JP2007230806A - Frost damage resistant lightweight concrete - Google Patents

Frost damage resistant lightweight concrete Download PDF

Info

Publication number
JP2007230806A
JP2007230806A JP2006052489A JP2006052489A JP2007230806A JP 2007230806 A JP2007230806 A JP 2007230806A JP 2006052489 A JP2006052489 A JP 2006052489A JP 2006052489 A JP2006052489 A JP 2006052489A JP 2007230806 A JP2007230806 A JP 2007230806A
Authority
JP
Japan
Prior art keywords
concrete
lightweight
test
coarse aggregate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006052489A
Other languages
Japanese (ja)
Inventor
Makoto Kagaya
誠 加賀谷
Masahiro Suzuki
雅博 鈴木
Katsutoshi Morohashi
克敏 諸橋
Kiyoshi Kirikawa
潔 桐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2006052489A priority Critical patent/JP2007230806A/en
Publication of JP2007230806A publication Critical patent/JP2007230806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that lightweight concrete is deteriorated by the pop out of a lightweight coarse aggregate or the cracking of the concrete caused by the repetition of freezing-thawing of water comprised in the lightweight coarse aggregate. <P>SOLUTION: The frost damage resistant lightweight concrete is obtained by mixing concrete with polyvinyl alcohol fiber having a fiber diameter of 100 to 200 μm and a fiber length of 5 to 30 mm by 0.10 to 0.20 vol.%. Regarding a test piece mixed with no polyvinyl alcohol fiber, its relative dynamic elastic modulus reaches <80% for 250 times by the number of freeze thawing cycles, but, in the case of the test piece blended therewith, the reduction of the relative dynamic elastic coefficient is hardly recognized even for 300 times by the number of the cycles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は耐凍害軽量コンクリートに関し、さらに詳しくは、人工軽量骨材等を用いたコンクリート製品の凍結融解抵抗性を向上させる技術に係るものである。   The present invention relates to a frost-resistant lightweight concrete, and more particularly to a technique for improving the freeze-thaw resistance of a concrete product using an artificial lightweight aggregate or the like.

例えば、経年劣化した鋼橋RC床板打換えに、幅員拡張や活荷重増加による断面増加に伴って上部工の重量が増加する。この重量の増加を小さくするため、掛け替え部に軽量コンクリートを適用することは非常に有効な手段の一つと考えられる。   For example, the weight of the superstructure increases as the cross-section increases due to the expansion of the width or the increase of the live load due to the steel bridge RC floor board replacement over time. In order to reduce this increase in weight, it is considered to be one of the very effective means to apply lightweight concrete to the switching portion.

しかし、軽量コンクリートは、一般に、軽量粗骨材の吸水率が大きいため、軽量粗骨材中に含有する水分が、環境温度の低いときは膨張し、軽量粗骨材の周囲にひび割れを生じさせ、結果的にポップアウトを引き起こすため、一般に、耐凍害性が低いことが知られている。従って、寒冷地で使用する場合に大きな問題となる場合がある。   However, since lightweight concrete generally has a large water absorption rate for lightweight coarse aggregates, the moisture contained in the lightweight coarse aggregates expands when the ambient temperature is low, causing cracks around the lightweight coarse aggregates. As a result, pop-out is caused, and it is generally known that the resistance to frost damage is low. Therefore, it may become a big problem when used in a cold region.

この問題を解決するために、軽量粗骨材の低吸水率化を図る技術、独立気泡を有する軽量骨材の開発、あるいは軽量骨材自体の表面にコーティングを施して吸水を防止する技術などが提案されている。しかし、このような品質を向上させた軽量粗骨材においても、同一バッチにおけるコンクリート中の品質のばらつき等に起因する耐凍害性の低下が懸念される。このため、良質で、かつ、ばらつきの小さい軽量粗骨材の選定方法や耐凍害性低下を抑制するためのコンクリートの補強方法が必要となる。   In order to solve this problem, there are technologies to reduce the water absorption rate of lightweight coarse aggregate, development of lightweight aggregate with closed cells, or technology to prevent water absorption by coating the surface of lightweight aggregate itself Proposed. However, even in such a lightweight coarse aggregate with improved quality, there is a concern that the frost damage resistance may be reduced due to variations in quality in concrete in the same batch. For this reason, it is necessary to select a lightweight coarse aggregate that is of high quality and has little variation, and a concrete reinforcing method for suppressing the frost damage resistance deterioration.

