechanism of the image forming apparatus can be simplified. As a result, it is possible to achieve high speed, high image quality, and cost reduction in the image forming apparatus. In addition, when controlling the applied voltage or applied current according to the printing conditions, paper type, and environmental conditions, it is possible to control with high accuracy, resulting in an improvement in printing quality and a reduction in size and size. This is advantageous for cost reduction.

以下、本発明を実施例に基づいて具体的に説明する。
本発明の導電性組成物は、マトリックス中にカーボンナノファイバーと導電粉末を含有し、印加電圧100V下の体積抵抗R100と印加電圧1000V下の体積抵抗値R1000とが次式(1)の関係にあることを特徴とする導電性組成物である。
Log10R100−log10R1000≦1.0 …(1)
〔式中、R100は印加電圧100V下の体積抵抗率(Ω・cm)、R1000は印加電圧1000V下の体積抵抗率(Ω・cm)〕
Hereinafter, the present invention will be specifically described based on examples.
The conductive composition of the present invention contains carbon nanofibers and conductive powder in the matrix, and the volume resistance R100 under an applied voltage of 100V and the volume resistance value R1000 under an applied voltage of 1000V are in the relationship of the following formula (1). It is a conductive composition characterized by being.
Log 10 R100−log 10 R1000 ≦ 1.0 (1)
[Where R100 is the volume resistivity (Ω · cm) under an applied voltage of 100V, and R1000 is the volume resistivity (Ω · cm) under an applied voltage of 1000V]

本発明の導電性組成物に用いるマトリックス材料として以下の化合物が用いることができる。例えば、マトリックス材料として樹脂組成物を用いることができる。これには熱可塑性樹脂、熱硬化性樹脂、UV硬化性樹脂などが挙げられる。具体的に用いられる樹脂として、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アクリルウレタン系樹脂、ナイロン系樹脂、エポキシ系樹脂、ポリビニルアセタール系樹脂、塩化ビニリデン樹脂、フッ素系樹脂、シリコーン系樹脂、ポリカーボネート系樹脂、ポリフェニレンスルファイド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ化ビニリデン樹脂(PVDF)、ポリエーテルイミド樹脂、シリコーンイミド樹脂、ウレタンイミド樹脂、ポリウレタン樹脂、ポリウレア樹脂、エポキシ樹脂、メラニン樹脂など、不飽和ポリエステル樹脂、ビニルエステル樹脂などが挙げられる。これらのうち、弾性率の高いポリイミド樹脂、ポリアミドイミド樹脂、フッ化ビニリデン樹脂が好適に用いられる。特に比較的安価なポリアミドイミド樹脂が好ましい。 The following compounds can be used as the matrix material used in the conductive composition of the present invention. For example, a resin composition can be used as the matrix material. This includes thermoplastic resins, thermosetting resins, UV curable resins, and the like. Specific resins used include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, nylon resins, epoxy resins, polyvinyl acetal resins, vinylidene chloride resins, fluorine resins, silicone resins, Polycarbonate resin, polyphenylene sulfide resin, polyimide resin, polyamideimide resin, vinylidene fluoride resin (PVDF), polyetherimide resin, silicone imide resin, urethane imide resin, polyurethane resin, polyurea resin, epoxy resin, melanin resin, etc. Examples thereof include unsaturated polyester resins and vinyl ester resins. Of these, polyimide resins, polyamideimide resins, and vinylidene fluoride resins with high elastic modulus are preferably used. In particular, a relatively inexpensive polyamide-imide resin is preferable.

マトリックス材料がエラストマーである場合には、例えば、シリコーン系、アクリロニトリルブタジエン、ウレタン系ゴム、エピクロルヒドリンゴム、クロロプレンゴム、アクリルゴム、スチレンブタジエンゴム、ブタジエンゴム、イソプレンゴム、天然ゴム、アクリルゴム、クロロプレンゴム、ブチルゴム、エピクロルヒドリンゴム、あるいは熱可塑性エラストマーなどが用いられる。とくに高度、粘度、耐久性などの観点からシリコーン系やウレタン系が好ましい。これらは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。 When the matrix material is an elastomer, for example, silicone, acrylonitrile butadiene, urethane rubber, epichlorohydrin rubber, chloroprene rubber, acrylic rubber, styrene butadiene rubber, butadiene rubber, isoprene rubber, natural rubber, acrylic rubber, chloroprene rubber, Butyl rubber, epichlorohydrin rubber, or thermoplastic elastomer is used. In particular, from the viewpoints of altitude, viscosity, durability, etc., silicone type and urethane type are preferable. These may be used alone or in combination of two or more.

なお、マトリックス材料の弾性体は発泡体でもよく、この場合には、密度0.05〜0.9g/cm3程度のものが適当である。さらに、マトリックス材料は塗料でも良く、塗料としては、水系フッ素ゴム塗料、ウレタン系塗料、アクリル系塗料、またはシリコーン系塗料などを用いることができる。 The elastic material of the matrix material may be a foam. In this case, a material having a density of about 0.05 to 0.9 g / cm 3 is suitable. Furthermore, the matrix material may be a paint, and as the paint, a water-based fluororubber paint, a urethane paint, an acrylic paint, a silicone paint, or the like can be used.

導電粉末としては、100kg/cm2の圧力下で圧粉体抵抗値が1Ω・cm以上のものが好ましい。導電粉末の材料としては、導電性金属酸化物、窒化物、炭化物、酸窒化物、シリコン化合物などが挙げられる。導電性金属酸化物としては、酸化錫(SnO2)、アンチモン錫酸化物(ATO)、インジウム錫酸化物(ITO)、酸化アンチモン(Sb25)、酸化亜鉛、アルミニウム亜鉛酸化物(AZO)、酸化チタン、アンチモンドープ酸化チタン、チタン酸カリウムなどがある。また、導電性酸窒化物としては酸窒化チタンなどがある。 The conductive powder preferably has a green compact resistance value of 1 Ω · cm or more under a pressure of 100 kg / cm 2 . Examples of the conductive powder material include conductive metal oxides, nitrides, carbides, oxynitrides, and silicon compounds. Examples of conductive metal oxides include tin oxide (SnO 2 ), antimony tin oxide (ATO), indium tin oxide (ITO), antimony oxide (Sb 2 O 5 ), zinc oxide, and aluminum zinc oxide (AZO). , Titanium oxide, antimony-doped titanium oxide, potassium titanate and the like. Examples of the conductive oxynitride include titanium oxynitride.

非導電粉末の表面を導電性金属酸化物などで被覆した導電粉末も用いることができる。具体的には、シリカ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、チタン酸アルカリ金属(チタン酸カリウムなど)、ホウ酸アルミニウム、硫酸バリウム、合成フッ素雲母などの非導電粉末の表面をATO、AZO、ITOなどの透明または白色の導電性金属酸化物で被覆したものを使用することができる。また、酸化チタン、酸化亜鉛などの表面をATO、AZO、ITOなどによって被覆して導電性を高めた粉末を用いても良い。 A conductive powder in which the surface of the nonconductive powder is coated with a conductive metal oxide or the like can also be used. Specifically, the surface of non-conductive powder such as silica, aluminum oxide, magnesium oxide, zirconium oxide, alkali metal titanate (potassium titanate, etc.), aluminum borate, barium sulfate, synthetic fluorine mica, etc. is applied to ATO, AZO, ITO. Those coated with a transparent or white conductive metal oxide such as can be used. In addition, a powder whose surface is made of titanium oxide, zinc oxide, or the like is covered with ATO, AZO, ITO, or the like to increase conductivity may be used.

導電粉末の粒径は、一般に略球形な粉末ではBET比表面積0.5〜50m2/gのものが適当であり、3〜30m2/gのものが好ましい。高アスペクト比粉末ではBET比表面積0.1〜10m2/gのものが適当であり、1〜10m2/gのものが好ましい。 The particle size of the conductive powder is generally in substantially spherical powder is suitably those having a BET specific surface area of 0.5~50m 2 / g, preferably from 3~30m 2 / g. In high aspect ratio powder is suitably those having a BET specific surface area of 0.1 to 10 m 2 / g, preferably from 1 to 10 m 2 / g.

本発明の導電性組成物は、導電粉末と共にカーボンナノファイバーを含有する。カーボンナノファイバーは、アスペクト比が5以上、径が0.1μm以下であって、バルクでの体積抵抗率(圧力100kg/cm2で測定した値)が1Ω・cm以下のものが好ましい。 The conductive composition of the present invention contains carbon nanofibers together with conductive powder. The carbon nanofibers preferably have an aspect ratio of 5 or more, a diameter of 0.1 μm or less, and a bulk resistivity (measured at a pressure of 100 kg / cm 2 ) of 1 Ω · cm or less.