このような課題を解決する技術として、コンクリート中に鋼短繊維を混入したコンクリートが知られている。しかし、この技術では、鋼繊維の腐食により、美観上問題が生じたり、長期耐久性が劣るという問題があった。   As a technique for solving such a problem, concrete in which short steel fibers are mixed in concrete is known. However, this technique has a problem that an aesthetic problem arises due to the corrosion of the steel fiber, and the long-term durability is inferior.

また、1000℃以上の耐火性能及び耐熱性能を保つコンクリートとして、絶乾状態又は半分程度まで吸水させた軽量骨材を用い、ポリビニールアルコール系繊維等を用いた水硬性複合物(コンクリート)がある(例えば、特許文献1参照。)。   Moreover, there is a hydraulic composite (concrete) using a polyvinyl alcohol fiber or the like using a lightweight aggregate that has absorbed water up to about half or half as a concrete that maintains a fire resistance performance and heat resistance performance of 1000 ° C. or higher. (For example, refer to Patent Document 1).

この技術は高温におけるコンクリートの爆裂防止に関する技術である。
特開2004−292257号公報(第2−5頁、図1)
This technology relates to the prevention of concrete explosion at high temperatures.
JP 2004-292257 A (page 2-5, FIG. 1)

軽量粗骨材を使用した軽量コンクリートは、軽量粗骨材に含まれている水の凍結融解の繰り返しにより軽量粗骨材のポップアウトやコンクリートのひび割れにより劣化するという問題がある。   There is a problem that lightweight concrete using lightweight coarse aggregate deteriorates due to pop-out of lightweight coarse aggregate or cracks in concrete due to repeated freezing and thawing of water contained in the lightweight coarse aggregate.

本発明はこのような問題を解決し、耐凍害軽量コンクリートを提供することを目的とする。   An object of the present invention is to solve such problems and to provide frost-resistant lightweight concrete.

本発明は、ポリビニールアルコール繊維(以下PVA繊維という)を混入したことを特徴とする耐凍害軽量コンクリートである。   The present invention is a frost-resistant lightweight concrete in which polyvinyl alcohol fibers (hereinafter referred to as PVA fibers) are mixed.

本発明の作用は、軽量コンクリートの凍結融解による膨張収縮に対して、ポリビニールアルコール系繊維を混入することによってコンクリートの靭性が向上し、コンクリートにひび割れ等の発生を抑制することである。この場合、前記PVA繊維は繊維径100〜200μm、繊維長5〜30mm、混入量がコンクリート体積の0.10〜0.20%とすると好適である。   The effect | action of this invention is that the toughness of concrete improves by mixing a polyvinyl alcohol fiber with respect to the expansion / contraction by freezing and thawing of lightweight concrete, and suppresses generation | occurrence | production of a crack etc. in concrete. In this case, it is preferable that the PVA fiber has a fiber diameter of 100 to 200 μm, a fiber length of 5 to 30 mm, and a mixing amount of 0.10 to 0.20% of the concrete volume.

PVA繊維の径を100〜200μmとしたのは、100μm未満では繊維のからまりや凝集を生じやすく補強効果が少なく、200μmを越えると繊維のコンクリートとの付着性が不十分となり、凍結防止の効果が小さくなるからである。   The reason why the diameter of the PVA fiber is set to 100 to 200 μm is that if it is less than 100 μm, the fiber is likely to be tangled or aggregated, and the reinforcing effect is small, and if it exceeds 200 μm, the adhesion of the fiber to the concrete becomes insufficient and the effect of preventing freezing is obtained. This is because it becomes smaller.

また、PVA繊維の長さを5〜30mmとしたのは、5mm未満のような短繊維ではコンクリートの結合力を高める効果が少なく、一方、30mmを越えると、コンクリート中への分散性が劣るので30mm以下とした。   Moreover, the length of the PVA fiber is set to 5 to 30 mm because short fibers such as less than 5 mm have little effect of increasing the binding strength of the concrete. On the other hand, if the length exceeds 30 mm, the dispersibility in the concrete is inferior. It was 30 mm or less.

またPVA繊維の混入量はコンクリート体積の0.10〜0.20%とするのがよい。0.10%より少ないと結合材としての付着の効果が不足し、0.20%を上廻って添加してもコンクリートの靱性向上効果が飽和するので、この範囲内とするのがよい。   The amount of PVA fibers mixed is preferably 0.10 to 0.20% of the concrete volume. If it is less than 0.10%, the effect of adhesion as a binder is insufficient, and even if added over 0.20%, the effect of improving the toughness of the concrete is saturated.

本発明によれば、通常の人工軽量粗骨材を用い、混練、製造した軽量コンクリートにおける耐凍害性が大幅に向上し、寒冷地等における軽量コンクリートの使用に著しく貢献するという優れた効果を奏する。   According to the present invention, frost damage resistance in light-weight concrete kneaded and manufactured using ordinary artificial lightweight coarse aggregate is greatly improved, and an excellent effect of significantly contributing to the use of light-weight concrete in cold regions and the like is achieved. .

本発明では、耐凍害性を向上させるために、PVA繊維を混入して軽量コンクリートを補強する。PVA繊維は繊維径100〜200μm、繊維長10〜20mmの繊維とし、この繊維をコンクリート体積の0.10〜0.2%を混入することが望ましい。   In the present invention, in order to improve the frost damage resistance, PVA fibers are mixed to reinforce the lightweight concrete. The PVA fiber is preferably a fiber having a fiber diameter of 100 to 200 μm and a fiber length of 10 to 20 mm, and this fiber is desirably mixed with 0.10 to 0.2% of the concrete volume.

本発明を実施するための最良の形態について、試験を行ったので以下説明する。   The best mode for carrying out the present invention was tested and will be described below.

良質で、かつ、ばらつきの小さい軽量粗骨材を選別するために軽量粗骨材の破砕試験を行い、破砕試験後の吸水率試験結果を得た。この試験により選別した軽量粗骨材を用いてPVA繊維で補強したコンクリートを製造し、その凍結融解試験を行った。   In order to select lightweight coarse aggregates with good quality and small variations, a lightweight coarse aggregate crushing test was performed, and water absorption test results after the crushing test were obtained. Concrete reinforced with PVA fibers was produced using the lightweight coarse aggregate selected by this test, and the freeze-thaw test was performed.

なお、プレキャスト部材として用いることを想定して、製品と同一の軽量コンクリートについて蒸気養生の有無を実験要因として取り上げた。
(A)軽量粗骨材の基礎物性試験について
(A−1)基礎物性試験
4種類の軽量粗骨材について、密度、吸水率、浮粒率、破砕試験および破砕試験後の吸水率試験を実施した。
Assuming that it is used as a precast member, the presence or absence of steam curing was taken up as an experimental factor for the same lightweight concrete as the product.
(A) Basic physical property test of lightweight coarse aggregate
(A-1) Basic physical property test About four types of lightweight coarse aggregates, a density, a water absorption rate, a floating rate, a crushing test, and a water absorption rate test after the crushing test were carried out.

密度及び吸水率試験は、JIS A 1100に準拠して実施した。   The density and water absorption rate tests were performed according to JIS A 1100.

浮粒率試験は、JIS A 1143に準拠して行った。まず、試料を24時間乾燥させ、約2リットルの質量を計り、十分大きなポリエチレン製のバケツに入れ、よく攪拌した。注水してから10分後、水に浮いている粒を採取し、採取した粒を24時間乾燥した後に質量を計量して浮粒率を算定した。   The floating rate test was performed according to JIS A 1143. First, the sample was dried for 24 hours, weighed about 2 liters, placed in a sufficiently large polyethylene bucket, and stirred well. Ten minutes after water injection, the particles floating in the water were collected, the collected particles were dried for 24 hours, and the mass was measured to calculate the floating particle ratio.

軽量粗骨材の破砕試験は、BS812に準拠して行った。プランジャーを毎分40kNで載荷し、400kNまで加えた後に除荷した。その後に2.5mmふるいを用いてこれを通過する質量を求め、破砕値を算出した。破砕試験後の吸水率試験の試料は2.5mmふるいに残留したものを用いて実施した。
(A−2)基礎物性試験結果
軽量粗骨材の試験結果を表1に示す。
The crushing test of the lightweight coarse aggregate was performed according to BS812. The plunger was loaded at 40 kN per minute and unloaded after adding up to 400 kN. Thereafter, the mass passing through this was determined using a 2.5 mm sieve, and the crushing value was calculated. The sample of the water absorption rate test after the crushing test was carried out using what remained on the 2.5 mm sieve.
(A-2) Basic physical property test results Table 1 shows the light coarse aggregate test results.