カーボンナノファイバーは、そのままではマトリックス中に分散することが難しいため、分散性を高める処理を行うと良い。たとえば、オゾンガスなどによる酸化処理などの表面処理をおこなって、マトリックスとの相溶性を向上させ分散することもできる。また、塗料に分散することも難しいため、表面処理を行うほかに、予め塗料を構成する溶媒に分散して、塗料と混合することもできる。この分散液に良好に分散させるため、オゾンガスなどによる酸化処理などの表面処理した粉末を用いたり、各種の添加剤を添加して分散することもできる。 Since it is difficult to disperse the carbon nanofibers as they are in the matrix, it is preferable to perform a treatment for improving the dispersibility. For example, surface treatment such as oxidation treatment using ozone gas or the like can be performed to improve compatibility with the matrix and disperse. Further, since it is difficult to disperse in the paint, in addition to the surface treatment, it can be dispersed in a solvent constituting the paint in advance and mixed with the paint. In order to satisfactorily disperse in this dispersion, it is possible to use a surface-treated powder such as an oxidation treatment with ozone gas or the like, or to add and disperse various additives.

導電粉末を単独で使用した場合、多量に用いることによって導電性を高めることはできるが、電圧依存性が非常に高くなる。一方、カーボンナノファイバーを単独で用いると、ファイバー自体の抵抗値が低いため、102Ω・cm程度の抵抗値を安定して得ることが難しいが、粉末状ではないため、接触抵抗が低減されるので電圧依存性は少ない。 When the conductive powder is used alone, the conductivity can be increased by using a large amount, but the voltage dependency becomes very high. On the other hand, when carbon nanofibers are used alone, the resistance value of the fiber itself is low, so it is difficult to stably obtain a resistance value of about 10 2 Ω · cm, but the contact resistance is reduced because it is not powdery. Therefore, there is little voltage dependency.

本発明の導電性組成物は、導電粉末と共にカーボンナノファイバーを含有することによって、組成物内部でこれらが均一に混在し、導電パスの形成をカーボンナノファイバーが担い、導電粉末どうしの接触よりも良好な導電パスが形成されるので、電圧依存性が低減され、安定な導電性が得られる。 The conductive composition of the present invention contains carbon nanofibers together with the conductive powder, so that they are uniformly mixed inside the composition, and the carbon nanofibers are responsible for the formation of the conductive path, rather than the contact between the conductive powders. Since a good conductive path is formed, voltage dependency is reduced and stable conductivity is obtained.

さらに、本発明の導電性組成物は、カーボンナノファイバーと導電粉末とを併用することによって、導電粉末どうしの接触よりも良好な導電パスが形成されるので、環境変動に対する安定性にも優れる。具体的には、低温低湿環境下の体積抵抗率RLLと、高温高湿環境下の体積抵抗率RHHとを次式(2)に示す範囲内に制御することができる。
Log10RLL−log10RHH≦1.5 …(2)
〔式中、RLLは低温低湿環境下(10℃、相対湿度20%)の体積抵抗率(Ω・cm)、RHHは高温高湿環境下(40℃、相対湿度80%)の体積抵抗率(Ω・cm)〕
Furthermore, since the conductive composition of the present invention forms a conductive path better than the contact between the conductive powders by using the carbon nanofibers and the conductive powder in combination, the conductive composition is also excellent in stability against environmental fluctuations. Specifically, the volume resistivity RLL under the low temperature and low humidity environment and the volume resistivity RHH under the high temperature and high humidity environment can be controlled within the range represented by the following equation (2).
Log 10 RLL-log 10 RHH ≦ 1.5 (2)
[In the formula, RLL is a volume resistivity (Ω · cm) in a low temperature and low humidity environment (10 ° C., relative humidity 20%), and RHH is a volume resistivity (40 ° C., relative humidity 80%) in a high temperature and humidity environment (40% relative humidity). (Ωcm))

導電フィラー(導電粉末およびカーボンナノファイバー)の配合量は、組成物の印加電圧100V下の体積抵抗が103〜1012Ω・cm、好ましくは104〜1010Ω・cmとなる量が適当である。導電粉末と共にカーボンナノファイバーを併用することによって、導電粉末を単独で用いた場合、あるいはカーボンナノファイバーを単独で用いた場合よりも少ない量で良好な導電性が得られる。 The amount of the conductive filler (conductive powder and carbon nanofiber) is such that the volume resistance of the composition under an applied voltage of 100 V is 10 3 to 10 12 Ω · cm, preferably 10 4 to 10 10 Ω · cm. It is. By using the carbon nanofiber together with the conductive powder, good conductivity can be obtained in a smaller amount than when the conductive powder is used alone or when the carbon nanofiber is used alone.