表乾密度は軽量粗骨材A,BおよびCはほぼ等しく、軽量粗骨材Dはこれらより小さかった。破砕試験前の吸水率は軽量粗骨材Dが一番小さく、AおよびCはそれより大きかった。軽量粗骨材の密度は1.0g/cm以上であることから、浮粒率の大きい軽量粗骨材ほど同一ロッドでの不良骨材の混入量が多く含むものと考えられる。この試験では軽量粗骨材Aの浮粒率が最も小さく、Cの浮粒率が最も大きかった。 As for the surface dry density, the light coarse aggregates A, B and C were almost equal, and the light coarse aggregate D was smaller than these. The water absorption before the crushing test was the smallest for the light coarse aggregate D, and A and C were larger. Since the density of the light coarse aggregate is 1.0 g / cm 3 or more, it is considered that the light coarse aggregate having a larger floating particle ratio includes a larger amount of defective aggregate in the same rod. In this test, the lightweight coarse aggregate A had the lowest floating particle ratio, and C had the largest floating particle ratio.

破砕試験後の吸水率は破砕により粒子表面にひび割れ等の損傷を受けた軽量粗骨材の試験結果であり、試験前の吸水率との差が小さい場合にはポップアウトやコンクリートのひび割れ発生による劣化に対して有利であると考えられる。   The water absorption rate after the crushing test is a test result of lightweight coarse aggregate that has been damaged such as cracks on the particle surface due to crushing. If the difference from the water absorption rate before the test is small, it may be caused by pop-out or cracking of concrete. It is considered advantageous for deterioration.

以上の観点から、試験結果が良好な軽量粗骨材Aを用いた場合についてコンクリートの圧縮強度、ヤング係数および凍結融解試験をそれぞれ実施した。また、比較のため、品質のばらつきがあると考えられる軽量粗骨材Dを用いた場合について圧縮強度と凍結融解試験を実施した。   From the above viewpoint, the compressive strength, Young's modulus, and freeze-thaw test of concrete were carried out for each case where the light weight coarse aggregate A with good test results was used. For comparison, the compression strength and the freeze-thaw test were conducted for the case of using the light coarse aggregate D, which is considered to have quality variations.

Figure 2007230806
Figure 2007230806

(B)硬化コンクリートの試験
(B−1)使用材料および配合
表2に使用材料及び配合表を示す。
(B) Hardened concrete test (B-1) Materials used and formulation Table 2 shows the materials used and the formulation table.

結合材βには早強ポルトランドセメントH(密度3.14g/cm,比表面積4480cm/g)と高炉スラグ微粉末BFS(密度2.88g/cm,比表面積6220cm/g)を、繊維PVAには、繊維径100μm,繊維長12mm,密度1.30g/cmのPVA繊維をそれぞれ使用した。前述の表1と同じ品質の軽量粗骨材A,Dを使用した。なお、空気量測定に必要な骨材修正係数は軽量粗骨材Aでは2.2%、軽量粗骨材Dでは0.3%であった。 High-early-strength The binder β Portland cement H (density 3.14 g / cm 3, a specific surface area of 4480cm 2 / g) and ground granulated blast furnace slag BFS (density 2.88 g / cm 3, a specific surface area of 6220cm 2 / g) and, As the fiber PVA, PVA fibers having a fiber diameter of 100 μm, a fiber length of 12 mm, and a density of 1.30 g / cm 3 were used. Lightweight coarse aggregates A and D having the same quality as in Table 1 were used. It should be noted that the aggregate correction coefficient required for air volume measurement was 2.2% for the light coarse aggregate A and 0.3% for the light coarse aggregate D.

配合Aは軽量粗骨材Aを使用した軽量コンクリート、配合A−PVAと配合D−PVAは、それぞれ軽量粗骨材AとDを使用したPVA繊維補強軽量コンクリートである。各配合の単位容積質量は1880kg/mとした。PVA繊維の混入量はコンクリート1mあたり1.95kg(0.15容積%)とした。軽量粗骨材Dは絶乾状態として使用し、単位水量に30分吸水率0.39%にあたる水量1kg/mを補正水として加えた。 Blend A is a lightweight concrete using lightweight coarse aggregate A, and blends A-PVA and D-PVA are PVA fiber reinforced lightweight concrete using lightweight coarse aggregates A and D, respectively. The unit volume mass of each formulation was 1880 kg / m 3 . The amount of PVA fibers mixed was 1.95 kg (0.15% by volume) per 1 m 3 of concrete. The light coarse aggregate D was used in an absolutely dry state, and a water amount of 1 kg / m 3 corresponding to a water absorption rate of 0.39% for 30 minutes was added to the unit water amount as correction water.

Figure 2007230806
Figure 2007230806

(B−2)供試体種別および養生方法
供試体種別と養生方法を表3に示す。供試体寸法は、圧縮強度試験とヤング係数試験ではφ100×200mmとし、凍結融解試験では100×100×400mmとした。各試験の供試体本数は3本とした。供試体の養生方法を以下の2種類とした。
(B-2) Specimen type and curing method Table 3 shows the specimen type and the curing method. The specimen dimensions were set to φ100 × 200 mm in the compressive strength test and Young's modulus test, and 100 × 100 × 400 mm in the freeze-thaw test. The number of specimens for each test was three. The following two types of specimen curing methods were used.

1)室内でコンクリート打設後、材齢1日まで室内養生し、その後脱型し、所定の試験材齢まで水中養生した供試体(水中養生)
2)コンクリート打設後、蒸気養生を行い、その後脱型し、所定の試験材齢まで水中養生した供試体(蒸気+水中養生)
1) Specimen (underwater curing) after concrete placement in the room, indoor curing until the age of 1 day, then demolding and underwater curing to the specified test material age
2) Specimen that was steam-cured after placing the concrete, then removed from the mold, and cured under water until the specified test material age (steam + water curing)

Figure 2007230806
Figure 2007230806

(B−3)圧縮強度とヤング係数試験および凍結融解試験
圧縮強度とヤング係数試験は、それぞれ、JIS A 1108及びJIS A 1149に準拠して実施した。
(B-3) Compressive strength, Young's modulus test and freeze-thaw test The compressive strength and Young's modulus test were carried out in accordance with JIS A 1108 and JIS A 1149, respectively.

凍結融解試験は水中凍結融解試験方法であるJIS A 1148[A法]に準拠し、材齢14日から実施した。試験の終了は300サイクルとし、それまでに相対動弾性係数が60%となった場合や破断した場合は、そのサイクルで終了とした。
(C)試験結果
(C−1)圧縮強度およびヤング係数
コンクリートの材齢と圧縮強度の関係を図2に、軽量粗骨材Aを用いたコンクリートの圧縮強度とヤング係数の関係を図3にそれぞれ示す。図中A、A−PUA等は表2に示す配合名を示すものである。
The freeze-thaw test was carried out from the age of 14 days in accordance with JIS A 1148 [Method A], which is an underwater freeze-thaw test method. The test was completed for 300 cycles, and when the relative kinematic modulus reached 60% or when it broke, the cycle was completed.
(C) Test results (C-1) Compressive strength and Young's modulus Fig. 2 shows the relationship between concrete age and compressive strength, and Fig. 3 shows the relationship between compressive strength and Young's modulus of concrete using lightweight coarse aggregate A. Each is shown. In the figure, A, A-PUA, etc. indicate the formulation names shown in Table 2.

凍結融解試験開始材齢での圧縮強度は、配合Aで63N/mm、配合A−PVAでは蒸気養生の実施有無によらず約65N/mmとなり、配合D−PVAで蒸気養生した供試体は70N/mmであった。配合A−PVAで蒸気養生を実施した圧縮強度は材齢1日で約45N/mmとなっていることから、導入時強度35N/mm、設計基準強度50N/mmのプレテンション部材にも十分適用することができる。 Compressive strength of freeze-thaw test start material age, 63N / mm 2 in formulation A, about 65N / mm 2 next regardless of whether or not to perform the in steam curing formulations A-PVA, specimens were steam curing in formulation D-PVA Was 70 N / mm 2 . Compressive strength was carried out steam curing in formulation A-PVA from it is about 45N / mm 2 in one day the age, introduced during strength 35N / mm 2, the pretensioning member design strength 50 N / mm 2 Can be applied well.