導電フィラーの含有量は、具体的には、マトリックス材料100重量部に対して、カーボンナノファイバーは0.1〜5重量部未満添加することが適当であり、0.2〜3.0重量部が好ましく、0.5〜2.0重量部がより好ましい。導電粉末は、10〜150重量部添加することが適当であり、10〜50重量部が好ましく、15〜30重量部がより好ましい。カーボンナノファイバーの含有量が少ないと電圧依存性を低減するのが難しくなり、他方、この量が多いと抵抗値が目的以上に低下する。導電粉末の含有量が少ないと目的の導電性が得られ難く、他方、この量が多いと電圧依存性が高くなる。 Specifically, it is appropriate that the conductive filler is added in an amount of less than 0.1 to 5 parts by weight with respect to 100 parts by weight of the matrix material, and 0.2 to 3.0 parts by weight. Is preferable, and 0.5 to 2.0 parts by weight is more preferable. The conductive powder is suitably added in an amount of 10 to 150 parts by weight, preferably 10 to 50 parts by weight, and more preferably 15 to 30 parts by weight. If the content of the carbon nanofiber is small, it is difficult to reduce the voltage dependency. On the other hand, if the content is large, the resistance value decreases more than intended. If the content of the conductive powder is small, it is difficult to obtain the desired conductivity. On the other hand, if the amount is large, the voltage dependency becomes high.

導電性を安定化させるためにイオン導電材を添加してもよい。イオン導電材としては、トラエチルアンモニウム、テトラブチルアンモニウム、ドデシルトリメチルアンモニウム(ラウリルトリメチルアンモニウム等)、オクタデシルトリメチルアンモニウム(ステアリルトリメチルアンモニウム等)、ヘキサデシルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、変性脂肪族ジメチルエチルアンモニウム等の過塩素酸塩、塩素酸塩、塩酸塩、臭素酸塩、ヨウ素酸塩、ホウフッ化水素酸塩、硫酸塩、アルキル硫酸塩、カルボン酸塩、スルホン酸塩などのアンモニウム塩;リチウム、ナトリウム、カルシウム、マグネシウムなどのアルカリ金属またはアルカリ土類金属の過塩素酸塩、塩素酸、塩塩酸塩、臭素酸塩、ヨウ素酸塩、ホウフッ化水素酸塩、トリフルオロメチル硫酸塩、スルホン酸塩などを用いることができる。これらは単独で用いてもよく、また2種以上を組み合わせて用いてもよい。 An ionic conductive material may be added to stabilize the conductivity. Examples of ionic conductive materials include traethylammonium, tetrabutylammonium, dodecyltrimethylammonium (such as lauryltrimethylammonium), octadecyltrimethylammonium (such as stearyltrimethylammonium), hexadecyltrimethylammonium, benzyltrimethylammonium, and modified aliphatic dimethylethylammonium. Perchlorates, chlorates, hydrochlorides, bromates, iodates, borofluorides, sulfates, alkyl sulfates, carboxylates, sulfonates and other ammonium salts; lithium, sodium, Alkali metal or alkaline earth metal perchlorate such as calcium and magnesium, chloric acid, hydrochloride, bromate, iodate, borofluoride, trifluoromethyl sulfate, sulfonate, etc. It can be used. These may be used alone or in combination of two or more.

本発明の導電性組成物には、上記導電フィラーの他に、分散剤、レベリング剤、老化防止剤、滑剤、酸化防止剤、可塑剤、着色剤あるいは非補強性シリカ、珪藻土、炭酸カルシウム、炭酸マグネシウム、球状粒子シリカ、炭酸カルシウム、ガラスビーズなどの充填剤を適宜配合してもよい。それらの種類、量については特に制限されない。 In addition to the above conductive filler, the conductive composition of the present invention includes a dispersant, leveling agent, anti-aging agent, lubricant, antioxidant, plasticizer, colorant or non-reinforcing silica, diatomaceous earth, calcium carbonate, carbonate You may mix | blend fillers, such as magnesium, spherical particle silica, a calcium carbonate, and a glass bead, suitably. There is no particular limitation on the type and amount thereof.