ヤング係数は圧縮強度60N/mmにおいて24kN/mmを超える結果となった。ヤング係数E(kN/mm)と圧縮強度σ(N/mm)と単位容積質量γ(g/cm)との関係について、下記式(1)の関数関係が提案されている。(日本建築学会:鉄筋コンクリート構造計算基準・同解説)
E=33.5x(γ/2.4)×(σ/60)1/3……(1)
図3にはγを1.88g/cmとした場合の計算結果もあわせて示した。ヤング係数の実験結果は上記式(1)を用いて算出したヤング係数より大きくなり、この試験で使用した軽量粗骨材Aの場合には上記式(1)の約1.17倍となった。
(C−2)凍結融解試験結果
表3に繊維補強の有無による凍結融解試験における劣化状況を併せて示した。PVA繊維補強を実施していない供試体はポップアウトに起因すると思われる剥落部分が多く発生し、かつ、破断している。PVA繊維補強を行った供試体はほとんど劣化を生じない結果となった。
The Young's modulus exceeded 24 kN / mm 2 at a compressive strength of 60 N / mm 2 . As for the relationship among the Young's modulus E (kN / mm 2 ), the compressive strength σ (N / mm 2 ), and the unit volume mass γ (g / cm 3 ), a functional relationship of the following formula (1) has been proposed. (The Architectural Institute of Japan: Reinforced concrete structure calculation standards and explanation)
E = 33.5x (γ / 2.4) 2 × (σ / 60) 1/3 (1)
FIG. 3 also shows the calculation results when γ is 1.88 g / cm 3 . The experimental result of the Young's modulus is larger than the Young's modulus calculated using the above formula (1), and in the case of the lightweight coarse aggregate A used in this test, it is about 1.17 times that of the above formula (1). .
(C-2) Results of freeze-thaw test Table 3 also shows the deterioration status in the freeze-thaw test with and without fiber reinforcement. A specimen not subjected to PVA fiber reinforcement has a lot of peeled portions that are thought to be caused by pop-out and is broken. The specimen subjected to PVA fiber reinforcement almost did not deteriorate.

図1にサイクル数に伴う相対動弾性係数の変化を供試体3本の平均値として示す。配合Aと配合A−PVAの蒸気養生を実施しない供試体とを比較すると、配合Aはサイクル数250回において相対動弾性係数が80%を下回る結果となったのに対して、配合A−PVAはサイクル数300回においても相対動弾性係数の低下はほとんど認められない結果を示した。   FIG. 1 shows the change in the relative dynamic elastic modulus with the number of cycles as an average value of three specimens. Comparing Formulation A with a specimen that was not subjected to steam curing of Formulation A-PVA, Formulation A resulted in a relative kinematic modulus of less than 80% at 250 cycles, whereas Formulation A-PVA Shows a result that almost no decrease in the relative dynamic elastic modulus was observed even at 300 cycles.

相対的に良質な軽量粗骨材を選別した場合においても水中凍結融解試験の場合にはコンクリートの劣化が認められたが、PVA繊維で補強することにより凍結融解抵抗性の向上が認められた。配合Aではわずかに混入した品質の劣る軽量粗骨材粒子の寸法の大きいポップアウト発生後に、そこに残留した軽量粗骨材粒子の吸水と凍結融解による膨張収縮の繰り返しによりモルタル部のひび割れが急激に発生し、破断した。   Even in the case of selecting relatively high-quality lightweight coarse aggregate, deterioration of concrete was observed in the case of the underwater freeze-thaw test, but improvement in freeze-thaw resistance was recognized by reinforcing with PVA fibers. In compound A, after the occurrence of pop-out with a small size of light coarse aggregate particles of poor quality mixed slightly, the cracks of the mortar part suddenly cracked due to repeated water absorption and freezing and thawing of the remaining light coarse aggregate particles. Occurred and broke.

これに対して、配合A−PVAはPVA繊維を混入することにより、ポップアウトの発生数が少なく、ポップアウトが発生した場合でも寸法が小さく、繊維を混入しない場合と比較してひび割れ幅をかなり抑制することができ、結果として相対動弾性係数の低下を小さくすることができたと考えられる。   On the other hand, the blend A-PVA has a small number of pop-outs by mixing PVA fibers, the size is small even when pop-outs occur, and the crack width is considerably smaller than when no fibers are mixed. It can be suppressed, and as a result, it is considered that the decrease in the relative dynamic elastic modulus could be reduced.

蒸気養生を実施した供試体においても、相対動弾性係数の低下がほとんど認められない結果となり、蒸気養生による耐凍結融解抵抗性の低下は認められなかった。軽量粗骨材の物性試験で軽量粗骨材個々の品質にばらつきがあると考えられた配合D−PVAについては、PVAを混入した場合においてもサイクル数232回で破断する結果となった。   In the specimens subjected to steam curing, the relative kinematic modulus was hardly decreased, and the resistance to freezing and thawing due to steam curing was not observed. The blended D-PVA, which was considered to have variations in the quality of each lightweight coarse aggregate in the physical property test of the lightweight coarse aggregate, resulted in rupture at 232 cycles even when PVA was mixed.

凍結融解作用によるコンクリートの劣化を防止するためには、繊維補強するのみならず、軽量粗骨材粒子個々の品質のばらつきが小さい軽量粗骨材を選定する必要があると考えられる。このために、浮粒率試験や破砕試験後の吸水率試験は有効である。   In order to prevent deterioration of the concrete due to the freeze-thaw action, it is considered necessary to select not only fiber reinforcement but also lightweight coarse aggregate with small variations in the quality of individual lightweight coarse aggregate particles. For this reason, the floatability test and the water absorption test after the crushing test are effective.

PVA繊維補強軽量コンクリートの凍結融解抵抗性試験、破砕試験後の吸水率試験および圧縮強度試験から以下のことが明らかになった。
(1)良質で、かつ、ばらつきの小さい軽量コンクリートをPVA繊維で補強することにより、水中養生および蒸気養生において、サイクル数300回においても相対動弾性係数の低下が認められず、凍結融解抵抗性の向上が認められた。
(2)しかし、軽量粗骨材粒子個々の品質のばらつきが耐凍害性に与える影響が大きく、品質のばらつきが大きい場合には、PVA繊維補強してもコンクリートの劣化が認められた。
(3)軽量粗骨材粒子個々の品質のばらつきを判定する試験として、浮粒率試験、破砕試験および破砕試験前後における吸水率の差が有効な手法であることが認められた。
(4)本試験で実施した配合A−PVAは力学的には導入時強度35N/mm、設計基準強度50N/mmとする工場製作のプレテンション部材にも適用することができる。
(5)ヤング係数は単位容積質量と圧縮強度の関数で示すことができる。
From the freeze-thaw resistance test, the water absorption test after the crushing test, and the compressive strength test of the light-weight concrete reinforced with PVA fiber, the following was revealed.
(1) Reinforcement of lightweight concrete with good quality and small variation with PVA fibers, no decrease in relative dynamic elastic modulus was observed even under 300 cycles in water curing and steam curing, and resistance to freezing and thawing Improvement was observed.
(2) However, the variation in the quality of the individual lightweight coarse aggregate particles has a great influence on the frost damage resistance. When the variation in the quality is large, deterioration of the concrete was recognized even if the PVA fiber was reinforced.
(3) It was recognized that the difference in water absorption before and after the flocculation rate test, the crushing test, and the crushing test is an effective technique as a test for judging the quality variation of the individual lightweight coarse aggregate particles.
(4) blending A-PVA was conducted in this study is the mechanical introduction strength at 35N / mm 2, it can also be applied to a pre-tensioning member factory fabrication and design strength 50 N / mm 2.
(5) Young's modulus can be expressed as a function of unit volume mass and compressive strength.

サイクル数に伴う相対動弾性係数の変化を示すグラフである。It is a graph which shows the change of the relative kinematic elastic coefficient accompanying the number of cycles. 材料と圧縮強度との関係を示すグラフである。It is a graph which shows the relationship between material and compressive strength. 圧縮強度とヤング係数との関係を示すグラフである。It is a graph which shows the relationship between compressive strength and Young's modulus.

Claims (2)

ポリビニールアルコール繊維を混入したことを特徴とする耐凍害軽量コンクリート。   Frost-resistant lightweight concrete characterized by the inclusion of polyvinyl alcohol fiber. 前記ポリビニールアルコール繊維は繊維径100〜200μm、繊維長5〜30mm、混入量がコンクリート体積の0.10〜0.20%であることを特徴とする請求項1記載の耐凍害軽量コンクリート。   2. The frost-resistant lightweight concrete according to claim 1, wherein the polyvinyl alcohol fiber has a fiber diameter of 100 to 200 μm, a fiber length of 5 to 30 mm, and a mixing amount of 0.10 to 0.20% of the concrete volume.
JP2006052489A 2006-02-28 2006-02-28 Frost damage resistant lightweight concrete Pending JP2007230806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052489A JP2007230806A (en) 2006-02-28 2006-02-28 Frost damage resistant lightweight concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052489A JP2007230806A (en) 2006-02-28 2006-02-28 Frost damage resistant lightweight concrete