マトリックス材料に導電フィラーを混合分散させる方法は制限されない。既存の方法を利用することができる。例えば、樹脂やエラストマーのうち熱可塑性のものについては、加圧ニーダー、インテンシブミキサー、ヘンシェルミキサー、ミキシングロール、三本ロール、加熱ロールミル、押出混合機、溶融ブレンダー等の混合機を用い、溶融または軟化状態のポリマーに上記導電フィラーを混合して分散させればよい。製造した導電性組成物はペレット、粒状などに成形してもよく、或いはそのまま直接に用途の形状に成形してもよい。 The method for mixing and dispersing the conductive filler in the matrix material is not limited. Existing methods can be used. For example, for thermoplastic resins and elastomers, use a kneader, pressure mixer, intensive mixer, Henschel mixer, mixing roll, three rolls, heated roll mill, extrusion mixer, melt blender, etc. to melt or soften The conductive filler may be mixed and dispersed in the polymer in a state. The produced electrically conductive composition may be formed into pellets, granules, or the like, or may be directly formed into a desired shape as it is.

本発明の導電性組成物について、成形法および成形品の形状は制限されない。成形法としては、溶融紡糸、押出成形、射出成形、プレス成形を含む各種の方法を利用することができ、また成形品の形状は樹脂種などに応じて適当に選択すればよい。具体的には例えば、溶融成形法や溶液成形法などを利用することができる。成形品の形状としては、繊維 (フィラメントを含む) 、フィルム、シート、シームレスチューブのほか、棒、管、ロール、立体成形品など必要な部材に仕上げることができる。 Regarding the conductive composition of the present invention, the molding method and the shape of the molded product are not limited. As the molding method, various methods including melt spinning, extrusion molding, injection molding, and press molding can be used, and the shape of the molded product may be appropriately selected according to the type of resin. Specifically, for example, a melt molding method or a solution molding method can be used. The shape of the molded product can be finished into necessary members such as fibers (including filaments), films, sheets, seamless tubes, rods, tubes, rolls, and three-dimensional molded products.

熱可塑性樹脂の場合には、予め硬化する前の溶融状態のときに導電粉末とカーボンナノファイバーを混合し、その後、架橋硬化成形することによって目的の形状にすれば良い。導電粉末およびカーボンナノファイバーはそれぞれ粉末の状態で混合しても良いが、予めおのおのを溶媒に分散した状態にし、これを硬化前の樹脂の混合すると良い。 In the case of a thermoplastic resin, the conductive powder and the carbon nanofiber may be mixed in a molten state before being cured in advance, and then subjected to cross-linking and curing to obtain a desired shape. The conductive powder and the carbon nanofibers may be mixed in a powder state, but each may be previously dispersed in a solvent, and this may be mixed with a resin before curing.

マトリックス材料が塗料の場合にも、上記導電フィラーをおのおのの粉末の状態で塗料に混合し、ディスパーなどで分散させれば良い。なお、導電フィラーをおのおの溶媒に分散した状態にし、これを塗料に混合しても良い。 Even when the matrix material is a coating material, the conductive filler may be mixed with the coating material in a powder state and dispersed with a disper or the like. The conductive filler may be dispersed in each solvent and mixed with the paint.

上記何れの場合にも、マトリックス中に混合された導電フィラーを均一に分散させる。導電フィラーがマトリックス中に均一に分散されないと導電性が偏り、組成物全体について良好な導電性が得られない。 In any of the above cases, the conductive filler mixed in the matrix is uniformly dispersed. If the conductive filler is not uniformly dispersed in the matrix, the conductivity is biased, and good conductivity cannot be obtained for the entire composition.

本発明の導電性組成物によれば、電圧依存性が低く、環境安定性に優れた高品質の導電性部品、例えば、転写シート、導電性ブラシ、導電糸、導電チューブ、導電ロールなどを得ることができる。 According to the conductive composition of the present invention, high-quality conductive parts having low voltage dependency and excellent environmental stability, such as transfer sheets, conductive brushes, conductive yarns, conductive tubes, conductive rolls, and the like are obtained. be able to.

以下に本発明の実施例を比較例と共に示す。 Examples of the present invention are shown below together with comparative examples.

〔実施例および比較例〕
表1に示す材料を用い、表示する配合量に従い、樹脂に導電フィラーを添加して押出混練機にて混練することによって導電フィラーを均一に分散させた導電性樹脂ペレットを製造した。これを溶融押出して厚さ100μmの樹脂フィルムを成形した。この樹脂フィルムについて体積抵抗率を測定した。この結果を表1に示した。
[Examples and Comparative Examples]
Using the materials shown in Table 1, conductive resin pellets were produced in which the conductive filler was uniformly dispersed by adding the conductive filler to the resin and kneading with an extrusion kneader according to the indicated blending amount. This was melt extruded to form a resin film having a thickness of 100 μm. The volume resistivity of this resin film was measured. The results are shown in Table 1.