Publications (1)

Publication Number Publication Date
JP2007230806A true JP2007230806A (en) 2007-09-13

Family

ID=38551782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052489A Pending JP2007230806A (en) 2006-02-28 2006-02-28 Frost damage resistant lightweight concrete

Country Status (1)

Country Link
JP (1) JP2007230806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716208A (en) * 2022-04-24 2022-07-08 北京天地建设砼制品有限公司 Winter fertilization micro-expansion concrete and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319176A (en) * 1995-05-22 1996-12-03 Bridgestone Corp Lightweight mortar
JPH11268973A (en) * 1998-01-09 1999-10-05 Diamond Engineering Kk Fiber-reinforced lightweight concrete
JP2001106561A (en) * 1999-10-05 2001-04-17 Tokyo Denki Komusho Co Ltd Insulating concrete composition and insulating concrete
JP2001253749A (en) * 2000-03-08 2001-09-18 Taiheiyo Cement Corp High-strength light weight cement hardened body
JP2001348282A (en) * 2000-06-01 2001-12-18 Shimizu Corp Production process of super lightweight concrete, precast concrete and reinforced concrete column
JP2002241168A (en) * 2001-02-08 2002-08-28 Ohbayashi Corp Fiber-reinforced mortar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319176A (en) * 1995-05-22 1996-12-03 Bridgestone Corp Lightweight mortar
JPH11268973A (en) * 1998-01-09 1999-10-05 Diamond Engineering Kk Fiber-reinforced lightweight concrete
JP2001106561A (en) * 1999-10-05 2001-04-17 Tokyo Denki Komusho Co Ltd Insulating concrete composition and insulating concrete
JP2001253749A (en) * 2000-03-08 2001-09-18 Taiheiyo Cement Corp High-strength light weight cement hardened body
JP2001348282A (en) * 2000-06-01 2001-12-18 Shimizu Corp Production process of super lightweight concrete, precast concrete and reinforced concrete column
JP2002241168A (en) * 2001-02-08 2002-08-28 Ohbayashi Corp Fiber-reinforced mortar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716208A (en) * 2022-04-24 2022-07-08 北京天地建设砼制品有限公司 Winter fertilization micro-expansion concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
Karahan Transport properties of high volume fly ash or slag concrete exposed to high temperature
Hung et al. Medium-term self-healing evaluation of engineered cementitious composites with varying amounts of fly ash and exposure durations
Berndt Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate
Tuyan et al. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate
Özbay et al. Self-Healing of Microcracks in High-Volume Fly-Ash-Incorporated Engineered Cementitious Composites.
Sim et al. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate
AzariJafari et al. Effects of pre-soaked super absorbent polymers on fresh and hardened properties of self-consolidating lightweight concrete
Özbay et al. Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC
Sahmaran et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites
Raheem et al. Effect of curing methods on density and compressive strength of concrete
Corinaldesi et al. Use of synthetic fibers in self-compacting lightweight aggregate concretes
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
JP2010006662A (en) Highly durable concrete composition and method for producing highly durable concrete
Booya et al. The influence of utilizing slag in lieu of fly ash on the performance of engineered cementitious composites
Aslani et al. The effect of hollow glass microspheres, carbon nanofibers and activated carbon powder on mechanical and dry shrinkage performance of ultra-lightweight engineered cementitious composites
Yoon et al. Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application
Jiang et al. Design of eco-friendly ultra-high performance concrete with supplementary cementitious materials and coarse aggregate
Choucha et al. Effect of natural pozzolan content on the properties of engineered cementitious composites as repair material
Dhengare et al. Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar—a review
Rustamov et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing
Ataabadi et al. Lightweight dense polymer concrete exposed to chemical condition and various temperatures: An experimental investigation
Yıldırım et al. Residual durability performance of glass fiber reinforced concrete damaged by compressive stress loads
Woo et al. Enhanced durability performance of face slab concrete in Concrete-Faced Rock-filled Dam using fly ash and PVA fibre
Mardani-Aghabaglou et al. Water Transport of Lightweight Concrete with Different Aggregate Saturation Levels.
JP2008230869A (en) Concrete composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Effective date: 20110209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011