〔体積抵抗率の測定〕
印加電圧100V、および1000Vにおける体積抵抗率は以下のようにして測定した。試料を幅1cm、長さ12cmに切断し、両端1cmの部分に銅導電性テープを両面に貼り付けて電極とした。この電極間の電気抵抗値を超絶縁計(東亜電波社製SM-8210)を用いて測定し、試料の幅(w)、厚み(t)および電極間距離(l)から次式に基づいて体積抵抗値を求めた。
R(v)[Ωcm] = R[Ω]・(w[cm]・t[cm]/l[cm])
(Measurement of volume resistivity)
The volume resistivity at applied voltages of 100 V and 1000 V was measured as follows. The sample was cut into a width of 1 cm and a length of 12 cm, and a copper conductive tape was applied to both sides at 1 cm to form electrodes. The electrical resistance value between the electrodes was measured using a superinsulator (SM-8210, manufactured by Toa Denpa Inc.), and based on the following equation from the width (w), thickness (t) and distance (l) between the samples. The volume resistance value was determined.
R (v) [Ωcm] = R [Ω] · (w [cm] · t [cm] / l [cm])

材料には以下のものを用いた。
樹脂:ポリカーボネート樹脂(三菱エンジニアリングプラスチック社製H−4000)
塗料:アクリル塗料(関西ペイント性)
カーボンナノファイバー(CNF):直径20nm、アスペクト比100以上、圧粉体積抵抗値5.0×10-2Ωcm
導電性粉末:酸化スズ(SnO2)粉末(三菱マテリアル社製S-1S)圧粉体積抵抗値5.0×105 Ωcm、比表面積BET15m2/g
白色導電粉末W−1(三菱マテリアル社製W−1)圧粉体積抵抗値5Ωcm、比表面積BET5m2/g
The following materials were used.
Resin: Polycarbonate resin (H-4000 manufactured by Mitsubishi Engineering Plastics)
Paint: Acrylic paint (Kansai paint)
Carbon nanofiber (CNF): Diameter 20 nm, aspect ratio 100 or more, dust volume resistance 5.0 × 10 -2 Ωcm
Conductive powder: Tin oxide (SnO 2 ) powder (S-1S manufactured by Mitsubishi Materials Corp.) Compact powder volume resistance value 5.0 × 10 5 Ωcm, specific surface area BET 15 m 2 / g
White conductive powder W-1 (W-1 manufactured by Mitsubishi Materials Co., Ltd.) Compact volume resistance 5 Ωcm, specific surface area BET 5 m 2 / g

Figure 2007231089
Figure 2007231089

Claims (4)

マトリックス中にカーボンナノファイバーと導電粉末を含有し、印加電圧100V下の体積抵抗R100と印加電圧1000V下の体積抵抗値R1000とが次式(1)の関係にあることを特徴とする導電性組成物。
Log10R100−log10R1000≦1.0 …(1)
〔式中、R100は印加電圧100V下の体積抵抗率(Ω・cm)、R1000は印加電圧1000V下の体積抵抗率(Ω・cm)〕
A conductive composition comprising carbon nanofibers and conductive powder in a matrix, wherein the volume resistance R100 under an applied voltage of 100V and the volume resistance value R1000 under an applied voltage of 1000V are in the relationship of the following formula (1): object.
Log 10 R100−log 10 R1000 ≦ 1.0 (1)
[Where R100 is the volume resistivity (Ω · cm) under an applied voltage of 100V, and R1000 is the volume resistivity (Ω · cm) under an applied voltage of 1000V]
粒子径0.1μm以下、アスペクト比5以上、および粉体抵抗1.0Ω・cm以下のカーボンナノファイバーと、100kg/cm2の圧力下の圧粉体抵抗値が100〜108Ω・cmの導電粉末とを含有する請求項1または2に記載する導電性組成物。
Carbon nanofibers having a particle diameter of 0.1 μm or less, an aspect ratio of 5 or more, and a powder resistance of 1.0 Ω · cm or less, and a green compact resistance value of 100 0 to 10 8 Ω · cm under a pressure of 100 kg / cm 2 The electrically conductive composition of Claim 1 or 2 containing these conductive powders.
組成物中のマトリックス材料100重量部に対してカーボンナノファイバー含有量が0.1重量部以上、および導電粉末の含有量が10重量部以上であって、カーボンナノファイバーと導電粉末の合計含有量が組成物の印加電圧100V下の体積抵抗が103〜1012Ω・cmとなる量である請求項1〜3の何れかに記載する導電性組成物。
The carbon nanofiber content is 0.1 parts by weight or more and the conductive powder content is 10 parts by weight or more with respect to 100 parts by weight of the matrix material in the composition, and the total content of the carbon nanofibers and the conductive powder The conductive composition according to any one of claims 1 to 3, wherein the volume resistance of the composition under an applied voltage of 100 V is 10 3 to 10 12 Ω · cm.
請求項1〜4の何れかに記載する導電性組成物によって形成された転写シート、導電シート、導電ブレード、導電ギア、導電ローラー、導電性ブラシ、導電糸、導電チューブ、または導電ロール。


A transfer sheet, a conductive sheet, a conductive blade, a conductive gear, a conductive roller, a conductive brush, a conductive yarn, a conductive tube, or a conductive roll formed from the conductive composition according to claim 1.


JP2006052596A 2006-02-28 2006-02-28 Conductive composition and molded body thereof Active JP4968576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052596A JP4968576B2 (en) 2006-02-28 2006-02-28 Conductive composition and molded body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052596A JP4968576B2 (en) 2006-02-28 2006-02-28 Conductive composition and molded body thereof

Publications (2)

Publication Number Publication Date
JP2007231089A true JP2007231089A (en) 2007-09-13
JP4968576B2 JP4968576B2 (en) 2012-07-04

Family

ID=38552011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052596A Active JP4968576B2 (en) 2006-02-28 2006-02-28 Conductive composition and molded body thereof

Country Status (1)

Country Link
JP (1) JP4968576B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006998A (en) * 2008-06-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and its use
JP2010007046A (en) * 2008-05-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and molded article thereof
JP2010018743A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material
JP2010513655A (en) * 2006-12-22 2010-04-30 チェイル インダストリーズ インコーポレイテッド Conductive thermoplastic resin composition and plastic molded article
JP2010248383A (en) * 2009-04-16 2010-11-04 Inoac Gijutsu Kenkyusho:Kk Composite material
JP2012242402A (en) * 2011-05-13 2012-12-10 Shin Etsu Polymer Co Ltd Cleaning roller, cleaning device, and image forming device
JP2015011061A (en) * 2013-06-26 2015-01-19 株式会社リコー Belt member, image forming apparatus, and manufacturing method of belt member
WO2016021672A1 (en) * 2014-08-07 2016-02-11 電気化学工業株式会社 Conductive polymer material and molded article using same
JP2017203093A (en) * 2016-05-11 2017-11-16 日東電工株式会社 Manufacturing method of conductive resin composite and conductive resin composite
CN108780289A (en) * 2016-03-25 2018-11-09 住友理工株式会社 Electrified Roller Used For Electric Camera Device
JP2020531706A (en) * 2017-08-28 2020-11-05 リンテック・オヴ・アメリカ,インコーポレイテッド Insulated nanofiber yarn

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111135A (en) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp Conductive polymer composition
JP2003246927A (en) * 2002-02-26 2003-09-05 Kanegafuchi Chem Ind Co Ltd Polyimide resin composition, polyimide film, polyimide tubular article and electrophotographic tubular article
JP2004207097A (en) * 2002-12-26 2004-07-22 Inoac Corp Conductive resin composition
JP2005275249A (en) * 2004-03-26 2005-10-06 Okura Ind Co Ltd Semiconductive seamless belt
JP2006152131A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Resin composition and use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111135A (en) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp Conductive polymer composition
JP2003246927A (en) * 2002-02-26 2003-09-05 Kanegafuchi Chem Ind Co Ltd Polyimide resin composition, polyimide film, polyimide tubular article and electrophotographic tubular article
JP2004207097A (en) * 2002-12-26 2004-07-22 Inoac Corp Conductive resin composition
JP2005275249A (en) * 2004-03-26 2005-10-06 Okura Ind Co Ltd Semiconductive seamless belt
JP2006152131A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Resin composition and use of the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513655A (en) * 2006-12-22 2010-04-30 チェイル インダストリーズ インコーポレイテッド Conductive thermoplastic resin composition and plastic molded article
JP2010007046A (en) * 2008-05-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and molded article thereof
JP2010006998A (en) * 2008-06-28 2010-01-14 Mitsubishi Materials Corp Electroconductive resin composition and its use
JP2010018743A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material
JP2010248383A (en) * 2009-04-16 2010-11-04 Inoac Gijutsu Kenkyusho:Kk Composite material
JP2012242402A (en) * 2011-05-13 2012-12-10 Shin Etsu Polymer Co Ltd Cleaning roller, cleaning device, and image forming device
JP2015011061A (en) * 2013-06-26 2015-01-19 株式会社リコー Belt member, image forming apparatus, and manufacturing method of belt member
CN106661333A (en) * 2014-08-07 2017-05-10 电化株式会社 Conductive polymer material and molded article by using same
WO2016021672A1 (en) * 2014-08-07 2016-02-11 電気化学工業株式会社 Conductive polymer material and molded article using same
JPWO2016021672A1 (en) * 2014-08-07 2017-08-03 デンカ株式会社 Conductive polymer material and molded product using the same
US10629326B2 (en) 2014-08-07 2020-04-21 Denka Company Limited Conductive polymer material and molded article using same
CN106661333B (en) * 2014-08-07 2020-10-27 电化株式会社 Conductive polymer material and molded article thereof
CN108780289A (en) * 2016-03-25 2018-11-09 住友理工株式会社 Electrified Roller Used For Electric Camera Device
JP2017203093A (en) * 2016-05-11 2017-11-16 日東電工株式会社 Manufacturing method of conductive resin composite and conductive resin composite
JP2020531706A (en) * 2017-08-28 2020-11-05 リンテック・オヴ・アメリカ,インコーポレイテッド Insulated nanofiber yarn
JP7154281B2 (en) 2017-08-28 2022-10-17 リンテック・オヴ・アメリカ,インコーポレイテッド insulated nanofiber yarn
US11486063B2 (en) 2017-08-28 2022-11-01 Lintec Of America, Inc. Insulated nanofiber yarns

Also Published As

Publication number Publication date
JP4968576B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4968576B2 (en) Conductive composition and molded body thereof
JP5882724B2 (en) Conductive member, process cartridge, and electrophotographic apparatus
JP3639773B2 (en) Semiconductive rubber composition, charging member, electrophotographic apparatus, process cartridge
JP5471176B2 (en) Composition for conductive roller, conductive roller, charging device, image forming apparatus and process cartridge, and method for manufacturing conductive roller
JP5459101B2 (en) Annular member, charging device, process cartridge, and image forming apparatus
JP7110016B2 (en) INTERMEDIATE TRANSFER BELT, INTERMEDIATE TRANSFER BELT MANUFACTURING METHOD, AND IMAGE FORMING APPARATUS
JP5687135B2 (en) Conductive rubber composition for electrophotographic equipment and charging roll for electrophotographic equipment using the same
WO2016158813A1 (en) Electrophotographic equipment-use electrically conductive member
US9095999B2 (en) Charging member, charging unit, process cartridge, image forming apparatus, and method of manufacturing charging member
JP6082622B2 (en) Conductive rubber composition for electrophotographic equipment and charging roll for electrophotographic equipment using the same
JP2004211026A (en) Flame retardant seamless belt, method for producing the same and image-forming device equipped with the same
JP4751815B2 (en) Charging roll, transfer roll, developing roll, charging belt, or static elimination belt in an electrophotographic image forming apparatus
WO2020230394A1 (en) Conductive endless belt
JP3685641B2 (en) Seamless belt and semiconductive member
JP5747466B2 (en) Charging member, process unit cartridge, and image forming apparatus
JP2007199599A (en) Electrifying roller
JP6554806B2 (en) Conductive member, charging device, process cartridge, image forming apparatus, and method of manufacturing conductive member
CN110753883B (en) Charging member for electrophotographic apparatus
JP5230186B2 (en) Elastic member and manufacturing method thereof
JP2014006327A (en) Conductive endless belt
JP2002196590A (en) Endless belt, belt for image forming device and image forming device
JP2010145630A (en) Electroconductive endless belt
JP2004331725A (en) Semiconductive fluororesin tubular film and its manufacturing method
JP4626233B2 (en) Elastomer composition for elastic member of electrophotographic apparatus, conductive member produced using the same, and image forming apparatus comprising the conductive member
CN117590715A (en) Roller member, charging device, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250